1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: kenton@google.com (Kenton Varda)
32 //  Based on original Protocol Buffers design by
33 //  Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // Defines Message, the abstract interface implemented by non-lite
36 // protocol message objects.  Although it's possible to implement this
37 // interface manually, most users will use the protocol compiler to
38 // generate implementations.
39 //
40 // Example usage:
41 //
42 // Say you have a message defined as:
43 //
44 //   message Foo {
45 //     optional string text = 1;
46 //     repeated int32 numbers = 2;
47 //   }
48 //
49 // Then, if you used the protocol compiler to generate a class from the above
50 // definition, you could use it like so:
51 //
52 //   std::string data;  // Will store a serialized version of the message.
53 //
54 //   {
55 //     // Create a message and serialize it.
56 //     Foo foo;
57 //     foo.set_text("Hello World!");
58 //     foo.add_numbers(1);
59 //     foo.add_numbers(5);
60 //     foo.add_numbers(42);
61 //
62 //     foo.SerializeToString(&data);
63 //   }
64 //
65 //   {
66 //     // Parse the serialized message and check that it contains the
67 //     // correct data.
68 //     Foo foo;
69 //     foo.ParseFromString(data);
70 //
71 //     assert(foo.text() == "Hello World!");
72 //     assert(foo.numbers_size() == 3);
73 //     assert(foo.numbers(0) == 1);
74 //     assert(foo.numbers(1) == 5);
75 //     assert(foo.numbers(2) == 42);
76 //   }
77 //
78 //   {
79 //     // Same as the last block, but do it dynamically via the Message
80 //     // reflection interface.
81 //     Message* foo = new Foo;
82 //     const Descriptor* descriptor = foo->GetDescriptor();
83 //
84 //     // Get the descriptors for the fields we're interested in and verify
85 //     // their types.
86 //     const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
87 //     assert(text_field != nullptr);
88 //     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
89 //     assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
90 //     const FieldDescriptor* numbers_field = descriptor->
91 //                                            FindFieldByName("numbers");
92 //     assert(numbers_field != nullptr);
93 //     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
94 //     assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
95 //
96 //     // Parse the message.
97 //     foo->ParseFromString(data);
98 //
99 //     // Use the reflection interface to examine the contents.
100 //     const Reflection* reflection = foo->GetReflection();
101 //     assert(reflection->GetString(*foo, text_field) == "Hello World!");
102 //     assert(reflection->FieldSize(*foo, numbers_field) == 3);
103 //     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
104 //     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
105 //     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
106 //
107 //     delete foo;
108 //   }
109 
110 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
111 #define GOOGLE_PROTOBUF_MESSAGE_H__
112 
113 #include <iosfwd>
114 #include <string>
115 #include <type_traits>
116 #include <vector>
117 
118 #include <google/protobuf/stubs/casts.h>
119 #include <google/protobuf/stubs/common.h>
120 #include <google/protobuf/arena.h>
121 #include <google/protobuf/descriptor.h>
122 #include <google/protobuf/generated_message_reflection.h>
123 #include <google/protobuf/message_lite.h>
124 #include <google/protobuf/port.h>
125 
126 
127 #define GOOGLE_PROTOBUF_HAS_ONEOF
128 #define GOOGLE_PROTOBUF_HAS_ARENAS
129 
130 #include <google/protobuf/port_def.inc>
131 
132 #ifdef SWIG
133 #error "You cannot SWIG proto headers"
134 #endif
135 
136 namespace google {
137 namespace protobuf {
138 
139 // Defined in this file.
140 class Message;
141 class Reflection;
142 class MessageFactory;
143 
144 // Defined in other files.
145 class AssignDescriptorsHelper;
146 class DynamicMessageFactory;
147 class MapKey;
148 class MapValueRef;
149 class MapIterator;
150 class MapReflectionTester;
151 
152 namespace internal {
153 struct DescriptorTable;
154 class MapFieldBase;
155 }
156 class UnknownFieldSet;  // unknown_field_set.h
157 namespace io {
158 class ZeroCopyInputStream;   // zero_copy_stream.h
159 class ZeroCopyOutputStream;  // zero_copy_stream.h
160 class CodedInputStream;      // coded_stream.h
161 class CodedOutputStream;     // coded_stream.h
162 }  // namespace io
163 namespace python {
164 class MapReflectionFriend;  // scalar_map_container.h
165 }
166 namespace expr {
167 class CelMapReflectionFriend;  // field_backed_map_impl.cc
168 }
169 
170 namespace internal {
171 class MapFieldPrinterHelper;  // text_format.cc
172 }
173 
174 
175 namespace internal {
176 class ReflectionAccessor;      // message.cc
177 class ReflectionOps;           // reflection_ops.h
178 class MapKeySorter;            // wire_format.cc
179 class WireFormat;              // wire_format.h
180 class MapFieldReflectionTest;  // map_test.cc
181 }  // namespace internal
182 
183 template <typename T>
184 class RepeatedField;  // repeated_field.h
185 
186 template <typename T>
187 class RepeatedPtrField;  // repeated_field.h
188 
189 // A container to hold message metadata.
190 struct Metadata {
191   const Descriptor* descriptor;
192   const Reflection* reflection;
193 };
194 
195 // Abstract interface for protocol messages.
196 //
197 // See also MessageLite, which contains most every-day operations.  Message
198 // adds descriptors and reflection on top of that.
199 //
200 // The methods of this class that are virtual but not pure-virtual have
201 // default implementations based on reflection.  Message classes which are
202 // optimized for speed will want to override these with faster implementations,
203 // but classes optimized for code size may be happy with keeping them.  See
204 // the optimize_for option in descriptor.proto.
205 class PROTOBUF_EXPORT Message : public MessageLite {
206  public:
Message()207   inline Message() {}
~Message()208   ~Message() override {}
209 
210   // Basic Operations ------------------------------------------------
211 
212   // Construct a new instance of the same type.  Ownership is passed to the
213   // caller.  (This is also defined in MessageLite, but is defined again here
214   // for return-type covariance.)
215   Message* New() const override = 0;
216 
217   // Construct a new instance on the arena. Ownership is passed to the caller
218   // if arena is a nullptr. Default implementation allows for API compatibility
219   // during the Arena transition.
New(Arena * arena)220   Message* New(Arena* arena) const override {
221     Message* message = New();
222     if (arena != nullptr) {
223       arena->Own(message);
224     }
225     return message;
226   }
227 
228   // Make this message into a copy of the given message.  The given message
229   // must have the same descriptor, but need not necessarily be the same class.
230   // By default this is just implemented as "Clear(); MergeFrom(from);".
231   virtual void CopyFrom(const Message& from);
232 
233   // Merge the fields from the given message into this message.  Singular
234   // fields will be overwritten, if specified in from, except for embedded
235   // messages which will be merged.  Repeated fields will be concatenated.
