1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim:set ts=4 sw=2 sts=2 et cin: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4  * License, v. 2.0. If a copy of the MPL was not distributed with this
5  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6 
7 // HttpLog.h should generally be included first
8 #include "HttpLog.h"
9 
10 // Log on level :5, instead of default :4.
11 #undef LOG
12 #define LOG(args) LOG5(args)
13 #undef LOG_ENABLED
14 #define LOG_ENABLED() LOG5_ENABLED()
15 
16 #define TLS_EARLY_DATA_NOT_AVAILABLE 0
17 #define TLS_EARLY_DATA_AVAILABLE_BUT_NOT_USED 1
18 #define TLS_EARLY_DATA_AVAILABLE_AND_USED 2
19 
20 #include "ASpdySession.h"
21 #include "mozilla/ChaosMode.h"
22 #include "mozilla/Telemetry.h"
23 #include "nsHttpConnection.h"
24 #include "nsHttpHandler.h"
25 #include "nsHttpRequestHead.h"
26 #include "nsHttpResponseHead.h"
27 #include "nsIClassOfService.h"
28 #include "nsIOService.h"
29 #include "nsISocketTransport.h"
30 #include "nsSocketTransportService2.h"
31 #include "nsISSLSocketControl.h"
32 #include "nsISupportsPriority.h"
33 #include "nsITransportSecurityInfo.h"
34 #include "nsCRT.h"
35 #include "nsPreloadedStream.h"
36 #include "nsProxyRelease.h"
37 #include "nsSocketTransport2.h"
38 #include "nsStringStream.h"
39 #include "nsITransportSecurityInfo.h"
40 #include "mozpkix/pkixnss.h"
41 #include "sslt.h"
42 #include "NSSErrorsService.h"
43 #include "TunnelUtils.h"
44 
45 namespace mozilla {
46 namespace net {
47 
48 enum TlsHandshakeResult : uint32_t {
49   EchConfigSuccessful = 0,
50   EchConfigFailed,
51   NoEchConfigSuccessful,
52   NoEchConfigFailed,
53 };
54 
55 //-----------------------------------------------------------------------------
56 // nsHttpConnection <public>
57 //-----------------------------------------------------------------------------
58 
nsHttpConnection()59 nsHttpConnection::nsHttpConnection() : mHttpHandler(gHttpHandler) {
60   LOG(("Creating nsHttpConnection @%p\n", this));
61 
62   // the default timeout is for when this connection has not yet processed a
63   // transaction
64   static const PRIntervalTime k5Sec = PR_SecondsToInterval(5);
65   mIdleTimeout = (k5Sec < gHttpHandler->IdleTimeout())
66                      ? k5Sec
67                      : gHttpHandler->IdleTimeout();
68 
69   mThroughCaptivePortal = gHttpHandler->GetThroughCaptivePortal();
70 }
71 
~nsHttpConnection()72 nsHttpConnection::~nsHttpConnection() {
73   LOG(("Destroying nsHttpConnection @%p\n", this));
74 
75   if (!mEverUsedSpdy) {
76     LOG(("nsHttpConnection %p performed %d HTTP/1.x transactions\n", this,
77          mHttp1xTransactionCount));
78     Telemetry::Accumulate(Telemetry::HTTP_REQUEST_PER_CONN,
79                           mHttp1xTransactionCount);
80     nsHttpConnectionInfo* ci = nullptr;
81     if (mTransaction) {
82       ci = mTransaction->ConnectionInfo();
83     }
84     if (!ci) {
85       ci = mConnInfo;
86     }
87 
88     MOZ_ASSERT(ci);
89     if (ci->GetIsTrrServiceChannel()) {
90       Telemetry::Accumulate(Telemetry::DNS_TRR_REQUEST_PER_CONN,
91                             mHttp1xTransactionCount);
92     }
93   }
94 
95   if (mTotalBytesRead) {
96     uint32_t totalKBRead = static_cast<uint32_t>(mTotalBytesRead >> 10);
97     LOG(("nsHttpConnection %p read %dkb on connection spdy=%d\n", this,
98          totalKBRead, mEverUsedSpdy));
99     Telemetry::Accumulate(mEverUsedSpdy ? Telemetry::SPDY_KBREAD_PER_CONN2
100                                         : Telemetry::HTTP_KBREAD_PER_CONN2,
101                           totalKBRead);
102   }
103 
104   if (mThroughCaptivePortal) {
105     if (mTotalBytesRead || mTotalBytesWritten) {
106       auto total =
107           Clamp<uint32_t>((mTotalBytesRead >> 10) + (mTotalBytesWritten >> 10),
108                           0, std::numeric_limits<uint32_t>::max());
109       Telemetry::ScalarAdd(
110           Telemetry::ScalarID::NETWORKING_DATA_TRANSFERRED_CAPTIVE_PORTAL,
111           total);
112     }
113 
114     Telemetry::ScalarAdd(
115         Telemetry::ScalarID::NETWORKING_HTTP_CONNECTIONS_CAPTIVE_PORTAL, 1);
116   }
117 
118   if (mForceSendTimer) {
119     mForceSendTimer->Cancel();
120     mForceSendTimer = nullptr;
121   }
122 }
123 
Init(nsHttpConnectionInfo * info,uint16_t maxHangTime,nsISocketTransport * transport,nsIAsyncInputStream * instream,nsIAsyncOutputStream * outstream,bool connectedTransport,nsresult status,nsIInterfaceRequestor * callbacks,PRIntervalTime rtt,bool forWebSocket)124 nsresult nsHttpConnection::Init(
125     nsHttpConnectionInfo* info, uint16_t maxHangTime,
126     nsISocketTransport* transport, nsIAsyncInputStream* instream,
127     nsIAsyncOutputStream* outstream, bool connectedTransport, nsresult status,
128     nsIInterfaceRequestor* callbacks, PRIntervalTime rtt, bool forWebSocket) {
129   LOG1(("nsHttpConnection::Init this=%p sockettransport=%p forWebSocket=%d",
130         this, transport, forWebSocket));
131   NS_ENSURE_ARG_POINTER(info);
132   NS_ENSURE_TRUE(!mConnInfo, NS_ERROR_ALREADY_INITIALIZED);
133   MOZ_ASSERT(NS_SUCCEEDED(status) || !connectedTransport);
134 
135   mConnectedTransport = connectedTransport;
136   mConnInfo = info;
137   MOZ_ASSERT(mConnInfo);
138 
139   mLastWriteTime = mLastReadTime = PR_IntervalNow();
140   mRtt = rtt;
141   mMaxHangTime = PR_SecondsToInterval(maxHangTime);
142 
143   mSocketTransport = transport;
144   mSocketIn = instream;
145   mSocketOut = outstream;
146   mForWebSocket = forWebSocket;
147 
148   // See explanation for non-strictness of this operation in
149   // SetSecurityCallbacks.
150   mCallbacks = new nsMainThreadPtrHolder<nsIInterfaceRequestor>(
151       "nsHttpConnection::mCallbacks", callbacks, false);
152 
153   mErrorBeforeConnect = status;
154   if (NS_SUCCEEDED(mErrorBeforeConnect)) {
155     mSocketTransport->SetEventSink(this, nullptr);
156     mSocketTransport->SetSecurityCallbacks(this);
157   }
158 
159   return NS_OK;
160 }
161 
TryTakeSubTransactions(nsTArray<RefPtr<nsAHttpTransaction>> & list)162 nsresult nsHttpConnection::TryTakeSubTransactions(
163     nsTArray<RefPtr<nsAHttpTransaction> >& list) {
164   nsresult rv = mTransaction->TakeSubTransactions(list);
165 
166   if (rv == NS_ERROR_ALREADY_OPENED) {
167     // Has the interface for TakeSubTransactions() changed?
168     LOG(
169         ("TakeSubTransactions somehow called after "
170          "nsAHttpTransaction began processing\n"));
171     MOZ_ASSERT(false,
172                "TakeSubTransactions somehow called after "
173                "nsAHttpTransaction began processing");
174     mTransaction->Close(NS_ERROR_ABORT);
175     return rv;
176   }
177 
178   if (NS_FAILED(rv) && rv != NS_ERROR_NOT_IMPLEMENTED) {
179     // Has the interface for TakeSubTransactions() changed?
180     LOG(("unexpected rv from nnsAHttpTransaction::TakeSubTransactions()"));
181     MOZ_ASSERT(false,
182                "unexpected result from "
183                "nsAHttpTransaction::TakeSubTransactions()");
184     mTransaction->Close(NS_ERROR_ABORT);
185     return rv;
186   }
187 
188   return rv;
189 }
190 
MoveTransactionsToSpdy(nsresult status,nsTArray<RefPtr<nsAHttpTransaction>> & list)191 nsresult nsHttpConnection::MoveTransactionsToSpdy(
192     nsresult status, nsTArray<RefPtr<nsAHttpTransaction> >& list) {
193   if (NS_FAILED(status)) {  // includes NS_ERROR_NOT_IMPLEMENTED
194     MOZ_ASSERT(list.IsEmpty(), "sub transaction list not empty");
195 
196     // This is ok - treat mTransaction as a single real request.
197     // Wrap the old http transaction into the new spdy session
198     // as the first stream.
199     LOG(
200         ("nsHttpConnection::MoveTransactionsToSpdy moves single transaction %p "
201          "into SpdySession %p\n",
202          mTransaction.get(), mSpdySession.get()));
203     nsresult rv = AddTransaction(mTransaction, mPriority);
204     if (NS_FAILED(rv)) {
205       return rv;
206     }
207   } else {
208     int32_t count = list.Length();
209 
210     LOG(
211         ("nsHttpConnection::MoveTransactionsToSpdy moving transaction list "
212          "len=%d "
213          "into SpdySession %p\n",
214          count, mSpdySession.get()));
215 
216     if (!count) {
217       mTransaction->Close(NS_ERROR_ABORT);
218       return NS_ERROR_ABORT;
219     }
220 
221     for (int32_t index = 0; index < count; ++index) {
222       nsresult rv = AddTransaction(list[index], mPriority);
223       if (NS_FAILED(rv)) {
224         return rv;
225       }
226     }
227   }
228 
229   return NS_OK;
230 }
231 
Start0RTTSpdy(SpdyVersion spdyVersion)232 void nsHttpConnection::Start0RTTSpdy(SpdyVersion spdyVersion) {
233   LOG(("nsHttpConnection::Start0RTTSpdy [this=%p]", this));
234 
235   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
236 
237   mDid0RTTSpdy = true;
238   mUsingSpdyVersion = spdyVersion;
239   mSpdySession =
240       ASpdySession::NewSpdySession(spdyVersion, mSocketTransport, true);
241 
242   nsTArray<RefPtr<nsAHttpTransaction> > list;
243   nsresult rv = TryTakeSubTransactions(list);
244   if (NS_FAILED(rv) && rv != NS_ERROR_NOT_IMPLEMENTED) {
245     LOG(
246         ("nsHttpConnection::Start0RTTSpdy [this=%p] failed taking "
247          "subtransactions rv=%" PRIx32,
248          this, static_cast<uint32_t>(rv)));
249     return;
250   }
251 
252   rv = MoveTransactionsToSpdy(rv, list);
253   if (NS_FAILED(rv)) {
254     LOG(
255         ("nsHttpConnection::Start0RTTSpdy [this=%p] failed moving "
256          "transactions rv=%" PRIx32,
257          this, static_cast<uint32_t>(rv)));
258     return;
259   }
260 
261   mTransaction = mSpdySession;
262 }
263 
StartSpdy(nsISSLSocketControl * sslControl,SpdyVersion spdyVersion)264 void nsHttpConnection::StartSpdy(nsISSLSocketControl* sslControl,
265                                  SpdyVersion spdyVersion) {
266   LOG(("nsHttpConnection::StartSpdy [this=%p, mDid0RTTSpdy=%d]\n", this,
267        mDid0RTTSpdy));
268 
269   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
270   MOZ_ASSERT(!mSpdySession || mDid0RTTSpdy);
271 
272   mUsingSpdyVersion = spdyVersion;
273   mEverUsedSpdy = true;
274   if (sslControl) {
275     sslControl->SetDenyClientCert(true);
276   }
277 
278   if (!mDid0RTTSpdy) {
279     mSpdySession =
280         ASpdySession::NewSpdySession(spdyVersion, mSocketTransport, false);
281   }
282 
283   if (!mReportedSpdy) {
284     mReportedSpdy = true;
285     gHttpHandler->ConnMgr()->ReportSpdyConnection(this, true);
286   }
287 
288   // Setting the connection as reused allows some transactions that fail
289   // with NS_ERROR_NET_RESET to be restarted and SPDY uses that code
290   // to handle clean rejections (such as those that arrived after
291   // a server goaway was generated).
292   mIsReused = true;
293 
294   // If mTransaction is a muxed object it might represent
295   // several requests. If so, we need to unpack that and
296   // pack them all into a new spdy session.
297 
298   nsTArray<RefPtr<nsAHttpTransaction> > list;
299   nsresult status = NS_OK;
300   if (!mDid0RTTSpdy) {
301     status = TryTakeSubTransactions(list);
302 
303     if (NS_FAILED(status) && status != NS_ERROR_NOT_IMPLEMENTED) {
304       return;
305     }
306   }
307 
308   if (NeedSpdyTunnel()) {
309     LOG3(
310         ("nsHttpConnection::StartSpdy %p Connecting To a HTTP/2 "
311          "Proxy and Need Connect",
312          this));
313     MOZ_ASSERT(mProxyConnectStream);
314 
315     mProxyConnectStream = nullptr;
316     mCompletedProxyConnect = true;
317     mProxyConnectInProgress = false;
318   }
319 
320   nsresult rv = NS_OK;
321   bool spdyProxy = mConnInfo->UsingHttpsProxy() && !mTLSFilter;
322   if (spdyProxy) {
323     RefPtr<nsHttpConnectionInfo> wildCardProxyCi;
324     rv = mConnInfo->CreateWildCard(getter_AddRefs(wildCardProxyCi));
325     MOZ_ASSERT(NS_SUCCEEDED(rv));
326     gHttpHandler->ConnMgr()->MoveToWildCardConnEntry(mConnInfo, wildCardProxyCi,
327                                                      this);
328     mConnInfo = wildCardProxyCi;
329     MOZ_ASSERT(mConnInfo);
330   }
331 
332   if (!mDid0RTTSpdy) {
333     rv = MoveTransactionsToSpdy(status, list);
334     if (NS_FAILED(rv)) {
335       return;
336     }
337   }
338 
339   // Disable TCP Keepalives - use SPDY ping instead.
