1 // Copyright 2013 The Servo Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution.
3 //
4 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
5 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
7 // option. This file may not be copied, modified, or distributed
8 // except according to those terms.
9 
10 use super::UnknownUnit;
11 use crate::approxord::{max, min};
12 use crate::num::*;
13 use crate::point::{point2, Point2D};
14 use crate::rect::Rect;
15 use crate::scale::Scale;
16 use crate::side_offsets::SideOffsets2D;
17 use crate::size::Size2D;
18 use crate::vector::{vec2, Vector2D};
19 
20 use num_traits::{NumCast, Float};
21 #[cfg(feature = "serde")]
22 use serde::{Deserialize, Serialize};
23 
24 use core::borrow::Borrow;
25 use core::cmp::PartialOrd;
26 use core::fmt;
27 use core::hash::{Hash, Hasher};
28 use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Sub, Range};
29 
30 /// A 2d axis aligned rectangle represented by its minimum and maximum coordinates.
31 ///
32 /// # Representation
33 ///
34 /// This struct is similar to [`Rect`], but stores rectangle as two endpoints
35 /// instead of origin point and size. Such representation has several advantages over
36 /// [`Rect`] representation:
37 /// - Several operations are more efficient with `Box2D`, including [`intersection`],
38 ///   [`union`], and point-in-rect.
39 /// - The representation is less susceptible to overflow. With [`Rect`], computation
40 ///   of second point can overflow for a large range of values of origin and size.
41 ///   However, with `Box2D`, computation of [`size`] cannot overflow if the coordinates
42 ///   are signed and the resulting size is unsigned.
43 ///
44 /// A known disadvantage of `Box2D` is that translating the rectangle requires translating
45 /// both points, whereas translating [`Rect`] only requires translating one point.
46 ///
47 /// # Empty box
48 ///
49 /// A box is considered empty (see [`is_empty`]) if any of the following is true:
50 /// - it's area is empty,
51 /// - it's area is negative (`min.x > max.x` or `min.y > max.y`),
52 /// - it contains NaNs.
53 ///
54 /// [`Rect`]: struct.Rect.html
55 /// [`intersection`]: #method.intersection
56 /// [`is_empty`]: #method.is_empty
57 /// [`union`]: #method.union
58 /// [`size`]: #method.size
59 #[repr(C)]
60 #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
61 #[cfg_attr(
62     feature = "serde",
63     serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>"))
64 )]
65 pub struct Box2D<T, U> {
66     pub min: Point2D<T, U>,
67     pub max: Point2D<T, U>,
68 }
69 
70 impl<T: Hash, U> Hash for Box2D<T, U> {
hash<H: Hasher>(&self, h: &mut H)71     fn hash<H: Hasher>(&self, h: &mut H) {
72         self.min.hash(h);
73         self.max.hash(h);
74     }
75 }
76 
77 impl<T: Copy, U> Copy for Box2D<T, U> {}
78 
79 impl<T: Clone, U> Clone for Box2D<T, U> {
clone(&self) -> Self80     fn clone(&self) -> Self {
81         Self::new(self.min.clone(), self.max.clone())
82     }
83 }
84 
85 impl<T: PartialEq, U> PartialEq for Box2D<T, U> {
eq(&self, other: &Self) -> bool86     fn eq(&self, other: &Self) -> bool {
87         self.min.eq(&other.min) && self.max.eq(&other.max)
88     }
89 }
90 
91 impl<T: Eq, U> Eq for Box2D<T, U> {}
92 
93 impl<T: fmt::Debug, U> fmt::Debug for Box2D<T, U> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result94     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
95         f.debug_tuple("Box2D")
96             .field(&self.min)
97             .field(&self.max)
98             .finish()
99     }
100 }
101 
102 impl<T, U> Box2D<T, U> {
103     /// Constructor.
104     #[inline]
new(min: Point2D<T, U>, max: Point2D<T, U>) -> Self105     pub const fn new(min: Point2D<T, U>, max: Point2D<T, U>) -> Self {
106         Box2D { min, max }
107     }
108 
109     /// Constructor.
