1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 #include <string.h>
24 #include "ir.h"
25 #include "util/half_float.h"
26 #include "compiler/glsl_types.h"
27 #include "glsl_parser_extras.h"
28 
29 
ir_rvalue(enum ir_node_type t)30 ir_rvalue::ir_rvalue(enum ir_node_type t)
31    : ir_instruction(t)
32 {
33    this->type = glsl_type::error_type;
34 }
35 
is_zero() const36 bool ir_rvalue::is_zero() const
37 {
38    return false;
39 }
40 
is_one() const41 bool ir_rvalue::is_one() const
42 {
43    return false;
44 }
45 
is_negative_one() const46 bool ir_rvalue::is_negative_one() const
47 {
48    return false;
49 }
50 
51 /**
52  * Modify the swizzle make to move one component to another
53  *
54  * \param m    IR swizzle to be modified
55  * \param from Component in the RHS that is to be swizzled
56  * \param to   Desired swizzle location of \c from
57  */
58 static void
update_rhs_swizzle(ir_swizzle_mask & m,unsigned from,unsigned to)59 update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
60 {
61    switch (to) {
62    case 0: m.x = from; break;
63    case 1: m.y = from; break;
64    case 2: m.z = from; break;
65    case 3: m.w = from; break;
66    default: assert(!"Should not get here.");
67    }
68 }
69 
70 void
set_lhs(ir_rvalue * lhs)71 ir_assignment::set_lhs(ir_rvalue *lhs)
72 {
73    void *mem_ctx = this;
74    bool swizzled = false;
75 
76    while (lhs != NULL) {
77       ir_swizzle *swiz = lhs->as_swizzle();
78 
79       if (swiz == NULL)
80 	 break;
81 
82       unsigned write_mask = 0;
83       ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
84 
85       for (unsigned i = 0; i < swiz->mask.num_components; i++) {
86 	 unsigned c = 0;
87 
88 	 switch (i) {
89 	 case 0: c = swiz->mask.x; break;
90 	 case 1: c = swiz->mask.y; break;
91 	 case 2: c = swiz->mask.z; break;
92 	 case 3: c = swiz->mask.w; break;
93 	 default: assert(!"Should not get here.");
94 	 }
95 
96 	 write_mask |= (((this->write_mask >> i) & 1) << c);
97 	 update_rhs_swizzle(rhs_swiz, i, c);
98          rhs_swiz.num_components = swiz->val->type->vector_elements;
99       }
100 
101       this->write_mask = write_mask;
102       lhs = swiz->val;
103 
104       this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
105       swizzled = true;
106    }
107 
108    if (swizzled) {
109       /* Now, RHS channels line up with the LHS writemask.  Collapse it
110        * to just the channels that will be written.
111        */
112       ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
113       int rhs_chan = 0;
114       for (int i = 0; i < 4; i++) {
115 	 if (write_mask & (1 << i))
116 	    update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
117       }
118       rhs_swiz.num_components = rhs_chan;
119       this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
120    }
121 
122    assert((lhs == NULL) || lhs->as_dereference());
123 
124    this->lhs = (ir_dereference *) lhs;
125 }
126 
127 ir_variable *
whole_variable_written()128 ir_assignment::whole_variable_written()
129 {
130    ir_variable *v = this->lhs->whole_variable_referenced();
131 
132    if (v == NULL)
133       return NULL;
134 
135    if (v->type->is_scalar())
136       return v;
137 
138    if (v->type->is_vector()) {
139       const unsigned mask = (1U << v->type->vector_elements) - 1;
140 
141       if (mask != this->write_mask)
142 	 return NULL;
143    }
144 
145    /* Either all the vector components are assigned or the variable is some
146     * composite type (and the whole thing is assigned.
147     */
148    return v;
149 }
150 
ir_assignment(ir_dereference * lhs,ir_rvalue * rhs,ir_rvalue * condition,unsigned write_mask)151 ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
152 			     ir_rvalue *condition, unsigned write_mask)
153    : ir_instruction(ir_type_assignment)
154 {
155    this->condition = condition;
156    this->rhs = rhs;
157    this->lhs = lhs;
158    this->write_mask = write_mask;
159 
160    if (lhs->type->is_scalar() || lhs->type->is_vector()) {
161       int lhs_components = 0;
162       for (int i = 0; i < 4; i++) {
163 	 if (write_mask & (1 << i))
164 	    lhs_components++;
165       }
166 
167       assert(lhs_components == this->rhs->type->vector_elements);
168    }
169 }
170 
ir_assignment(ir_rvalue * lhs,ir_rvalue * rhs,ir_rvalue * condition)171 ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
172 			     ir_rvalue *condition)
173    : ir_instruction(ir_type_assignment)
174 {
175    this->condition = condition;
176    this->rhs = rhs;
177 
178    /* If the RHS is a vector type, assume that all components of the vector
179     * type are being written to the LHS.  The write mask comes from the RHS
180     * because we can have a case where the LHS is a vec4 and the RHS is a
181     * vec3.  In that case, the assignment is:
182     *
183     *     (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
184     */
185    if (rhs->type->is_vector())
186       this->write_mask = (1U << rhs->type->vector_elements) - 1;
187    else if (rhs->type->is_scalar())
188       this->write_mask = 1;
189    else
190       this->write_mask = 0;
191 
192    this->set_lhs(lhs);
193 }
194 
ir_expression(int op,const struct glsl_type * type,ir_rvalue * op0,ir_rvalue * op1,ir_rvalue * op2,ir_rvalue * op3)195 ir_expression::ir_expression(int op, const struct glsl_type *type,
196 			     ir_rvalue *op0, ir_rvalue *op1,
197 			     ir_rvalue *op2, ir_rvalue *op3)
198    : ir_rvalue(ir_type_expression)
199 {
200    this->type = type;
201    this->operation = ir_expression_operation(op);
202    this->operands[0] = op0;
203    this->operands[1] = op1;
204    this->operands[2] = op2;
205    this->operands[3] = op3;
206    init_num_operands();
207 
208 #ifndef NDEBUG
209    for (unsigned i = num_operands; i < 4; i++) {
210       assert(this->operands[i] == NULL);
211    }
212 
213    for (unsigned i = 0; i < num_operands; i++) {
214       assert(this->operands[i] != NULL);
215    }
216 #endif
217 }
218 
ir_expression(int op,ir_rvalue * op0)219 ir_expression::ir_expression(int op, ir_rvalue *op0)
220    : ir_rvalue(ir_type_expression)
221 {
222    this->operation = ir_expression_operation(op);
223    this->operands[0] = op0;
224    this->operands[1] = NULL;
225    this->operands[2] = NULL;
226    this->operands[3] = NULL;
227 
228    assert(op <= ir_last_unop);
229    init_num_operands();
230    assert(num_operands == 1);
231    assert(this->operands[0]);
232 
233    switch (this->operation) {
234    case ir_unop_bit_not:
235    case ir_unop_logic_not:
236    case ir_unop_neg:
237    case ir_unop_abs:
238    case ir_unop_sign:
239    case ir_unop_rcp:
240    case ir_unop_rsq:
241    case ir_unop_sqrt:
242    case ir_unop_exp:
243    case ir_unop_log:
244    case ir_unop_exp2:
245    case ir_unop_log2:
246    case ir_unop_trunc:
247    case ir_unop_ceil:
248    case ir_unop_floor:
249    case ir_unop_fract:
250    case ir_unop_round_even:
251    case ir_unop_sin:
252    case ir_unop_cos:
253    case ir_unop_dFdx:
254    case ir_unop_dFdx_coarse:
255    case ir_unop_dFdx_fine:
256    case ir_unop_dFdy:
257    case ir_unop_dFdy_coarse:
258    case ir_unop_dFdy_fine:
259    case ir_unop_bitfield_reverse:
260    case ir_unop_interpolate_at_centroid:
261    case ir_unop_clz:
262    case ir_unop_saturate:
263    case ir_unop_atan:
264       this->type = op0->type;
265       break;
266 
267    case ir_unop_f2i:
268    case ir_unop_b2i:
269    case ir_unop_u2i:
270    case ir_unop_d2i:
271    case ir_unop_bitcast_f2i:
272    case ir_unop_bit_count:
273    case ir_unop_find_msb:
274    case ir_unop_find_lsb:
275    case ir_unop_subroutine_to_int:
276    case ir_unop_i642i:
277    case ir_unop_u642i:
278       this->type = glsl_type::get_instance(GLSL_TYPE_INT,
279 					   op0->type->vector_elements, 1);
280       break;
281 
282    case ir_unop_b2f:
283    case ir_unop_i2f:
284    case ir_unop_u2f:
285    case ir_unop_d2f:
286    case ir_unop_f162f:
287    case ir_unop_bitcast_i2f:
288    case ir_unop_bitcast_u2f:
289    case ir_unop_i642f:
290    case ir_unop_u642f:
291       this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
292 					   op0->type->vector_elements, 1);
293       break;
294 
295    case ir_unop_f2f16:
296    case ir_unop_f2fmp:
297    case ir_unop_b2f16:
298       this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT16,
299 					   op0->type->vector_elements, 1);
300       break;
301 
302    case ir_unop_f2b:
303    case ir_unop_i2b:
304    case ir_unop_d2b:
305    case ir_unop_f162b:
306    case ir_unop_i642b:
307       this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
308 					   op0->type->vector_elements, 1);
309       break;
310 
311    case ir_unop_f2d:
312    case ir_unop_i2d:
313    case ir_unop_u2d:
314    case ir_unop_i642d:
315    case ir_unop_u642d:
316       this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