340   rv = DisableTCPKeepalives();
341   if (NS_FAILED(rv)) {
342     LOG(
343         ("nsHttpConnection::StartSpdy [%p] DisableTCPKeepalives failed "
344          "rv[0x%" PRIx32 "]",
345          this, static_cast<uint32_t>(rv)));
346   }
347 
348   mIdleTimeout = gHttpHandler->SpdyTimeout() * mDefaultTimeoutFactor;
349 
350   if (!mTLSFilter) {
351     mTransaction = mSpdySession;
352   } else {
353     rv = mTLSFilter->SetProxiedTransaction(mSpdySession);
354     if (NS_FAILED(rv)) {
355       LOG(
356           ("nsHttpConnection::StartSpdy [%p] SetProxiedTransaction failed"
357            " rv[0x%x]",
358            this, static_cast<uint32_t>(rv)));
359     }
360   }
361   if (mDontReuse) {
362     mSpdySession->DontReuse();
363   }
364 }
365 
EnsureNPNComplete(nsresult & aOut0RTTWriteHandshakeValue,uint32_t & aOut0RTTBytesWritten)366 bool nsHttpConnection::EnsureNPNComplete(nsresult& aOut0RTTWriteHandshakeValue,
367                                          uint32_t& aOut0RTTBytesWritten) {
368   // If for some reason the components to check on NPN aren't available,
369   // this function will just return true to continue on and disable SPDY
370 
371   aOut0RTTWriteHandshakeValue = NS_OK;
372   aOut0RTTBytesWritten = 0;
373 
374   MOZ_ASSERT(mSocketTransport);
375   if (!mSocketTransport) {
376     // this cannot happen
377     mNPNComplete = true;
378     return true;
379   }
380 
381   if (mNPNComplete) {
382     return true;
383   }
384 
385   nsresult rv = NS_OK;
386   nsCOMPtr<nsISupports> securityInfo;
387   nsCOMPtr<nsITransportSecurityInfo> info;
388   nsCOMPtr<nsISSLSocketControl> ssl;
389   nsAutoCString negotiatedNPN;
390   // This is needed for telemetry
391   bool handshakeSucceeded = false;
392 
393   GetSecurityInfo(getter_AddRefs(securityInfo));
394   if (!securityInfo) {
395     goto npnComplete;
396   }
397 
398   ssl = do_QueryInterface(securityInfo, &rv);
399   if (NS_FAILED(rv)) goto npnComplete;
400 
401   info = do_QueryInterface(securityInfo, &rv);
402   if (NS_FAILED(rv)) goto npnComplete;
403 
404   if (!m0RTTChecked) {
405     // We reuse m0RTTChecked. We want to send this status only once.
406     mTransaction->OnTransportStatus(mSocketTransport,
407                                     NS_NET_STATUS_TLS_HANDSHAKE_STARTING, 0);
408   }
409 
410   rv = info->GetNegotiatedNPN(negotiatedNPN);
411   if (!m0RTTChecked && (rv == NS_ERROR_NOT_CONNECTED) &&
412       !mConnInfo->UsingProxy()) {
413     // There is no ALPN info (yet!). We need to consider doing 0RTT. We
414     // will do so if there is ALPN information from a previous session
415     // (AlpnEarlySelection), we are using HTTP/1, and the request data can
416     // be safely retried.
417     m0RTTChecked = true;
418     nsresult rvEarlyAlpn = ssl->GetAlpnEarlySelection(mEarlyNegotiatedALPN);
419     if (NS_FAILED(rvEarlyAlpn)) {
420       // if ssl->DriveHandshake() has never been called the value
421       // for AlpnEarlySelection is still not set. So call it here and
422       // check again.
423       LOG1(
424           ("nsHttpConnection::EnsureNPNComplete %p - "
425            "early selected alpn not available, we will try one more time.",
426            this));
427       // Let's do DriveHandshake again.
428       rv = ssl->DriveHandshake();
429       if (NS_FAILED(rv) && rv != NS_BASE_STREAM_WOULD_BLOCK) {
430         goto npnComplete;
431       }
432 
433       // Check NegotiatedNPN first.
434       rv = info->GetNegotiatedNPN(negotiatedNPN);
435       if (rv == NS_ERROR_NOT_CONNECTED) {
436         rvEarlyAlpn = ssl->GetAlpnEarlySelection(mEarlyNegotiatedALPN);
437       }
438     }
439 
440     if (NS_FAILED(rvEarlyAlpn)) {
441       LOG1(
442           ("nsHttpConnection::EnsureNPNComplete %p - "
443            "early selected alpn not available",
444            this));
445       mEarlyDataNegotiated = false;
446     } else {
447       LOG1(
448           ("nsHttpConnection::EnsureNPNComplete %p -"
449            "early selected alpn: %s",
450            this, mEarlyNegotiatedALPN.get()));
451       uint32_t infoIndex;
452       const SpdyInformation* info = gHttpHandler->SpdyInfo();
453       if (NS_FAILED(info->GetNPNIndex(mEarlyNegotiatedALPN, &infoIndex))) {
454         // This is the HTTP/1 case.
455         // Check if early-data is allowed for this transaction.
456         if (mTransaction->Do0RTT()) {
457           LOG(
458               ("nsHttpConnection::EnsureNPNComplete [this=%p] - We "
459                "can do 0RTT (http/1)!",
460                this));
461           mWaitingFor0RTTResponse = true;
462         }
463       } else {
464         // We have h2, we can at least 0-RTT the preamble and opening
465         // SETTINGS, etc, and maybe some of the first request
466         LOG(
467             ("nsHttpConnection::EnsureNPNComplete [this=%p] - Starting "
468              "0RTT for h2!",
469              this));
470         mWaitingFor0RTTResponse = true;
471         Start0RTTSpdy(info->Version[infoIndex]);
472       }
473       mEarlyDataNegotiated = true;
474     }
475   }
476 
477   if (rv == NS_ERROR_NOT_CONNECTED) {
478     if (mWaitingFor0RTTResponse) {
479       aOut0RTTWriteHandshakeValue = mTransaction->ReadSegments(
480           this, nsIOService::gDefaultSegmentSize, &aOut0RTTBytesWritten);
481       if (NS_FAILED(aOut0RTTWriteHandshakeValue) &&
482           aOut0RTTWriteHandshakeValue != NS_BASE_STREAM_WOULD_BLOCK) {
483         goto npnComplete;
484       }
485       LOG(
486           ("nsHttpConnection::EnsureNPNComplete [this=%p] - written %d "
487            "bytes during 0RTT",
488            this, aOut0RTTBytesWritten));
489       mContentBytesWritten0RTT += aOut0RTTBytesWritten;
490     }
491 
492     rv = ssl->DriveHandshake();
493     if (NS_FAILED(rv) && rv != NS_BASE_STREAM_WOULD_BLOCK) {
494       goto npnComplete;
495     }
496 
497     return false;
498   }
499 
500   if (NS_SUCCEEDED(rv)) {
501     LOG1(("nsHttpConnection::EnsureNPNComplete %p [%s] negotiated to '%s'%s\n",
502           this, mConnInfo->HashKey().get(), negotiatedNPN.get(),
503           mTLSFilter ? " [Double Tunnel]" : ""));
504 
505     handshakeSucceeded = true;
506 
507     int16_t tlsVersion;
508     ssl->GetSSLVersionUsed(&tlsVersion);
509     mConnInfo->SetLessThanTls13(
510         (tlsVersion < nsISSLSocketControl::TLS_VERSION_1_3) &&
511         (tlsVersion != nsISSLSocketControl::SSL_VERSION_UNKNOWN));
512 
513     bool earlyDataAccepted = false;
514     if (mWaitingFor0RTTResponse) {
515       // Check if early data has been accepted.
516       nsresult rvEarlyData = ssl->GetEarlyDataAccepted(&earlyDataAccepted);
517       LOG(
518           ("nsHttpConnection::EnsureNPNComplete [this=%p] - early data "
519            "that was sent during 0RTT %s been accepted [rv=%" PRIx32 "].",
520            this, earlyDataAccepted ? "has" : "has not",
521            static_cast<uint32_t>(rv)));
522 
523       if (NS_FAILED(rvEarlyData) ||
524           NS_FAILED(mTransaction->Finish0RTT(
525               !earlyDataAccepted, negotiatedNPN != mEarlyNegotiatedALPN))) {
526         LOG(
527             ("nsHttpConection::EnsureNPNComplete [this=%p] closing transaction "
528              "%p",
529              this, mTransaction.get()));
530         mTransaction->Close(NS_ERROR_NET_RESET);
531         goto npnComplete;
532       }
533     }
534 
535     // Send the 0RTT telemetry only for tls1.3
536     if (tlsVersion > nsISSLSocketControl::TLS_VERSION_1_2) {
537       Telemetry::Accumulate(
538           Telemetry::TLS_EARLY_DATA_NEGOTIATED,
539           (!mEarlyDataNegotiated)
540               ? TLS_EARLY_DATA_NOT_AVAILABLE
541               : ((mWaitingFor0RTTResponse)
542                      ? TLS_EARLY_DATA_AVAILABLE_AND_USED
543                      : TLS_EARLY_DATA_AVAILABLE_BUT_NOT_USED));
544       if (mWaitingFor0RTTResponse) {
545         Telemetry::Accumulate(Telemetry::TLS_EARLY_DATA_ACCEPTED,
546                               earlyDataAccepted);
547       }
548       if (earlyDataAccepted) {
549         Telemetry::Accumulate(Telemetry::TLS_EARLY_DATA_BYTES_WRITTEN,
550                               mContentBytesWritten0RTT);
551       }
552     }
553     mWaitingFor0RTTResponse = false;
554 
555     if (!earlyDataAccepted) {
556       LOG(
557           ("nsHttpConnection::EnsureNPNComplete [this=%p] early data not "
558            "accepted",
559            this));
560       if (mTransaction->QueryNullTransaction() &&
561           (mBootstrappedTimings.secureConnectionStart.IsNull() ||
562            mBootstrappedTimings.tcpConnectEnd.IsNull())) {
563         mBootstrappedTimings.secureConnectionStart =
564             mTransaction->QueryNullTransaction()->GetSecureConnectionStart();
565         mBootstrappedTimings.tcpConnectEnd =
566             mTransaction->QueryNullTransaction()->GetTcpConnectEnd();
567       }
568       uint32_t infoIndex;
569       const SpdyInformation* info = gHttpHandler->SpdyInfo();
570       if (NS_SUCCEEDED(info->GetNPNIndex(negotiatedNPN, &infoIndex))) {
571         StartSpdy(ssl, info->Version[infoIndex]);
572       }
573     } else {
574       LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] - %" PRId64 " bytes "
575            "has been sent during 0RTT.",
576            this, mContentBytesWritten0RTT));
577       mContentBytesWritten = mContentBytesWritten0RTT;
578       if (mSpdySession) {
579         // We had already started 0RTT-spdy, now we need to fully set up
580         // spdy, since we know we're sticking with it.
581         LOG(
582             ("nsHttpConnection::EnsureNPNComplete [this=%p] - finishing "
583              "StartSpdy for 0rtt spdy session %p",
584              this, mSpdySession.get()));
585         StartSpdy(ssl, mSpdySession->SpdyVersion());
586       }
587     }
588 
589     Telemetry::Accumulate(Telemetry::SPDY_NPN_CONNECT, UsingSpdy());
590   }
591 
592 npnComplete:
593   LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] setting complete to true",
594        this));
595   mNPNComplete = true;
596 
597   mTransaction->OnTransportStatus(mSocketTransport,
598                                   NS_NET_STATUS_TLS_HANDSHAKE_ENDED, 0);
599 
600   // this is happening after the bootstrap was originally written to. so update
601   // it.
602   if (mTransaction->QueryNullTransaction() &&
603       (mBootstrappedTimings.secureConnectionStart.IsNull() ||
604        mBootstrappedTimings.tcpConnectEnd.IsNull())) {
605     mBootstrappedTimings.secureConnectionStart =
606         mTransaction->QueryNullTransaction()->GetSecureConnectionStart();
607     mBootstrappedTimings.tcpConnectEnd =
608         mTransaction->QueryNullTransaction()->GetTcpConnectEnd();
609   }
610 
611   if (securityInfo) {
612     mBootstrappedTimings.connectEnd = TimeStamp::Now();
613   }
614 
615   if (mWaitingFor0RTTResponse) {
616     // Didn't get 0RTT OK, back out of the "attempting 0RTT" state
617     mWaitingFor0RTTResponse = false;
618     LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] 0rtt failed", this));
619     if (NS_FAILED(mTransaction->Finish0RTT(
620             true, negotiatedNPN != mEarlyNegotiatedALPN))) {
621       mTransaction->Close(NS_ERROR_NET_RESET);
622     }
623     mContentBytesWritten0RTT = 0;
624   }
625 
626   if (mDid0RTTSpdy && negotiatedNPN != mEarlyNegotiatedALPN) {
627     // Reset the work done by Start0RTTSpdy
628     LOG((
629         "nsHttpConnection::EnsureNPNComplete [this=%p] resetting Start0RTTSpdy",
630         this));
631     mUsingSpdyVersion = SpdyVersion::NONE;
632     mTransaction = nullptr;
633     mSpdySession = nullptr;
634     // We have to reset this here, just in case we end up starting spdy again,
635     // so it can actually do everything it needs to do.