110     #[inline]
from_origin_and_size(origin: Point2D<T, U>, size: Size2D<T, U>) -> Self where T: Copy + Add<T, Output = T>111     pub fn from_origin_and_size(origin: Point2D<T, U>, size: Size2D<T, U>) -> Self
112     where
113         T: Copy + Add<T, Output = T>
114     {
115         Box2D {
116             min: origin,
117             max: point2(origin.x + size.width, origin.y + size.height),
118         }
119     }
120 
121     /// Creates a Box2D of the given size, at offset zero.
122     #[inline]
from_size(size: Size2D<T, U>) -> Self where T: Zero123     pub fn from_size(size: Size2D<T, U>) -> Self where T: Zero {
124         Box2D {
125             min: Point2D::zero(),
126             max: point2(size.width, size.height),
127         }
128     }
129 }
130 
131 impl<T, U> Box2D<T, U>
132 where
133     T: PartialOrd,
134 {
135     /// Returns true if the box has a negative area.
136     ///
137     /// The common interpretation for a negative box is to consider it empty. It can be obtained
138     /// by calculating the intersection of two boxes that do not intersect.
139     #[inline]
is_negative(&self) -> bool140     pub fn is_negative(&self) -> bool {
141         self.max.x < self.min.x || self.max.y < self.min.y
142     }
143 
144     /// Returns true if the size is zero, negative or NaN.
145     #[inline]
is_empty(&self) -> bool146     pub fn is_empty(&self) -> bool {
147         !(self.max.x > self.min.x && self.max.y > self.min.y)
148     }
149 
150     /// Returns `true` if the two boxes intersect.
151     #[inline]
intersects(&self, other: &Self) -> bool152     pub fn intersects(&self, other: &Self) -> bool {
153         self.min.x < other.max.x
154             && self.max.x > other.min.x
155             && self.min.y < other.max.y
156             && self.max.y > other.min.y
157     }
158 
159     /// Returns `true` if this box contains the point. Points are considered
160     /// in the box if they are on the front, left or top faces, but outside if they
161     /// are on the back, right or bottom faces.
162     #[inline]
contains(&self, p: Point2D<T, U>) -> bool163     pub fn contains(&self, p: Point2D<T, U>) -> bool {
164         self.min.x <= p.x && p.x < self.max.x && self.min.y <= p.y && p.y < self.max.y
165     }
166 
167     /// Returns `true` if this box contains the interior of the other box. Always
168     /// returns `true` if other is empty, and always returns `false` if other is
169     /// nonempty but this box is empty.
170     #[inline]
contains_box(&self, other: &Self) -> bool171     pub fn contains_box(&self, other: &Self) -> bool {
172         other.is_empty()
173             || (self.min.x <= other.min.x
174                 && other.max.x <= self.max.x
175                 && self.min.y <= other.min.y
176                 && other.max.y <= self.max.y)
177     }
178 }
179 
180 impl<T, U> Box2D<T, U>
181 where
182     T: Copy + PartialOrd,
183 {
184     #[inline]
to_non_empty(&self) -> Option<Self>185     pub fn to_non_empty(&self) -> Option<Self> {
186         if self.is_empty() {
187             return None;
188         }
189 
190         Some(*self)
191     }
192 
193     /// Computes the intersection of two boxes, returning `None` if the boxes do not intersect.
194     #[inline]
intersection(&self, other: &Self) -> Option<Self>195     pub fn intersection(&self, other: &Self) -> Option<Self> {
196         let b = self.intersection_unchecked(other);
197 
198         if b.is_empty() {
199             return None;
200         }
201 
202         Some(b)
203     }
204 
205     /// Computes the intersection of two boxes without check whether they do intersect.
206     ///
207     /// The result is a negative box if the boxes do not intersect.
208     /// This can be useful for computing the intersection of more than two boxes, as
209     /// it is possible to chain multiple intersection_unchecked calls and check for
210     /// empty/negative result at the end.
211     #[inline]
intersection_unchecked(&self, other: &Self) -> Self212     pub fn intersection_unchecked(&self, other: &Self) -> Self {
213         Box2D {
214             min: point2(max(self.min.x, other.min.x), max(self.min.y, other.min.y)),
215             max: point2(min(self.max.x, other.max.x), min(self.max.y, other.max.y)),
216         }
217     }
218 
219     /// Computes the union of two boxes.