317 					   op0->type->vector_elements, 1);
318       break;
319 
320    case ir_unop_i2u:
321    case ir_unop_f2u:
322    case ir_unop_d2u:
323    case ir_unop_bitcast_f2u:
324    case ir_unop_i642u:
325    case ir_unop_u642u:
326       this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
327 					   op0->type->vector_elements, 1);
328       break;
329 
330    case ir_unop_i2i64:
331    case ir_unop_u2i64:
332    case ir_unop_b2i64:
333    case ir_unop_f2i64:
334    case ir_unop_d2i64:
335    case ir_unop_u642i64:
336       this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
337 					   op0->type->vector_elements, 1);
338       break;
339 
340    case ir_unop_i2u64:
341    case ir_unop_u2u64:
342    case ir_unop_f2u64:
343    case ir_unop_d2u64:
344    case ir_unop_i642u64:
345       this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
346 					   op0->type->vector_elements, 1);
347       break;
348 
349    case ir_unop_unpack_double_2x32:
350    case ir_unop_unpack_uint_2x32:
351       this->type = glsl_type::uvec2_type;
352       break;
353 
354    case ir_unop_unpack_int_2x32:
355       this->type = glsl_type::ivec2_type;
356       break;
357 
358    case ir_unop_pack_snorm_2x16:
359    case ir_unop_pack_snorm_4x8:
360    case ir_unop_pack_unorm_2x16:
361    case ir_unop_pack_unorm_4x8:
362    case ir_unop_pack_half_2x16:
363       this->type = glsl_type::uint_type;
364       break;
365 
366    case ir_unop_pack_double_2x32:
367       this->type = glsl_type::double_type;
368       break;
369 
370    case ir_unop_pack_int_2x32:
371       this->type = glsl_type::int64_t_type;
372       break;
373 
374    case ir_unop_pack_uint_2x32:
375       this->type = glsl_type::uint64_t_type;
376       break;
377 
378    case ir_unop_unpack_snorm_2x16:
379    case ir_unop_unpack_unorm_2x16:
380    case ir_unop_unpack_half_2x16:
381       this->type = glsl_type::vec2_type;
382       break;
383 
384    case ir_unop_unpack_snorm_4x8:
385    case ir_unop_unpack_unorm_4x8:
386       this->type = glsl_type::vec4_type;
387       break;
388 
389    case ir_unop_unpack_sampler_2x32:
390    case ir_unop_unpack_image_2x32:
391       this->type = glsl_type::uvec2_type;
392       break;
393 
394    case ir_unop_pack_sampler_2x32:
395    case ir_unop_pack_image_2x32:
396       this->type = op0->type;
397       break;
398 
399    case ir_unop_frexp_sig:
400       this->type = op0->type;
401       break;
402    case ir_unop_frexp_exp:
403       this->type = glsl_type::get_instance(GLSL_TYPE_INT,
404 					   op0->type->vector_elements, 1);
405       break;
406 
407    case ir_unop_get_buffer_size:
408    case ir_unop_ssbo_unsized_array_length:
409       this->type = glsl_type::int_type;
410       break;
411 
412    case ir_unop_bitcast_i642d:
413    case ir_unop_bitcast_u642d:
414       this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
415                                            op0->type->vector_elements, 1);
416       break;
417 
418    case ir_unop_bitcast_d2i64:
419       this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
420                                            op0->type->vector_elements, 1);
421       break;
422    case ir_unop_bitcast_d2u64:
423       this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
424                                            op0->type->vector_elements, 1);
425       break;
426 
427    default:
428       assert(!"not reached: missing automatic type setup for ir_expression");
429       this->type = op0->type;
430       break;
431    }
432 }
433 
ir_expression(int op,ir_rvalue * op0,ir_rvalue * op1)434 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
435    : ir_rvalue(ir_type_expression)
436 {
437    this->operation = ir_expression_operation(op);
438    this->operands[0] = op0;
439    this->operands[1] = op1;
440    this->operands[2] = NULL;
441    this->operands[3] = NULL;
442 
443    assert(op > ir_last_unop);
444    init_num_operands();
445    assert(num_operands == 2);
446    for (unsigned i = 0; i < num_operands; i++) {
447       assert(this->operands[i] != NULL);
448    }
449 
450    switch (this->operation) {
451    case ir_binop_all_equal:
452    case ir_binop_any_nequal:
453       this->type = glsl_type::bool_type;
454       break;
455 
456    case ir_binop_add:
457    case ir_binop_sub:
458    case ir_binop_min:
459    case ir_binop_max:
460    case ir_binop_pow:
461    case ir_binop_mul:
462    case ir_binop_div:
463    case ir_binop_mod:
464    case ir_binop_atan2:
465       if (op0->type->is_scalar()) {
466 	 this->type = op1->type;
467       } else if (op1->type->is_scalar()) {
468 	 this->type = op0->type;
469       } else {
470          if (this->operation == ir_binop_mul) {
471             this->type = glsl_type::get_mul_type(op0->type, op1->type);
472          } else {
473             assert(op0->type == op1->type);
474             this->type = op0->type;
475          }
476       }
477       break;
478 
479    case ir_binop_logic_and:
480    case ir_binop_logic_xor:
481    case ir_binop_logic_or:
482    case ir_binop_bit_and:
483    case ir_binop_bit_xor:
484    case ir_binop_bit_or:
485        assert(!op0->type->is_matrix());
486        assert(!op1->type->is_matrix());
487       if (op0->type->is_scalar()) {
488          this->type = op1->type;
489       } else if (op1->type->is_scalar()) {
490          this->type = op0->type;
491       } else {
492           assert(op0->type->vector_elements == op1->type->vector_elements);
493           this->type = op0->type;
494       }
495       break;
496 
497    case ir_binop_equal:
498    case ir_binop_nequal:
499    case ir_binop_gequal:
500    case ir_binop_less:
501       assert(op0->type == op1->type);
502       this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
503 					   op0->type->vector_elements, 1);
504       break;
505 
506    case ir_binop_dot:
507       this->type = op0->type->get_base_type();
508       break;
509 
510    case ir_binop_imul_high:
511    case ir_binop_mul_32x16:
512    case ir_binop_carry:
513    case ir_binop_borrow:
514    case ir_binop_lshift:
515    case ir_binop_rshift:
516    case ir_binop_ldexp:
517    case ir_binop_interpolate_at_offset:
518    case ir_binop_interpolate_at_sample:
519       this->type = op0->type;
520       break;
521 
522    case ir_binop_add_sat:
523    case ir_binop_sub_sat:
524    case ir_binop_avg:
525    case ir_binop_avg_round:
526       assert(op0->type == op1->type);
527       this->type = op0->type;
528       break;
529 
530    case ir_binop_abs_sub: {
531       enum glsl_base_type base;
532 
533       assert(op0->type == op1->type);
534 
535       switch (op0->type->base_type) {
536       case GLSL_TYPE_UINT:
537       case GLSL_TYPE_INT:
538          base = GLSL_TYPE_UINT;
539          break;
540       case GLSL_TYPE_UINT8:
541       case GLSL_TYPE_INT8:
542          base = GLSL_TYPE_UINT8;
543          break;
544       case GLSL_TYPE_UINT16:
545       case GLSL_TYPE_INT16:
546          base = GLSL_TYPE_UINT16;
547          break;
548       case GLSL_TYPE_UINT64:
549       case GLSL_TYPE_INT64:
550          base = GLSL_TYPE_UINT64;
551          break;
552       default:
553          unreachable(!"Invalid base type.");
554       }
555 
556       this->type = glsl_type::get_instance(base, op0->type->vector_elements, 1);
557       break;
558    }
559 
560    case ir_binop_vector_extract:
561       this->type = op0->type->get_scalar_type();
562       break;
563 
564    default:
565       assert(!"not reached: missing automatic type setup for ir_expression");
566       this->type = glsl_type::float_type;
567    }
568 }
569 
ir_expression(int op,ir_rvalue * op0,ir_rvalue * op1,ir_rvalue * op2)570 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1,
571                              ir_rvalue *op2)
572    : ir_rvalue(ir_type_expression)
573 {
574    this->operation = ir_expression_operation(op);
575    this->operands[0] = op0;
576    this->operands[1] = op1;
577    this->operands[2] = op2;
578    this->operands[3] = NULL;
579 
580    assert(op > ir_last_binop && op <= ir_last_triop);
581    init_num_operands();
582    assert(num_operands == 3);
583    for (unsigned i = 0; i < num_operands; i++) {
584       assert(this->operands[i] != NULL);
585    }
586 
587    switch (this->operation) {
588    case ir_triop_fma:
589    case ir_triop_lrp:
590    case ir_triop_bitfield_extract:
591    case ir_triop_vector_insert:
592       this->type = op0->type;
593       break;
594 
595    case ir_triop_csel:
596       this->type = op1->type;
597       break;
598 
599    default:
600       assert(!"not reached: missing automatic type setup for ir_expression");
601       this->type = glsl_type::float_type;
602    }
603 }
604 
605 /**
606  * This is only here for ir_reader to used for testing purposes. Please use
607  * the precomputed num_operands field if you need the number of operands.