636     mDid0RTTSpdy = false;
637   }
638 
639   if (ssl) {
640     // Telemetry for tls failure rate with and without esni;
641     bool echConfigUsed = false;
642     mSocketTransport->GetEchConfigUsed(&echConfigUsed);
643     TlsHandshakeResult result =
644         echConfigUsed
645             ? (handshakeSucceeded ? TlsHandshakeResult::EchConfigSuccessful
646                                   : TlsHandshakeResult::EchConfigFailed)
647             : (handshakeSucceeded ? TlsHandshakeResult::NoEchConfigSuccessful
648                                   : TlsHandshakeResult::NoEchConfigFailed);
649     Telemetry::Accumulate(Telemetry::ECHCONFIG_SUCCESS_RATE, result);
650   }
651 
652   if (rv == psm::GetXPCOMFromNSSError(
653                 mozilla::pkix::MOZILLA_PKIX_ERROR_MITM_DETECTED)) {
654     gSocketTransportService->SetNotTrustedMitmDetected();
655   }
656   return true;
657 }
658 
OnTunnelNudged(TLSFilterTransaction * trans)659 nsresult nsHttpConnection::OnTunnelNudged(TLSFilterTransaction* trans) {
660   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
661   LOG(("nsHttpConnection::OnTunnelNudged %p\n", this));
662   if (trans != mTLSFilter) {
663     return NS_OK;
664   }
665   LOG(("nsHttpConnection::OnTunnelNudged %p Calling OnSocketWritable\n", this));
666   return OnSocketWritable();
667 }
668 
669 // called on the socket thread
Activate(nsAHttpTransaction * trans,uint32_t caps,int32_t pri)670 nsresult nsHttpConnection::Activate(nsAHttpTransaction* trans, uint32_t caps,
671                                     int32_t pri) {
672   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
673   LOG1(("nsHttpConnection::Activate [this=%p trans=%p caps=%x]\n", this, trans,
674         caps));
675 
676   if (!mExperienced && !trans->IsNullTransaction()) {
677     if (mNPNComplete) {
678       mExperienced = true;
679     }
680     if (mBootstrappedTimingsSet) {
681       mBootstrappedTimingsSet = false;
682       nsHttpTransaction* hTrans = trans->QueryHttpTransaction();
683       if (hTrans) {
684         hTrans->BootstrapTimings(mBootstrappedTimings);
685         SetUrgentStartPreferred(hTrans->ClassOfService() &
686                                 nsIClassOfService::UrgentStart);
687       }
688     }
689     mBootstrappedTimings = TimingStruct();
690   }
691 
692   if (caps & NS_HTTP_LARGE_KEEPALIVE) {
693     mDefaultTimeoutFactor = 10;  // don't ever lower
694   }
695 
696   mTransactionCaps = caps;
697   mPriority = pri;
698   if (mTransaction && (mUsingSpdyVersion != SpdyVersion::NONE)) {
699     return AddTransaction(trans, pri);
700   }
701 
702   NS_ENSURE_ARG_POINTER(trans);
703   NS_ENSURE_TRUE(!mTransaction, NS_ERROR_IN_PROGRESS);
704 
705   // reset the read timers to wash away any idle time
706   mLastWriteTime = mLastReadTime = PR_IntervalNow();
707 
708   // Connection failures are Activated() just like regular transacions.
709   // If we don't have a confirmation of a connected socket then test it
710   // with a write() to get relevant error code.
711   if (NS_FAILED(mErrorBeforeConnect)) {
712     mSocketOutCondition = mErrorBeforeConnect;
713     mTransaction = trans;
714     CloseTransaction(mTransaction, mSocketOutCondition);
715     return mSocketOutCondition;
716   }
717 
718   if (!mConnectedTransport) {
719     uint32_t count;
720     mSocketOutCondition = NS_ERROR_FAILURE;
721     if (mSocketOut) {
722       mSocketOutCondition = mSocketOut->Write("", 0, &count);
723     }
724     if (NS_FAILED(mSocketOutCondition) &&
725         mSocketOutCondition != NS_BASE_STREAM_WOULD_BLOCK) {
726       LOG(("nsHttpConnection::Activate [this=%p] Bad Socket %" PRIx32 "\n",
727            this, static_cast<uint32_t>(mSocketOutCondition)));
728       mSocketOut->AsyncWait(nullptr, 0, 0, nullptr);
729       mTransaction = trans;
730       CloseTransaction(mTransaction, mSocketOutCondition);
731       return mSocketOutCondition;
732     }
733   }
734 
735   // Update security callbacks
736   nsCOMPtr<nsIInterfaceRequestor> callbacks;
737   trans->GetSecurityCallbacks(getter_AddRefs(callbacks));
738   SetSecurityCallbacks(callbacks);
739   SetupSSL();
740 
741   // take ownership of the transaction
742   mTransaction = trans;
743 
744   MOZ_ASSERT(!mIdleMonitoring, "Activating a connection with an Idle Monitor");
745   mIdleMonitoring = false;
746 
747   // set mKeepAlive according to what will be requested
748   mKeepAliveMask = mKeepAlive = (caps & NS_HTTP_ALLOW_KEEPALIVE);
749 
750   // need to handle HTTP CONNECT tunnels if this is the first time if
751   // we are tunneling through a proxy
752   nsresult rv = NS_OK;
753   if (mTransaction->ConnectionInfo()->UsingConnect() &&
754       !mCompletedProxyConnect) {
755     rv = SetupProxyConnect();
756     if (NS_FAILED(rv)) goto failed_activation;
757     mProxyConnectInProgress = true;
758   }
759 
760   // Clear the per activation counter
761   mCurrentBytesRead = 0;
762 
763   // The overflow state is not needed between activations
764   mInputOverflow = nullptr;
765 
766   mResponseTimeoutEnabled = gHttpHandler->ResponseTimeoutEnabled() &&
767                             mTransaction->ResponseTimeout() > 0 &&
768                             mTransaction->ResponseTimeoutEnabled();
769 
770   rv = StartShortLivedTCPKeepalives();
771   if (NS_FAILED(rv)) {
772     LOG(
773         ("nsHttpConnection::Activate [%p] "
774          "StartShortLivedTCPKeepalives failed rv[0x%" PRIx32 "]",
775          this, static_cast<uint32_t>(rv)));
776   }
777 
778   if (mTLSFilter) {
779     RefPtr<NullHttpTransaction> baseTrans(do_QueryReferent(mWeakTrans));
780     rv = mTLSFilter->SetProxiedTransaction(trans, baseTrans);
781     NS_ENSURE_SUCCESS(rv, rv);
782     if (mTransaction->ConnectionInfo()->UsingConnect()) {
783       SpdyConnectTransaction* trans =
784           baseTrans ? baseTrans->QuerySpdyConnectTransaction() : nullptr;
785       if (trans && !trans->IsWebsocket()) {
786         // If we are here, the tunnel is already established. Let the
787         // transaction know that proxy connect is successful.
788         mTransaction->OnProxyConnectComplete(200);
789       }
790     }
791     mTransaction = mTLSFilter;
792   }
793 
794   trans->OnActivated();
795 
796   rv = OnOutputStreamReady(mSocketOut);
797 
798 failed_activation:
799   if (NS_FAILED(rv)) {
800     mTransaction = nullptr;
801   }
802 
803   return rv;
804 }
805 
SetupSSL()806 void nsHttpConnection::SetupSSL() {
807   LOG1(("nsHttpConnection::SetupSSL %p caps=0x%X %s\n", this, mTransactionCaps,
808         mConnInfo->HashKey().get()));
809 
810   if (mSetupSSLCalled) {  // do only once
811     return;
812   }
813   mSetupSSLCalled = true;
814 
815   if (mNPNComplete) return;
816 
817   // we flip this back to false if SetNPNList succeeds at the end
818   // of this function
819   mNPNComplete = true;
820 
821   if (!mConnInfo->FirstHopSSL() || mForcePlainText) {
822     return;
823   }
824 
825   // if we are connected to the proxy with TLS, start the TLS
826   // flow immediately without waiting for a CONNECT sequence.
827   DebugOnly<nsresult> rv{};
828   if (mInSpdyTunnel) {
829     rv = InitSSLParams(false, true);
830   } else {
831     bool usingHttpsProxy = mConnInfo->UsingHttpsProxy();
832     rv = InitSSLParams(usingHttpsProxy, usingHttpsProxy);
833   }
834   MOZ_ASSERT(NS_SUCCEEDED(rv));
835 }
836 
837 // The naming of NPN is historical - this function creates the basic
838 // offer list for both NPN and ALPN. ALPN validation callbacks are made
839 // now before the handshake is complete, and NPN validation callbacks
840 // are made during the handshake.
SetupNPNList(nsISSLSocketControl * ssl,uint32_t caps)841 nsresult nsHttpConnection::SetupNPNList(nsISSLSocketControl* ssl,
842                                         uint32_t caps) {
843   nsTArray<nsCString> protocolArray;
844 
845   nsCString npnToken = mConnInfo->GetNPNToken();
846   if (npnToken.IsEmpty()) {
847     // The first protocol is used as the fallback if none of the
848     // protocols supported overlap with the server's list.
849     // When using ALPN the advertised preferences are protocolArray indicies
850     // {1, .., N, 0} in decreasing order.
851     // For NPN, In the case of overlap, matching priority is driven by
852     // the order of the server's advertisement - with index 0 used when
853     // there is no match.
854     protocolArray.AppendElement("http/1.1"_ns);
855 
856     if (gHttpHandler->IsSpdyEnabled() && !(caps & NS_HTTP_DISALLOW_SPDY)) {
857       LOG(("nsHttpConnection::SetupSSL Allow SPDY NPN selection"));
858       const SpdyInformation* info = gHttpHandler->SpdyInfo();
859       for (uint32_t index = SpdyInformation::kCount; index > 0; --index) {
860         if (info->ProtocolEnabled(index - 1) &&
861             info->ALPNCallbacks[index - 1](ssl)) {
862           protocolArray.AppendElement(info->VersionString[index - 1]);
863         }
864       }
865     }
866   } else {
867     LOG(("nsHttpConnection::SetupSSL limiting NPN selection to %s",
868          npnToken.get()));
869     protocolArray.AppendElement(npnToken);
870   }
871 
872   nsresult rv = ssl->SetNPNList(protocolArray);
873   LOG(("nsHttpConnection::SetupNPNList %p %" PRIx32 "\n", this,
874        static_cast<uint32_t>(rv)));
875   return rv;
876 }
877 
AddTransaction(nsAHttpTransaction * httpTransaction,int32_t priority)878 nsresult nsHttpConnection::AddTransaction(nsAHttpTransaction* httpTransaction,
879                                           int32_t priority) {
880   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
881   MOZ_ASSERT(mSpdySession && (mUsingSpdyVersion != SpdyVersion::NONE),
882              "AddTransaction to live http connection without spdy/quic");
883 
884   // If this is a wild card nshttpconnection (i.e. a spdy proxy) then
885   // it is important to start the stream using the specific connection
886   // info of the transaction to ensure it is routed on the right tunnel
887 
888   nsHttpConnectionInfo* transCI = httpTransaction->ConnectionInfo();
889 
890   bool needTunnel = transCI->UsingHttpsProxy();
891   needTunnel = needTunnel && !mTLSFilter;
892   needTunnel = needTunnel && transCI->UsingConnect();
893   needTunnel = needTunnel && httpTransaction->QueryHttpTransaction();
894 
895   // Let the transaction know that the tunnel is already established and we
896   // don't need to setup the tunnel again.
897   if (transCI->UsingConnect() && mEverUsedSpdy && mTLSFilter) {
898     httpTransaction->OnProxyConnectComplete(200);
899   }
900 
901   bool isWebsocket = false;
902   nsHttpTransaction* trans = httpTransaction->QueryHttpTransaction();
903   if (trans) {
904     isWebsocket = trans->IsWebsocketUpgrade();
905     MOZ_ASSERT(!isWebsocket || !needTunnel, "Websocket and tunnel?!");
906   }
907 
908   LOG(("nsHttpConnection::AddTransaction [this=%p] for %s%s", this,
909        mSpdySession ? "SPDY" : "QUIC",
910        needTunnel ? " over tunnel" : (isWebsocket ? " websocket" : "")));
911 
912   if (mSpdySession) {
913     if (!mSpdySession->AddStream(httpTransaction, priority, needTunnel,
914                                  isWebsocket, mCallbacks)) {
915       MOZ_ASSERT(false);  // this cannot happen!
916       httpTransaction->Close(NS_ERROR_ABORT);
917       return NS_ERROR_FAILURE;
918     }
919   }
920 
921   Unused << ResumeSend();
922   return NS_OK;
923 }
924 
Close(nsresult reason,bool aIsShutdown)925 void nsHttpConnection::Close(nsresult reason, bool aIsShutdown) {
926   LOG(("nsHttpConnection::Close [this=%p reason=%" PRIx32 "]\n", this,
927        static_cast<uint32_t>(reason)));
928 
929   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
930 
931   // Ensure TCP keepalive timer is stopped.
932   if (mTCPKeepaliveTransitionTimer) {
933     mTCPKeepaliveTransitionTimer->Cancel();
934     mTCPKeepaliveTransitionTimer = nullptr;
935   }
936   if (mForceSendTimer) {
937     mForceSendTimer->Cancel();
938     mForceSendTimer = nullptr;
939   }
940 
941   if (!mTrafficCategory.IsEmpty()) {
942     HttpTrafficAnalyzer* hta = gHttpHandler->GetHttpTrafficAnalyzer();
943     if (hta) {
944       hta->IncrementHttpConnection(std::move(mTrafficCategory));
945       MOZ_ASSERT(mTrafficCategory.IsEmpty());
946     }
947   }
948 
949   if (NS_FAILED(reason)) {
950     if (mIdleMonitoring) EndIdleMonitoring();
951 
952     mTLSFilter = nullptr;
953 
954     // The connection and security errors clear out alt-svc mappings
955     // in case any previously validated ones are now invalid
956     if (((reason == NS_ERROR_NET_RESET) ||
957          (NS_ERROR_GET_MODULE(reason) == NS_ERROR_MODULE_SECURITY)) &&
958         mConnInfo && !(mTransactionCaps & NS_HTTP_ERROR_SOFTLY)) {
959       gHttpHandler->ClearHostMapping(mConnInfo);
960     }
961 
962     if (mSocketTransport) {
963       mSocketTransport->SetEventSink(nullptr, nullptr);
964 
965       // If there are bytes sitting in the input queue then read them
966       // into a junk buffer to avoid generating a tcp rst by closing a
967       // socket with data pending. TLS is a classic case of this where
968       // a Alert record might be superfulous to a clean HTTP/SPDY shutdown.
969       // Never block to do this and limit it to a small amount of data.
970       // During shutdown just be fast!