220     ///
221     /// If either of the boxes is empty, the other one is returned.
222     #[inline]
union(&self, other: &Self) -> Self223     pub fn union(&self, other: &Self) -> Self {
224         if other.is_empty() {
225             return *self;
226         }
227         if self.is_empty() {
228             return *other;
229         }
230 
231         Box2D {
232             min: point2(min(self.min.x, other.min.x), min(self.min.y, other.min.y)),
233             max: point2(max(self.max.x, other.max.x), max(self.max.y, other.max.y)),
234         }
235     }
236 }
237 
238 impl<T, U> Box2D<T, U>
239 where
240     T: Copy + Add<T, Output = T>,
241 {
242     /// Returns the same box, translated by a vector.
243     #[inline]
translate(&self, by: Vector2D<T, U>) -> Self244     pub fn translate(&self, by: Vector2D<T, U>) -> Self {
245         Box2D {
246             min: self.min + by,
247             max: self.max + by,
248         }
249     }
250 }
251 
252 impl<T, U> Box2D<T, U>
253 where
254     T: Copy + Sub<T, Output = T>,
255 {
256     #[inline]
size(&self) -> Size2D<T, U>257     pub fn size(&self) -> Size2D<T, U> {
258         (self.max - self.min).to_size()
259     }
260 
261     /// Change the size of the box by adjusting the max endpoint
262     /// without modifying the min endpoint.
263     #[inline]
set_size(&mut self, size: Size2D<T, U>)264     pub fn set_size(&mut self, size: Size2D<T, U>) {
265         let diff = (self.size() - size).to_vector();
266         self.max -= diff;
267     }
268 
269     #[inline]
width(&self) -> T270     pub fn width(&self) -> T {
271         self.max.x - self.min.x
272     }
273 
274     #[inline]
height(&self) -> T275     pub fn height(&self) -> T {
276         self.max.y - self.min.y
277     }
278 
279     #[inline]
to_rect(&self) -> Rect<T, U>280     pub fn to_rect(&self) -> Rect<T, U> {
281         Rect {
282             origin: self.min,
283             size: self.size(),
284         }
285     }
286 }
287 
288 impl<T, U> Box2D<T, U>
289 where
290     T: Copy + Add<T, Output = T> + Sub<T, Output = T>,
291 {
292     /// Inflates the box by the specified sizes on each side respectively.
293     #[inline]
294     #[must_use]
inflate(&self, width: T, height: T) -> Self295     pub fn inflate(&self, width: T, height: T) -> Self {
296         Box2D {
297             min: point2(self.min.x - width, self.min.y - height),
298             max: point2(self.max.x + width, self.max.y + height),
299         }
300     }
301 
302     /// Calculate the size and position of an inner box.
303     ///
304     /// Subtracts the side offsets from all sides. The horizontal, vertical
305     /// and applicate offsets must not be larger than the original side length.
inner_box(&self, offsets: SideOffsets2D<T, U>) -> Self306     pub fn inner_box(&self, offsets: SideOffsets2D<T, U>) -> Self {
307         Box2D {
308             min: self.min + vec2(offsets.left, offsets.top),
309             max: self.max - vec2(offsets.right, offsets.bottom),
310         }
311     }
312 
313     /// Calculate the b and position of an outer box.
314     ///
315     /// Add the offsets to all sides. The expanded box is returned.
outer_box(&self, offsets: SideOffsets2D<T, U>) -> Self316     pub fn outer_box(&self, offsets: SideOffsets2D<T, U>) -> Self {
317         Box2D {
318             min: self.min - vec2(offsets.left, offsets.top),
319             max: self.max + vec2(offsets.right, offsets.bottom),
320         }
321     }
322 }
323 
324 impl<T, U> Box2D<T, U>
325 where
326     T: Copy + Zero + PartialOrd,
327 {
328     /// Returns the smallest box containing all of the provided points.