236   // The given message must be of the same type as this message (i.e. the
237   // exact same class).
238   virtual void MergeFrom(const Message& from);
239 
240   // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
241   // a nice error message.
242   void CheckInitialized() const;
243 
244   // Slowly build a list of all required fields that are not set.
245   // This is much, much slower than IsInitialized() as it is implemented
246   // purely via reflection.  Generally, you should not call this unless you
247   // have already determined that an error exists by calling IsInitialized().
248   void FindInitializationErrors(std::vector<std::string>* errors) const;
249 
250   // Like FindInitializationErrors, but joins all the strings, delimited by
251   // commas, and returns them.
252   std::string InitializationErrorString() const override;
253 
254   // Clears all unknown fields from this message and all embedded messages.
255   // Normally, if unknown tag numbers are encountered when parsing a message,
256   // the tag and value are stored in the message's UnknownFieldSet and
257   // then written back out when the message is serialized.  This allows servers
258   // which simply route messages to other servers to pass through messages
259   // that have new field definitions which they don't yet know about.  However,
260   // this behavior can have security implications.  To avoid it, call this
261   // method after parsing.
262   //
263   // See Reflection::GetUnknownFields() for more on unknown fields.
264   virtual void DiscardUnknownFields();
265 
266   // Computes (an estimate of) the total number of bytes currently used for
267   // storing the message in memory.  The default implementation calls the
268   // Reflection object's SpaceUsed() method.
269   //
270   // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
271   // using reflection (rather than the generated code implementation for
272   // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
273   // fields defined for the proto.
274   virtual size_t SpaceUsedLong() const;
275 
276   PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
SpaceUsed()277   int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }
278 
279   // Debugging & Testing----------------------------------------------
280 
281   // Generates a human readable form of this message, useful for debugging
282   // and other purposes.
283   std::string DebugString() const;
284   // Like DebugString(), but with less whitespace.
285   std::string ShortDebugString() const;
286   // Like DebugString(), but do not escape UTF-8 byte sequences.
287   std::string Utf8DebugString() const;
288   // Convenience function useful in GDB.  Prints DebugString() to stdout.
289   void PrintDebugString() const;
290 
291   // Reflection-based methods ----------------------------------------
292   // These methods are pure-virtual in MessageLite, but Message provides
293   // reflection-based default implementations.
294 
295   std::string GetTypeName() const override;
296   void Clear() override;
297 
298   // Returns whether all required fields have been set. Note that required
299   // fields no longer exist starting in proto3.
300   bool IsInitialized() const override;
301 
302   void CheckTypeAndMergeFrom(const MessageLite& other) override;
303   // Reflective parser
304   const char* _InternalParse(const char* ptr,
305                              internal::ParseContext* ctx) override;
306   size_t ByteSizeLong() const override;
307   uint8* _InternalSerialize(uint8* target,
308                             io::EpsCopyOutputStream* stream) const override;
309 
310  private:
311   // This is called only by the default implementation of ByteSize(), to
312   // update the cached size.  If you override ByteSize(), you do not need
313   // to override this.  If you do not override ByteSize(), you MUST override
314   // this; the default implementation will crash.
315   //
316   // The method is private because subclasses should never call it; only
317   // override it.  Yes, C++ lets you do that.  Crazy, huh?
318   virtual void SetCachedSize(int size) const;
319 
320  public:
321   // Introspection ---------------------------------------------------
322 
323 
324   // Get a non-owning pointer to a Descriptor for this message's type.  This
325   // describes what fields the message contains, the types of those fields, etc.
326   // This object remains property of the Message.
GetDescriptor()327   const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
328 
329   // Get a non-owning pointer to the Reflection interface for this Message,
330   // which can be used to read and modify the fields of the Message dynamically
331   // (in other words, without knowing the message type at compile time).  This
332   // object remains property of the Message.
GetReflection()333   const Reflection* GetReflection() const { return GetMetadata().reflection; }
334 
335  protected:
336   // Get a struct containing the metadata for the Message, which is used in turn
337   // to implement GetDescriptor() and GetReflection() above.
338   virtual Metadata GetMetadata() const = 0;
339 
340 
341  private:
342   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
343 };
344 
345 namespace internal {
346 // Forward-declare interfaces used to implement RepeatedFieldRef.
347 // These are protobuf internals that users shouldn't care about.
348 class RepeatedFieldAccessor;
349 }  // namespace internal
350 
351 // Forward-declare RepeatedFieldRef templates. The second type parameter is
352 // used for SFINAE tricks. Users should ignore it.
353 template <typename T, typename Enable = void>
354 class RepeatedFieldRef;
355 
356 template <typename T, typename Enable = void>
357 class MutableRepeatedFieldRef;
358 
359 // This interface contains methods that can be used to dynamically access
360 // and modify the fields of a protocol message.  Their semantics are
361 // similar to the accessors the protocol compiler generates.
362 //
363 // To get the Reflection for a given Message, call Message::GetReflection().
364 //
365 // This interface is separate from Message only for efficiency reasons;
366 // the vast majority of implementations of Message will share the same
367 // implementation of Reflection (GeneratedMessageReflection,
368 // defined in generated_message.h), and all Messages of a particular class
369 // should share the same Reflection object (though you should not rely on
370 // the latter fact).
371 //
372 // There are several ways that these methods can be used incorrectly.  For
373 // example, any of the following conditions will lead to undefined
374 // results (probably assertion failures):
375 // - The FieldDescriptor is not a field of this message type.
376 // - The method called is not appropriate for the field's type.  For
377 //   each field type in FieldDescriptor::TYPE_*, there is only one
378 //   Get*() method, one Set*() method, and one Add*() method that is
379 //   valid for that type.  It should be obvious which (except maybe
380 //   for TYPE_BYTES, which are represented using strings in C++).
381 // - A Get*() or Set*() method for singular fields is called on a repeated
382 //   field.
383 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
384 //   field.
385 // - The Message object passed to any method is not of the right type for
386 //   this Reflection object (i.e. message.GetReflection() != reflection).
387 //
388 // You might wonder why there is not any abstract representation for a field
389 // of arbitrary type.  E.g., why isn't there just a "GetField()" method that
390 // returns "const Field&", where "Field" is some class with accessors like
391 // "GetInt32Value()".  The problem is that someone would have to deal with
392 // allocating these Field objects.  For generated message classes, having to
393 // allocate space for an additional object to wrap every field would at least
394 // double the message's memory footprint, probably worse.  Allocating the
395 // objects on-demand, on the other hand, would be expensive and prone to
396 // memory leaks.  So, instead we ended up with this flat interface.
397 class PROTOBUF_EXPORT Reflection final {
398  public:
399   // Get the UnknownFieldSet for the message.  This contains fields which
400   // were seen when the Message was parsed but were not recognized according
401   // to the Message's definition.