608  */
609 unsigned
get_num_operands(ir_expression_operation op)610 ir_expression::get_num_operands(ir_expression_operation op)
611 {
612    assert(op <= ir_last_opcode);
613 
614    if (op <= ir_last_unop)
615       return 1;
616 
617    if (op <= ir_last_binop)
618       return 2;
619 
620    if (op <= ir_last_triop)
621       return 3;
622 
623    if (op <= ir_last_quadop)
624       return 4;
625 
626    unreachable("Could not calculate number of operands");
627 }
628 
629 #include "ir_expression_operation_strings.h"
630 
631 const char*
depth_layout_string(ir_depth_layout layout)632 depth_layout_string(ir_depth_layout layout)
633 {
634    switch(layout) {
635    case ir_depth_layout_none:      return "";
636    case ir_depth_layout_any:       return "depth_any";
637    case ir_depth_layout_greater:   return "depth_greater";
638    case ir_depth_layout_less:      return "depth_less";
639    case ir_depth_layout_unchanged: return "depth_unchanged";
640 
641    default:
642       assert(0);
643       return "";
644    }
645 }
646 
647 ir_expression_operation
get_operator(const char * str)648 ir_expression::get_operator(const char *str)
649 {
650    for (int op = 0; op <= int(ir_last_opcode); op++) {
651       if (strcmp(str, ir_expression_operation_strings[op]) == 0)
652 	 return (ir_expression_operation) op;
653    }
654    return (ir_expression_operation) -1;
655 }
656 
657 ir_variable *
variable_referenced() const658 ir_expression::variable_referenced() const
659 {
660    switch (operation) {
661       case ir_binop_vector_extract:
662       case ir_triop_vector_insert:
663          /* We get these for things like a[0] where a is a vector type. In these
664           * cases we want variable_referenced() to return the actual vector
665           * variable this is wrapping.
666           */
667          return operands[0]->variable_referenced();
668       default:
669          return ir_rvalue::variable_referenced();
670    }
671 }
672 
ir_constant()673 ir_constant::ir_constant()
674    : ir_rvalue(ir_type_constant)
675 {
676    this->const_elements = NULL;
677 }
678 
ir_constant(const struct glsl_type * type,const ir_constant_data * data)679 ir_constant::ir_constant(const struct glsl_type *type,
680 			 const ir_constant_data *data)
681    : ir_rvalue(ir_type_constant)
682 {
683    this->const_elements = NULL;
684 
685    assert((type->base_type >= GLSL_TYPE_UINT)
686 	  && (type->base_type <= GLSL_TYPE_IMAGE));
687 
688    this->type = type;
689    memcpy(& this->value, data, sizeof(this->value));
690 }
691 
ir_constant(float16_t f16,unsigned vector_elements)692 ir_constant::ir_constant(float16_t f16, unsigned vector_elements)
693    : ir_rvalue(ir_type_constant)
694 {
695    assert(vector_elements <= 4);
696    this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT16, vector_elements, 1);
697    for (unsigned i = 0; i < vector_elements; i++) {
698       this->value.f16[i] = f16.bits;
699    }
700    for (unsigned i = vector_elements; i < 16; i++)  {
701       this->value.f[i] = 0;
702    }
703 }
704 
ir_constant(float f,unsigned vector_elements)705 ir_constant::ir_constant(float f, unsigned vector_elements)
706    : ir_rvalue(ir_type_constant)
707 {
708    assert(vector_elements <= 4);
709    this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT, vector_elements, 1);
710    for (unsigned i = 0; i < vector_elements; i++) {
711       this->value.f[i] = f;
712    }
713    for (unsigned i = vector_elements; i < 16; i++)  {
714       this->value.f[i] = 0;
715    }
716 }
717 
ir_constant(double d,unsigned vector_elements)718 ir_constant::ir_constant(double d, unsigned vector_elements)
719    : ir_rvalue(ir_type_constant)
720 {
721    assert(vector_elements <= 4);
722    this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE, vector_elements, 1);
723    for (unsigned i = 0; i < vector_elements; i++) {
724       this->value.d[i] = d;
725    }
726    for (unsigned i = vector_elements; i < 16; i++)  {
727       this->value.d[i] = 0.0;
728    }
729 }
730 
ir_constant(unsigned int u,unsigned vector_elements)731 ir_constant::ir_constant(unsigned int u, unsigned vector_elements)
732    : ir_rvalue(ir_type_constant)
733 {
734    assert(vector_elements <= 4);
735    this->type = glsl_type::get_instance(GLSL_TYPE_UINT, vector_elements, 1);
736    for (unsigned i = 0; i < vector_elements; i++) {
737       this->value.u[i] = u;
738    }
739    for (unsigned i = vector_elements; i < 16; i++) {
740       this->value.u[i] = 0;
741    }
742 }
743 
ir_constant(int integer,unsigned vector_elements)744 ir_constant::ir_constant(int integer, unsigned vector_elements)
745    : ir_rvalue(ir_type_constant)
746 {
747    assert(vector_elements <= 4);
748    this->type = glsl_type::get_instance(GLSL_TYPE_INT, vector_elements, 1);
749    for (unsigned i = 0; i < vector_elements; i++) {
750       this->value.i[i] = integer;
751    }
752    for (unsigned i = vector_elements; i < 16; i++) {
753       this->value.i[i] = 0;
754    }
755 }
756 
ir_constant(uint64_t u64,unsigned vector_elements)757 ir_constant::ir_constant(uint64_t u64, unsigned vector_elements)
758    : ir_rvalue(ir_type_constant)
759 {
760    assert(vector_elements <= 4);
761    this->type = glsl_type::get_instance(GLSL_TYPE_UINT64, vector_elements, 1);
762    for (unsigned i = 0; i < vector_elements; i++) {
763       this->value.u64[i] = u64;
764    }
765    for (unsigned i = vector_elements; i < 16; i++) {
766       this->value.u64[i] = 0;
767    }
768 }
769 
ir_constant(int64_t int64,unsigned vector_elements)770 ir_constant::ir_constant(int64_t int64, unsigned vector_elements)
771    : ir_rvalue(ir_type_constant)
772 {
773    assert(vector_elements <= 4);
774    this->type = glsl_type::get_instance(GLSL_TYPE_INT64, vector_elements, 1);
775    for (unsigned i = 0; i < vector_elements; i++) {
776       this->value.i64[i] = int64;
777    }
778    for (unsigned i = vector_elements; i < 16; i++) {
779       this->value.i64[i] = 0;
780    }
781 }
782 
ir_constant(bool b,unsigned vector_elements)783 ir_constant::ir_constant(bool b, unsigned vector_elements)
784    : ir_rvalue(ir_type_constant)
785 {
786    assert(vector_elements <= 4);
787    this->type = glsl_type::get_instance(GLSL_TYPE_BOOL, vector_elements, 1);
788    for (unsigned i = 0; i < vector_elements; i++) {
789       this->value.b[i] = b;
790    }
791    for (unsigned i = vector_elements; i < 16; i++) {
792       this->value.b[i] = false;
793    }
794 }
795 
ir_constant(const ir_constant * c,unsigned i)796 ir_constant::ir_constant(const ir_constant *c, unsigned i)
797    : ir_rvalue(ir_type_constant)
798 {
799    this->const_elements = NULL;
800    this->type = c->type->get_base_type();
801 
802    switch (this->type->base_type) {
803    case GLSL_TYPE_UINT:  this->value.u[0] = c->value.u[i]; break;
804    case GLSL_TYPE_INT:   this->value.i[0] = c->value.i[i]; break;
805    case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
806    case GLSL_TYPE_FLOAT16: this->value.f16[0] = c->value.f16[i]; break;
807    case GLSL_TYPE_BOOL:  this->value.b[0] = c->value.b[i]; break;
808    case GLSL_TYPE_DOUBLE: this->value.d[0] = c->value.d[i]; break;
809    default:              assert(!"Should not get here."); break;
810    }
811 }
812 
ir_constant(const struct glsl_type * type,exec_list * value_list)813 ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
814    : ir_rvalue(ir_type_constant)
815 {
816    this->const_elements = NULL;
817    this->type = type;
818 
819    assert(type->is_scalar() || type->is_vector() || type->is_matrix()
820 	  || type->is_struct() || type->is_array());
821 
822    /* If the constant is a record, the types of each of the entries in
823     * value_list must be a 1-for-1 match with the structure components.  Each
824     * entry must also be a constant.  Just move the nodes from the value_list
825     * to the list in the ir_constant.
826     */
827    if (type->is_array() || type->is_struct()) {
828       this->const_elements = ralloc_array(this, ir_constant *, type->length);
829       unsigned i = 0;
830       foreach_in_list(ir_constant, value, value_list) {
831 	 assert(value->as_constant() != NULL);
832 
833 	 this->const_elements[i++] = value;
834       }
835       return;
836    }
837 
838    for (unsigned i = 0; i < 16; i++) {
839       this->value.u[i] = 0;
840    }
841 
842    ir_constant *value = (ir_constant *) (value_list->get_head_raw());
843 
844    /* Constructors with exactly one scalar argument are special for vectors
845     * and matrices.  For vectors, the scalar value is replicated to fill all
846     * the components.  For matrices, the scalar fills the components of the
847     * diagonal while the rest is filled with 0.