from_points<I>(points: I) -> Self where I: IntoIterator, I::Item: Borrow<Point2D<T, U>>,329     pub fn from_points<I>(points: I) -> Self
330     where
331         I: IntoIterator,
332         I::Item: Borrow<Point2D<T, U>>,
333     {
334         let mut points = points.into_iter();
335 
336         let (mut min_x, mut min_y) = match points.next() {
337             Some(first) => first.borrow().to_tuple(),
338             None => return Box2D::zero(),
339         };
340 
341         let (mut max_x, mut max_y) = (min_x, min_y);
342         for point in points {
343             let p = point.borrow();
344             if p.x < min_x {
345                 min_x = p.x
346             }
347             if p.x > max_x {
348                 max_x = p.x
349             }
350             if p.y < min_y {
351                 min_y = p.y
352             }
353             if p.y > max_y {
354                 max_y = p.y
355             }
356         }
357 
358         Box2D {
359             min: point2(min_x, min_y),
360             max: point2(max_x, max_y),
361         }
362     }
363 }
364 
365 impl<T, U> Box2D<T, U>
366 where
367     T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
368 {
369     /// Linearly interpolate between this box and another box.
370     #[inline]
lerp(&self, other: Self, t: T) -> Self371     pub fn lerp(&self, other: Self, t: T) -> Self {
372         Self::new(self.min.lerp(other.min, t), self.max.lerp(other.max, t))
373     }
374 }
375 
376 impl<T, U> Box2D<T, U>
377 where
378     T: Copy + One + Add<Output = T> + Div<Output = T>,
379 {
center(&self) -> Point2D<T, U>380     pub fn center(&self) -> Point2D<T, U> {
381         let two = T::one() + T::one();
382         (self.min + self.max.to_vector()) / two
383     }
384 }
385 
386 impl<T, U> Box2D<T, U>
387 where
388     T: Copy + Mul<T, Output = T> + Sub<T, Output = T>,
389 {
390     #[inline]
area(&self) -> T391     pub fn area(&self) -> T {
392         let size = self.size();
393         size.width * size.height
394     }
395 }
396 
397 impl<T, U> Box2D<T, U>
398 where
399     T: Zero,
400 {
401     /// Constructor, setting all sides to zero.
zero() -> Self402     pub fn zero() -> Self {
403         Box2D::new(Point2D::zero(), Point2D::zero())
404     }
405 }
406 
407 impl<T: Copy + Mul, U> Mul<T> for Box2D<T, U> {
408     type Output = Box2D<T::Output, U>;
409 
410     #[inline]
mul(self, scale: T) -> Self::Output411     fn mul(self, scale: T) -> Self::Output {
412         Box2D::new(self.min * scale, self.max * scale)
413     }
414 }
415 
416 impl<T: Copy + MulAssign, U> MulAssign<T> for Box2D<T, U> {
417     #[inline]
mul_assign(&mut self, scale: T)418     fn mul_assign(&mut self, scale: T) {
419         *self *= Scale::new(scale);
420     }
421 }
422 
423 impl<T: Copy + Div, U> Div<T> for Box2D<T, U> {
424     type Output = Box2D<T::Output, U>;
425 
426     #[inline]
div(self, scale: T) -> Self::Output427     fn div(self, scale: T) -> Self::Output {
428         Box2D::new(self.min / scale, self.max / scale)
429     }
430 }
431 
432 impl<T: Copy + DivAssign, U> DivAssign<T> for Box2D<T, U> {
433     #[inline]
div_assign(&mut self, scale: T)434     fn div_assign(&mut self, scale: T) {
435         *self /= Scale::new(scale);
436     }
437 }
438 
439 impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Box2D<T, U1> {
440     type Output = Box2D<T::Output, U2>;
441 
442     #[inline]
mul(self, scale: Scale<T, U1, U2>) -> Self::Output443     fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {
444         Box2D::new(self.min * scale, self.max * scale)
445     }
446 }
447 
448 impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Box2D<T, U> {
449     #[inline]
mul_assign(&mut self, scale: Scale<T, U, U>)450     fn mul_assign(&mut self, scale: Scale<T, U, U>) {
451         self.min *= scale;
452         self.max *= scale;
453     }
454 }
455 
456 impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Box2D<T, U2> {
457     type Output = Box2D<T::Output, U1>;
458 
459     #[inline]
div(self, scale: Scale<T, U1, U2>) -> Self::Output460     fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {
461         Box2D::new(self.min / scale, self.max / scale)
462     }
463 }
464 
465 impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Box2D<T, U> {
466     #[inline]
div_assign(&mut self, scale: Scale<T, U, U>)467     fn div_assign(&mut self, scale: Scale<T, U, U>) {
468         self.min /= scale;
469         self.max /= scale;
470     }
471 }
472 
473 impl<T, U> Box2D<T, U>
474 where
475     T: Copy,
476 {
477     #[inline]
x_range(&self) -> Range<T>478     pub fn x_range(&self) -> Range<T> {
479         self.min.x..self.max.x
480     }
481 
482     #[inline]
y_range(&self) -> Range<T>483     pub fn y_range(&self) -> Range<T> {
484         self.min.y..self.max.y
485     }
486 
487     /// Drop the units, preserving only the numeric value.