971       if (mSocketIn && !aIsShutdown) {
972         char buffer[4000];
973         uint32_t count, total = 0;
974         nsresult rv;
975         do {
976           rv = mSocketIn->Read(buffer, 4000, &count);
977           if (NS_SUCCEEDED(rv)) total += count;
978         } while (NS_SUCCEEDED(rv) && count > 0 && total < 64000);
979         LOG(("nsHttpConnection::Close drained %d bytes\n", total));
980       }
981 
982       mSocketTransport->SetSecurityCallbacks(nullptr);
983       mSocketTransport->Close(reason);
984       if (mSocketOut) mSocketOut->AsyncWait(nullptr, 0, 0, nullptr);
985     }
986     mKeepAlive = false;
987   }
988 }
989 
990 // called on the socket thread
InitSSLParams(bool connectingToProxy,bool proxyStartSSL)991 nsresult nsHttpConnection::InitSSLParams(bool connectingToProxy,
992                                          bool proxyStartSSL) {
993   LOG(("nsHttpConnection::InitSSLParams [this=%p] connectingToProxy=%d\n", this,
994        connectingToProxy));
995   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
996 
997   nsresult rv;
998   nsCOMPtr<nsISupports> securityInfo;
999   GetSecurityInfo(getter_AddRefs(securityInfo));
1000   if (!securityInfo) {
1001     return NS_ERROR_FAILURE;
1002   }
1003 
1004   nsCOMPtr<nsISSLSocketControl> ssl = do_QueryInterface(securityInfo, &rv);
1005   if (NS_FAILED(rv)) {
1006     return rv;
1007   }
1008 
1009   if (proxyStartSSL) {
1010     rv = ssl->ProxyStartSSL();
1011     if (NS_FAILED(rv)) {
1012       return rv;
1013     }
1014   }
1015 
1016   if (NS_SUCCEEDED(SetupNPNList(ssl, mTransactionCaps))) {
1017     LOG(("InitSSLParams Setting up SPDY Negotiation OK"));
1018     mNPNComplete = false;
1019   }
1020 
1021   return NS_OK;
1022 }
1023 
DontReuse()1024 void nsHttpConnection::DontReuse() {
1025   LOG(("nsHttpConnection::DontReuse %p spdysession=%p\n", this,
1026        mSpdySession.get()));
1027   mKeepAliveMask = false;
1028   mKeepAlive = false;
1029   mDontReuse = true;
1030   mIdleTimeout = 0;
1031   if (mSpdySession) {
1032     mSpdySession->DontReuse();
1033   }
1034 }
1035 
TestJoinConnection(const nsACString & hostname,int32_t port)1036 bool nsHttpConnection::TestJoinConnection(const nsACString& hostname,
1037                                           int32_t port) {
1038   if (mSpdySession && CanDirectlyActivate()) {
1039     return mSpdySession->TestJoinConnection(hostname, port);
1040   }
1041 
1042   return false;
1043 }
1044 
JoinConnection(const nsACString & hostname,int32_t port)1045 bool nsHttpConnection::JoinConnection(const nsACString& hostname,
1046                                       int32_t port) {
1047   if (mSpdySession && CanDirectlyActivate()) {
1048     return mSpdySession->JoinConnection(hostname, port);
1049   }
1050 
1051   return false;
1052 }
1053 
CanReuse()1054 bool nsHttpConnection::CanReuse() {
1055   if (mDontReuse || !mRemainingConnectionUses) {
1056     return false;
1057   }
1058 
1059   if ((mTransaction ? (mTransaction->IsDone() ? 0U : 1U) : 0U) >=
1060       mRemainingConnectionUses) {
1061     return false;
1062   }
1063 
1064   bool canReuse;
1065   if (mSpdySession) {
1066     canReuse = mSpdySession->CanReuse();
1067   } else {
1068     canReuse = IsKeepAlive();
1069   }
1070 
1071   canReuse = canReuse && (IdleTime() < mIdleTimeout) && IsAlive();
1072 
1073   // An idle persistent connection should not have data waiting to be read
1074   // before a request is sent. Data here is likely a 408 timeout response
1075   // which we would deal with later on through the restart logic, but that
1076   // path is more expensive than just closing the socket now.
1077 
1078   uint64_t dataSize;
1079   if (canReuse && mSocketIn && (mUsingSpdyVersion == SpdyVersion::NONE) &&
1080       mHttp1xTransactionCount &&
1081       NS_SUCCEEDED(mSocketIn->Available(&dataSize)) && dataSize) {
1082     LOG(
1083         ("nsHttpConnection::CanReuse %p %s"
1084          "Socket not reusable because read data pending (%" PRIu64 ") on it.\n",
1085          this, mConnInfo->Origin(), dataSize));
1086     canReuse = false;
1087   }
1088   return canReuse;
1089 }
1090 
CanDirectlyActivate()1091 bool nsHttpConnection::CanDirectlyActivate() {
1092   // return true if a new transaction can be addded to ths connection at any
1093   // time through Activate(). In practice this means this is a healthy SPDY
1094   // connection with room for more concurrent streams.
1095 
1096   return UsingSpdy() && CanReuse() && mSpdySession &&
1097          mSpdySession->RoomForMoreStreams();
1098 }
1099 
IdleTime()1100 PRIntervalTime nsHttpConnection::IdleTime() {
1101   return mSpdySession ? mSpdySession->IdleTime()
1102                       : (PR_IntervalNow() - mLastReadTime);
1103 }
1104 
1105 // returns the number of seconds left before the allowable idle period
1106 // expires, or 0 if the period has already expied.
TimeToLive()1107 uint32_t nsHttpConnection::TimeToLive() {
1108   LOG(("nsHttpConnection::TTL: %p %s idle %d timeout %d\n", this,
1109        mConnInfo->Origin(), IdleTime(), mIdleTimeout));
1110 
1111   if (IdleTime() >= mIdleTimeout) {
1112     return 0;
1113   }
1114 
1115   uint32_t timeToLive = PR_IntervalToSeconds(mIdleTimeout - IdleTime());
1116 
1117   // a positive amount of time can be rounded to 0. Because 0 is used
1118   // as the expiration signal, round all values from 0 to 1 up to 1.
1119   if (!timeToLive) {
1120     timeToLive = 1;
1121   }
1122   return timeToLive;
1123 }
1124 
IsAlive()1125 bool nsHttpConnection::IsAlive() {
1126   if (!mSocketTransport || !mConnectedTransport) return false;
1127 
1128   // SocketTransport::IsAlive can run the SSL state machine, so make sure
1129   // the NPN options are set before that happens.
1130   SetupSSL();
1131 
1132   bool alive;
1133   nsresult rv = mSocketTransport->IsAlive(&alive);
1134   if (NS_FAILED(rv)) alive = false;
1135 
1136 //#define TEST_RESTART_LOGIC
1137 #ifdef TEST_RESTART_LOGIC
1138   if (!alive) {
1139     LOG(("pretending socket is still alive to test restart logic\n"));
1140     alive = true;
1141   }
1142 #endif
1143 
1144   return alive;
1145 }
1146 
SetUrgentStartPreferred(bool urgent)1147 void nsHttpConnection::SetUrgentStartPreferred(bool urgent) {
1148   if (mExperienced && !mUrgentStartPreferredKnown) {
1149     // Set only according the first ever dispatched non-null transaction
1150     mUrgentStartPreferredKnown = true;
1151     mUrgentStartPreferred = urgent;
1152     LOG(("nsHttpConnection::SetUrgentStartPreferred [this=%p urgent=%d]", this,
1153          urgent));
1154   }
1155 }
1156 
1157 //----------------------------------------------------------------------------
1158 // nsHttpConnection::nsAHttpConnection compatible methods
1159 //----------------------------------------------------------------------------
1160 
OnHeadersAvailable(nsAHttpTransaction * trans,nsHttpRequestHead * requestHead,nsHttpResponseHead * responseHead,bool * reset)1161 nsresult nsHttpConnection::OnHeadersAvailable(nsAHttpTransaction* trans,
1162                                               nsHttpRequestHead* requestHead,
1163                                               nsHttpResponseHead* responseHead,
1164                                               bool* reset) {
1165   LOG(
1166       ("nsHttpConnection::OnHeadersAvailable [this=%p trans=%p "
1167        "response-head=%p]\n",
1168        this, trans, responseHead));
1169 
1170   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
1171   NS_ENSURE_ARG_POINTER(trans);
1172   MOZ_ASSERT(responseHead, "No response head?");
1173 
1174   if (mInSpdyTunnel) {
1175     DebugOnly<nsresult> rv =
1176         responseHead->SetHeader(nsHttp::X_Firefox_Spdy_Proxy, "true"_ns);
1177     MOZ_ASSERT(NS_SUCCEEDED(rv));
1178   }
1179 
1180   // we won't change our keep-alive policy unless the server has explicitly
1181   // told us to do so.
1182 
1183   // inspect the connection headers for keep-alive info provided the
1184   // transaction completed successfully. In the case of a non-sensical close
1185   // and keep-alive favor the close out of conservatism.
1186 
1187   bool explicitKeepAlive = false;
1188   bool explicitClose =
1189       responseHead->HasHeaderValue(nsHttp::Connection, "close") ||
1190       responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "close");
1191   if (!explicitClose) {
1192     explicitKeepAlive =
1193         responseHead->HasHeaderValue(nsHttp::Connection, "keep-alive") ||
1194         responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "keep-alive");
1195   }
1196 
1197   // deal with 408 Server Timeouts
1198   uint16_t responseStatus = responseHead->Status();
1199   static const PRIntervalTime k1000ms = PR_MillisecondsToInterval(1000);
1200   if (responseStatus == 408) {
1201     // If this error could be due to a persistent connection reuse then
1202     // we pass an error code of NS_ERROR_NET_RESET to
1203     // trigger the transaction 'restart' mechanism.  We tell it to reset its
1204     // response headers so that it will be ready to receive the new response.
1205     if (mIsReused && ((PR_IntervalNow() - mLastWriteTime) < k1000ms)) {
1206       Close(NS_ERROR_NET_RESET);
1207       *reset = true;
1208       return NS_OK;
1209     }
1210 
1211     // timeouts that are not caused by persistent connection reuse should
1212     // not be retried for browser compatibility reasons. bug 907800. The
1213     // server driven close is implicit in the 408.
1214     explicitClose = true;
1215     explicitKeepAlive = false;
1216   }
1217 
1218   if ((responseHead->Version() < HttpVersion::v1_1) ||
1219       (requestHead->Version() < HttpVersion::v1_1)) {
1220     // HTTP/1.0 connections are by default NOT persistent
1221     mKeepAlive = explicitKeepAlive;
1222   } else {
1223     // HTTP/1.1 connections are by default persistent
1224     mKeepAlive = !explicitClose;
1225   }
1226   mKeepAliveMask = mKeepAlive;
1227 
1228   // if this connection is persistent, then the server may send a "Keep-Alive"
1229   // header specifying the maximum number of times the connection can be
1230   // reused as well as the maximum amount of time the connection can be idle
1231   // before the server will close it.  we ignore the max reuse count, because
1232   // a "keep-alive" connection is by definition capable of being reused, and
1233   // we only care about being able to reuse it once.  if a timeout is not
1234   // specified then we use our advertized timeout value.
1235   bool foundKeepAliveMax = false;
1236   if (mKeepAlive) {
1237     nsAutoCString keepAlive;
1238     Unused << responseHead->GetHeader(nsHttp::Keep_Alive, keepAlive);
1239 
1240     if (mUsingSpdyVersion == SpdyVersion::NONE) {
1241       const char* cp = nsCRT::strcasestr(keepAlive.get(), "timeout=");
1242       if (cp) {
1243         mIdleTimeout = PR_SecondsToInterval((uint32_t)atoi(cp + 8));
1244       } else {
1245         mIdleTimeout = gHttpHandler->IdleTimeout() * mDefaultTimeoutFactor;
1246       }
1247 
1248       cp = nsCRT::strcasestr(keepAlive.get(), "max=");
1249       if (cp) {
1250         int maxUses = atoi(cp + 4);
1251         if (maxUses > 0) {
1252           foundKeepAliveMax = true;
1253           mRemainingConnectionUses = static_cast<uint32_t>(maxUses);
1254         }
1255       }
1256     }
1257 
1258     LOG(("Connection can be reused [this=%p idle-timeout=%usec]\n", this,
1259          PR_IntervalToSeconds(mIdleTimeout)));
1260   }
1261 
1262   if (!foundKeepAliveMax && mRemainingConnectionUses &&
1263       (mUsingSpdyVersion == SpdyVersion::NONE)) {
1264     --mRemainingConnectionUses;
1265   }
1266 
1267   // If we're doing a proxy connect, we need to check whether or not
1268   // it was successful.  If so, we have to reset the transaction and step-up
1269   // the socket connection if using SSL. Finally, we have to wake up the
1270   // socket write request.
1271   bool itWasProxyConnect = !!mProxyConnectStream;
1272   if (mProxyConnectStream) {
1273     MOZ_ASSERT(mUsingSpdyVersion == SpdyVersion::NONE,
1274                "SPDY NPN Complete while using proxy connect stream");
1275     mProxyConnectStream = nullptr;
1276     bool isHttps = mTransaction ? mTransaction->ConnectionInfo()->EndToEndSSL()
1277                                 : mConnInfo->EndToEndSSL();
1278     bool onlyConnect = mTransactionCaps & NS_HTTP_CONNECT_ONLY;
1279 
1280     mTransaction->OnProxyConnectComplete(responseStatus);
1281     if (responseStatus == 200) {
1282       LOG(("proxy CONNECT succeeded! endtoendssl=%d onlyconnect=%d\n", isHttps,
1283            onlyConnect));
1284       // If we're only connecting, we don't need to reset the transaction
1285       // state. We need to upgrade the socket now without doing the actual
1286       // http request.
1287       if (!onlyConnect) {
1288         *reset = true;
1289       }
1290       nsresult rv;
1291       // CONNECT only flag doesn't do the tls setup. https here only
1292       // ensures a proxy tunnel was used not that tls is setup.
1293       if (isHttps) {
1294         if (!onlyConnect) {
1295           if (mConnInfo->UsingHttpsProxy()) {
1296             LOG(("%p new TLSFilterTransaction %s %d\n", this,
1297                  mConnInfo->Origin(), mConnInfo->OriginPort()));
1298             SetupSecondaryTLS();
1299           }
1300 
1301           rv = InitSSLParams(false, true);
1302           LOG(("InitSSLParams [rv=%" PRIx32 "]\n", static_cast<uint32_t>(rv)));
1303         } else {
1304           // We have an https protocol but the CONNECT only flag was
1305           // specified. The consumer only wants a raw socket to the
1306           // proxy. We have to mark this as complete to finish the
1307           // transaction and be upgraded. OnSocketReadable() uses this
1308           // to detect an inactive tunnel and blocks completion.
1309           mNPNComplete = true;
1310         }
1311       }
1312       mCompletedProxyConnect = true;
1313       mProxyConnectInProgress = false;
1314       rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);
1315       // XXX what if this fails -- need to handle this error
1316       MOZ_ASSERT(NS_SUCCEEDED(rv), "mSocketOut->AsyncWait failed");
1317     } else {
1318       LOG(("proxy CONNECT failed! endtoendssl=%d onlyconnect=%d\n", isHttps,
1319            onlyConnect));
1320       mTransaction->SetProxyConnectFailed();
1321     }
1322   }
1323 
1324   nsAutoCString upgradeReq;
1325   bool hasUpgradeReq =
1326       NS_SUCCEEDED(requestHead->GetHeader(nsHttp::Upgrade, upgradeReq));
1327   // Don't use persistent connection for Upgrade unless there's an auth failure:
1328   // some proxies expect to see auth response on persistent connection.