848     */
849    if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
850       if (type->is_matrix()) {
851 	 /* Matrix - fill diagonal (rest is already set to 0) */
852          for (unsigned i = 0; i < type->matrix_columns; i++) {
853             switch (type->base_type) {
854             case GLSL_TYPE_FLOAT:
855                this->value.f[i * type->vector_elements + i] =
856                   value->value.f[0];
857                break;
858             case GLSL_TYPE_DOUBLE:
859                this->value.d[i * type->vector_elements + i] =
860                   value->value.d[0];
861                break;
862             case GLSL_TYPE_FLOAT16:
863                this->value.f16[i * type->vector_elements + i] =
864                   value->value.f16[0];
865                break;
866             default:
867                assert(!"unexpected matrix base type");
868             }
869          }
870       } else {
871 	 /* Vector or scalar - fill all components */
872 	 switch (type->base_type) {
873 	 case GLSL_TYPE_UINT:
874 	 case GLSL_TYPE_INT:
875 	    for (unsigned i = 0; i < type->components(); i++)
876 	       this->value.u[i] = value->value.u[0];
877 	    break;
878 	 case GLSL_TYPE_FLOAT:
879 	    for (unsigned i = 0; i < type->components(); i++)
880 	       this->value.f[i] = value->value.f[0];
881 	    break;
882 	 case GLSL_TYPE_FLOAT16:
883 	    for (unsigned i = 0; i < type->components(); i++)
884 	       this->value.f16[i] = value->value.f16[0];
885 	    break;
886 	 case GLSL_TYPE_DOUBLE:
887 	    for (unsigned i = 0; i < type->components(); i++)
888 	       this->value.d[i] = value->value.d[0];
889 	    break;
890 	 case GLSL_TYPE_UINT64:
891 	 case GLSL_TYPE_INT64:
892 	    for (unsigned i = 0; i < type->components(); i++)
893 	       this->value.u64[i] = value->value.u64[0];
894 	    break;
895 	 case GLSL_TYPE_BOOL:
896 	    for (unsigned i = 0; i < type->components(); i++)
897 	       this->value.b[i] = value->value.b[0];
898 	    break;
899 	 case GLSL_TYPE_SAMPLER:
900 	 case GLSL_TYPE_IMAGE:
901 	    this->value.u64[0] = value->value.u64[0];
902 	    break;
903 	 default:
904 	    assert(!"Should not get here.");
905 	    break;
906 	 }
907       }
908       return;
909    }
910 
911    if (type->is_matrix() && value->type->is_matrix()) {
912       assert(value->next->is_tail_sentinel());
913 
914       /* From section 5.4.2 of the GLSL 1.20 spec:
915        * "If a matrix is constructed from a matrix, then each component
916        *  (column i, row j) in the result that has a corresponding component
917        *  (column i, row j) in the argument will be initialized from there."
918        */
919       unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
920       unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
921       for (unsigned i = 0; i < cols; i++) {
922 	 for (unsigned j = 0; j < rows; j++) {
923 	    const unsigned src = i * value->type->vector_elements + j;
924 	    const unsigned dst = i * type->vector_elements + j;
925 	    this->value.f[dst] = value->value.f[src];
926 	 }
927       }
928 
929       /* "All other components will be initialized to the identity matrix." */
930       for (unsigned i = cols; i < type->matrix_columns; i++)
931 	 this->value.f[i * type->vector_elements + i] = 1.0;
932 
933       return;
934    }
935 
936    /* Use each component from each entry in the value_list to initialize one
937     * component of the constant being constructed.
938     */
939    unsigned i = 0;
940    for (;;) {
941       assert(value->as_constant() != NULL);
942       assert(!value->is_tail_sentinel());
943 
944       for (unsigned j = 0; j < value->type->components(); j++) {
945 	 switch (type->base_type) {
946 	 case GLSL_TYPE_UINT:
947 	    this->value.u[i] = value->get_uint_component(j);
948 	    break;
949 	 case GLSL_TYPE_INT:
950 	    this->value.i[i] = value->get_int_component(j);
951 	    break;
952 	 case GLSL_TYPE_FLOAT:
953 	    this->value.f[i] = value->get_float_component(j);
954 	    break;
955 	 case GLSL_TYPE_FLOAT16:
956 	    this->value.f16[i] = value->get_float16_component(j);
957 	    break;
958 	 case GLSL_TYPE_BOOL:
959 	    this->value.b[i] = value->get_bool_component(j);
960 	    break;
961 	 case GLSL_TYPE_DOUBLE:
962 	    this->value.d[i] = value->get_double_component(j);
963 	    break;
964          case GLSL_TYPE_UINT64:
965 	    this->value.u64[i] = value->get_uint64_component(j);
966 	    break;
967 	 case GLSL_TYPE_INT64:
968 	    this->value.i64[i] = value->get_int64_component(j);
969 	    break;
970 	 default:
971 	    /* FINISHME: What to do?  Exceptions are not the answer.
972 	     */
973 	    break;
974 	 }
975 
976 	 i++;
977 	 if (i >= type->components())
978 	    break;
979       }
980 
981       if (i >= type->components())
982 	 break; /* avoid downcasting a list sentinel */
983       value = (ir_constant *) value->next;
984    }
985 }
986 
987 ir_constant *
zero(void * mem_ctx,const glsl_type * type)988 ir_constant::zero(void *mem_ctx, const glsl_type *type)
989 {
990    assert(type->is_scalar() || type->is_vector() || type->is_matrix()
991 	  || type->is_struct() || type->is_array());
992 
993    ir_constant *c = new(mem_ctx) ir_constant;
994    c->type = type;
995    memset(&c->value, 0, sizeof(c->value));
996 
997    if (type->is_array()) {
998       c->const_elements = ralloc_array(c, ir_constant *, type->length);
999 
1000       for (unsigned i = 0; i < type->length; i++)
1001 	 c->const_elements[i] = ir_constant::zero(c, type->fields.array);
1002    }
1003 
1004    if (type->is_struct()) {
1005       c->const_elements = ralloc_array(c, ir_constant *, type->length);
1006 
1007       for (unsigned i = 0; i < type->length; i++) {
1008          c->const_elements[i] =
1009             ir_constant::zero(mem_ctx, type->fields.structure[i].type);
1010       }
1011    }
1012 
1013    return c;
1014 }
1015 
1016 bool
get_bool_component(unsigned i) const1017 ir_constant::get_bool_component(unsigned i) const
1018 {
1019    switch (this->type->base_type) {
1020    case GLSL_TYPE_UINT:  return this->value.u[i] != 0;
1021    case GLSL_TYPE_INT:   return this->value.i[i] != 0;
1022    case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
1023    case GLSL_TYPE_FLOAT16: return ((int)_mesa_half_to_float(this->value.f16[i])) != 0;
1024    case GLSL_TYPE_BOOL:  return this->value.b[i];
1025    case GLSL_TYPE_DOUBLE: return this->value.d[i] != 0.0;
1026    case GLSL_TYPE_SAMPLER:
1027    case GLSL_TYPE_IMAGE:
1028    case GLSL_TYPE_UINT64: return this->value.u64[i] != 0;
1029    case GLSL_TYPE_INT64:  return this->value.i64[i] != 0;
1030    default:              assert(!"Should not get here."); break;
1031    }
1032 
1033    /* Must return something to make the compiler happy.  This is clearly an
1034     * error case.
1035     */
1036    return false;
1037 }
1038 
1039 float
get_float_component(unsigned i) const1040 ir_constant::get_float_component(unsigned i) const
1041 {
1042    switch (this->type->base_type) {
1043    case GLSL_TYPE_UINT:  return (float) this->value.u[i];
1044    case GLSL_TYPE_INT:   return (float) this->value.i[i];
1045    case GLSL_TYPE_FLOAT: return this->value.f[i];
1046    case GLSL_TYPE_FLOAT16: return _mesa_half_to_float(this->value.f16[i]);
1047    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1.0f : 0.0f;
1048    case GLSL_TYPE_DOUBLE: return (float) this->value.d[i];
1049    case GLSL_TYPE_SAMPLER:
1050    case GLSL_TYPE_IMAGE:
1051    case GLSL_TYPE_UINT64: return (float) this->value.u64[i];
1052    case GLSL_TYPE_INT64:  return (float) this->value.i64[i];
1053    default:              assert(!"Should not get here."); break;
1054    }
1055 
1056    /* Must return something to make the compiler happy.  This is clearly an
1057     * error case.
1058     */
1059    return 0.0;
1060 }
1061 
1062 uint16_t
get_float16_component(unsigned i) const1063 ir_constant::get_float16_component(unsigned i) const
1064 {
1065    if (this->type->base_type == GLSL_TYPE_FLOAT16)
1066       return this->value.f16[i];
1067    else
1068       return _mesa_float_to_half(get_float_component(i));
1069 }
1070 
1071 double
get_double_component(unsigned i) const1072 ir_constant::get_double_component(unsigned i) const
1073 {
1074    switch (this->type->base_type) {
1075    case GLSL_TYPE_UINT:  return (double) this->value.u[i];
1076    case GLSL_TYPE_INT:   return (double) this->value.i[i];
1077    case GLSL_TYPE_FLOAT: return (double) this->value.f[i];
1078    case GLSL_TYPE_FLOAT16: return (double) _mesa_half_to_float(this->value.f16[i]);
1079    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1.0 : 0.0;
1080    case GLSL_TYPE_DOUBLE: return this->value.d[i];
1081    case GLSL_TYPE_SAMPLER:
1082    case GLSL_TYPE_IMAGE:
1083    case GLSL_TYPE_UINT64: return (double) this->value.u64[i];
1084    case GLSL_TYPE_INT64:  return (double) this->value.i64[i];
1085    default:              assert(!"Should not get here."); break;
1086    }
1087 
1088    /* Must return something to make the compiler happy.  This is clearly an
1089     * error case.
1090     */
1091    return 0.0;
1092 }
1093 
1094 int
get_int_component(unsigned i) const1095 ir_constant::get_int_component(unsigned i) const
1096 {
1097    switch (this->type->base_type) {
1098    case GLSL_TYPE_UINT:  return this->value.u[i];
1099    case GLSL_TYPE_INT:   return this->value.i[i];
1100    case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
1101    case GLSL_TYPE_FLOAT16: return (int) _mesa_half_to_float(this->value.f16[i]);
1102    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1103    case GLSL_TYPE_DOUBLE: return (int) this->value.d[i];
1104    case GLSL_TYPE_SAMPLER:
1105    case GLSL_TYPE_IMAGE:
1106    case GLSL_TYPE_UINT64: return (int) this->value.u64[i];
1107    case GLSL_TYPE_INT64:  return (int) this->value.i64[i];
1108    default:              assert(!"Should not get here."); break;
1109    }
1110 
1111    /* Must return something to make the compiler happy.  This is clearly an
1112     * error case.