402   const UnknownFieldSet& GetUnknownFields(const Message& message) const;
403   // Get a mutable pointer to the UnknownFieldSet for the message.  This
404   // contains fields which were seen when the Message was parsed but were not
405   // recognized according to the Message's definition.
406   UnknownFieldSet* MutableUnknownFields(Message* message) const;
407 
408   // Estimate the amount of memory used by the message object.
409   size_t SpaceUsedLong(const Message& message) const;
410 
411   PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
SpaceUsed(const Message & message)412   int SpaceUsed(const Message& message) const {
413     return internal::ToIntSize(SpaceUsedLong(message));
414   }
415 
416   // Check if the given non-repeated field is set.
417   bool HasField(const Message& message, const FieldDescriptor* field) const;
418 
419   // Get the number of elements of a repeated field.
420   int FieldSize(const Message& message, const FieldDescriptor* field) const;
421 
422   // Clear the value of a field, so that HasField() returns false or
423   // FieldSize() returns zero.
424   void ClearField(Message* message, const FieldDescriptor* field) const;
425 
426   // Check if the oneof is set. Returns true if any field in oneof
427   // is set, false otherwise.
428   bool HasOneof(const Message& message,
429                 const OneofDescriptor* oneof_descriptor) const;
430 
431   void ClearOneof(Message* message,
432                   const OneofDescriptor* oneof_descriptor) const;
433 
434   // Returns the field descriptor if the oneof is set. nullptr otherwise.
435   const FieldDescriptor* GetOneofFieldDescriptor(
436       const Message& message, const OneofDescriptor* oneof_descriptor) const;
437 
438   // Removes the last element of a repeated field.
439   // We don't provide a way to remove any element other than the last
440   // because it invites inefficient use, such as O(n^2) filtering loops
441   // that should have been O(n).  If you want to remove an element other
442   // than the last, the best way to do it is to re-arrange the elements
443   // (using Swap()) so that the one you want removed is at the end, then
444   // call RemoveLast().
445   void RemoveLast(Message* message, const FieldDescriptor* field) const;
446   // Removes the last element of a repeated message field, and returns the
447   // pointer to the caller.  Caller takes ownership of the returned pointer.
448   Message* ReleaseLast(Message* message, const FieldDescriptor* field) const;
449 
450   // Swap the complete contents of two messages.
451   void Swap(Message* message1, Message* message2) const;
452 
453   // Swap fields listed in fields vector of two messages.
454   void SwapFields(Message* message1, Message* message2,
455                   const std::vector<const FieldDescriptor*>& fields) const;
456 
457   // Swap two elements of a repeated field.
458   void SwapElements(Message* message, const FieldDescriptor* field, int index1,
459                     int index2) const;
460 
461   // List all fields of the message which are currently set, except for unknown
462   // fields, but including extension known to the parser (i.e. compiled in).
463   // Singular fields will only be listed if HasField(field) would return true
464   // and repeated fields will only be listed if FieldSize(field) would return
465   // non-zero.  Fields (both normal fields and extension fields) will be listed
466   // ordered by field number.
467   // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
468   // access to fields/extensions unknown to the parser.
469   void ListFields(const Message& message,
470                   std::vector<const FieldDescriptor*>* output) const;
471 
472   // Singular field getters ------------------------------------------
473   // These get the value of a non-repeated field.  They return the default
474   // value for fields that aren't set.
475 
476   int32 GetInt32(const Message& message, const FieldDescriptor* field) const;
477   int64 GetInt64(const Message& message, const FieldDescriptor* field) const;
478   uint32 GetUInt32(const Message& message, const FieldDescriptor* field) const;
479   uint64 GetUInt64(const Message& message, const FieldDescriptor* field) const;
480   float GetFloat(const Message& message, const FieldDescriptor* field) const;
481   double GetDouble(const Message& message, const FieldDescriptor* field) const;
482   bool GetBool(const Message& message, const FieldDescriptor* field) const;
483   std::string GetString(const Message& message,
484                         const FieldDescriptor* field) const;
485   const EnumValueDescriptor* GetEnum(const Message& message,
486                                      const FieldDescriptor* field) const;
487 
488   // GetEnumValue() returns an enum field's value as an integer rather than
489   // an EnumValueDescriptor*. If the integer value does not correspond to a
490   // known value descriptor, a new value descriptor is created. (Such a value
491   // will only be present when the new unknown-enum-value semantics are enabled
492   // for a message.)
493   int GetEnumValue(const Message& message, const FieldDescriptor* field) const;
494 
495   // See MutableMessage() for the meaning of the "factory" parameter.
496   const Message& GetMessage(const Message& message,
497                             const FieldDescriptor* field,
498                             MessageFactory* factory = nullptr) const;
499 
500   // Get a string value without copying, if possible.
501   //
502   // GetString() necessarily returns a copy of the string.  This can be
503   // inefficient when the std::string is already stored in a std::string object
504   // in the underlying message.  GetStringReference() will return a reference to
505   // the underlying std::string in this case.  Otherwise, it will copy the
506   // string into *scratch and return that.
507   //
508   // Note:  It is perfectly reasonable and useful to write code like:
509   //     str = reflection->GetStringReference(message, field, &str);
510   //   This line would ensure that only one copy of the string is made
511   //   regardless of the field's underlying representation.  When initializing
512   //   a newly-constructed string, though, it's just as fast and more
513   //   readable to use code like:
514   //     std::string str = reflection->GetString(message, field);
515   const std::string& GetStringReference(const Message& message,
516                                         const FieldDescriptor* field,
517                                         std::string* scratch) const;
518 
519 
520   // Singular field mutators -----------------------------------------
521   // These mutate the value of a non-repeated field.
522 
523   void SetInt32(Message* message, const FieldDescriptor* field,
524                 int32 value) const;
525   void SetInt64(Message* message, const FieldDescriptor* field,
526                 int64 value) const;
527   void SetUInt32(Message* message, const FieldDescriptor* field,
528                  uint32 value) const;
529   void SetUInt64(Message* message, const FieldDescriptor* field,
530                  uint64 value) const;
531   void SetFloat(Message* message, const FieldDescriptor* field,
532                 float value) const;
533   void SetDouble(Message* message, const FieldDescriptor* field,
534                  double value) const;
535   void SetBool(Message* message, const FieldDescriptor* field,
536                bool value) const;
537   void SetString(Message* message, const FieldDescriptor* field,
538                  std::string value) const;
539   void SetEnum(Message* message, const FieldDescriptor* field,
540                const EnumValueDescriptor* value) const;
541   // Set an enum field's value with an integer rather than EnumValueDescriptor.