1329   // Also allow persistent conn for h2, as we don't want to waste connections
1330   // for multiplexed upgrades.
1331   if (!itWasProxyConnect && hasUpgradeReq && responseStatus != 401 &&
1332       responseStatus != 407 && !mSpdySession) {
1333     LOG(("HTTP Upgrade in play - disable keepalive for http/1.x\n"));
1334     DontReuse();
1335   }
1336 
1337   if (responseStatus == 101) {
1338     nsAutoCString upgradeResp;
1339     bool hasUpgradeResp =
1340         NS_SUCCEEDED(responseHead->GetHeader(nsHttp::Upgrade, upgradeResp));
1341     if (!hasUpgradeReq || !hasUpgradeResp ||
1342         !nsHttp::FindToken(upgradeResp.get(), upgradeReq.get(),
1343                            HTTP_HEADER_VALUE_SEPS)) {
1344       LOG(("HTTP 101 Upgrade header mismatch req = %s, resp = %s\n",
1345            upgradeReq.get(),
1346            !upgradeResp.IsEmpty() ? upgradeResp.get()
1347                                   : "RESPONSE's nsHttp::Upgrade is empty"));
1348       Close(NS_ERROR_ABORT);
1349     } else {
1350       LOG(("HTTP Upgrade Response to %s\n", upgradeResp.get()));
1351     }
1352   }
1353 
1354   mLastHttpResponseVersion = responseHead->Version();
1355 
1356   return NS_OK;
1357 }
1358 
IsReused()1359 bool nsHttpConnection::IsReused() {
1360   if (mIsReused) return true;
1361   if (!mConsiderReusedAfterInterval) return false;
1362 
1363   // ReusedAfter allows a socket to be consider reused only after a certain
1364   // interval of time has passed
1365   return (PR_IntervalNow() - mConsiderReusedAfterEpoch) >=
1366          mConsiderReusedAfterInterval;
1367 }
1368 
SetIsReusedAfter(uint32_t afterMilliseconds)1369 void nsHttpConnection::SetIsReusedAfter(uint32_t afterMilliseconds) {
1370   mConsiderReusedAfterEpoch = PR_IntervalNow();
1371   mConsiderReusedAfterInterval = PR_MillisecondsToInterval(afterMilliseconds);
1372 }
1373 
TakeTransport(nsISocketTransport ** aTransport,nsIAsyncInputStream ** aInputStream,nsIAsyncOutputStream ** aOutputStream)1374 nsresult nsHttpConnection::TakeTransport(nsISocketTransport** aTransport,
1375                                          nsIAsyncInputStream** aInputStream,
1376                                          nsIAsyncOutputStream** aOutputStream) {
1377   if (mUsingSpdyVersion != SpdyVersion::NONE) return NS_ERROR_FAILURE;
1378   if (mTransaction && !mTransaction->IsDone()) return NS_ERROR_IN_PROGRESS;
1379   if (!(mSocketTransport && mSocketIn && mSocketOut)) {
1380     return NS_ERROR_NOT_INITIALIZED;
1381   }
1382 
1383   if (mInputOverflow) mSocketIn = mInputOverflow.forget();
1384 
1385   // Change TCP Keepalive frequency to long-lived if currently short-lived.
1386   if (mTCPKeepaliveConfig == kTCPKeepaliveShortLivedConfig) {
1387     if (mTCPKeepaliveTransitionTimer) {
1388       mTCPKeepaliveTransitionTimer->Cancel();
1389       mTCPKeepaliveTransitionTimer = nullptr;
1390     }
1391     nsresult rv = StartLongLivedTCPKeepalives();
1392     LOG(
1393         ("nsHttpConnection::TakeTransport [%p] calling "
1394          "StartLongLivedTCPKeepalives",
1395          this));
1396     if (NS_FAILED(rv)) {
1397       LOG(
1398           ("nsHttpConnection::TakeTransport [%p] "
1399            "StartLongLivedTCPKeepalives failed rv[0x%" PRIx32 "]",
1400            this, static_cast<uint32_t>(rv)));
1401     }
1402   }
1403 
1404   mSocketTransport->SetSecurityCallbacks(nullptr);
1405   mSocketTransport->SetEventSink(nullptr, nullptr);
1406 
1407   // The nsHttpConnection will go away soon, so if there is a TLS Filter
1408   // being used (e.g. for wss CONNECT tunnel from a proxy connected to
1409   // via https) that filter needs to take direct control of the
1410   // streams
1411   if (mTLSFilter) {
1412     nsCOMPtr<nsIAsyncInputStream> ref1(mSocketIn);
1413     nsCOMPtr<nsIAsyncOutputStream> ref2(mSocketOut);
1414     mTLSFilter->newIODriver(ref1, ref2, getter_AddRefs(mSocketIn),
1415                             getter_AddRefs(mSocketOut));
1416     mTLSFilter = nullptr;
1417   }
1418 
1419   mSocketTransport.forget(aTransport);
1420   mSocketIn.forget(aInputStream);
1421   mSocketOut.forget(aOutputStream);
1422 
1423   return NS_OK;
1424 }
1425 
ReadTimeoutTick(PRIntervalTime now)1426 uint32_t nsHttpConnection::ReadTimeoutTick(PRIntervalTime now) {
1427   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
1428 
1429   // make sure timer didn't tick before Activate()
1430   if (!mTransaction) return UINT32_MAX;
1431 
1432   // Spdy implements some timeout handling using the SPDY ping frame.
1433   if (mSpdySession) {
1434     return mSpdySession->ReadTimeoutTick(now);
1435   }
1436 
1437   uint32_t nextTickAfter = UINT32_MAX;
1438   // Timeout if the response is taking too long to arrive.
1439   if (mResponseTimeoutEnabled) {
1440     NS_WARNING_ASSERTION(
1441         gHttpHandler->ResponseTimeoutEnabled(),
1442         "Timing out a response, but response timeout is disabled!");
1443 
1444     PRIntervalTime initialResponseDelta = now - mLastWriteTime;
1445 
1446     if (initialResponseDelta > mTransaction->ResponseTimeout()) {
1447       LOG(("canceling transaction: no response for %ums: timeout is %dms\n",
1448            PR_IntervalToMilliseconds(initialResponseDelta),
1449            PR_IntervalToMilliseconds(mTransaction->ResponseTimeout())));
1450 
1451       mResponseTimeoutEnabled = false;
1452 
1453       // This will also close the connection
1454       CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT);
1455       return UINT32_MAX;
1456     }
1457     nextTickAfter = PR_IntervalToSeconds(mTransaction->ResponseTimeout()) -
1458                     PR_IntervalToSeconds(initialResponseDelta);
1459     nextTickAfter = std::max(nextTickAfter, 1U);
1460   }
1461 
1462   if (!mNPNComplete) {
1463     // We can reuse mLastWriteTime here, because it is set when the
1464     // connection is activated and only change when a transaction
1465     // succesfullu write to the socket and this can only happen after
1466     // the TLS handshake is done.
1467     PRIntervalTime initialTLSDelta = now - mLastWriteTime;
1468     if (initialTLSDelta >
1469         PR_MillisecondsToInterval(gHttpHandler->TLSHandshakeTimeout())) {
1470       LOG(
1471           ("canceling transaction: tls handshake takes too long: tls handshake "
1472            "last %ums, timeout is %dms.",
1473            PR_IntervalToMilliseconds(initialTLSDelta),
1474            gHttpHandler->TLSHandshakeTimeout()));
1475 
1476       // This will also close the connection
1477       CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT);
1478       return UINT32_MAX;
1479     }
1480   }
1481 
1482   return nextTickAfter;
1483 }
1484 
UpdateTCPKeepalive(nsITimer * aTimer,void * aClosure)1485 void nsHttpConnection::UpdateTCPKeepalive(nsITimer* aTimer, void* aClosure) {
1486   MOZ_ASSERT(aTimer);
1487   MOZ_ASSERT(aClosure);
1488 
1489   nsHttpConnection* self = static_cast<nsHttpConnection*>(aClosure);
1490 
1491   if (NS_WARN_IF(self->mUsingSpdyVersion != SpdyVersion::NONE)) {
1492     return;
1493   }
1494 
1495   // Do not reduce keepalive probe frequency for idle connections.
1496   if (self->mIdleMonitoring) {
1497     return;
1498   }
1499 
1500   nsresult rv = self->StartLongLivedTCPKeepalives();
1501   if (NS_FAILED(rv)) {
1502     LOG(
1503         ("nsHttpConnection::UpdateTCPKeepalive [%p] "
1504          "StartLongLivedTCPKeepalives failed rv[0x%" PRIx32 "]",
1505          self, static_cast<uint32_t>(rv)));
1506   }
1507 }
1508 
GetSecurityInfo(nsISupports ** secinfo)1509 void nsHttpConnection::GetSecurityInfo(nsISupports** secinfo) {
1510   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
1511   LOG(("nsHttpConnection::GetSecurityInfo trans=%p tlsfilter=%p socket=%p\n",
1512        mTransaction.get(), mTLSFilter.get(), mSocketTransport.get()));
1513 
1514   if (mTransaction &&
1515       NS_SUCCEEDED(mTransaction->GetTransactionSecurityInfo(secinfo))) {
1516     return;
1517   }
1518 
1519   if (mTLSFilter &&
1520       NS_SUCCEEDED(mTLSFilter->GetTransactionSecurityInfo(secinfo))) {
1521     return;
1522   }
1523 
1524   if (mSocketTransport &&
1525       NS_SUCCEEDED(mSocketTransport->GetSecurityInfo(secinfo))) {
1526     return;
1527   }
1528 
1529   *secinfo = nullptr;
1530 }
1531 
PushBack(const char * data,uint32_t length)1532 nsresult nsHttpConnection::PushBack(const char* data, uint32_t length) {
1533   LOG(("nsHttpConnection::PushBack [this=%p, length=%d]\n", this, length));
1534 
1535   if (mInputOverflow) {
1536     NS_ERROR("nsHttpConnection::PushBack only one buffer supported");
1537     return NS_ERROR_UNEXPECTED;
1538   }
1539 
1540   mInputOverflow = new nsPreloadedStream(mSocketIn, data, length);
1541   return NS_OK;
1542 }
1543 
1544 class HttpConnectionForceIO : public Runnable {
1545  public:
HttpConnectionForceIO(nsHttpConnection * aConn,bool doRecv)1546   HttpConnectionForceIO(nsHttpConnection* aConn, bool doRecv)
1547       : Runnable("net::HttpConnectionForceIO"), mConn(aConn), mDoRecv(doRecv) {}
1548 
Run()1549   NS_IMETHOD Run() override {
1550     MOZ_ASSERT(OnSocketThread(), "not on socket thread");
1551 
1552     if (mDoRecv) {
1553       if (!mConn->mSocketIn) return NS_OK;
1554       return mConn->OnInputStreamReady(mConn->mSocketIn);
1555     }
1556 
1557     MOZ_ASSERT(mConn->mForceSendPending);
1558     mConn->mForceSendPending = false;
1559 
1560     if (!mConn->mSocketOut) {
1561       return NS_OK;
1562     }
1563     return mConn->OnOutputStreamReady(mConn->mSocketOut);
1564   }
1565 
1566  private:
1567   RefPtr<nsHttpConnection> mConn;
1568   bool mDoRecv;
1569 };
1570 
ResumeSend()1571 nsresult nsHttpConnection::ResumeSend() {
1572   LOG(("nsHttpConnection::ResumeSend [this=%p]\n", this));
1573 
1574   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
1575 
1576   if (mSocketOut) {
1577     return mSocketOut->AsyncWait(this, 0, 0, nullptr);
1578   }
1579 
1580   MOZ_ASSERT_UNREACHABLE("no socket output stream");
1581   return NS_ERROR_UNEXPECTED;
1582 }
1583 
ResumeRecv()1584 nsresult nsHttpConnection::ResumeRecv() {
1585   LOG(("nsHttpConnection::ResumeRecv [this=%p]\n", this));
1586 
1587   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
1588 
1589   // the mLastReadTime timestamp is used for finding slowish readers
1590   // and can be pretty sensitive. For that reason we actually reset it
1591   // when we ask to read (resume recv()) so that when we get called back
1592   // with actual read data in OnSocketReadable() we are only measuring
1593   // the latency between those two acts and not all the processing that
1594   // may get done before the ResumeRecv() call
1595   mLastReadTime = PR_IntervalNow();
1596 
1597   if (mSocketIn) {
1598     if (!mTLSFilter || !mTLSFilter->HasDataToRecv() || NS_FAILED(ForceRecv())) {
1599       return mSocketIn->AsyncWait(this, 0, 0, nullptr);
1600     }
1601     return NS_OK;
1602   }
1603 
1604   MOZ_ASSERT_UNREACHABLE("no socket input stream");
1605   return NS_ERROR_UNEXPECTED;
1606 }
1607 
ForceSendIO(nsITimer * aTimer,void * aClosure)1608 void nsHttpConnection::ForceSendIO(nsITimer* aTimer, void* aClosure) {
1609   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
1610   nsHttpConnection* self = static_cast<nsHttpConnection*>(aClosure);
1611   MOZ_ASSERT(aTimer == self->mForceSendTimer);
1612   self->mForceSendTimer = nullptr;
1613   NS_DispatchToCurrentThread(new HttpConnectionForceIO(self, false));
1614 }
1615 
MaybeForceSendIO()1616 nsresult nsHttpConnection::MaybeForceSendIO() {
1617   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
1618   // due to bug 1213084 sometimes real I/O events do not get serviced when
1619   // NSPR derived I/O events are ready and this can cause a deadlock with
1620   // https over https proxying. Normally we would expect the write callback to
1621   // be invoked before this timer goes off, but set it at the old windows
1622   // tick interval (kForceDelay) as a backup for those circumstances.
