1 /* This Source Code Form is subject to the terms of the Mozilla Public
2  * License, v. 2.0. If a copy of the MPL was not distributed with this
3  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
4 
5 #ifndef __ecp_h_
6 #define __ecp_h_
7 
8 #include "ecl-priv.h"
9 
10 /* Checks if point P(px, py) is at infinity.  Uses affine coordinates. */
11 mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);
12 
13 /* Sets P(px, py) to be the point at infinity.  Uses affine coordinates. */
14 mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);
15 
16 /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
17  * qy). Uses affine coordinates. */
18 mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
19                          const mp_int *qx, const mp_int *qy, mp_int *rx,
20                          mp_int *ry, const ECGroup *group);
21 
22 /* Computes R = P - Q.  Uses affine coordinates. */
23 mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
24                          const mp_int *qx, const mp_int *qy, mp_int *rx,
25                          mp_int *ry, const ECGroup *group);
26 
27 /* Computes R = 2P.  Uses affine coordinates. */
28 mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
29                          mp_int *ry, const ECGroup *group);
30 
31 /* Validates a point on a GFp curve. */
32 mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
33 
34 #ifdef ECL_ENABLE_GFP_PT_MUL_AFF
35 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
36  * a, b and p are the elliptic curve coefficients and the prime that
37  * determines the field GFp.  Uses affine coordinates. */
38 mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
39                          const mp_int *py, mp_int *rx, mp_int *ry,
40                          const ECGroup *group);
41 #endif
42 
43 /* Converts a point P(px, py) from affine coordinates to Jacobian
44  * projective coordinates R(rx, ry, rz). */
45 mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
46                          mp_int *ry, mp_int *rz, const ECGroup *group);
47 
48 /* Converts a point P(px, py, pz) from Jacobian projective coordinates to
49  * affine coordinates R(rx, ry). */
50 mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
51                          const mp_int *pz, mp_int *rx, mp_int *ry,
52                          const ECGroup *group);
53 
54 /* Checks if point P(px, py, pz) is at infinity.  Uses Jacobian
55  * coordinates. */
56 mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
57                             const mp_int *pz);
58 
59 /* Sets P(px, py, pz) to be the point at infinity.  Uses Jacobian
60  * coordinates. */
61 mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
62 
63 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
64  * (qx, qy, qz).  Uses Jacobian coordinates. */
65 mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
66                              const mp_int *pz, const mp_int *qx,
67                              const mp_int *qy, mp_int *rx, mp_int *ry,
68                              mp_int *rz, const ECGroup *group);
69 
70 /* Computes R = 2P.  Uses Jacobian coordinates. */
71 mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
72                          const mp_int *pz, mp_int *rx, mp_int *ry,
73                          mp_int *rz, const ECGroup *group);
74 
75 #ifdef ECL_ENABLE_GFP_PT_MUL_JAC
76 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
77  * a, b and p are the elliptic curve coefficients and the prime that
78  * determines the field GFp.  Uses Jacobian coordinates. */
79 mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
80                          const mp_int *py, mp_int *rx, mp_int *ry,
81                          const ECGroup *group);
82 #endif
83 
84 /* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
85  * (base point) of the group of points on the elliptic curve. Allows k1 =
86  * NULL or { k2, P } = NULL.  Implemented using mixed Jacobian-affine
87  * coordinates. Input and output values are assumed to be NOT
88  * field-encoded and are in affine form. */
89 mp_err
90 ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
91                    const mp_int *py, mp_int *rx, mp_int *ry,
92                    const ECGroup *group);
93 
94 /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
95  * curve points P and R can be identical. Uses mixed Modified-Jacobian
96  * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
97  * additions. Assumes input is already field-encoded using field_enc, and
98  * returns output that is still field-encoded. Uses 5-bit window NAF
99  * method (algorithm 11) for scalar-point multiplication from Brown,
100  * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
101  * Curves Over Prime Fields. */
102 mp_err
103 ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
104                       mp_int *rx, mp_int *ry, const ECGroup *group);
105 
106 #endif /* __ecp_h_ */
107