1113     */
1114    return 0;
1115 }
1116 
1117 unsigned
get_uint_component(unsigned i) const1118 ir_constant::get_uint_component(unsigned i) const
1119 {
1120    switch (this->type->base_type) {
1121    case GLSL_TYPE_UINT:  return this->value.u[i];
1122    case GLSL_TYPE_INT:   return this->value.i[i];
1123    case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
1124    case GLSL_TYPE_FLOAT16: return (unsigned) _mesa_half_to_float(this->value.f16[i]);
1125    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1126    case GLSL_TYPE_DOUBLE: return (unsigned) this->value.d[i];
1127    case GLSL_TYPE_SAMPLER:
1128    case GLSL_TYPE_IMAGE:
1129    case GLSL_TYPE_UINT64: return (unsigned) this->value.u64[i];
1130    case GLSL_TYPE_INT64:  return (unsigned) this->value.i64[i];
1131    default:              assert(!"Should not get here."); break;
1132    }
1133 
1134    /* Must return something to make the compiler happy.  This is clearly an
1135     * error case.
1136     */
1137    return 0;
1138 }
1139 
1140 int64_t
get_int64_component(unsigned i) const1141 ir_constant::get_int64_component(unsigned i) const
1142 {
1143    switch (this->type->base_type) {
1144    case GLSL_TYPE_UINT:  return this->value.u[i];
1145    case GLSL_TYPE_INT:   return this->value.i[i];
1146    case GLSL_TYPE_FLOAT: return (int64_t) this->value.f[i];
1147    case GLSL_TYPE_FLOAT16: return (int64_t) _mesa_half_to_float(this->value.f16[i]);
1148    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1149    case GLSL_TYPE_DOUBLE: return (int64_t) this->value.d[i];
1150    case GLSL_TYPE_SAMPLER:
1151    case GLSL_TYPE_IMAGE:
1152    case GLSL_TYPE_UINT64: return (int64_t) this->value.u64[i];
1153    case GLSL_TYPE_INT64:  return this->value.i64[i];
1154    default:              assert(!"Should not get here."); break;
1155    }
1156 
1157    /* Must return something to make the compiler happy.  This is clearly an
1158     * error case.
1159     */
1160    return 0;
1161 }
1162 
1163 uint64_t
get_uint64_component(unsigned i) const1164 ir_constant::get_uint64_component(unsigned i) const
1165 {
1166    switch (this->type->base_type) {
1167    case GLSL_TYPE_UINT:  return this->value.u[i];
1168    case GLSL_TYPE_INT:   return this->value.i[i];
1169    case GLSL_TYPE_FLOAT: return (uint64_t) this->value.f[i];
1170    case GLSL_TYPE_FLOAT16: return (uint64_t) _mesa_half_to_float(this->value.f16[i]);
1171    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1172    case GLSL_TYPE_DOUBLE: return (uint64_t) this->value.d[i];
1173    case GLSL_TYPE_SAMPLER:
1174    case GLSL_TYPE_IMAGE:
1175    case GLSL_TYPE_UINT64: return this->value.u64[i];
1176    case GLSL_TYPE_INT64:  return (uint64_t) this->value.i64[i];
1177    default:              assert(!"Should not get here."); break;
1178    }
1179 
1180    /* Must return something to make the compiler happy.  This is clearly an
1181     * error case.
1182     */
1183    return 0;
1184 }
1185 
1186 ir_constant *
get_array_element(unsigned i) const1187 ir_constant::get_array_element(unsigned i) const
1188 {
1189    assert(this->type->is_array());
1190 
1191    /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
1192     *
1193     *     "Behavior is undefined if a shader subscripts an array with an index
1194     *     less than 0 or greater than or equal to the size the array was
1195     *     declared with."
1196     *
1197     * Most out-of-bounds accesses are removed before things could get this far.
1198     * There are cases where non-constant array index values can get constant
1199     * folded.
1200     */
1201    if (int(i) < 0)
1202       i = 0;
1203    else if (i >= this->type->length)
1204       i = this->type->length - 1;
1205 
1206    return const_elements[i];
1207 }
1208 
1209 ir_constant *
get_record_field(int idx)1210 ir_constant::get_record_field(int idx)
1211 {
1212    assert(this->type->is_struct());
1213    assert(idx >= 0 && (unsigned) idx < this->type->length);
1214 
1215    return const_elements[idx];
1216 }
1217 
1218 void
copy_offset(ir_constant * src,int offset)1219 ir_constant::copy_offset(ir_constant *src, int offset)
1220 {
1221    switch (this->type->base_type) {
1222    case GLSL_TYPE_UINT:
1223    case GLSL_TYPE_INT:
1224    case GLSL_TYPE_FLOAT:
1225    case GLSL_TYPE_FLOAT16:
1226    case GLSL_TYPE_DOUBLE:
1227    case GLSL_TYPE_SAMPLER:
1228    case GLSL_TYPE_IMAGE:
1229    case GLSL_TYPE_UINT64:
1230    case GLSL_TYPE_INT64:
1231    case GLSL_TYPE_BOOL: {
1232       unsigned int size = src->type->components();
1233       assert (size <= this->type->components() - offset);
1234       for (unsigned int i=0; i<size; i++) {
1235 	 switch (this->type->base_type) {
1236 	 case GLSL_TYPE_UINT:
1237 	    value.u[i+offset] = src->get_uint_component(i);
1238 	    break;
1239 	 case GLSL_TYPE_INT:
1240 	    value.i[i+offset] = src->get_int_component(i);
1241 	    break;
1242 	 case GLSL_TYPE_FLOAT:
1243 	    value.f[i+offset] = src->get_float_component(i);
1244 	    break;
1245 	 case GLSL_TYPE_FLOAT16:
1246 	    value.f16[i+offset] = src->get_float16_component(i);
1247 	    break;
1248 	 case GLSL_TYPE_BOOL:
1249 	    value.b[i+offset] = src->get_bool_component(i);
1250 	    break;
1251 	 case GLSL_TYPE_DOUBLE:
1252 	    value.d[i+offset] = src->get_double_component(i);
1253 	    break;
1254 	 case GLSL_TYPE_SAMPLER:
1255 	 case GLSL_TYPE_IMAGE:
1256 	 case GLSL_TYPE_UINT64:
1257 	    value.u64[i+offset] = src->get_uint64_component(i);
1258 	    break;
1259 	 case GLSL_TYPE_INT64:
1260 	    value.i64[i+offset] = src->get_int64_component(i);
1261 	    break;
1262 	 default: // Shut up the compiler
1263 	    break;
1264 	 }
1265       }
1266       break;
1267    }
1268 
1269    case GLSL_TYPE_STRUCT:
1270    case GLSL_TYPE_ARRAY: {
1271       assert (src->type == this->type);
1272       for (unsigned i = 0; i < this->type->length; i++) {
1273 	 this->const_elements[i] = src->const_elements[i]->clone(this, NULL);
1274       }
1275       break;
1276    }
1277 
1278    default:
1279       assert(!"Should not get here.");
1280       break;
1281    }
1282 }
1283 
1284 void
copy_masked_offset(ir_constant * src,int offset,unsigned int mask)1285 ir_constant::copy_masked_offset(ir_constant *src, int offset, unsigned int mask)
1286 {
1287    assert (!type->is_array() && !type->is_struct());
1288 
1289    if (!type->is_vector() && !type->is_matrix()) {
1290       offset = 0;
1291       mask = 1;
1292    }
1293 
1294    int id = 0;
1295    for (int i=0; i<4; i++) {
1296       if (mask & (1 << i)) {
1297 	 switch (this->type->base_type) {
1298 	 case GLSL_TYPE_UINT:
1299 	    value.u[i+offset] = src->get_uint_component(id++);
1300 	    break;
1301 	 case GLSL_TYPE_INT:
1302 	    value.i[i+offset] = src->get_int_component(id++);
1303 	    break;
1304 	 case GLSL_TYPE_FLOAT:
1305 	    value.f[i+offset] = src->get_float_component(id++);
1306 	    break;
1307 	 case GLSL_TYPE_FLOAT16:
1308 	    value.f16[i+offset] = src->get_float16_component(id++);
1309 	    break;
1310 	 case GLSL_TYPE_BOOL:
1311 	    value.b[i+offset] = src->get_bool_component(id++);
1312 	    break;
1313 	 case GLSL_TYPE_DOUBLE:
1314 	    value.d[i+offset] = src->get_double_component(id++);
1315 	    break;
1316 	 case GLSL_TYPE_SAMPLER:
1317 	 case GLSL_TYPE_IMAGE:
1318 	 case GLSL_TYPE_UINT64:
1319 	    value.u64[i+offset] = src->get_uint64_component(id++);
1320 	    break;
1321 	 case GLSL_TYPE_INT64:
1322 	    value.i64[i+offset] = src->get_int64_component(id++);
1323 	    break;
1324 	 default:
1325 	    assert(!"Should not get here.");
1326 	    return;
1327 	 }
1328       }
1329    }
1330 }
1331 
1332 bool
has_value(const ir_constant * c) const1333 ir_constant::has_value(const ir_constant *c) const
1334 {