542   // For proto3 this is just setting the enum field to the value specified, for
543   // proto2 it's more complicated. If value is a known enum value the field is
544   // set as usual. If the value is unknown then it is added to the unknown field
545   // set. Note this matches the behavior of parsing unknown enum values.
546   // If multiple calls with unknown values happen than they are all added to the
547   // unknown field set in order of the calls.
548   void SetEnumValue(Message* message, const FieldDescriptor* field,
549                     int value) const;
550 
551   // Get a mutable pointer to a field with a message type.  If a MessageFactory
552   // is provided, it will be used to construct instances of the sub-message;
553   // otherwise, the default factory is used.  If the field is an extension that
554   // does not live in the same pool as the containing message's descriptor (e.g.
555   // it lives in an overlay pool), then a MessageFactory must be provided.
556   // If you have no idea what that meant, then you probably don't need to worry
557   // about it (don't provide a MessageFactory).  WARNING:  If the
558   // FieldDescriptor is for a compiled-in extension, then
559   // factory->GetPrototype(field->message_type()) MUST return an instance of
560   // the compiled-in class for this type, NOT DynamicMessage.
561   Message* MutableMessage(Message* message, const FieldDescriptor* field,
562                           MessageFactory* factory = nullptr) const;
563   // Replaces the message specified by 'field' with the already-allocated object
564   // sub_message, passing ownership to the message.  If the field contained a
565   // message, that message is deleted.  If sub_message is nullptr, the field is
566   // cleared.
567   void SetAllocatedMessage(Message* message, Message* sub_message,
568                            const FieldDescriptor* field) const;
569   // Releases the message specified by 'field' and returns the pointer,
570   // ReleaseMessage() will return the message the message object if it exists.
571   // Otherwise, it may or may not return nullptr.  In any case, if the return
572   // value is non-null, the caller takes ownership of the pointer.
573   // If the field existed (HasField() is true), then the returned pointer will
574   // be the same as the pointer returned by MutableMessage().
575   // This function has the same effect as ClearField().
576   Message* ReleaseMessage(Message* message, const FieldDescriptor* field,
577                           MessageFactory* factory = nullptr) const;
578 
579 
580   // Repeated field getters ------------------------------------------
581   // These get the value of one element of a repeated field.
582 
583   int32 GetRepeatedInt32(const Message& message, const FieldDescriptor* field,
584                          int index) const;
585   int64 GetRepeatedInt64(const Message& message, const FieldDescriptor* field,
586                          int index) const;
587   uint32 GetRepeatedUInt32(const Message& message, const FieldDescriptor* field,
588                            int index) const;
589   uint64 GetRepeatedUInt64(const Message& message, const FieldDescriptor* field,
590                            int index) const;
591   float GetRepeatedFloat(const Message& message, const FieldDescriptor* field,
592                          int index) const;
593   double GetRepeatedDouble(const Message& message, const FieldDescriptor* field,
594                            int index) const;
595   bool GetRepeatedBool(const Message& message, const FieldDescriptor* field,
596                        int index) const;
597   std::string GetRepeatedString(const Message& message,
598                                 const FieldDescriptor* field, int index) const;
599   const EnumValueDescriptor* GetRepeatedEnum(const Message& message,
600                                              const FieldDescriptor* field,
601                                              int index) const;
602   // GetRepeatedEnumValue() returns an enum field's value as an integer rather
603   // than an EnumValueDescriptor*. If the integer value does not correspond to a
604   // known value descriptor, a new value descriptor is created. (Such a value
605   // will only be present when the new unknown-enum-value semantics are enabled
606   // for a message.)
607   int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field,
608                            int index) const;
609   const Message& GetRepeatedMessage(const Message& message,
610                                     const FieldDescriptor* field,
611                                     int index) const;
612 
613   // See GetStringReference(), above.
614   const std::string& GetRepeatedStringReference(const Message& message,
615                                                 const FieldDescriptor* field,
616                                                 int index,
617                                                 std::string* scratch) const;
618 
619 
620   // Repeated field mutators -----------------------------------------
621   // These mutate the value of one element of a repeated field.
622 
623   void SetRepeatedInt32(Message* message, const FieldDescriptor* field,
624                         int index, int32 value) const;
625   void SetRepeatedInt64(Message* message, const FieldDescriptor* field,
626                         int index, int64 value) const;
627   void SetRepeatedUInt32(Message* message, const FieldDescriptor* field,
628                          int index, uint32 value) const;
629   void SetRepeatedUInt64(Message* message, const FieldDescriptor* field,
630                          int index, uint64 value) const;
631   void SetRepeatedFloat(Message* message, const FieldDescriptor* field,
632                         int index, float value) const;
633   void SetRepeatedDouble(Message* message, const FieldDescriptor* field,
634                          int index, double value) const;
635   void SetRepeatedBool(Message* message, const FieldDescriptor* field,
636                        int index, bool value) const;
637   void SetRepeatedString(Message* message, const FieldDescriptor* field,
638                          int index, std::string value) const;
639   void SetRepeatedEnum(Message* message, const FieldDescriptor* field,
640                        int index, const EnumValueDescriptor* value) const;
641   // Set an enum field's value with an integer rather than EnumValueDescriptor.
642   // For proto3 this is just setting the enum field to the value specified, for
643   // proto2 it's more complicated. If value is a known enum value the field is
644   // set as usual. If the value is unknown then it is added to the unknown field
645   // set. Note this matches the behavior of parsing unknown enum values.
646   // If multiple calls with unknown values happen than they are all added to the
647   // unknown field set in order of the calls.
648   void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field,
649                             int index, int value) const;
650   // Get a mutable pointer to an element of a repeated field with a message
651   // type.
652   Message* MutableRepeatedMessage(Message* message,
653                                   const FieldDescriptor* field,
654                                   int index) const;
655 
656 
657   // Repeated field adders -------------------------------------------
658   // These add an element to a repeated field.
659 
660   void AddInt32(Message* message, const FieldDescriptor* field,
661                 int32 value) const;
662   void AddInt64(Message* message, const FieldDescriptor* field,
663                 int64 value) const;
664   void AddUInt32(Message* message, const FieldDescriptor* field,
665                  uint32 value) const;
666   void AddUInt64(Message* message, const FieldDescriptor* field,
667                  uint64 value) const;
668   void AddFloat(Message* message, const FieldDescriptor* field,
669                 float value) const;
670   void AddDouble(Message* message, const FieldDescriptor* field,
671                  double value) const;
672   void AddBool(Message* message, const FieldDescriptor* field,
673                bool value) const;
674   void AddString(Message* message, const FieldDescriptor* field,
675                  std::string value) const;
676   void AddEnum(Message* message, const FieldDescriptor* field,
677                const EnumValueDescriptor* value) const;
678   // Add an integer value to a repeated enum field rather than
679   // EnumValueDescriptor. For proto3 this is just setting the enum field to the
680   // value specified, for proto2 it's more complicated. If value is a known enum
681   // value the field is set as usual. If the value is unknown then it is added
682   // to the unknown field set. Note this matches the behavior of parsing unknown
683   // enum values. If multiple calls with unknown values happen than they are all
684   // added to the unknown field set in order of the calls.
