1 /* ******************************************************************
2    FSE : Finite State Entropy codec
3    Public Prototypes declaration
4    Copyright (C) 2013-2016, Yann Collet.
5 
6    BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
7 
8    Redistribution and use in source and binary forms, with or without
9    modification, are permitted provided that the following conditions are
10    met:
11 
12        * Redistributions of source code must retain the above copyright
13    notice, this list of conditions and the following disclaimer.
14        * Redistributions in binary form must reproduce the above
15    copyright notice, this list of conditions and the following disclaimer
16    in the documentation and/or other materials provided with the
17    distribution.
18 
19    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31    You can contact the author at :
32    - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
33 ****************************************************************** */
34 #ifndef FSE_H
35 #define FSE_H
36 
37 #if defined (__cplusplus)
38 extern "C" {
39 #endif
40 
41 
42 /*-*****************************************
43 *  Dependencies
44 ******************************************/
45 #include <stddef.h>    /* size_t, ptrdiff_t */
46 
47 
48 /*-****************************************
49 *  FSE simple functions
50 ******************************************/
51 /*! FSE_compress() :
52     Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
53     'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize).
54     @return : size of compressed data (<= dstCapacity).
55     Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
56                      if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
57                      if FSE_isError(return), compression failed (more details using FSE_getErrorName())
58 */
59 size_t FSE_compress(void* dst, size_t dstCapacity,
60               const void* src, size_t srcSize);
61 
62 /*! FSE_decompress():
63     Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
64     into already allocated destination buffer 'dst', of size 'dstCapacity'.
65     @return : size of regenerated data (<= maxDstSize),
66               or an error code, which can be tested using FSE_isError() .
67 
68     ** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!!
69     Why ? : making this distinction requires a header.
70     Header management is intentionally delegated to the user layer, which can better manage special cases.
71 */
72 size_t FSE_decompress(void* dst,  size_t dstCapacity,
73                 const void* cSrc, size_t cSrcSize);
74 
75 
76 /*-*****************************************
77 *  Tool functions
78 ******************************************/
79 size_t FSE_compressBound(size_t size);       /* maximum compressed size */
80 
81 /* Error Management */
82 unsigned    FSE_isError(size_t code);        /* tells if a return value is an error code */
83 const char* FSE_getErrorName(size_t code);   /* provides error code string (useful for debugging) */
84 
85 
86 /*-*****************************************
87 *  FSE advanced functions
88 ******************************************/
89 /*! FSE_compress2() :
90     Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog'
91     Both parameters can be defined as '0' to mean : use default value
92     @return : size of compressed data
93     Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
94                      if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
95                      if FSE_isError(return), it's an error code.
96 */
97 size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
98 
99 
100 /*-*****************************************
101 *  FSE detailed API
102 ******************************************/
103 /*!
104 FSE_compress() does the following:
105 1. count symbol occurrence from source[] into table count[]
106 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
107 3. save normalized counters to memory buffer using writeNCount()
108 4. build encoding table 'CTable' from normalized counters
109 5. encode the data stream using encoding table 'CTable'
110 
111 FSE_decompress() does the following:
112 1. read normalized counters with readNCount()
113 2. build decoding table 'DTable' from normalized counters
114 3. decode the data stream using decoding table 'DTable'
115 
116 The following API allows targeting specific sub-functions for advanced tasks.
117 For example, it's possible to compress several blocks using the same 'CTable',
118 or to save and provide normalized distribution using external method.
119 */
120 
121 /* *** COMPRESSION *** */
122 
123 /*! FSE_count():
124     Provides the precise count of each byte within a table 'count'.
125     'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1).
126     *maxSymbolValuePtr will be updated if detected smaller than initial value.
127     @return : the count of the most frequent symbol (which is not identified).
128               if return == srcSize, there is only one symbol.
129               Can also return an error code, which can be tested with FSE_isError(). */
130 size_t FSE_count(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
131 
132 /*! FSE_optimalTableLog():
133     dynamically downsize 'tableLog' when conditions are met.