488     #[inline]
to_untyped(&self) -> Box2D<T, UnknownUnit>489     pub fn to_untyped(&self) -> Box2D<T, UnknownUnit> {
490         Box2D::new(self.min.to_untyped(), self.max.to_untyped())
491     }
492 
493     /// Tag a unitless value with units.
494     #[inline]
from_untyped(c: &Box2D<T, UnknownUnit>) -> Box2D<T, U>495     pub fn from_untyped(c: &Box2D<T, UnknownUnit>) -> Box2D<T, U> {
496         Box2D::new(Point2D::from_untyped(c.min), Point2D::from_untyped(c.max))
497     }
498 
499     /// Cast the unit
500     #[inline]
cast_unit<V>(&self) -> Box2D<T, V>501     pub fn cast_unit<V>(&self) -> Box2D<T, V> {
502         Box2D::new(self.min.cast_unit(), self.max.cast_unit())
503     }
504 
505     #[inline]
scale<S: Copy>(&self, x: S, y: S) -> Self where T: Mul<S, Output = T>,506     pub fn scale<S: Copy>(&self, x: S, y: S) -> Self
507     where
508         T: Mul<S, Output = T>,
509     {
510         Box2D {
511             min: point2(self.min.x * x, self.min.y * y),
512             max: point2(self.max.x * x, self.max.y * y),
513         }
514     }
515 }
516 
517 impl<T: NumCast + Copy, U> Box2D<T, U> {
518     /// Cast from one numeric representation to another, preserving the units.
519     ///
520     /// When casting from floating point to integer coordinates, the decimals are truncated
521     /// as one would expect from a simple cast, but this behavior does not always make sense
522     /// geometrically. Consider using round(), round_in or round_out() before casting.
523     #[inline]
cast<NewT: NumCast>(&self) -> Box2D<NewT, U>524     pub fn cast<NewT: NumCast>(&self) -> Box2D<NewT, U> {
525         Box2D::new(self.min.cast(), self.max.cast())
526     }
527 
528     /// Fallible cast from one numeric representation to another, preserving the units.
529     ///
530     /// When casting from floating point to integer coordinates, the decimals are truncated
531     /// as one would expect from a simple cast, but this behavior does not always make sense
532     /// geometrically. Consider using round(), round_in or round_out() before casting.
try_cast<NewT: NumCast>(&self) -> Option<Box2D<NewT, U>>533     pub fn try_cast<NewT: NumCast>(&self) -> Option<Box2D<NewT, U>> {
534         match (self.min.try_cast(), self.max.try_cast()) {
535             (Some(a), Some(b)) => Some(Box2D::new(a, b)),
536             _ => None,
537         }
538     }
539 
540     // Convenience functions for common casts
541 
542     /// Cast into an `f32` box.
543     #[inline]
to_f32(&self) -> Box2D<f32, U>544     pub fn to_f32(&self) -> Box2D<f32, U> {
545         self.cast()
546     }
547 
548     /// Cast into an `f64` box.
549     #[inline]
to_f64(&self) -> Box2D<f64, U>550     pub fn to_f64(&self) -> Box2D<f64, U> {
551         self.cast()
552     }
553 
554     /// Cast into an `usize` box, truncating decimals if any.