1623   static const uint32_t kForceDelay = 17;  // ms
1624 
1625   if (mForceSendPending) {
1626     return NS_OK;
1627   }
1628   MOZ_ASSERT(!mForceSendTimer);
1629   mForceSendPending = true;
1630   return NS_NewTimerWithFuncCallback(getter_AddRefs(mForceSendTimer),
1631                                      nsHttpConnection::ForceSendIO, this,
1632                                      kForceDelay, nsITimer::TYPE_ONE_SHOT,
1633                                      "net::nsHttpConnection::MaybeForceSendIO");
1634 }
1635 
1636 // trigger an asynchronous read
ForceRecv()1637 nsresult nsHttpConnection::ForceRecv() {
1638   LOG(("nsHttpConnection::ForceRecv [this=%p]\n", this));
1639   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
1640 
1641   return NS_DispatchToCurrentThread(new HttpConnectionForceIO(this, true));
1642 }
1643 
1644 // trigger an asynchronous write
ForceSend()1645 nsresult nsHttpConnection::ForceSend() {
1646   LOG(("nsHttpConnection::ForceSend [this=%p]\n", this));
1647   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
1648 
1649   if (mTLSFilter) {
1650     return mTLSFilter->NudgeTunnel(this);
1651   }
1652   return MaybeForceSendIO();
1653 }
1654 
BeginIdleMonitoring()1655 void nsHttpConnection::BeginIdleMonitoring() {
1656   LOG(("nsHttpConnection::BeginIdleMonitoring [this=%p]\n", this));
1657   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
1658   MOZ_ASSERT(!mTransaction, "BeginIdleMonitoring() while active");
1659   MOZ_ASSERT(mUsingSpdyVersion == SpdyVersion::NONE,
1660              "Idle monitoring of spdy not allowed");
1661 
1662   LOG(("Entering Idle Monitoring Mode [this=%p]", this));
1663   mIdleMonitoring = true;
1664   if (mSocketIn) mSocketIn->AsyncWait(this, 0, 0, nullptr);
1665 }
1666 
EndIdleMonitoring()1667 void nsHttpConnection::EndIdleMonitoring() {
1668   LOG(("nsHttpConnection::EndIdleMonitoring [this=%p]\n", this));
1669   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
1670   MOZ_ASSERT(!mTransaction, "EndIdleMonitoring() while active");
1671 
1672   if (mIdleMonitoring) {
1673     LOG(("Leaving Idle Monitoring Mode [this=%p]", this));
1674     mIdleMonitoring = false;
1675     if (mSocketIn) mSocketIn->AsyncWait(nullptr, 0, 0, nullptr);
1676   }
1677 }
1678 
Version()1679 HttpVersion nsHttpConnection::Version() {
1680   if (mUsingSpdyVersion != SpdyVersion::NONE) {
1681     return HttpVersion::v2_0;
1682   }
1683   return mLastHttpResponseVersion;
1684 }
1685 
1686 //-----------------------------------------------------------------------------
1687 // nsHttpConnection <private>
1688 //-----------------------------------------------------------------------------
1689 
CloseTransaction(nsAHttpTransaction * trans,nsresult reason,bool aIsShutdown)1690 void nsHttpConnection::CloseTransaction(nsAHttpTransaction* trans,
1691                                         nsresult reason, bool aIsShutdown) {
1692   LOG(("nsHttpConnection::CloseTransaction[this=%p trans=%p reason=%" PRIx32
1693        "]\n",
1694        this, trans, static_cast<uint32_t>(reason)));
1695 
1696   MOZ_ASSERT((trans == mTransaction) ||
1697              (mTLSFilter && !mTLSFilter->Transaction()) ||
1698              (mTLSFilter && mTLSFilter->Transaction() == trans));
1699   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
1700 
1701   if (mCurrentBytesRead > mMaxBytesRead) mMaxBytesRead = mCurrentBytesRead;
1702 
1703   // mask this error code because its not a real error.
1704   if (reason == NS_BASE_STREAM_CLOSED) reason = NS_OK;
1705 
1706   if (mUsingSpdyVersion != SpdyVersion::NONE) {
1707     DontReuse();
1708     // if !mSpdySession then mUsingSpdyVersion must be false for canreuse()
1709     mSpdySession->SetCleanShutdown(aIsShutdown);
1710     mUsingSpdyVersion = SpdyVersion::NONE;
1711     mSpdySession = nullptr;
1712   }
1713 
1714   if (!mTransaction && mTLSFilter) {
1715     // In case of a race when the transaction is being closed before the tunnel
1716     // is established we need to carry closing status on the proxied
1717     // transaction.
1718     // Not doing this leads to use of this closed connection to activate the
1719     // not closed transaction what will likely lead to a use of a closed ssl
1720     // socket and may cause a crash because of an unexpected use.
1721     //
1722     // There can possibly be two states: the actual transaction is still hanging
1723     // of off the filter, or has not even been assigned on it yet.  In the
1724     // latter case we simply must close the transaction given to us via the
1725     // argument.
1726     if (!mTLSFilter->Transaction()) {
1727       if (trans) {
1728         LOG(("  closing transaction directly"));
1729         trans->Close(reason);
1730       }
1731     } else {
1732       LOG(("  closing transactin hanging of off mTLSFilter"));
1733       mTLSFilter->Close(reason);
1734     }
1735   }
1736 
1737   if (mTransaction) {
1738     LOG(("  closing associated mTransaction"));
1739     mHttp1xTransactionCount += mTransaction->Http1xTransactionCount();
1740 
1741     mTransaction->Close(reason);
1742     mTransaction = nullptr;
1743   }
1744 
1745   {
1746     MutexAutoLock lock(mCallbacksLock);
1747     mCallbacks = nullptr;
1748   }
1749 
1750   if (NS_FAILED(reason) && (reason != NS_BINDING_RETARGETED)) {
1751     Close(reason, aIsShutdown);
1752   }
1753 
1754   // flag the connection as reused here for convenience sake.  certainly
1755   // it might be going away instead ;-)
1756   mIsReused = true;
1757 }
1758 
ReadFromStream(nsIInputStream * input,void * closure,const char * buf,uint32_t offset,uint32_t count,uint32_t * countRead)1759 nsresult nsHttpConnection::ReadFromStream(nsIInputStream* input, void* closure,
1760                                           const char* buf, uint32_t offset,
1761                                           uint32_t count, uint32_t* countRead) {
1762   // thunk for nsIInputStream instance
1763   nsHttpConnection* conn = (nsHttpConnection*)closure;
1764   return conn->OnReadSegment(buf, count, countRead);
1765 }
1766 
CheckCanWrite0RTTData()1767 bool nsHttpConnection::CheckCanWrite0RTTData() {
1768   MOZ_ASSERT(mWaitingFor0RTTResponse);
1769   nsCOMPtr<nsISupports> securityInfo;
1770   GetSecurityInfo(getter_AddRefs(securityInfo));
1771   if (!securityInfo) {
1772     return false;
1773   }
1774   nsCOMPtr<nsITransportSecurityInfo> info;
1775   info = do_QueryInterface(securityInfo);
1776   if (!info) {
1777     return false;
1778   }
1779   nsAutoCString negotiatedNPN;
1780   // If the following code fails means that the handshake is not done
1781   // yet, so continue writing 0RTT data.
1782   nsresult rv = info->GetNegotiatedNPN(negotiatedNPN);
1783   if (NS_FAILED(rv)) {
1784     return true;
1785   }
1786   nsCOMPtr<nsISSLSocketControl> ssl;
1787   ssl = do_QueryInterface(securityInfo);
1788   if (!ssl) {
1789     return false;
1790   }
1791   bool earlyDataAccepted = false;
1792   rv = ssl->GetEarlyDataAccepted(&earlyDataAccepted);
1793   // If 0RTT data is accepted we can continue writing data,
1794   // if it is reject stop writing more data.
1795   return NS_SUCCEEDED(rv) && earlyDataAccepted;
1796 }
1797 
OnReadSegment(const char * buf,uint32_t count,uint32_t * countRead)1798 nsresult nsHttpConnection::OnReadSegment(const char* buf, uint32_t count,
1799                                          uint32_t* countRead) {
1800   LOG(("nsHttpConnection::OnReadSegment [this=%p]\n", this));
1801   if (count == 0) {
1802     // some ReadSegments implementations will erroneously call the writer
1803     // to consume 0 bytes worth of data.  we must protect against this case
1804     // or else we'd end up closing the socket prematurely.
1805     NS_ERROR("bad ReadSegments implementation");
1806     return NS_ERROR_FAILURE;  // stop iterating
1807   }
1808 
1809   // If we are waiting for 0RTT Response, check maybe nss has finished
1810   // handshake already.
1811   // IsAlive() calls drive the handshake and that may cause nss and necko
1812   // to be out of sync.
1813   if (mWaitingFor0RTTResponse && !CheckCanWrite0RTTData()) {
1814     LOG(
1815         ("nsHttpConnection::OnReadSegment Do not write any data, wait"
1816          " for EnsureNPNComplete to be called [this=%p]",
1817          this));
1818     *countRead = 0;
1819     return NS_BASE_STREAM_WOULD_BLOCK;
1820   }
1821 
1822   nsresult rv = mSocketOut->Write(buf, count, countRead);
1823   if (NS_FAILED(rv)) {
1824     mSocketOutCondition = rv;
1825   } else if (*countRead == 0) {
1826     mSocketOutCondition = NS_BASE_STREAM_CLOSED;
1827   } else {
1828     mLastWriteTime = PR_IntervalNow();
1829     mSocketOutCondition = NS_OK;  // reset condition
1830     if (!mProxyConnectInProgress) mTotalBytesWritten += *countRead;
1831   }
1832 
1833   return mSocketOutCondition;
1834 }
1835 
OnSocketWritable()1836 nsresult nsHttpConnection::OnSocketWritable() {
1837   LOG(("nsHttpConnection::OnSocketWritable [this=%p] host=%s\n", this,
1838        mConnInfo->Origin()));
1839 
1840   nsresult rv;
1841   uint32_t transactionBytes;
1842   bool again = true;
1843 
1844   // Prevent STS thread from being blocked by single OnOutputStreamReady
1845   // callback.
1846   const uint32_t maxWriteAttempts = 128;
1847   uint32_t writeAttempts = 0;
1848 
1849   if (mTransactionCaps & NS_HTTP_CONNECT_ONLY) {
1850     if (!mCompletedProxyConnect && !mProxyConnectStream) {
1851       // A CONNECT has been requested for this connection but will never
1852       // be performed. This should never happen.
1853       MOZ_ASSERT(false, "proxy connect will never happen");
1854       LOG(("return failure because proxy connect will never happen\n"));
1855       return NS_ERROR_FAILURE;
1856     }
1857 
1858     if (mCompletedProxyConnect) {
1859       // Don't need to check this each write attempt since it is only
1860       // updated after OnSocketWritable completes.
1861       // We've already done primary tls (if needed) and sent our CONNECT.
1862       // If we're doing a CONNECT only request there's no need to write
1863       // the http transaction or do the SSL handshake here.
1864       LOG(("return ok because proxy connect successful\n"));
1865       return NS_OK;
1866     }
1867   }
1868 
1869   do {
1870     ++writeAttempts;
1871     rv = mSocketOutCondition = NS_OK;
1872     transactionBytes = 0;
1873 
1874     // The SSL handshake must be completed before the
1875     // transaction->readsegments() processing can proceed because we need to
1876     // know how to format the request differently for http/1, http/2, spdy,
1877     // etc.. and that is negotiated with NPN/ALPN in the SSL handshake.
1878 
1879     if (mConnInfo->UsingHttpsProxy() &&
1880         !EnsureNPNComplete(rv, transactionBytes)) {
1881       MOZ_ASSERT(!transactionBytes);
1882       mSocketOutCondition = NS_BASE_STREAM_WOULD_BLOCK;
1883     } else if (mProxyConnectStream) {
1884       // If we're need an HTTP/1 CONNECT tunnel through a proxy
1885       // send it before doing the SSL handshake
1886       LOG(("  writing CONNECT request stream\n"));
1887       rv = mProxyConnectStream->ReadSegments(ReadFromStream, this,
1888                                              nsIOService::gDefaultSegmentSize,
1889                                              &transactionBytes);
1890     } else if (!EnsureNPNComplete(rv, transactionBytes)) {
1891       if (NS_SUCCEEDED(rv) && !transactionBytes &&
1892           NS_SUCCEEDED(mSocketOutCondition)) {
1893         mSocketOutCondition = NS_BASE_STREAM_WOULD_BLOCK;
1894       }
1895     } else if (!mTransaction) {
1896       rv = NS_ERROR_FAILURE;
1897       LOG(("  No Transaction In OnSocketWritable\n"));
1898     } else if (NS_SUCCEEDED(rv)) {
1899       // for non spdy sessions let the connection manager know
1900       if (!mReportedSpdy) {
1901         mReportedSpdy = true;
1902         MOZ_ASSERT(!mEverUsedSpdy);
1903         gHttpHandler->ConnMgr()->ReportSpdyConnection(this, false);
1904       }
1905 
1906       LOG(("  writing transaction request stream\n"));
1907       mProxyConnectInProgress = false;
1908       rv = mTransaction->ReadSegmentsAgain(
1909           this, nsIOService::gDefaultSegmentSize, &transactionBytes, &again);
1910       mContentBytesWritten += transactionBytes;
1911     }
1912 
1913     LOG(
1914         ("nsHttpConnection::OnSocketWritable %p "
1915          "ReadSegments returned [rv=%" PRIx32 " read=%u "
1916          "sock-cond=%" PRIx32 " again=%d]\n",
1917          this, static_cast<uint32_t>(rv), transactionBytes,
1918          static_cast<uint32_t>(mSocketOutCondition), again));
1919 
1920     // XXX some streams return NS_BASE_STREAM_CLOSED to indicate EOF.
1921     if (rv == NS_BASE_STREAM_CLOSED && !mTransaction->IsDone()) {
1922       rv = NS_OK;
1923       transactionBytes = 0;
1924     }
1925 
1926     if (!again && mWaitingFor0RTTResponse) {
1927       // Continue waiting;
1928       rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);
1929     }
1930     if (NS_FAILED(rv)) {
1931       // if the transaction didn't want to write any more data, then
1932       // wait for the transaction to call ResumeSend.
1933       if (rv == NS_BASE_STREAM_WOULD_BLOCK) {
1934         rv = NS_OK;
1935         if (mWaitingFor0RTTResponse) {
1936           // Continue waiting;
1937           rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);
1938         }
1939       }
1940       again = false;
1941     } else if (NS_FAILED(mSocketOutCondition)) {
1942       if (mSocketOutCondition == NS_BASE_STREAM_WOULD_BLOCK) {
1943         if (mTLSFilter) {
1944           LOG(("  blocked tunnel (handshake?)\n"));
1945           rv = mTLSFilter->NudgeTunnel(this);
1946         } else {
1947           rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);  // continue writing
1948         }
1949       } else {
1950         rv = mSocketOutCondition;
1951       }
1952       again = false;
1953     } else if (!transactionBytes) {
1954       rv = NS_OK;
1955 
1956       if (mWaitingFor0RTTResponse) {
1957         // Wait for tls handshake to finish or waiting for connect.