685   void AddEnumValue(Message* message, const FieldDescriptor* field,
686                     int value) const;
687   // See MutableMessage() for comments on the "factory" parameter.
688   Message* AddMessage(Message* message, const FieldDescriptor* field,
689                       MessageFactory* factory = nullptr) const;
690 
691   // Appends an already-allocated object 'new_entry' to the repeated field
692   // specified by 'field' passing ownership to the message.
693   void AddAllocatedMessage(Message* message, const FieldDescriptor* field,
694                            Message* new_entry) const;
695 
696 
697   // Get a RepeatedFieldRef object that can be used to read the underlying
698   // repeated field. The type parameter T must be set according to the
699   // field's cpp type. The following table shows the mapping from cpp type
700   // to acceptable T.
701   //
702   //   field->cpp_type()      T
703   //   CPPTYPE_INT32        int32
704   //   CPPTYPE_UINT32       uint32
705   //   CPPTYPE_INT64        int64
706   //   CPPTYPE_UINT64       uint64
707   //   CPPTYPE_DOUBLE       double
708   //   CPPTYPE_FLOAT        float
709   //   CPPTYPE_BOOL         bool
710   //   CPPTYPE_ENUM         generated enum type or int32
711   //   CPPTYPE_STRING       std::string
712   //   CPPTYPE_MESSAGE      generated message type or google::protobuf::Message
713   //
714   // A RepeatedFieldRef object can be copied and the resulted object will point
715   // to the same repeated field in the same message. The object can be used as
716   // long as the message is not destroyed.
717   //
718   // Note that to use this method users need to include the header file
719   // "net/proto2/public/reflection.h" (which defines the RepeatedFieldRef
720   // class templates).
721   template <typename T>
722   RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message,
723                                           const FieldDescriptor* field) const;
724 
725   // Like GetRepeatedFieldRef() but return an object that can also be used
726   // manipulate the underlying repeated field.
727   template <typename T>
728   MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
729       Message* message, const FieldDescriptor* field) const;
730 
731   // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
732   // access. The following repeated field accesors will be removed in the
733   // future.
734   //
735   // Repeated field accessors  -------------------------------------------------
736   // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
737   // access to the data in a RepeatedField.  The methods below provide aggregate
738   // access by exposing the RepeatedField object itself with the Message.
739   // Applying these templates to inappropriate types will lead to an undefined
740   // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
741   // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
742   //
743   // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
744 
745   // DEPRECATED. Please use GetRepeatedFieldRef().
746   //
747   // for T = Cord and all protobuf scalar types except enums.
748   template <typename T>
749   PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
GetRepeatedField(const Message & msg,const FieldDescriptor * d)750   const RepeatedField<T>& GetRepeatedField(const Message& msg,
751                                            const FieldDescriptor* d) const {
752     return GetRepeatedFieldInternal<T>(msg, d);
753   }
754 
755   // DEPRECATED. Please use GetMutableRepeatedFieldRef().
756   //
757   // for T = Cord and all protobuf scalar types except enums.
758   template <typename T>
759   PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
MutableRepeatedField(Message * msg,const FieldDescriptor * d)760   RepeatedField<T>* MutableRepeatedField(Message* msg,
761                                          const FieldDescriptor* d) const {
762     return MutableRepeatedFieldInternal<T>(msg, d);
763   }
764 
765   // DEPRECATED. Please use GetRepeatedFieldRef().
766   //
767   // for T = std::string, google::protobuf::internal::StringPieceField
768   //         google::protobuf::Message & descendants.
769   template <typename T>
770   PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
GetRepeatedPtrField(const Message & msg,const FieldDescriptor * d)771   const RepeatedPtrField<T>& GetRepeatedPtrField(
772       const Message& msg, const FieldDescriptor* d) const {
773     return GetRepeatedPtrFieldInternal<T>(msg, d);
774   }
775 
776   // DEPRECATED. Please use GetMutableRepeatedFieldRef().
777   //
778   // for T = std::string, google::protobuf::internal::StringPieceField
779   //         google::protobuf::Message & descendants.
780   template <typename T>
781   PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
MutableRepeatedPtrField(Message * msg,const FieldDescriptor * d)782   RepeatedPtrField<T>* MutableRepeatedPtrField(Message* msg,
783                                                const FieldDescriptor* d) const {
784     return MutableRepeatedPtrFieldInternal<T>(msg, d);
785   }
786 
787   // Extensions ----------------------------------------------------------------
788 
789   // Try to find an extension of this message type by fully-qualified field
790   // name.  Returns nullptr if no extension is known for this name or number.
791   const FieldDescriptor* FindKnownExtensionByName(
792       const std::string& name) const;
793 
794   // Try to find an extension of this message type by field number.
795   // Returns nullptr if no extension is known for this name or number.
796   const FieldDescriptor* FindKnownExtensionByNumber(int number) const;
797 
798   // Feature Flags -------------------------------------------------------------
799 
800   // Does this message support storing arbitrary integer values in enum fields?
801   // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
802   // take arbitrary integer values, and the legacy GetEnum() getter will
803   // dynamically create an EnumValueDescriptor for any integer value without
804   // one. If |false|, setting an unknown enum value via the integer-based
805   // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
806   //
807   // Generic code that uses reflection to handle messages with enum fields
808   // should check this flag before using the integer-based setter, and either
809   // downgrade to a compatible value or use the UnknownFieldSet if not. For
810   // example:
811   //
812   //   int new_value = GetValueFromApplicationLogic();
813   //   if (reflection->SupportsUnknownEnumValues()) {
814   //     reflection->SetEnumValue(message, field, new_value);
815   //   } else {
816   //     if (field_descriptor->enum_type()->
817   //             FindValueByNumber(new_value) != nullptr) {
818   //       reflection->SetEnumValue(message, field, new_value);
819   //     } else if (emit_unknown_enum_values) {
820   //       reflection->MutableUnknownFields(message)->AddVarint(
821   //           field->number(), new_value);
822   //     } else {
823   //       // convert value to a compatible/default value.
824   //       new_value = CompatibleDowngrade(new_value);
825   //       reflection->SetEnumValue(message, field, new_value);
826   //     }
827   //   }
828   bool SupportsUnknownEnumValues() const;
829 
830   // Returns the MessageFactory associated with this message.  This can be
831   // useful for determining if a message is a generated message or not, for
832   // example:
833   //   if (message->GetReflection()->GetMessageFactory() ==
834   //       google::protobuf::MessageFactory::generated_factory()) {
835   //     // This is a generated message.