1335    if (this->type != c->type)
1336       return false;
1337 
1338    if (this->type->is_array() || this->type->is_struct()) {
1339       for (unsigned i = 0; i < this->type->length; i++) {
1340 	 if (!this->const_elements[i]->has_value(c->const_elements[i]))
1341 	    return false;
1342       }
1343       return true;
1344    }
1345 
1346    for (unsigned i = 0; i < this->type->components(); i++) {
1347       switch (this->type->base_type) {
1348       case GLSL_TYPE_UINT:
1349 	 if (this->value.u[i] != c->value.u[i])
1350 	    return false;
1351 	 break;
1352       case GLSL_TYPE_INT:
1353 	 if (this->value.i[i] != c->value.i[i])
1354 	    return false;
1355 	 break;
1356       case GLSL_TYPE_FLOAT:
1357 	 if (this->value.f[i] != c->value.f[i])
1358 	    return false;
1359 	 break;
1360       case GLSL_TYPE_FLOAT16:
1361 	/* Convert to float to make sure NaN and ±0.0 compares correctly */
1362 	 if (_mesa_half_to_float(this->value.f16[i]) !=
1363              _mesa_half_to_float(c->value.f16[i]))
1364 	    return false;
1365 	 break;
1366       case GLSL_TYPE_BOOL:
1367 	 if (this->value.b[i] != c->value.b[i])
1368 	    return false;
1369 	 break;
1370       case GLSL_TYPE_DOUBLE:
1371 	 if (this->value.d[i] != c->value.d[i])
1372 	    return false;
1373 	 break;
1374       case GLSL_TYPE_SAMPLER:
1375       case GLSL_TYPE_IMAGE:
1376       case GLSL_TYPE_UINT64:
1377 	 if (this->value.u64[i] != c->value.u64[i])
1378 	    return false;
1379 	 break;
1380       case GLSL_TYPE_INT64:
1381 	 if (this->value.i64[i] != c->value.i64[i])
1382 	    return false;
1383 	 break;
1384       default:
1385 	 assert(!"Should not get here.");
1386 	 return false;
1387       }
1388    }
1389 
1390    return true;
1391 }
1392 
1393 bool
is_value(float f,int i) const1394 ir_constant::is_value(float f, int i) const
1395 {
1396    if (!this->type->is_scalar() && !this->type->is_vector())
1397       return false;
1398 
1399    /* Only accept boolean values for 0/1. */
1400    if (int(bool(i)) != i && this->type->is_boolean())
1401       return false;
1402 
1403    for (unsigned c = 0; c < this->type->vector_elements; c++) {
1404       switch (this->type->base_type) {
1405       case GLSL_TYPE_FLOAT:
1406 	 if (this->value.f[c] != f)
1407 	    return false;
1408 	 break;
1409       case GLSL_TYPE_FLOAT16:
1410          if (_mesa_half_to_float(this->value.f16[c]) != f)
1411             return false;
1412          break;
1413       case GLSL_TYPE_INT:
1414 	 if (this->value.i[c] != i)
1415 	    return false;
1416 	 break;
1417       case GLSL_TYPE_UINT:
1418 	 if (this->value.u[c] != unsigned(i))
1419 	    return false;
1420 	 break;
1421       case GLSL_TYPE_BOOL:
1422 	 if (this->value.b[c] != bool(i))
1423 	    return false;
1424 	 break;
1425       case GLSL_TYPE_DOUBLE:
1426 	 if (this->value.d[c] != double(f))
1427 	    return false;
1428 	 break;
1429       case GLSL_TYPE_SAMPLER:
1430       case GLSL_TYPE_IMAGE:
1431       case GLSL_TYPE_UINT64:
1432 	 if (this->value.u64[c] != uint64_t(i))
1433 	    return false;
1434 	 break;
1435       case GLSL_TYPE_INT64:
1436 	 if (this->value.i64[c] != i)
1437 	    return false;
1438 	 break;
1439       default:
1440 	 /* The only other base types are structures, arrays, and samplers.
1441 	  * Samplers cannot be constants, and the others should have been
1442 	  * filtered out above.
1443 	  */
1444 	 assert(!"Should not get here.");
1445 	 return false;
1446       }
1447    }
1448 
1449    return true;
1450 }
1451 
1452 bool
is_zero() const1453 ir_constant::is_zero() const
1454 {
1455    return is_value(0.0, 0);
1456 }
1457 
1458 bool
is_one() const1459 ir_constant::is_one() const
1460 {
1461    return is_value(1.0, 1);
1462 }
1463 
1464 bool
is_negative_one() const1465 ir_constant::is_negative_one() const
1466 {
1467    return is_value(-1.0, -1);
1468 }
1469 
1470 bool
is_uint16_constant() const1471 ir_constant::is_uint16_constant() const
1472 {
1473    if (!type->is_integer_32())
1474       return false;
1475 
1476    return value.u[0] < (1 << 16);
1477 }
1478 
ir_loop()1479 ir_loop::ir_loop()
1480    : ir_instruction(ir_type_loop)
1481 {
1482 }
1483 
1484 
ir_dereference_variable(ir_variable * var)1485 ir_dereference_variable::ir_dereference_variable(ir_variable *var)
1486    : ir_dereference(ir_type_dereference_variable)
1487 {
1488    assert(var != NULL);
1489 
1490    this->var = var;
1491    this->type = var->type;
1492 }
1493 
1494 
ir_dereference_array(ir_rvalue * value,ir_rvalue * array_index)1495 ir_dereference_array::ir_dereference_array(ir_rvalue *value,
1496 					   ir_rvalue *array_index)
1497    : ir_dereference(ir_type_dereference_array)
1498 {
1499    this->array_index = array_index;
1500    this->set_array(value);
1501 }
1502 
1503 
ir_dereference_array(ir_variable * var,ir_rvalue * array_index)1504 ir_dereference_array::ir_dereference_array(ir_variable *var,
1505 					   ir_rvalue *array_index)
1506    : ir_dereference(ir_type_dereference_array)
1507 {
1508    void *ctx = ralloc_parent(var);
1509 
1510    this->array_index = array_index;
1511    this->set_array(new(ctx) ir_dereference_variable(var));
1512 }
1513 
1514 
1515 void
set_array(ir_rvalue * value)1516 ir_dereference_array::set_array(ir_rvalue *value)
1517 {
1518    assert(value != NULL);
1519 
1520    this->array = value;
1521 
1522    const glsl_type *const vt = this->array->type;
1523 
1524    if (vt->is_array()) {
1525       type = vt->fields.array;
1526    } else if (vt->is_matrix()) {
1527       type = vt->column_type();
1528    } else if (vt->is_vector()) {
1529       type = vt->get_base_type();
1530    }
1531 }
1532 
1533 
ir_dereference_record(ir_rvalue * value,const char * field)1534 ir_dereference_record::ir_dereference_record(ir_rvalue *value,
1535 					     const char *field)
1536    : ir_dereference(ir_type_dereference_record)
1537 {
1538    assert(value != NULL);
1539 
1540    this->record = value;
1541    this->type = this->record->type->field_type(field);
1542    this->field_idx = this->record->type->field_index(field);
1543 }
1544 
1545 
ir_dereference_record(ir_variable * var,const char * field)1546 ir_dereference_record::ir_dereference_record(ir_variable *var,
1547 					     const char *field)
1548    : ir_dereference(ir_type_dereference_record)
1549 {
1550    void *ctx = ralloc_parent(var);
1551 
1552    this->record = new(ctx) ir_dereference_variable(var);
1553    this->type = this->record->type->field_type(field);
1554    this->field_idx = this->record->type->field_index(field);
1555 }
1556 
1557 bool
is_lvalue(const struct _mesa_glsl_parse_state * state) const1558 ir_dereference::is_lvalue(const struct _mesa_glsl_parse_state *state) const
1559 {
1560    ir_variable *var = this->variable_referenced();
1561 
1562    /* Every l-value derference chain eventually ends in a variable.
1563     */
1564    if ((var == NULL) || var->data.read_only)
1565       return false;
1566 
1567    /* From section 4.1.7 of the ARB_bindless_texture spec:
1568     *
1569     * "Samplers can be used as l-values, so can be assigned into and used as
1570     *  "out" and "inout" function parameters."
1571     *
1572     * From section 4.1.X of the ARB_bindless_texture spec:
1573     *
1574     * "Images can be used as l-values, so can be assigned into and used as
1575     *  "out" and "inout" function parameters."
1576     */
1577    if ((!state || state->has_bindless()) &&
1578        (this->type->contains_sampler() || this->type->contains_image()))
1579       return true;
1580 
1581    /* From section 4.1.7 of the GLSL 4.40 spec:
1582     *
1583     *   "Opaque variables cannot be treated as l-values; hence cannot
1584     *    be used as out or inout function parameters, nor can they be
1585     *    assigned into."