555     ///
556     /// When casting from floating point boxes, it is worth considering whether
557     /// to `round()`, `round_in()` or `round_out()` before the cast in order to
558     /// obtain the desired conversion behavior.
559     #[inline]
to_usize(&self) -> Box2D<usize, U>560     pub fn to_usize(&self) -> Box2D<usize, U> {
561         self.cast()
562     }
563 
564     /// Cast into an `u32` box, truncating decimals if any.
565     ///
566     /// When casting from floating point boxes, it is worth considering whether
567     /// to `round()`, `round_in()` or `round_out()` before the cast in order to
568     /// obtain the desired conversion behavior.
569     #[inline]
to_u32(&self) -> Box2D<u32, U>570     pub fn to_u32(&self) -> Box2D<u32, U> {
571         self.cast()
572     }
573 
574     /// Cast into an `i32` box, truncating decimals if any.
575     ///
576     /// When casting from floating point boxes, it is worth considering whether
577     /// to `round()`, `round_in()` or `round_out()` before the cast in order to
578     /// obtain the desired conversion behavior.
579     #[inline]
to_i32(&self) -> Box2D<i32, U>580     pub fn to_i32(&self) -> Box2D<i32, U> {
581         self.cast()
582     }
583 
584     /// Cast into an `i64` box, truncating decimals if any.
585     ///
586     /// When casting from floating point boxes, it is worth considering whether
587     /// to `round()`, `round_in()` or `round_out()` before the cast in order to
588     /// obtain the desired conversion behavior.
589     #[inline]
to_i64(&self) -> Box2D<i64, U>590     pub fn to_i64(&self) -> Box2D<i64, U> {
591         self.cast()
592     }
593 }
594 
595 impl<T: Float, U> Box2D<T, U> {
596     /// Returns true if all members are finite.
597     #[inline]
is_finite(self) -> bool598     pub fn is_finite(self) -> bool {
599         self.min.is_finite() && self.max.is_finite()
600     }
601 }
602 
603 impl<T, U> Box2D<T, U>
604 where
605     T: Round,
606 {
607     /// Return a box with edges rounded to integer coordinates, such that
608     /// the returned box has the same set of pixel centers as the original
609     /// one.
610     /// Values equal to 0.5 round up.
611     /// Suitable for most places where integral device coordinates
612     /// are needed, but note that any translation should be applied first to
613     /// avoid pixel rounding errors.
614     /// Note that this is *not* rounding to nearest integer if the values are negative.
615     /// They are always rounding as floor(n + 0.5).
616     #[must_use]
round(&self) -> Self617     pub fn round(&self) -> Self {
618         Box2D::new(self.min.round(), self.max.round())
619     }
620 }
621 
622 impl<T, U> Box2D<T, U>
623 where
624     T: Floor + Ceil,
625 {
626     /// Return a box with faces/edges rounded to integer coordinates, such that
627     /// the original box contains the resulting box.
628     #[must_use]
round_in(&self) -> Self629     pub fn round_in(&self) -> Self {
630         let min = self.min.ceil();
631         let max = self.max.floor();
632         Box2D { min, max }
633     }
634 
635     /// Return a box with faces/edges rounded to integer coordinates, such that
636     /// the original box is contained in the resulting box.