836   //   }
837   // It can also be used to create more messages of this type, though
838   // Message::New() is an easier way to accomplish this.
839   MessageFactory* GetMessageFactory() const;
840 
841  private:
842   template <typename T>
843   const RepeatedField<T>& GetRepeatedFieldInternal(
844       const Message& message, const FieldDescriptor* field) const;
845   template <typename T>
846   RepeatedField<T>* MutableRepeatedFieldInternal(
847       Message* message, const FieldDescriptor* field) const;
848   template <typename T>
849   const RepeatedPtrField<T>& GetRepeatedPtrFieldInternal(
850       const Message& message, const FieldDescriptor* field) const;
851   template <typename T>
852   RepeatedPtrField<T>* MutableRepeatedPtrFieldInternal(
853       Message* message, const FieldDescriptor* field) const;
854   // Obtain a pointer to a Repeated Field Structure and do some type checking:
855   //   on field->cpp_type(),
856   //   on field->field_option().ctype() (if ctype >= 0)
857   //   of field->message_type() (if message_type != nullptr).
858   // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
859   void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field,
860                                 FieldDescriptor::CppType, int ctype,
861                                 const Descriptor* message_type) const;
862 
863   const void* GetRawRepeatedField(const Message& message,
864                                   const FieldDescriptor* field,
865                                   FieldDescriptor::CppType cpptype, int ctype,
866                                   const Descriptor* message_type) const;
867 
868   // The following methods are used to implement (Mutable)RepeatedFieldRef.
869   // A Ref object will store a raw pointer to the repeated field data (obtained
870   // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
871   // RepeatedFieldAccessor) which will be used to access the raw data.
872 
873   // Returns a raw pointer to the repeated field
874   //
875   // "cpp_type" and "message_type" are deduced from the type parameter T passed
876   // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
877   // "message_type" should be set to its descriptor. Otherwise "message_type"
878   // should be set to nullptr. Implementations of this method should check
879   // whether "cpp_type"/"message_type" is consistent with the actual type of the
880   // field. We use 1 routine rather than 2 (const vs mutable) because it is
881   // protected and it doesn't change the message.
882   void* RepeatedFieldData(Message* message, const FieldDescriptor* field,
883                           FieldDescriptor::CppType cpp_type,
884                           const Descriptor* message_type) const;
885 
886   // The returned pointer should point to a singleton instance which implements
887   // the RepeatedFieldAccessor interface.
888   const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
889       const FieldDescriptor* field) const;
890 
891   const Descriptor* const descriptor_;
892   const internal::ReflectionSchema schema_;
893   const DescriptorPool* const descriptor_pool_;
894   MessageFactory* const message_factory_;
895 
896   // Last non weak field index. This is an optimization when most weak fields
897   // are at the end of the containing message. If a message proto doesn't
898   // contain weak fields, then this field equals descriptor_->field_count().
899   int last_non_weak_field_index_;
900 
901   template <typename T, typename Enable>
902   friend class RepeatedFieldRef;
903   template <typename T, typename Enable>
904   friend class MutableRepeatedFieldRef;
905   friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector;
906   friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper;
907   friend class DynamicMessageFactory;
908   friend class python::MapReflectionFriend;
909 #define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
910   friend class expr::CelMapReflectionFriend;
911   friend class internal::MapFieldReflectionTest;
912   friend class internal::MapKeySorter;
913   friend class internal::WireFormat;
914   friend class internal::ReflectionOps;
915   // Needed for implementing text format for map.
916   friend class internal::MapFieldPrinterHelper;
917   friend class internal::ReflectionAccessor;
918 
919   Reflection(const Descriptor* descriptor,
920              const internal::ReflectionSchema& schema,
921              const DescriptorPool* pool, MessageFactory* factory);
922 
923   // Special version for specialized implementations of string.  We can't
924   // call MutableRawRepeatedField directly here because we don't have access to
925   // FieldOptions::* which are defined in descriptor.pb.h.  Including that
926   // file here is not possible because it would cause a circular include cycle.
927   // We use 1 routine rather than 2 (const vs mutable) because it is private
928   // and mutable a repeated string field doesn't change the message.
929   void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field,
930                                  bool is_string) const;
931 
932   friend class MapReflectionTester;
933   // Returns true if key is in map. Returns false if key is not in map field.
934   bool ContainsMapKey(const Message& message, const FieldDescriptor* field,
935                       const MapKey& key) const;
936 
937   // If key is in map field: Saves the value pointer to val and returns
938   // false. If key in not in map field: Insert the key into map, saves
939   // value pointer to val and retuns true.
940   bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field,
941                               const MapKey& key, MapValueRef* val) const;
942 
943   // Delete and returns true if key is in the map field. Returns false
944   // otherwise.
945   bool DeleteMapValue(Message* message, const FieldDescriptor* field,
946                       const MapKey& key) const;
947 
948   // Returns a MapIterator referring to the first element in the map field.
949   // If the map field is empty, this function returns the same as
950   // reflection::MapEnd. Mutation to the field may invalidate the iterator.
951   MapIterator MapBegin(Message* message, const FieldDescriptor* field) const;
952 
953   // Returns a MapIterator referring to the theoretical element that would
954   // follow the last element in the map field. It does not point to any
955   // real element. Mutation to the field may invalidate the iterator.
956   MapIterator MapEnd(Message* message, const FieldDescriptor* field) const;
957 
958   // Get the number of <key, value> pair of a map field. The result may be
959   // different from FieldSize which can have duplicate keys.
960   int MapSize(const Message& message, const FieldDescriptor* field) const;
961 
962   // Help method for MapIterator.
963   friend class MapIterator;
964   friend class WireFormatForMapFieldTest;
965   internal::MapFieldBase* MutableMapData(Message* message,
966                                          const FieldDescriptor* field) const;
967 
968   const internal::MapFieldBase* GetMapData(const Message& message,
969                                            const FieldDescriptor* field) const;
970 
971   template <class T>
972   const T& GetRawNonOneof(const Message& message,
973                           const FieldDescriptor* field) const;
974   template <class T>
975   T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const;
976 
977   template <typename Type>
978   const Type& GetRaw(const Message& message,
979                      const FieldDescriptor* field) const;
980   template <typename Type>
981   inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const;
982   template <typename Type>
983   inline const Type& DefaultRaw(const FieldDescriptor* field) const;
984 
985   inline const uint32* GetHasBits(const Message& message) const;
986   inline uint32* MutableHasBits(Message* message) const;
987   inline uint32 GetOneofCase(const Message& message,
988                              const OneofDescriptor* oneof_descriptor) const;
989   inline uint32* MutableOneofCase(
990       Message* message, const OneofDescriptor* oneof_descriptor) const;
991   inline const internal::ExtensionSet& GetExtensionSet(
992       const Message& message) const;
993   inline internal::ExtensionSet* MutableExtensionSet(Message* message) const;
994   inline Arena* GetArena(Message* message) const;
995 
996   inline const internal::InternalMetadataWithArena&
997   GetInternalMetadataWithArena(const Message& message) const;
998 
999   internal::InternalMetadataWithArena* MutableInternalMetadataWithArena(
1000       Message* message) const;
1001 
1002   inline bool IsInlined(const FieldDescriptor* field) const;
1003 
1004   inline bool HasBit(const Message& message,
1005                      const FieldDescriptor* field) const;
1006   inline void SetBit(Message* message, const FieldDescriptor* field) const;
1007   inline void ClearBit(Message* message, const FieldDescriptor* field) const;
1008   inline void SwapBit(Message* message1, Message* message2,
1009                       const FieldDescriptor* field) const;
1010 
1011   // This function only swaps the field. Should swap corresponding has_bit
1012   // before or after using this function.