1586     */
1587    if (this->type->contains_opaque())
1588       return false;
1589 
1590    return true;
1591 }
1592 
1593 
1594 static const char * const tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txf_ms", "txs", "lod", "tg4", "query_levels", "texture_samples", "samples_identical" };
1595 
opcode_string()1596 const char *ir_texture::opcode_string()
1597 {
1598    assert((unsigned int) op < ARRAY_SIZE(tex_opcode_strs));
1599    return tex_opcode_strs[op];
1600 }
1601 
1602 ir_texture_opcode
get_opcode(const char * str)1603 ir_texture::get_opcode(const char *str)
1604 {
1605    const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
1606    for (int op = 0; op < count; op++) {
1607       if (strcmp(str, tex_opcode_strs[op]) == 0)
1608 	 return (ir_texture_opcode) op;
1609    }
1610    return (ir_texture_opcode) -1;
1611 }
1612 
1613 
1614 void
set_sampler(ir_dereference * sampler,const glsl_type * type)1615 ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
1616 {
1617    assert(sampler != NULL);
1618    assert(type != NULL);
1619    this->sampler = sampler;
1620    this->type = type;
1621 
1622    if (this->op == ir_txs || this->op == ir_query_levels ||
1623        this->op == ir_texture_samples) {
1624       assert(type->base_type == GLSL_TYPE_INT);
1625    } else if (this->op == ir_lod) {
1626       assert(type->vector_elements == 2);
1627       assert(type->is_float());
1628    } else if (this->op == ir_samples_identical) {
1629       assert(type == glsl_type::bool_type);
1630       assert(sampler->type->is_sampler());
1631       assert(sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS);
1632    } else {
1633       assert(sampler->type->sampled_type == (int) type->base_type);
1634       if (sampler->type->sampler_shadow)
1635 	 assert(type->vector_elements == 4 || type->vector_elements == 1);
1636       else
1637 	 assert(type->vector_elements == 4);
1638    }
1639 }
1640 
1641 bool
has_lod(const glsl_type * sampler_type)1642 ir_texture::has_lod(const glsl_type *sampler_type)
1643 {
1644    assert(sampler_type->is_sampler());
1645 
1646    switch (sampler_type->sampler_dimensionality) {
1647    case GLSL_SAMPLER_DIM_RECT:
1648    case GLSL_SAMPLER_DIM_BUF:
1649    case GLSL_SAMPLER_DIM_MS:
1650       return false;
1651    default:
1652       return true;
1653    }
1654 }
1655 
1656 void
init_mask(const unsigned * comp,unsigned count)1657 ir_swizzle::init_mask(const unsigned *comp, unsigned count)
1658 {
1659    assert((count >= 1) && (count <= 4));
1660 
1661    memset(&this->mask, 0, sizeof(this->mask));
1662    this->mask.num_components = count;
1663 
1664    unsigned dup_mask = 0;
1665    switch (count) {
1666    case 4:
1667       assert(comp[3] <= 3);
1668       dup_mask |= (1U << comp[3])
1669 	 & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
1670       this->mask.w = comp[3];
1671 
1672    case 3:
1673       assert(comp[2] <= 3);
1674       dup_mask |= (1U << comp[2])
1675 	 & ((1U << comp[0]) | (1U << comp[1]));
1676       this->mask.z = comp[2];
1677 
1678    case 2:
1679       assert(comp[1] <= 3);
1680       dup_mask |= (1U << comp[1])
1681 	 & ((1U << comp[0]));
1682       this->mask.y = comp[1];
1683 
1684    case 1:
1685       assert(comp[0] <= 3);
1686       this->mask.x = comp[0];
1687    }
1688 
1689    this->mask.has_duplicates = dup_mask != 0;
1690 
1691    /* Based on the number of elements in the swizzle and the base type
1692     * (i.e., float, int, unsigned, or bool) of the vector being swizzled,
1693     * generate the type of the resulting value.
1694     */
1695    type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
1696 }
1697 
ir_swizzle(ir_rvalue * val,unsigned x,unsigned y,unsigned z,unsigned w,unsigned count)1698 ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
1699 		       unsigned w, unsigned count)
1700    : ir_rvalue(ir_type_swizzle), val(val)
1701 {
1702    const unsigned components[4] = { x, y, z, w };
1703    this->init_mask(components, count);
1704 }
1705 
ir_swizzle(ir_rvalue * val,const unsigned * comp,unsigned count)1706 ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
1707 		       unsigned count)
1708    : ir_rvalue(ir_type_swizzle), val(val)
1709 {
1710    this->init_mask(comp, count);
1711 }
1712 
ir_swizzle(ir_rvalue * val,ir_swizzle_mask mask)1713 ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
1714    : ir_rvalue(ir_type_swizzle), val(val), mask(mask)
1715 {
1716    this->type = glsl_type::get_instance(val->type->base_type,
1717 					mask.num_components, 1);
1718 }
1719 
1720 #define X 1
1721 #define R 5
1722 #define S 9
1723 #define I 13
1724 
1725 ir_swizzle *
create(ir_rvalue * val,const char * str,unsigned vector_length)1726 ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
1727 {
1728    void *ctx = ralloc_parent(val);
1729 
1730    /* For each possible swizzle character, this table encodes the value in
1731     * \c idx_map that represents the 0th element of the vector.  For invalid
1732     * swizzle characters (e.g., 'k'), a special value is used that will allow
1733     * detection of errors.
1734     */
1735    static const unsigned char base_idx[26] = {
1736    /* a  b  c  d  e  f  g  h  i  j  k  l  m */
1737       R, R, I, I, I, I, R, I, I, I, I, I, I,
1738    /* n  o  p  q  r  s  t  u  v  w  x  y  z */
1739       I, I, S, S, R, S, S, I, I, X, X, X, X
1740    };
1741 
1742    /* Each valid swizzle character has an entry in the previous table.  This
1743     * table encodes the base index encoded in the previous table plus the actual
1744     * index of the swizzle character.  When processing swizzles, the first
1745     * character in the string is indexed in the previous table.  Each character
1746     * in the string is indexed in this table, and the value found there has the
1747     * value form the first table subtracted.  The result must be on the range
1748     * [0,3].
1749     *
1750     * For example, the string "wzyx" will get X from the first table.  Each of
1751     * the charcaters will get X+3, X+2, X+1, and X+0 from this table.  After
1752     * subtraction, the swizzle values are { 3, 2, 1, 0 }.
1753     *
1754     * The string "wzrg" will get X from the first table.  Each of the characters
1755     * will get X+3, X+2, R+0, and R+1 from this table.  After subtraction, the
1756     * swizzle values are { 3, 2, 4, 5 }.  Since 4 and 5 are outside the range
1757     * [0,3], the error is detected.
1758     */
1759    static const unsigned char idx_map[26] = {
1760    /* a    b    c    d    e    f    g    h    i    j    k    l    m */
1761       R+3, R+2, 0,   0,   0,   0,   R+1, 0,   0,   0,   0,   0,   0,
1762    /* n    o    p    q    r    s    t    u    v    w    x    y    z */
1763       0,   0,   S+2, S+3, R+0, S+0, S+1, 0,   0,   X+3, X+0, X+1, X+2
1764    };
1765 
1766    int swiz_idx[4] = { 0, 0, 0, 0 };
1767    unsigned i;
1768 
1769 
1770    /* Validate the first character in the swizzle string and look up the base
1771     * index value as described above.
1772     */
1773    if ((str[0] < 'a') || (str[0] > 'z'))
1774       return NULL;
1775 
1776    const unsigned base = base_idx[str[0] - 'a'];
1777 
1778 
1779    for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
1780       /* Validate the next character, and, as described above, convert it to a
1781        * swizzle index.
1782        */
1783       if ((str[i] < 'a') || (str[i] > 'z'))
1784 	 return NULL;
1785 
1786       swiz_idx[i] = idx_map[str[i] - 'a'] - base;
1787       if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
1788 	 return NULL;
1789    }
1790 
1791    if (str[i] != '\0')
1792 	 return NULL;
1793 
1794    return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
1795 			      swiz_idx[3], i);
1796 }
1797 
1798 #undef X
1799 #undef R
1800 #undef S
1801 #undef I
1802 
1803 ir_variable *
variable_referenced() const1804 ir_swizzle::variable_referenced() const
1805 {
1806    return this->val->variable_referenced();
1807 }
1808 
1809 
1810 bool ir_variable::temporaries_allocate_names = false;
1811 
1812 const char ir_variable::tmp_name[] = "compiler_temp";
1813 
ir_variable(const struct glsl_type * type,const char * name,ir_variable_mode mode)1814 ir_variable::ir_variable(const struct glsl_type *type, const char *name,
1815 			 ir_variable_mode mode)
1816    : ir_instruction(ir_type_variable)
1817 {
1818    this->type = type;
1819 
1820    if (mode == ir_var_temporary && !ir_variable::temporaries_allocate_names)
1821       name = NULL;
1822 
1823    /* The ir_variable clone method may call this constructor with name set to
1824     * tmp_name.