637     #[must_use]
round_out(&self) -> Self638     pub fn round_out(&self) -> Self {
639         let min = self.min.floor();
640         let max = self.max.ceil();
641         Box2D { min, max }
642     }
643 }
644 
645 impl<T, U> From<Size2D<T, U>> for Box2D<T, U>
646 where
647     T: Copy + Zero + PartialOrd,
648 {
from(b: Size2D<T, U>) -> Self649     fn from(b: Size2D<T, U>) -> Self {
650         Self::from_size(b)
651     }
652 }
653 
654 impl<T: Default, U> Default for Box2D<T, U> {
default() -> Self655     fn default() -> Self {
656         Box2D {
657             min: Default::default(),
658             max: Default::default(),
659         }
660     }
661 }
662 
663 #[cfg(test)]
664 mod tests {
665     use crate::default::Box2D;
666     use crate::side_offsets::SideOffsets2D;
667     use crate::{point2, size2, vec2, Point2D};
668     //use super::*;
669 
670     #[test]
test_size()671     fn test_size() {
672         let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
673         assert_eq!(b.size().width, 20.0);
674         assert_eq!(b.size().height, 20.0);
675     }
676 
677     #[test]
test_width_height()678     fn test_width_height() {
679         let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
680         assert!(b.width() == 20.0);
681         assert!(b.height() == 20.0);
682     }
683 
684     #[test]
test_center()685     fn test_center() {
686         let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
687         assert_eq!(b.center(), Point2D::zero());
688     }
689 
690     #[test]
test_area()691     fn test_area() {
692         let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
693         assert_eq!(b.area(), 400.0);
694     }
695 
696     #[test]
test_from_points()697     fn test_from_points() {
698         let b = Box2D::from_points(&[point2(50.0, 160.0), point2(100.0, 25.0)]);
699         assert_eq!(b.min, point2(50.0, 25.0));
700         assert_eq!(b.max, point2(100.0, 160.0));
701     }
702 
703     #[test]
test_round_in()704     fn test_round_in() {
705         let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_in();
706         assert_eq!(b.min.x, -25.0);
707         assert_eq!(b.min.y, -40.0);
708         assert_eq!(b.max.x, 60.0);
709         assert_eq!(b.max.y, 36.0);
710     }
711 
712     #[test]
test_round_out()713     fn test_round_out() {
714         let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_out();
715         assert_eq!(b.min.x, -26.0);
716         assert_eq!(b.min.y, -41.0);
717         assert_eq!(b.max.x, 61.0);
718         assert_eq!(b.max.y, 37.0);
719     }
720 
721     #[test]
test_round()722     fn test_round() {
723         let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round();
724         assert_eq!(b.min.x, -25.0);
725         assert_eq!(b.min.y, -40.0);
726         assert_eq!(b.max.x, 60.0);
727         assert_eq!(b.max.y, 37.0);
728     }
729 
730     #[test]
test_from_size()731     fn test_from_size() {
732         let b = Box2D::from_size(size2(30.0, 40.0));
733         assert!(b.min == Point2D::zero());
734         assert!(b.size().width == 30.0);
735         assert!(b.size().height == 40.0);
736     }
737 
738     #[test]
test_inner_box()739     fn test_inner_box() {
740         let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]);
741         let b = b.inner_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0));
742         assert_eq!(b.max.x, 80.0);
743         assert_eq!(b.max.y, 155.0);
744         assert_eq!(b.min.x, 60.0);
745         assert_eq!(b.min.y, 35.0);
746     }
747 
748     #[test]
test_outer_box()749     fn test_outer_box() {
750         let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]);
751         let b = b.outer_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0));
752         assert_eq!(b.max.x, 120.0);
753         assert_eq!(b.max.y, 165.0);
754         assert_eq!(b.min.x, 40.0);
755         assert_eq!(b.min.y, 15.0);
756     }
757 
758     #[test]
test_translate()759     fn test_translate() {
760         let size = size2(15.0, 15.0);
761         let mut center = (size / 2.0).to_vector().to_point();
762         let b = Box2D::from_size(size);
763         assert_eq!(b.center(), center);
764         let translation = vec2(10.0, 2.5);
765         let b = b.translate(translation);
766         center += translation;
767         assert_eq!(b.center(), center);
768         assert_eq!(b.max.x, 25.0);
769         assert_eq!(b.max.y, 17.5);
770         assert_eq!(b.min.x, 10.0);
771         assert_eq!(b.min.y, 2.5);
772     }
773 
774     #[test]
test_union()775     fn test_union() {
776         let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(0.0, 20.0)]);