134     It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
135     @return : recommended tableLog (necessarily <= 'maxTableLog') */
136 unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
137 
138 /*! FSE_normalizeCount():
139     normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
140     'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
141     @return : tableLog,
142               or an errorCode, which can be tested using FSE_isError() */
143 size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, const unsigned* count, size_t srcSize, unsigned maxSymbolValue);
144 
145 /*! FSE_NCountWriteBound():
146     Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
147     Typically useful for allocation purpose. */
148 size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
149 
150 /*! FSE_writeNCount():
151     Compactly save 'normalizedCounter' into 'buffer'.
152     @return : size of the compressed table,
153               or an errorCode, which can be tested using FSE_isError(). */
154 size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
155 
156 
157 /*! Constructor and Destructor of FSE_CTable.
158     Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
159 typedef unsigned FSE_CTable;   /* don't allocate that. It's only meant to be more restrictive than void* */
160 FSE_CTable* FSE_createCTable (unsigned tableLog, unsigned maxSymbolValue);
161 void        FSE_freeCTable (FSE_CTable* ct);
162 
163 /*! FSE_buildCTable():
164     Builds `ct`, which must be already allocated, using FSE_createCTable().
165     @return : 0, or an errorCode, which can be tested using FSE_isError() */
166 size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
167 
168 /*! FSE_compress_usingCTable():
169     Compress `src` using `ct` into `dst` which must be already allocated.
170     @return : size of compressed data (<= `dstCapacity`),
171               or 0 if compressed data could not fit into `dst`,
172               or an errorCode, which can be tested using FSE_isError() */
173 size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
174 
175 /*!
176 Tutorial :
177 ----------
178 The first step is to count all symbols. FSE_count() does this job very fast.
179 Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
180 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
181 maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
182 FSE_count() will return the number of occurrence of the most frequent symbol.
183 This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
184 If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
185 
186 The next step is to normalize the frequencies.
187 FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
188 It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
189 You can use 'tableLog'==0 to mean "use default tableLog value".
190 If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
191 which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
192 
193 The result of FSE_normalizeCount() will be saved into a table,
194 called 'normalizedCounter', which is a table of signed short.
195 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
196 The return value is tableLog if everything proceeded as expected.
197 It is 0 if there is a single symbol within distribution.
198 If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
199 
200 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
201 'buffer' must be already allocated.
202 For guaranteed success, buffer size must be at least FSE_headerBound().
203 The result of the function is the number of bytes written into 'buffer'.
204 If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
205 
206 'normalizedCounter' can then be used to create the compression table 'CTable'.
207 The space required by 'CTable' must be already allocated, using FSE_createCTable().
208 You can then use FSE_buildCTable() to fill 'CTable'.
209 If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
210 
211 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
212 Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
213 The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
214 If it returns '0', compressed data could not fit into 'dst'.
215 If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
216 */
217 
218 
219 /* *** DECOMPRESSION *** */
220 
221 /*! FSE_readNCount():
222     Read compactly saved 'normalizedCounter' from 'rBuffer'.
223     @return : size read from 'rBuffer',
224               or an errorCode, which can be tested using FSE_isError().
225               maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
226 size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
227 
228 /*! Constructor and Destructor of FSE_DTable.
229     Note that its size depends on 'tableLog' */
230 typedef unsigned FSE_DTable;   /* don't allocate that. It's just a way to be more restrictive than void* */
231 FSE_DTable* FSE_createDTable(unsigned tableLog);
232 void        FSE_freeDTable(FSE_DTable* dt);
233 
234 /*! FSE_buildDTable():
235     Builds 'dt', which must be already allocated, using FSE_createDTable().
236     return : 0, or an errorCode, which can be tested using FSE_isError() */
237 size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
238 
239 /*! FSE_decompress_usingDTable():
240     Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
241     into `dst` which must be already allocated.
242     @return : size of regenerated data (necessarily <= `dstCapacity`),
243               or an errorCode, which can be tested using FSE_isError() */
244 size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
245 
246 /*!