1013   void SwapField(Message* message1, Message* message2,
1014                  const FieldDescriptor* field) const;
1015 
1016   void SwapOneofField(Message* message1, Message* message2,
1017                       const OneofDescriptor* oneof_descriptor) const;
1018 
1019   inline bool HasOneofField(const Message& message,
1020                             const FieldDescriptor* field) const;
1021   inline void SetOneofCase(Message* message,
1022                            const FieldDescriptor* field) const;
1023   inline void ClearOneofField(Message* message,
1024                               const FieldDescriptor* field) const;
1025 
1026   template <typename Type>
1027   inline const Type& GetField(const Message& message,
1028                               const FieldDescriptor* field) const;
1029   template <typename Type>
1030   inline void SetField(Message* message, const FieldDescriptor* field,
1031                        const Type& value) const;
1032   template <typename Type>
1033   inline Type* MutableField(Message* message,
1034                             const FieldDescriptor* field) const;
1035   template <typename Type>
1036   inline const Type& GetRepeatedField(const Message& message,
1037                                       const FieldDescriptor* field,
1038                                       int index) const;
1039   template <typename Type>
1040   inline const Type& GetRepeatedPtrField(const Message& message,
1041                                          const FieldDescriptor* field,
1042                                          int index) const;
1043   template <typename Type>
1044   inline void SetRepeatedField(Message* message, const FieldDescriptor* field,
1045                                int index, Type value) const;
1046   template <typename Type>
1047   inline Type* MutableRepeatedField(Message* message,
1048                                     const FieldDescriptor* field,
1049                                     int index) const;
1050   template <typename Type>
1051   inline void AddField(Message* message, const FieldDescriptor* field,
1052                        const Type& value) const;
1053   template <typename Type>
1054   inline Type* AddField(Message* message, const FieldDescriptor* field) const;
1055 
1056   int GetExtensionNumberOrDie(const Descriptor* type) const;
1057 
1058   // Internal versions of EnumValue API perform no checking. Called after checks
1059   // by public methods.
1060   void SetEnumValueInternal(Message* message, const FieldDescriptor* field,
1061                             int value) const;
1062   void SetRepeatedEnumValueInternal(Message* message,
1063                                     const FieldDescriptor* field, int index,
1064                                     int value) const;
1065   void AddEnumValueInternal(Message* message, const FieldDescriptor* field,
1066                             int value) const;
1067 
1068   Message* UnsafeArenaReleaseMessage(Message* message,
1069                                      const FieldDescriptor* field,
1070                                      MessageFactory* factory = nullptr) const;
1071 
1072   void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message,
1073                                       const FieldDescriptor* field) const;
1074 
1075   friend inline  // inline so nobody can call this function.
1076       void
1077       RegisterAllTypesInternal(const Metadata* file_level_metadata, int size);
1078   friend inline const char* ParseLenDelim(int field_number,
1079                                           const FieldDescriptor* field,
1080                                           Message* msg,
1081                                           const Reflection* reflection,
1082                                           const char* ptr,
1083                                           internal::ParseContext* ctx);
1084   friend inline const char* ParsePackedField(const FieldDescriptor* field,
1085                                              Message* msg,
1086                                              const Reflection* reflection,
1087                                              const char* ptr,
1088                                              internal::ParseContext* ctx);
1089 
1090   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
1091 };
1092 
1093 // Abstract interface for a factory for message objects.
1094 class PROTOBUF_EXPORT MessageFactory {
1095  public:
MessageFactory()1096   inline MessageFactory() {}
1097   virtual ~MessageFactory();
1098 
1099   // Given a Descriptor, gets or constructs the default (prototype) Message
1100   // of that type.  You can then call that message's New() method to construct
1101   // a mutable message of that type.
1102   //
1103   // Calling this method twice with the same Descriptor returns the same
1104   // object.  The returned object remains property of the factory.  Also, any
1105   // objects created by calling the prototype's New() method share some data
1106   // with the prototype, so these must be destroyed before the MessageFactory
1107   // is destroyed.
1108   //
1109   // The given descriptor must outlive the returned message, and hence must
1110   // outlive the MessageFactory.
1111   //
1112   // Some implementations do not support all types.  GetPrototype() will
1113   // return nullptr if the descriptor passed in is not supported.
1114   //
1115   // This method may or may not be thread-safe depending on the implementation.
1116   // Each implementation should document its own degree thread-safety.
1117   virtual const Message* GetPrototype(const Descriptor* type) = 0;
1118 
1119   // Gets a MessageFactory which supports all generated, compiled-in messages.
1120   // In other words, for any compiled-in type FooMessage, the following is true:
1121   //   MessageFactory::generated_factory()->GetPrototype(
1122   //     FooMessage::descriptor()) == FooMessage::default_instance()
1123   // This factory supports all types which are found in
1124   // DescriptorPool::generated_pool().  If given a descriptor from any other
1125   // pool, GetPrototype() will return nullptr.  (You can also check if a
1126   // descriptor is for a generated message by checking if
1127   // descriptor->file()->pool() == DescriptorPool::generated_pool().)
1128   //
1129   // This factory is 100% thread-safe; calling GetPrototype() does not modify
1130   // any shared data.
1131   //
1132   // This factory is a singleton.  The caller must not delete the object.
1133   static MessageFactory* generated_factory();
1134 
1135   // For internal use only:  Registers a .proto file at static initialization
1136   // time, to be placed in generated_factory.  The first time GetPrototype()
1137   // is called with a descriptor from this file, |register_messages| will be
1138   // called, with the file name as the parameter.  It must call
1139   // InternalRegisterGeneratedMessage() (below) to register each message type
1140   // in the file.  This strange mechanism is necessary because descriptors are
1141   // built lazily, so we can't register types by their descriptor until we
1142   // know that the descriptor exists.  |filename| must be a permanent string.