777         let b2 = Box2D::from_points(&[point2(0.0, 20.0), point2(20.0, -20.0)]);
778         let b = b1.union(&b2);
779         assert_eq!(b.max.x, 20.0);
780         assert_eq!(b.max.y, 20.0);
781         assert_eq!(b.min.x, -20.0);
782         assert_eq!(b.min.y, -20.0);
783     }
784 
785     #[test]
test_intersects()786     fn test_intersects() {
787         let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]);
788         let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]);
789         assert!(b1.intersects(&b2));
790     }
791 
792     #[test]
test_intersection_unchecked()793     fn test_intersection_unchecked() {
794         let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]);
795         let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]);
796         let b = b1.intersection_unchecked(&b2);
797         assert_eq!(b.max.x, 10.0);
798         assert_eq!(b.max.y, 20.0);
799         assert_eq!(b.min.x, -10.0);
800         assert_eq!(b.min.y, -20.0);
801     }
802 
803     #[test]
test_intersection()804     fn test_intersection() {
805         let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]);
806         let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]);
807         assert!(b1.intersection(&b2).is_some());
808 
809         let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(-10.0, 20.0)]);
810         let b2 = Box2D::from_points(&[point2(10.0, 20.0), point2(15.0, -20.0)]);
811         assert!(b1.intersection(&b2).is_none());
812     }
813 
814     #[test]
test_scale()815     fn test_scale() {
816         let b = Box2D::from_points(&[point2(-10.0, -10.0), point2(10.0, 10.0)]);
817         let b = b.scale(0.5, 0.5);
818         assert_eq!(b.max.x, 5.0);
819         assert_eq!(b.max.y, 5.0);
820         assert_eq!(b.min.x, -5.0);
821         assert_eq!(b.min.y, -5.0);
822     }
823 
824     #[test]
test_lerp()825     fn test_lerp() {
826         let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(-10.0, -10.0)]);
827         let b2 = Box2D::from_points(&[point2(10.0, 10.0), point2(20.0, 20.0)]);
828         let b = b1.lerp(b2, 0.5);
829         assert_eq!(b.center(), Point2D::zero());
830         assert_eq!(b.size().width, 10.0);
831         assert_eq!(b.size().height, 10.0);
832     }
833 
834     #[test]
test_contains()835     fn test_contains() {
836         let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]);
837         assert!(b.contains(point2(-15.3, 10.5)));
838     }
839 
840     #[test]
test_contains_box()841     fn test_contains_box() {
842         let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]);
843         let b2 = Box2D::from_points(&[point2(-14.3, -16.5), point2(6.7, 17.6)]);
844         assert!(b1.contains_box(&b2));
845     }
846 
847     #[test]
test_inflate()848     fn test_inflate() {
849         let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]);
850         let b = b.inflate(10.0, 5.0);
851         assert_eq!(b.size().width, 60.0);
852         assert_eq!(b.size().height, 50.0);
853         assert_eq!(b.center(), Point2D::zero());
854     }
855 
856     #[test]
test_is_empty()857     fn test_is_empty() {
858         for i in 0..2 {
859             let mut coords_neg = [-20.0, -20.0];
860             let mut coords_pos = [20.0, 20.0];
861             coords_neg[i] = 0.0;
862             coords_pos[i] = 0.0;
863             let b = Box2D::from_points(&[Point2D::from(coords_neg), Point2D::from(coords_pos)]);
864             assert!(b.is_empty());
865         }
866     }
867 
868     #[test]
test_nan_empty()869     fn test_nan_empty() {
870         use std::f32::NAN;
871         assert!(Box2D { min: point2(NAN, 2.0), max: point2(1.0, 3.0) }.is_empty());
872         assert!(Box2D { min: point2(0.0, NAN), max: point2(1.0, 2.0) }.is_empty());
873         assert!(Box2D { min: point2(1.0, -2.0), max: point2(NAN, 2.0) }.is_empty());
874         assert!(Box2D { min: point2(1.0, -2.0), max: point2(0.0, NAN) }.is_empty());
875     }
876 
877     #[test]
test_from_origin_and_size()878     fn test_from_origin_and_size() {
879         let b = Box2D::from_origin_and_size(point2(1.0, 2.0), size2(3.0, 4.0));
880         assert_eq!(b.min, point2(1.0, 2.0));
881         assert_eq!(b.size(), size2(3.0, 4.0));
882     }
883 
884     #[test]
test_set_size()885     fn test_set_size() {
886         let mut b = Box2D {
887             min: point2(1.0, 2.0),
888             max: point2(3.0, 4.0),
889         };
890         b.set_size(size2(5.0, 6.0));
891 
892         assert_eq!(b.min, point2(1.0, 2.0));
893         assert_eq!(b.size(), size2(5.0, 6.0));
894     }
895 }
896