1958         rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);
1959       } else if (mTransaction) {  // in case the ReadSegments stack called
1960                                   // CloseTransaction()
1961         //
1962         // at this point we've written out the entire transaction, and now we
1963         // must wait for the server's response.  we manufacture a status message
1964         // here to reflect the fact that we are waiting.  this message will be
1965         // trumped (overwritten) if the server responds quickly.
1966         //
1967         mTransaction->OnTransportStatus(mSocketTransport,
1968                                         NS_NET_STATUS_WAITING_FOR, 0);
1969 
1970         rv = ResumeRecv();  // start reading
1971       }
1972       again = false;
1973     } else if (writeAttempts >= maxWriteAttempts) {
1974       LOG(("  yield for other transactions\n"));
1975       rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);  // continue writing
1976       again = false;
1977     }
1978     // write more to the socket until error or end-of-request...
1979   } while (again && gHttpHandler->Active());
1980 
1981   return rv;
1982 }
1983 
OnWriteSegment(char * buf,uint32_t count,uint32_t * countWritten)1984 nsresult nsHttpConnection::OnWriteSegment(char* buf, uint32_t count,
1985                                           uint32_t* countWritten) {
1986   if (count == 0) {
1987     // some WriteSegments implementations will erroneously call the reader
1988     // to provide 0 bytes worth of data.  we must protect against this case
1989     // or else we'd end up closing the socket prematurely.
1990     NS_ERROR("bad WriteSegments implementation");
1991     return NS_ERROR_FAILURE;  // stop iterating
1992   }
1993 
1994   if (ChaosMode::isActive(ChaosFeature::IOAmounts) &&
1995       ChaosMode::randomUint32LessThan(2)) {
1996     // read 1...count bytes
1997     count = ChaosMode::randomUint32LessThan(count) + 1;
1998   }
1999 
2000   nsresult rv = mSocketIn->Read(buf, count, countWritten);
2001   if (NS_FAILED(rv)) {
2002     mSocketInCondition = rv;
2003   } else if (*countWritten == 0) {
2004     mSocketInCondition = NS_BASE_STREAM_CLOSED;
2005   } else {
2006     mSocketInCondition = NS_OK;  // reset condition
2007   }
2008 
2009   return mSocketInCondition;
2010 }
2011 
OnSocketReadable()2012 nsresult nsHttpConnection::OnSocketReadable() {
2013   LOG(("nsHttpConnection::OnSocketReadable [this=%p]\n", this));
2014 
2015   PRIntervalTime now = PR_IntervalNow();
2016   PRIntervalTime delta = now - mLastReadTime;
2017 
2018   // Reset mResponseTimeoutEnabled to stop response timeout checks.
2019   mResponseTimeoutEnabled = false;
2020 
2021   if ((mTransactionCaps & NS_HTTP_CONNECT_ONLY) && !mCompletedProxyConnect &&
2022       !mProxyConnectStream) {
2023     // A CONNECT has been requested for this connection but will never
2024     // be performed. This should never happen.
2025     MOZ_ASSERT(false, "proxy connect will never happen");
2026     LOG(("return failure because proxy connect will never happen\n"));
2027     return NS_ERROR_FAILURE;
2028   }
2029 
2030   if (mKeepAliveMask && (delta >= mMaxHangTime)) {
2031     LOG(("max hang time exceeded!\n"));
2032     // give the handler a chance to create a new persistent connection to
2033     // this host if we've been busy for too long.
2034     mKeepAliveMask = false;
2035     Unused << gHttpHandler->ProcessPendingQ(mConnInfo);
2036   }
2037 
2038   // Reduce the estimate of the time since last read by up to 1 RTT to
2039   // accommodate exhausted sender TCP congestion windows or minor I/O delays.
2040   mLastReadTime = now;
2041 
2042   nsresult rv;
2043   uint32_t n;
2044   bool again = true;
2045 
2046   do {
2047     if (!mProxyConnectInProgress && !mNPNComplete) {
2048       // Unless we are setting up a tunnel via CONNECT, prevent reading
2049       // from the socket until the results of NPN
2050       // negotiation are known (which is determined from the write path).
2051       // If the server speaks SPDY it is likely the readable data here is
2052       // a spdy settings frame and without NPN it would be misinterpreted
2053       // as HTTP/*
2054 
2055       LOG(
2056           ("nsHttpConnection::OnSocketReadable %p return due to inactive "
2057            "tunnel setup but incomplete NPN state\n",
2058            this));
2059       rv = NS_OK;
2060       break;
2061     }
2062 
2063     mSocketInCondition = NS_OK;
2064     rv = mTransaction->WriteSegmentsAgain(
2065         this, nsIOService::gDefaultSegmentSize, &n, &again);
2066     LOG(("nsHttpConnection::OnSocketReadable %p trans->ws rv=%" PRIx32
2067          " n=%d socketin=%" PRIx32 "\n",
2068          this, static_cast<uint32_t>(rv), n,
2069          static_cast<uint32_t>(mSocketInCondition)));
2070     if (NS_FAILED(rv)) {
2071       // if the transaction didn't want to take any more data, then
2072       // wait for the transaction to call ResumeRecv.
2073       if (rv == NS_BASE_STREAM_WOULD_BLOCK) {
2074         rv = NS_OK;
2075       }
2076       again = false;
2077     } else {
2078       mCurrentBytesRead += n;
2079       mTotalBytesRead += n;
2080       if (NS_FAILED(mSocketInCondition)) {
2081         // continue waiting for the socket if necessary...
2082         if (mSocketInCondition == NS_BASE_STREAM_WOULD_BLOCK) {
2083           rv = ResumeRecv();
2084         } else {
2085           rv = mSocketInCondition;
2086         }
2087         again = false;
2088       }
2089     }
2090     // read more from the socket until error...
2091   } while (again && gHttpHandler->Active());
2092 
2093   return rv;
2094 }
2095 
SetupSecondaryTLS(nsAHttpTransaction * aSpdyConnectTransaction)2096 void nsHttpConnection::SetupSecondaryTLS(
2097     nsAHttpTransaction* aSpdyConnectTransaction) {
2098   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
2099   MOZ_ASSERT(!mTLSFilter);
2100   LOG(
2101       ("nsHttpConnection %p SetupSecondaryTLS %s %d "
2102        "aSpdyConnectTransaction=%p\n",
2103        this, mConnInfo->Origin(), mConnInfo->OriginPort(),
2104        aSpdyConnectTransaction));
2105 
2106   nsHttpConnectionInfo* ci = nullptr;
2107   if (mTransaction) {
2108     ci = mTransaction->ConnectionInfo();
2109   }
2110   if (!ci) {
2111     ci = mConnInfo;
2112   }
2113   MOZ_ASSERT(ci);
2114 
2115   mTLSFilter = new TLSFilterTransaction(mTransaction, ci->Origin(),
2116                                         ci->OriginPort(), this, this);
2117 
2118   if (mTransaction) {
2119     mTransaction = mTLSFilter;
2120   }
2121   mWeakTrans = do_GetWeakReference(aSpdyConnectTransaction);
2122 }
2123 
SetInSpdyTunnel(bool arg)2124 void nsHttpConnection::SetInSpdyTunnel(bool arg) {
2125   MOZ_ASSERT(mTLSFilter);
2126   mInSpdyTunnel = arg;
2127 
2128   // don't setup another tunnel :)
2129   mProxyConnectStream = nullptr;
2130   mCompletedProxyConnect = true;
2131   mProxyConnectInProgress = false;
2132 }
2133 
2134 // static
MakeConnectString(nsAHttpTransaction * trans,nsHttpRequestHead * request,nsACString & result,bool h2ws)2135 nsresult nsHttpConnection::MakeConnectString(nsAHttpTransaction* trans,
2136                                              nsHttpRequestHead* request,
2137                                              nsACString& result, bool h2ws) {
2138   result.Truncate();
2139   if (!trans->ConnectionInfo()) {
2140     return NS_ERROR_NOT_INITIALIZED;
2141   }
2142 
2143   DebugOnly<nsresult> rv{};
2144 
2145   rv = nsHttpHandler::GenerateHostPort(
2146       nsDependentCString(trans->ConnectionInfo()->Origin()),
2147       trans->ConnectionInfo()->OriginPort(), result);
2148   MOZ_ASSERT(NS_SUCCEEDED(rv));
2149 
2150   // CONNECT host:port HTTP/1.1
2151   request->SetMethod("CONNECT"_ns);
2152   request->SetVersion(gHttpHandler->HttpVersion());
2153   if (h2ws) {
2154     // HTTP/2 websocket CONNECT forms need the full request URI
2155     nsAutoCString requestURI;
2156     trans->RequestHead()->RequestURI(requestURI);
2157     request->SetRequestURI(requestURI);
2158 
2159     request->SetHTTPS(trans->RequestHead()->IsHTTPS());
2160   } else {
2161     request->SetRequestURI(result);
2162   }
2163   rv = request->SetHeader(nsHttp::User_Agent, gHttpHandler->UserAgent());
2164   MOZ_ASSERT(NS_SUCCEEDED(rv));
2165 
2166   // a CONNECT is always persistent
2167   rv = request->SetHeader(nsHttp::Proxy_Connection, "keep-alive"_ns);
2168   MOZ_ASSERT(NS_SUCCEEDED(rv));
2169   rv = request->SetHeader(nsHttp::Connection, "keep-alive"_ns);
2170   MOZ_ASSERT(NS_SUCCEEDED(rv));
2171 
2172   // all HTTP/1.1 requests must include a Host header (even though it
2173   // may seem redundant in this case; see bug 82388).
2174   rv = request->SetHeader(nsHttp::Host, result);
2175   MOZ_ASSERT(NS_SUCCEEDED(rv));
2176 
2177   nsAutoCString val;
2178   if (NS_SUCCEEDED(
2179           trans->RequestHead()->GetHeader(nsHttp::Proxy_Authorization, val))) {
2180     // we don't know for sure if this authorization is intended for the
2181     // SSL proxy, so we add it just in case.
2182     rv = request->SetHeader(nsHttp::Proxy_Authorization, val);
2183     MOZ_ASSERT(NS_SUCCEEDED(rv));
2184   }
2185 
2186   if ((trans->Caps() & NS_HTTP_CONNECT_ONLY) &&
2187       NS_SUCCEEDED(trans->RequestHead()->GetHeader(nsHttp::Upgrade, val))) {
2188     // rfc7639 proposes using the ALPN header to indicate the protocol used
2189     // in CONNECT when not used for TLS. The protocol is stored in Upgrade.
2190     // We have to copy this header here since a new HEAD request is created
2191     // for the CONNECT.
2192     rv = request->SetHeader("ALPN"_ns, val);
2193     MOZ_ASSERT(NS_SUCCEEDED(rv));
2194   }
2195 
2196   result.Truncate();
2197   request->Flatten(result, false);
2198 
2199   if (LOG1_ENABLED()) {
2200     LOG(("nsHttpConnection::MakeConnectString for transaction=%p [",
2201          trans->QueryHttpTransaction()));
2202     LogHeaders(result.BeginReading());
2203     LOG(("]"));
2204   }
2205 
2206   result.AppendLiteral("\r\n");
2207   return NS_OK;
2208 }
2209 
SetupProxyConnect()2210 nsresult nsHttpConnection::SetupProxyConnect() {
2211   LOG(("nsHttpConnection::SetupProxyConnect [this=%p]\n", this));
2212   NS_ENSURE_TRUE(!mProxyConnectStream, NS_ERROR_ALREADY_INITIALIZED);
2213   MOZ_ASSERT(mUsingSpdyVersion == SpdyVersion::NONE,
2214              "SPDY NPN Complete while using proxy connect stream");
2215 
2216   nsAutoCString buf;
2217   nsHttpRequestHead request;
2218   nsresult rv = MakeConnectString(mTransaction, &request, buf, false);
2219   if (NS_FAILED(rv)) {
2220     return rv;
2221   }
2222   return NS_NewCStringInputStream(getter_AddRefs(mProxyConnectStream),
2223                                   std::move(buf));
2224 }
2225 
StartShortLivedTCPKeepalives()2226 nsresult nsHttpConnection::StartShortLivedTCPKeepalives() {
2227   if (mUsingSpdyVersion != SpdyVersion::NONE) {
2228     return NS_OK;
2229   }
2230   MOZ_ASSERT(mSocketTransport);
2231   if (!mSocketTransport) {
2232     return NS_ERROR_NOT_INITIALIZED;
2233   }
2234 
2235   nsresult rv = NS_OK;
2236   int32_t idleTimeS = -1;
2237   int32_t retryIntervalS = -1;
2238   if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) {
2239     // Set the idle time.
2240     idleTimeS = gHttpHandler->GetTCPKeepaliveShortLivedIdleTime();
2241     LOG(
2242         ("nsHttpConnection::StartShortLivedTCPKeepalives[%p] "
2243          "idle time[%ds].",
2244          this, idleTimeS));
2245 
2246     retryIntervalS = std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1);
2247     rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS);
2248     if (NS_FAILED(rv)) {
2249       return rv;
2250     }
2251     rv = mSocketTransport->SetKeepaliveEnabled(true);
2252     mTCPKeepaliveConfig = kTCPKeepaliveShortLivedConfig;
2253   } else {
2254     rv = mSocketTransport->SetKeepaliveEnabled(false);
2255     mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
2256   }
2257   if (NS_FAILED(rv)) {
2258     return rv;
2259   }
2260 
2261   // Start a timer to move to long-lived keepalive config.
2262   if (!mTCPKeepaliveTransitionTimer) {
2263     mTCPKeepaliveTransitionTimer = NS_NewTimer();
2264   }
2265 
2266   if (mTCPKeepaliveTransitionTimer) {
2267     int32_t time = gHttpHandler->GetTCPKeepaliveShortLivedTime();
2268 
2269     // Adjust |time| to ensure a full set of keepalive probes can be sent
2270     // at the end of the short-lived phase.