1143   static void InternalRegisterGeneratedFile(
1144       const google::protobuf::internal::DescriptorTable* table);
1145 
1146   // For internal use only:  Registers a message type.  Called only by the
1147   // functions which are registered with InternalRegisterGeneratedFile(),
1148   // above.
1149   static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
1150                                                const Message* prototype);
1151 
1152 
1153  private:
1154   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
1155 };
1156 
1157 #define DECLARE_GET_REPEATED_FIELD(TYPE)                           \
1158   template <>                                                      \
1159   PROTOBUF_EXPORT const RepeatedField<TYPE>&                       \
1160   Reflection::GetRepeatedFieldInternal<TYPE>(                      \
1161       const Message& message, const FieldDescriptor* field) const; \
1162                                                                    \
1163   template <>                                                      \
1164   PROTOBUF_EXPORT RepeatedField<TYPE>*                             \
1165   Reflection::MutableRepeatedFieldInternal<TYPE>(                  \
1166       Message * message, const FieldDescriptor* field) const;
1167 
1168 DECLARE_GET_REPEATED_FIELD(int32)
DECLARE_GET_REPEATED_FIELD(int64)1169 DECLARE_GET_REPEATED_FIELD(int64)
1170 DECLARE_GET_REPEATED_FIELD(uint32)
1171 DECLARE_GET_REPEATED_FIELD(uint64)
1172 DECLARE_GET_REPEATED_FIELD(float)
1173 DECLARE_GET_REPEATED_FIELD(double)
1174 DECLARE_GET_REPEATED_FIELD(bool)
1175 
1176 #undef DECLARE_GET_REPEATED_FIELD
1177 
1178 // Tries to downcast this message to a generated message type.  Returns nullptr
1179 // if this class is not an instance of T.  This works even if RTTI is disabled.
1180 //
1181 // This also has the effect of creating a strong reference to T that will
1182 // prevent the linker from stripping it out at link time.  This can be important
1183 // if you are using a DynamicMessageFactory that delegates to the generated
1184 // factory.
1185 template <typename T>
1186 const T* DynamicCastToGenerated(const Message* from) {
1187   // Compile-time assert that T is a generated type that has a
1188   // default_instance() accessor, but avoid actually calling it.
1189   const T& (*get_default_instance)() = &T::default_instance;
1190   (void)get_default_instance;
1191 
1192   // Compile-time assert that T is a subclass of google::protobuf::Message.
1193   const Message* unused = static_cast<T*>(nullptr);
1194   (void)unused;
1195 
1196 #ifdef GOOGLE_PROTOBUF_NO_RTTI
1197   bool ok = T::default_instance().GetReflection() == from->GetReflection();
1198   return ok ? down_cast<const T*>(from) : nullptr;
1199 #else
1200   return dynamic_cast<const T*>(from);
1201 #endif
1202 }
1203 
1204 template <typename T>
DynamicCastToGenerated(Message * from)1205 T* DynamicCastToGenerated(Message* from) {
1206   const Message* message_const = from;
1207   return const_cast<T*>(DynamicCastToGenerated<T>(message_const));
1208 }
1209 
1210 // Call this function to ensure that this message's reflection is linked into
1211 // the binary:
1212 //
1213 //   google::protobuf::LinkMessageReflection<FooMessage>();
1214 //
1215 // This will ensure that the following lookup will succeed:
1216 //
1217 //   DescriptorPool::generated_pool()->FindMessageTypeByName("FooMessage");
1218 //
1219 // As a side-effect, it will also guarantee that anything else from the same
1220 // .proto file will also be available for lookup in the generated pool.
1221 //
1222 // This function does not actually register the message, so it does not need
1223 // to be called before the lookup.  However it does need to occur in a function
1224 // that cannot be stripped from the binary (ie. it must be reachable from main).
1225 //
1226 // Best practice is to call this function as close as possible to where the
1227 // reflection is actually needed.  This function is very cheap to call, so you
1228 // should not need to worry about its runtime overhead except in the tightest
1229 // of loops (on x86-64 it compiles into two "mov" instructions).
1230 template <typename T>
LinkMessageReflection()1231 void LinkMessageReflection() {
1232   internal::StrongReference(T::default_instance);
1233 }
1234 
1235 // =============================================================================
1236 // Implementation details for {Get,Mutable}RawRepeatedPtrField.  We provide
1237 // specializations for <std::string>, <StringPieceField> and <Message> and
1238 // handle everything else with the default template which will match any type
1239 // having a method with signature "static const google::protobuf::Descriptor*
1240 // descriptor()". Such a type presumably is a descendant of google::protobuf::Message.
1241 
1242 template <>
1243 inline const RepeatedPtrField<std::string>&
1244 Reflection::GetRepeatedPtrFieldInternal<std::string>(
1245     const Message& message, const FieldDescriptor* field) const {
1246   return *static_cast<RepeatedPtrField<std::string>*>(
1247       MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
1248 }
1249 
1250 template <>
1251 inline RepeatedPtrField<std::string>*
1252 Reflection::MutableRepeatedPtrFieldInternal<std::string>(
1253     Message* message, const FieldDescriptor* field) const {
1254   return static_cast<RepeatedPtrField<std::string>*>(
1255       MutableRawRepeatedString(message, field, true));
1256 }
1257 
1258 
1259 // -----
1260 
1261 template <>
GetRepeatedPtrFieldInternal(const Message & message,const FieldDescriptor * field)1262 inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrFieldInternal(
1263     const Message& message, const FieldDescriptor* field) const {
1264   return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField(
1265       message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
1266 }
1267 
1268 template <>
MutableRepeatedPtrFieldInternal(Message * message,const FieldDescriptor * field)1269 inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrFieldInternal(
1270     Message* message, const FieldDescriptor* field) const {
1271   return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField(
1272       message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
1273 }
1274 
1275 template <typename PB>
GetRepeatedPtrFieldInternal(const Message & message,const FieldDescriptor * field)1276 inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrFieldInternal(
1277     const Message& message, const FieldDescriptor* field) const {
1278   return *static_cast<const RepeatedPtrField<PB>*>(
1279       GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1,
1280                           PB::default_instance().GetDescriptor()));
1281 }
1282 
1283 template <typename PB>
MutableRepeatedPtrFieldInternal(Message * message,const FieldDescriptor * field)1284 inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrFieldInternal(
1285     Message* message, const FieldDescriptor* field) const {
1286   return static_cast<RepeatedPtrField<PB>*>(
1287       MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
1288                               -1, PB::default_instance().GetDescriptor()));
1289 }
1290 }  // namespace protobuf
1291 }  // namespace google
1292 
1293 #include <google/protobuf/port_undef.inc>
1294 
1295 #endif  // GOOGLE_PROTOBUF_MESSAGE_H__
1296