247 Tutorial :
248 ----------
249 (Note : these functions only decompress FSE-compressed blocks.
250  If block is uncompressed, use memcpy() instead
251  If block is a single repeated byte, use memset() instead )
252 
253 The first step is to obtain the normalized frequencies of symbols.
254 This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
255 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
256 In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
257 or size the table to handle worst case situations (typically 256).
258 FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
259 The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
260 Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
261 If there is an error, the function will return an error code, which can be tested using FSE_isError().
262 
263 The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
264 This is performed by the function FSE_buildDTable().
265 The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
266 If there is an error, the function will return an error code, which can be tested using FSE_isError().
267 
268 `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
269 `cSrcSize` must be strictly correct, otherwise decompression will fail.
270 FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
271 If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
272 */
273 
274 
275 #ifdef FSE_STATIC_LINKING_ONLY
276 
277 /* *** Dependency *** */
278 #include "bitstream.h"
279 
280 
281 /* *****************************************
282 *  Static allocation
283 *******************************************/
284 /* FSE buffer bounds */
285 #define FSE_NCOUNTBOUND 512
286 #define FSE_BLOCKBOUND(size) (size + (size>>7))
287 #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size))   /* Macro version, useful for static allocation */
288 
289 /* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */
290 #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue)   (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
291 #define FSE_DTABLE_SIZE_U32(maxTableLog)                   (1 + (1<<maxTableLog))
292 
293 
294 /* *****************************************
295 *  FSE advanced API
296 *******************************************/
297 size_t FSE_countFast(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
298 /**< same as FSE_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr  */
299 
300 unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
301 /**< same as FSE_optimalTableLog(), which used `minus==2` */
302 
303 size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
304 /**< build a fake FSE_CTable, designed to not compress an input, where each symbol uses nbBits */
305 
306 size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
307 /**< build a fake FSE_CTable, designed to compress always the same symbolValue */
308 
309 size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
310 /**< build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
311 
312 size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
313 /**< build a fake FSE_DTable, designed to always generate the same symbolValue */
314 
315 
316 /* *****************************************
317 *  FSE symbol compression API
318 *******************************************/
319 /*!
320    This API consists of small unitary functions, which highly benefit from being inlined.
321    You will want to enable link-time-optimization to ensure these functions are properly inlined in your binary.
322    Visual seems to do it automatically.
323    For gcc or clang, you'll need to add -flto flag at compilation and linking stages.
324    If none of these solutions is applicable, include "fse.c" directly.
325 */
326 typedef struct
327 {
328     ptrdiff_t   value;
329     const void* stateTable;
330     const void* symbolTT;
331     unsigned    stateLog;
332 } FSE_CState_t;