2271     if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) {
2272       if (NS_WARN_IF(!gSocketTransportService)) {
2273         return NS_ERROR_NOT_INITIALIZED;
2274       }
2275       int32_t probeCount = -1;
2276       rv = gSocketTransportService->GetKeepaliveProbeCount(&probeCount);
2277       if (NS_WARN_IF(NS_FAILED(rv))) {
2278         return rv;
2279       }
2280       if (NS_WARN_IF(probeCount <= 0)) {
2281         return NS_ERROR_UNEXPECTED;
2282       }
2283       // Add time for final keepalive probes, and 2 seconds for a buffer.
2284       time += ((probeCount)*retryIntervalS) - (time % idleTimeS) + 2;
2285     }
2286     mTCPKeepaliveTransitionTimer->InitWithNamedFuncCallback(
2287         nsHttpConnection::UpdateTCPKeepalive, this, (uint32_t)time * 1000,
2288         nsITimer::TYPE_ONE_SHOT,
2289         "net::nsHttpConnection::StartShortLivedTCPKeepalives");
2290   } else {
2291     NS_WARNING(
2292         "nsHttpConnection::StartShortLivedTCPKeepalives failed to "
2293         "create timer.");
2294   }
2295 
2296   return NS_OK;
2297 }
2298 
StartLongLivedTCPKeepalives()2299 nsresult nsHttpConnection::StartLongLivedTCPKeepalives() {
2300   MOZ_ASSERT(mUsingSpdyVersion == SpdyVersion::NONE,
2301              "Don't use TCP Keepalive with SPDY!");
2302   if (NS_WARN_IF(mUsingSpdyVersion != SpdyVersion::NONE)) {
2303     return NS_OK;
2304   }
2305   MOZ_ASSERT(mSocketTransport);
2306   if (!mSocketTransport) {
2307     return NS_ERROR_NOT_INITIALIZED;
2308   }
2309 
2310   nsresult rv = NS_OK;
2311   if (gHttpHandler->TCPKeepaliveEnabledForLongLivedConns()) {
2312     // Increase the idle time.
2313     int32_t idleTimeS = gHttpHandler->GetTCPKeepaliveLongLivedIdleTime();
2314     LOG(("nsHttpConnection::StartLongLivedTCPKeepalives[%p] idle time[%ds]",
2315          this, idleTimeS));
2316 
2317     int32_t retryIntervalS =
2318         std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1);
2319     rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS);
2320     if (NS_FAILED(rv)) {
2321       return rv;
2322     }
2323 
2324     // Ensure keepalive is enabled, if current status is disabled.
2325     if (mTCPKeepaliveConfig == kTCPKeepaliveDisabled) {
2326       rv = mSocketTransport->SetKeepaliveEnabled(true);
2327       if (NS_FAILED(rv)) {
2328         return rv;
2329       }
2330     }
2331     mTCPKeepaliveConfig = kTCPKeepaliveLongLivedConfig;
2332   } else {
2333     rv = mSocketTransport->SetKeepaliveEnabled(false);
2334     mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
2335   }
2336 
2337   if (NS_FAILED(rv)) {
2338     return rv;
2339   }
2340   return NS_OK;
2341 }
2342 
DisableTCPKeepalives()2343 nsresult nsHttpConnection::DisableTCPKeepalives() {
2344   MOZ_ASSERT(mSocketTransport);
2345   if (!mSocketTransport) {
2346     return NS_ERROR_NOT_INITIALIZED;
2347   }
2348 
2349   LOG(("nsHttpConnection::DisableTCPKeepalives [%p]", this));
2350   if (mTCPKeepaliveConfig != kTCPKeepaliveDisabled) {
2351     nsresult rv = mSocketTransport->SetKeepaliveEnabled(false);
2352     if (NS_FAILED(rv)) {
2353       return rv;
2354     }
2355     mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
2356   }
2357   if (mTCPKeepaliveTransitionTimer) {
2358     mTCPKeepaliveTransitionTimer->Cancel();
2359     mTCPKeepaliveTransitionTimer = nullptr;
2360   }
2361   return NS_OK;
2362 }
2363 
2364 //-----------------------------------------------------------------------------
2365 // nsHttpConnection::nsISupports
2366 //-----------------------------------------------------------------------------
2367 
2368 NS_IMPL_ADDREF(nsHttpConnection)
NS_IMPL_RELEASE(nsHttpConnection)2369 NS_IMPL_RELEASE(nsHttpConnection)
2370 
2371 NS_INTERFACE_MAP_BEGIN(nsHttpConnection)
2372   NS_INTERFACE_MAP_ENTRY(nsISupportsWeakReference)
2373   NS_INTERFACE_MAP_ENTRY(nsIInputStreamCallback)
2374   NS_INTERFACE_MAP_ENTRY(nsIOutputStreamCallback)
2375   NS_INTERFACE_MAP_ENTRY(nsITransportEventSink)
2376   NS_INTERFACE_MAP_ENTRY(nsIInterfaceRequestor)
2377   NS_INTERFACE_MAP_ENTRY(HttpConnectionBase)
2378   NS_INTERFACE_MAP_ENTRY_CONCRETE(nsHttpConnection)
2379 NS_INTERFACE_MAP_END
2380 
2381 //-----------------------------------------------------------------------------
2382 // nsHttpConnection::nsIInputStreamCallback
2383 //-----------------------------------------------------------------------------
2384 
2385 // called on the socket transport thread
2386 NS_IMETHODIMP
2387 nsHttpConnection::OnInputStreamReady(nsIAsyncInputStream* in) {
2388   MOZ_ASSERT(in == mSocketIn, "unexpected stream");
2389   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
2390 
2391   if (mIdleMonitoring) {
2392     MOZ_ASSERT(!mTransaction, "Idle Input Event While Active");
2393 
2394     // The only read event that is protocol compliant for an idle connection
2395     // is an EOF, which we check for with CanReuse(). If the data is
2396     // something else then just ignore it and suspend checking for EOF -
2397     // our normal timers or protocol stack are the place to deal with
2398     // any exception logic.
2399 
2400     if (!CanReuse()) {
2401       LOG(("Server initiated close of idle conn %p\n", this));
2402       Unused << gHttpHandler->ConnMgr()->CloseIdleConnection(this);
2403       return NS_OK;
2404     }
2405 
2406     LOG(("Input data on idle conn %p, but not closing yet\n", this));
2407     return NS_OK;
2408   }
2409 
2410   // if the transaction was dropped...
2411   if (!mTransaction) {
2412     LOG(("  no transaction; ignoring event\n"));
2413     return NS_OK;
2414   }
2415 
2416   nsresult rv = OnSocketReadable();
2417   if (NS_FAILED(rv)) CloseTransaction(mTransaction, rv);
2418 
2419   return NS_OK;
2420 }
2421 
2422 //-----------------------------------------------------------------------------
2423 // nsHttpConnection::nsIOutputStreamCallback
2424 //-----------------------------------------------------------------------------
2425 
2426 NS_IMETHODIMP
OnOutputStreamReady(nsIAsyncOutputStream * out)2427 nsHttpConnection::OnOutputStreamReady(nsIAsyncOutputStream* out) {
2428   MOZ_ASSERT(OnSocketThread(), "not on socket thread");
2429   MOZ_ASSERT(out == mSocketOut, "unexpected socket");
2430   // if the transaction was dropped...
2431   if (!mTransaction) {
2432     LOG(("  no transaction; ignoring event\n"));
2433     return NS_OK;
2434   }
2435 
2436   nsresult rv = OnSocketWritable();
2437   if (NS_FAILED(rv)) CloseTransaction(mTransaction, rv);
2438 
2439   return NS_OK;
2440 }
2441 
2442 //-----------------------------------------------------------------------------
2443 // nsHttpConnection::nsITransportEventSink
2444 //-----------------------------------------------------------------------------
2445 
2446 NS_IMETHODIMP
OnTransportStatus(nsITransport * trans,nsresult status,int64_t progress,int64_t progressMax)2447 nsHttpConnection::OnTransportStatus(nsITransport* trans, nsresult status,
2448                                     int64_t progress, int64_t progressMax) {
2449   if (mTransaction) mTransaction->OnTransportStatus(trans, status, progress);
2450   return NS_OK;
2451 }
2452 
2453 //-----------------------------------------------------------------------------
2454 // nsHttpConnection::nsIInterfaceRequestor
2455 //-----------------------------------------------------------------------------
2456 
2457 // not called on the socket transport thread
2458 NS_IMETHODIMP
GetInterface(const nsIID & iid,void ** result)2459 nsHttpConnection::GetInterface(const nsIID& iid, void** result) {
2460   // NOTE: This function is only called on the UI thread via sync proxy from
2461   //       the socket transport thread.  If that weren't the case, then we'd
2462   //       have to worry about the possibility of mTransaction going away
2463   //       part-way through this function call.  See CloseTransaction.
2464 
2465   // NOTE - there is a bug here, the call to getinterface is proxied off the
2466   // nss thread, not the ui thread as the above comment says. So there is
2467   // indeed a chance of mTransaction going away. bug 615342
2468 
2469   MOZ_ASSERT(!OnSocketThread(), "on socket thread");
2470 
2471   nsCOMPtr<nsIInterfaceRequestor> callbacks;
2472   {
2473     MutexAutoLock lock(mCallbacksLock);
2474     callbacks = mCallbacks;
2475   }
2476   if (callbacks) return callbacks->GetInterface(iid, result);
2477   return NS_ERROR_NO_INTERFACE;
2478 }
2479 
CheckForTraffic(bool check)2480 void nsHttpConnection::CheckForTraffic(bool check) {
2481   if (check) {
2482     LOG((" CheckForTraffic conn %p\n", this));
2483     if (mSpdySession) {
2484       if (PR_IntervalToMilliseconds(IdleTime()) >= 500) {
2485         // Send a ping to verify it is still alive if it has been idle
2486         // more than half a second, the network changed events are
2487         // rate-limited to one per 1000 ms.
2488         LOG((" SendPing\n"));
2489         mSpdySession->SendPing();
2490       } else {
2491         LOG((" SendPing skipped due to network activity\n"));
2492       }
2493     } else {
2494       // If not SPDY, Store snapshot amount of data right now
2495       mTrafficCount = mTotalBytesWritten + mTotalBytesRead;
2496       mTrafficStamp = true;
2497     }
2498   } else {
2499     // mark it as not checked
2500     mTrafficStamp = false;
2501   }
2502 }
2503 
SetEvent(nsresult aStatus)2504 void nsHttpConnection::SetEvent(nsresult aStatus) {
2505   switch (aStatus) {
2506     case NS_NET_STATUS_RESOLVING_HOST:
2507       mBootstrappedTimings.domainLookupStart = TimeStamp::Now();
2508       break;
2509     case NS_NET_STATUS_RESOLVED_HOST:
2510       mBootstrappedTimings.domainLookupEnd = TimeStamp::Now();
2511       break;
2512     case NS_NET_STATUS_CONNECTING_TO:
2513       mBootstrappedTimings.connectStart = TimeStamp::Now();
2514       break;
2515     case NS_NET_STATUS_CONNECTED_TO: {
2516       TimeStamp tnow = TimeStamp::Now();
2517       mBootstrappedTimings.tcpConnectEnd = tnow;
2518       mBootstrappedTimings.connectEnd = tnow;
2519       mBootstrappedTimings.secureConnectionStart = tnow;
2520       break;
2521     }
2522     case NS_NET_STATUS_TLS_HANDSHAKE_STARTING:
2523       mBootstrappedTimings.secureConnectionStart = TimeStamp::Now();
2524       break;
2525     case NS_NET_STATUS_TLS_HANDSHAKE_ENDED:
2526       mBootstrappedTimings.connectEnd = TimeStamp::Now();
2527       break;
2528     default:
2529       break;
2530   }
2531 }
2532 
NoClientCertAuth() const2533 bool nsHttpConnection::NoClientCertAuth() const {
2534   if (!mSocketTransport) {
2535     return false;
2536   }
2537 
2538   nsCOMPtr<nsISupports> secInfo;
2539   mSocketTransport->GetSecurityInfo(getter_AddRefs(secInfo));
2540   if (!secInfo) {
2541     return false;
2542   }
2543 
2544   nsCOMPtr<nsISSLSocketControl> ssc(do_QueryInterface(secInfo));
2545   if (!ssc) {
2546     return false;
2547   }
2548 
2549   return !ssc->GetClientCertSent();
2550 }
2551 
CanAcceptWebsocket()2552 bool nsHttpConnection::CanAcceptWebsocket() {
2553   if (!UsingSpdy()) {
2554     return true;
2555   }
2556 
2557   return mSpdySession->CanAcceptWebsocket();
2558 }
2559 
IsProxyConnectInProgress()2560 bool nsHttpConnection::IsProxyConnectInProgress() {
2561   return mProxyConnectInProgress;
2562 }
2563 
LastTransactionExpectedNoContent()2564 bool nsHttpConnection::LastTransactionExpectedNoContent() {
2565   return mLastTransactionExpectedNoContent;
2566 }
2567 
SetLastTransactionExpectedNoContent(bool val)2568 void nsHttpConnection::SetLastTransactionExpectedNoContent(bool val) {
2569   mLastTransactionExpectedNoContent = val;
2570 }
2571 
IsPersistent()2572 bool nsHttpConnection::IsPersistent() { return IsKeepAlive() && !mDontReuse; }
2573 
Transaction()2574 nsAHttpTransaction* nsHttpConnection::Transaction() { return mTransaction; }
2575 
GetSelfAddr(NetAddr * addr)2576 nsresult nsHttpConnection::GetSelfAddr(NetAddr* addr) {
2577   if (!mSocketTransport) {
2578     return NS_ERROR_FAILURE;
2579   }
2580   return mSocketTransport->GetSelfAddr(addr);
2581 }
2582 
GetPeerAddr(NetAddr * addr)2583 nsresult nsHttpConnection::GetPeerAddr(NetAddr* addr) {
2584   if (!mSocketTransport) {
2585     return NS_ERROR_FAILURE;
2586   }
2587   return mSocketTransport->GetPeerAddr(addr);
2588 }
2589 
ResolvedByTRR()2590 bool nsHttpConnection::ResolvedByTRR() {
2591   bool val = false;
2592   if (mSocketTransport) {
2593     mSocketTransport->ResolvedByTRR(&val);
2594   }
2595   return val;
2596 }
2597 
GetEchConfigUsed()2598 bool nsHttpConnection::GetEchConfigUsed() {
2599   bool val = false;
2600   if (mSocketTransport) {
2601     mSocketTransport->GetEchConfigUsed(&val);
2602   }
2603   return val;
2604 }
2605 
2606 }  // namespace net
2607 }  // namespace mozilla
2608