333 
334 static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
335 
336 static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
337 
338 static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
339 
340 /**<
341 These functions are inner components of FSE_compress_usingCTable().
342 They allow the creation of custom streams, mixing multiple tables and bit sources.
343 
344 A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
345 So the first symbol you will encode is the last you will decode, like a LIFO stack.
346 
347 You will need a few variables to track your CStream. They are :
348 
349 FSE_CTable    ct;         // Provided by FSE_buildCTable()
350 BIT_CStream_t bitStream;  // bitStream tracking structure
351 FSE_CState_t  state;      // State tracking structure (can have several)
352 
353 
354 The first thing to do is to init bitStream and state.
355     size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
356     FSE_initCState(&state, ct);
357 
358 Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
359 You can then encode your input data, byte after byte.
360 FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
361 Remember decoding will be done in reverse direction.
362     FSE_encodeByte(&bitStream, &state, symbol);
363 
364 At any time, you can also add any bit sequence.
365 Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
366     BIT_addBits(&bitStream, bitField, nbBits);
367 
368 The above methods don't commit data to memory, they just store it into local register, for speed.
369 Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
370 Writing data to memory is a manual operation, performed by the flushBits function.
371     BIT_flushBits(&bitStream);
372 
373 Your last FSE encoding operation shall be to flush your last state value(s).
374     FSE_flushState(&bitStream, &state);
375 
376 Finally, you must close the bitStream.
377 The function returns the size of CStream in bytes.
378 If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
379 If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
380     size_t size = BIT_closeCStream(&bitStream);
381 */
382 
383 
384 /* *****************************************
385 *  FSE symbol decompression API
386 *******************************************/
387 typedef struct
388 {
389     size_t      state;
390     const void* table;   /* precise table may vary, depending on U16 */
391 } FSE_DState_t;
392 
393 
394 static void     FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
395 
396 static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
397 
398 static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
399 
400 /**<
401 Let's now decompose FSE_decompress_usingDTable() into its unitary components.
402 You will decode FSE-encoded symbols from the bitStream,
403 and also any other bitFields you put in, **in reverse order**.
404 
405 You will need a few variables to track your bitStream. They are :
406 
407 BIT_DStream_t DStream;    // Stream context
408 FSE_DState_t  DState;     // State context. Multiple ones are possible
409 FSE_DTable*   DTablePtr;  // Decoding table, provided by FSE_buildDTable()
410 
411 The first thing to do is to init the bitStream.
412     errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
413 
414 You should then retrieve your initial state(s)
415 (in reverse flushing order if you have several ones) :
416     errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
417 
418 You can then decode your data, symbol after symbol.
419 For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
420 Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
421     unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
422 
423 You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
424 Note : maximum allowed nbBits is 25, for 32-bits compatibility
425     size_t bitField = BIT_readBits(&DStream, nbBits);
426 
427 All above operations only read from local register (which size depends on size_t).
428 Refueling the register from memory is manually performed by the reload method.
429     endSignal = FSE_reloadDStream(&DStream);
430 
431 BIT_reloadDStream() result tells if there is still some more data to read from DStream.
432 BIT_DStream_unfinished : there is still some data left into the DStream.
433 BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
434 BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
435 BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
436 
437 When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
438 to properly detect the exact end of stream.
439 After each decoded symbol, check if DStream is fully consumed using this simple test :
440     BIT_reloadDStream(&DStream) >= BIT_DStream_completed
441 
442 When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
443 Checking if DStream has reached its end is performed by :
444     BIT_endOfDStream(&DStream);
445 Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
446     FSE_endOfDState(&DState);
447 */
448 
449 
450 /* *****************************************
451 *  FSE unsafe API
452 *******************************************/
453 static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
454 /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
455 
456 
457 /* *****************************************
458 *  Implementation of inlined functions
459 *******************************************/
460 typedef struct {
461     int deltaFindState;
462     U32 deltaNbBits;
463 } FSE_symbolCompressionTransform; /* total 8 bytes */
464 
FSE_initCState(FSE_CState_t * statePtr,const FSE_CTable * ct)465 MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
466 {
467     const void* ptr = ct;
468     const U16* u16ptr = (const U16*) ptr;
469     const U32 tableLog = MEM_read16(ptr);
470     statePtr->value = (ptrdiff_t)1<<tableLog;
471     statePtr->stateTable = u16ptr+2;
472     statePtr->symbolTT = ((const U32*)ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1));
473     statePtr->stateLog = tableLog;
474 }
475 
476 
477 /*! FSE_initCState2() :
478 *   Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
479 *   uses the smallest state value possible, saving the cost of this symbol */
FSE_initCState2(FSE_CState_t * statePtr,const FSE_CTable * ct,U32 symbol)480 MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
481 {
482     FSE_initCState(statePtr, ct);
483     {   const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
484         const U16* stateTable = (const U16*)(statePtr->stateTable);
485         U32 nbBitsOut  = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
486         statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
487         statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
488     }
489 }
490 
FSE_encodeSymbol(BIT_CStream_t * bitC,FSE_CState_t * statePtr,U32 symbol)491 MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, U32 symbol)
492 {
493     const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
494     const U16* const stateTable = (const U16*)(statePtr->stateTable);
495     U32 nbBitsOut  = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
496     BIT_addBits(bitC, statePtr->value, nbBitsOut);
497     statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
498 }
499 
FSE_flushCState(BIT_CStream_t * bitC,const FSE_CState_t * statePtr)500 MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
501 {
502     BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
503     BIT_flushBits(bitC);
504 }
505 
506 /* ======    Decompression    ====== */
507 
508 typedef struct {
509     U16 tableLog;
510     U16 fastMode;
511 } FSE_DTableHeader;   /* sizeof U32 */
512 
513 typedef struct
514 {
515     unsigned short newState;
516     unsigned char  symbol;
517     unsigned char  nbBits;
518 } FSE_decode_t;   /* size == U32 */
519 
FSE_initDState(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD,const FSE_DTable * dt)520 MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
521 {
522     const void* ptr = dt;
523     const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
524     DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
525     BIT_reloadDStream(bitD);
526     DStatePtr->table = dt + 1;
527 }
528 
FSE_peekSymbol(const FSE_DState_t * DStatePtr)529 MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
530 {
531     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
532     return DInfo.symbol;
533 }
534 
FSE_updateState(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD)535 MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
536 {
537     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
538     U32 const nbBits = DInfo.nbBits;
539     size_t const lowBits = BIT_readBits(bitD, nbBits);
540     DStatePtr->state = DInfo.newState + lowBits;
541 }
542 
FSE_decodeSymbol(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD)543 MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
544 {
545     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
546     U32 const nbBits = DInfo.nbBits;
547     BYTE const symbol = DInfo.symbol;
548     size_t const lowBits = BIT_readBits(bitD, nbBits);
549 
550     DStatePtr->state = DInfo.newState + lowBits;
551     return symbol;
552 }
553 
554 /*! FSE_decodeSymbolFast() :
555     unsafe, only works if no symbol has a probability > 50% */
FSE_decodeSymbolFast(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD)556 MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
557 {
558     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
559     U32 const nbBits = DInfo.nbBits;
560     BYTE const symbol = DInfo.symbol;
561     size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
562 
563     DStatePtr->state = DInfo.newState + lowBits;
564     return symbol;
565 }
566 
FSE_endOfDState(const FSE_DState_t * DStatePtr)567 MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
568 {
569     return DStatePtr->state == 0;
570 }
571 
572 
573 
574 #ifndef FSE_COMMONDEFS_ONLY
575 
576 /* **************************************************************
577 *  Tuning parameters
578 ****************************************************************/
579 /*!MEMORY_USAGE :
580 *  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
581 *  Increasing memory usage improves compression ratio
582 *  Reduced memory usage can improve speed, due to cache effect
583 *  Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
584 #define FSE_MAX_MEMORY_USAGE 14
585 #define FSE_DEFAULT_MEMORY_USAGE 13
586 
587 /*!FSE_MAX_SYMBOL_VALUE :
588 *  Maximum symbol value authorized.
589 *  Required for proper stack allocation */
590 #define FSE_MAX_SYMBOL_VALUE 255
591 
592 
593 /* **************************************************************
594 *  template functions type & suffix
595 ****************************************************************/
596 #define FSE_FUNCTION_TYPE BYTE
597 #define FSE_FUNCTION_EXTENSION
598 #define FSE_DECODE_TYPE FSE_decode_t
599 
600 
601 #endif   /* !FSE_COMMONDEFS_ONLY */
602 
603 
604 /* ***************************************************************
605 *  Constants
606 *****************************************************************/
607 #define FSE_MAX_TABLELOG  (FSE_MAX_MEMORY_USAGE-2)
608 #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
609 #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
610 #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
611 #define FSE_MIN_TABLELOG 5
612 
613 #define FSE_TABLELOG_ABSOLUTE_MAX 15
614 #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
615 #  error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
616 #endif
617 
618 #define FSE_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3)
619 
620 
621 #endif /* FSE_STATIC_LINKING_ONLY */
622 
623 
624 #if defined (__cplusplus)
625 }
626 #endif
627 
628 #endif  /* FSE_H */
629