1825     */
1826    assert(name != NULL
1827           || mode == ir_var_temporary
1828           || mode == ir_var_function_in
1829           || mode == ir_var_function_out
1830           || mode == ir_var_function_inout);
1831    assert(name != ir_variable::tmp_name
1832           || mode == ir_var_temporary);
1833    if (mode == ir_var_temporary
1834        && (name == NULL || name == ir_variable::tmp_name)) {
1835       this->name = ir_variable::tmp_name;
1836    } else if (name == NULL ||
1837               strlen(name) < ARRAY_SIZE(this->name_storage)) {
1838       strcpy(this->name_storage, name ? name : "");
1839       this->name = this->name_storage;
1840    } else {
1841       this->name = ralloc_strdup(this, name);
1842    }
1843 
1844    this->u.max_ifc_array_access = NULL;
1845 
1846    this->data.explicit_location = false;
1847    this->data.explicit_index = false;
1848    this->data.explicit_binding = false;
1849    this->data.explicit_component = false;
1850    this->data.has_initializer = false;
1851    this->data.is_unmatched_generic_inout = false;
1852    this->data.is_xfb_only = false;
1853    this->data.explicit_xfb_buffer = false;
1854    this->data.explicit_xfb_offset = false;
1855    this->data.explicit_xfb_stride = false;
1856    this->data.location = -1;
1857    this->data.location_frac = 0;
1858    this->data.matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
1859    this->data.from_named_ifc_block = false;
1860    this->data.must_be_shader_input = false;
1861    this->data.index = 0;
1862    this->data.binding = 0;
1863    this->data.warn_extension_index = 0;
1864    this->constant_value = NULL;
1865    this->constant_initializer = NULL;
1866    this->data.depth_layout = ir_depth_layout_none;
1867    this->data.used = false;
1868    this->data.assigned = false;
1869    this->data.always_active_io = false;
1870    this->data.read_only = false;
1871    this->data.centroid = false;
1872    this->data.sample = false;
1873    this->data.patch = false;
1874    this->data.explicit_invariant = false;
1875    this->data.invariant = false;
1876    this->data.precise = false;
1877    this->data.how_declared = ir_var_declared_normally;
1878    this->data.mode = mode;
1879    this->data.interpolation = INTERP_MODE_NONE;
1880    this->data.max_array_access = -1;
1881    this->data.offset = 0;
1882    this->data.precision = GLSL_PRECISION_NONE;
1883    this->data.memory_read_only = false;
1884    this->data.memory_write_only = false;
1885    this->data.memory_coherent = false;
1886    this->data.memory_volatile = false;
1887    this->data.memory_restrict = false;
1888    this->data.from_ssbo_unsized_array = false;
1889    this->data.implicit_sized_array = false;
1890    this->data.fb_fetch_output = false;
1891    this->data.bindless = false;
1892    this->data.bound = false;
1893    this->data.image_format = PIPE_FORMAT_NONE;
1894    this->data._num_state_slots = 0;
1895    this->data.param_index = 0;
1896    this->data.stream = 0;
1897    this->data.xfb_buffer = -1;
1898    this->data.xfb_stride = -1;
1899 
1900    this->interface_type = NULL;
1901 
1902    if (type != NULL) {
1903       if (type->is_interface())
1904          this->init_interface_type(type);
1905       else if (type->without_array()->is_interface())
1906          this->init_interface_type(type->without_array());
1907    }
1908 }
1909 
1910 
1911 const char *
interpolation_string(unsigned interpolation)1912 interpolation_string(unsigned interpolation)
1913 {
1914    switch (interpolation) {
1915    case INTERP_MODE_NONE:          return "no";
1916    case INTERP_MODE_SMOOTH:        return "smooth";
1917    case INTERP_MODE_FLAT:          return "flat";
1918    case INTERP_MODE_NOPERSPECTIVE: return "noperspective";
1919    }
1920 
1921    assert(!"Should not get here.");
1922    return "";
1923 }
1924 
1925 const char *const ir_variable::warn_extension_table[] = {
1926    "",
1927    "GL_ARB_shader_stencil_export",
1928    "GL_AMD_shader_stencil_export",
1929 };
1930 
1931 void
enable_extension_warning(const char * extension)1932 ir_variable::enable_extension_warning(const char *extension)
1933 {
1934    for (unsigned i = 0; i < ARRAY_SIZE(warn_extension_table); i++) {
1935       if (strcmp(warn_extension_table[i], extension) == 0) {
1936          this->data.warn_extension_index = i;
1937          return;
1938       }
1939    }
1940 
1941    assert(!"Should not get here.");
1942    this->data.warn_extension_index = 0;
1943 }
1944 
1945 const char *
get_extension_warning() const1946 ir_variable::get_extension_warning() const
1947 {
1948    return this->data.warn_extension_index == 0
1949       ? NULL : warn_extension_table[this->data.warn_extension_index];
1950 }
1951 
ir_function_signature(const glsl_type * return_type,builtin_available_predicate b)1952 ir_function_signature::ir_function_signature(const glsl_type *return_type,
1953                                              builtin_available_predicate b)
1954    : ir_instruction(ir_type_function_signature),
1955      return_type(return_type), is_defined(false),
1956      return_precision(GLSL_PRECISION_NONE),
1957      intrinsic_id(ir_intrinsic_invalid), builtin_avail(b), _function(NULL)
1958 {
1959    this->origin = NULL;
1960 }
1961 
1962 
1963 bool
is_builtin() const1964 ir_function_signature::is_builtin() const
1965 {
1966    return builtin_avail != NULL;
1967 }
1968 
1969 
1970 bool
is_builtin_available(const _mesa_glsl_parse_state * state) const1971 ir_function_signature::is_builtin_available(const _mesa_glsl_parse_state *state) const
1972 {
1973    /* We can't call the predicate without a state pointer, so just say that
1974     * the signature is available.  At compile time, we need the filtering,
1975     * but also receive a valid state pointer.  At link time, we're resolving
1976     * imported built-in prototypes to their definitions, which will always
1977     * be an exact match.  So we can skip the filtering.
1978     */
1979    if (state == NULL)
1980       return true;
1981 
1982    assert(builtin_avail != NULL);
1983    return builtin_avail(state);
1984 }
1985 
1986 
1987 static bool
modes_match(unsigned a,unsigned b)1988 modes_match(unsigned a, unsigned b)
1989 {
1990    if (a == b)
1991       return true;
1992 
1993    /* Accept "in" vs. "const in" */
1994    if ((a == ir_var_const_in && b == ir_var_function_in) ||
1995        (b == ir_var_const_in && a == ir_var_function_in))
1996       return true;
1997 
1998    return false;
1999 }
2000 
2001 
2002 const char *
qualifiers_match(exec_list * params)2003 ir_function_signature::qualifiers_match(exec_list *params)
2004 {
2005    /* check that the qualifiers match. */
2006    foreach_two_lists(a_node, &this->parameters, b_node, params) {
2007       ir_variable *a = (ir_variable *) a_node;
2008       ir_variable *b = (ir_variable *) b_node;
2009 
2010       if (a->data.read_only != b->data.read_only ||
2011 	  !modes_match(a->data.mode, b->data.mode) ||
2012 	  a->data.interpolation != b->data.interpolation ||
2013 	  a->data.centroid != b->data.centroid ||
2014           a->data.sample != b->data.sample ||
2015           a->data.patch != b->data.patch ||
2016           a->data.memory_read_only != b->data.memory_read_only ||
2017           a->data.memory_write_only != b->data.memory_write_only ||
2018           a->data.memory_coherent != b->data.memory_coherent ||
2019           a->data.memory_volatile != b->data.memory_volatile ||
2020           a->data.memory_restrict != b->data.memory_restrict) {
2021 
2022 	 /* parameter a's qualifiers don't match */
2023 	 return a->name;
2024       }
2025    }
2026    return NULL;
2027 }
2028 
2029 
2030 void
replace_parameters(exec_list * new_params)2031 ir_function_signature::replace_parameters(exec_list *new_params)
2032 {
2033    /* Destroy all of the previous parameter information.  If the previous
2034     * parameter information comes from the function prototype, it may either
2035     * specify incorrect parameter names or not have names at all.
2036     */
2037    new_params->move_nodes_to(&parameters);
2038 }
2039 
2040 
ir_function(const char * name)2041 ir_function::ir_function(const char *name)
2042    : ir_instruction(ir_type_function)
2043 {
2044    this->subroutine_index = -1;
2045    this->name = ralloc_strdup(this, name);
2046 }
2047 
2048 
2049 bool
has_user_signature()2050 ir_function::has_user_signature()
2051 {
2052    foreach_in_list(ir_function_signature, sig, &this->signatures) {
2053       if (!sig->is_builtin())
2054 	 return true;
2055    }
2056    return false;
2057 }
2058 
2059 
2060 ir_rvalue *
error_value(void * mem_ctx)2061 ir_rvalue::error_value(void *mem_ctx)
2062 {
2063    ir_rvalue *v = new(mem_ctx) ir_rvalue(ir_type_unset);
2064 
2065    v->type = glsl_type::error_type;
2066    return v;
2067 }
2068 
2069 
2070 void
visit_exec_list(exec_list * list,ir_visitor * visitor)2071 visit_exec_list(exec_list *list, ir_visitor *visitor)
2072 {
2073    foreach_in_list_safe(ir_instruction, node, list) {
2074       node->accept(visitor);
2075    }
2076 }
2077 
2078 
2079 static void
steal_memory(ir_instruction * ir,void * new_ctx)2080 steal_memory(ir_instruction *ir, void *new_ctx)
2081 {
2082    ir_variable *var = ir->as_variable();
2083    ir_function *fn = ir->as_function();
2084    ir_constant *constant = ir->as_constant();
2085    if (var != NULL && var->constant_value != NULL)
2086       steal_memory(var->constant_value, ir);
2087 
2088    if (var != NULL && var->constant_initializer != NULL)
2089       steal_memory(var->constant_initializer, ir);
2090 
2091    if (fn != NULL && fn->subroutine_types)
2092       ralloc_steal(new_ctx, fn->subroutine_types);
2093 
2094    /* The components of aggregate constants are not visited by the normal
2095     * visitor, so steal their values by hand.
2096     */
2097    if (constant != NULL &&
2098        (constant->type->is_array() || constant->type->is_struct())) {
2099       for (unsigned int i = 0; i < constant->type->length; i++) {
2100          steal_memory(constant->const_elements[i], ir);
2101       }
2102    }
2103 
2104    ralloc_steal(new_ctx, ir);
2105 }
2106 
2107 
2108 void
reparent_ir(exec_list * list,void * mem_ctx)2109 reparent_ir(exec_list *list, void *mem_ctx)
2110 {
2111    foreach_in_list(ir_instruction, node, list) {
2112       visit_tree(node, steal_memory, mem_ctx);
2113    }
2114 }
2115 
2116 
2117 static ir_rvalue *
try_min_one(ir_rvalue * ir)2118 try_min_one(ir_rvalue *ir)
2119 {
2120    ir_expression *expr = ir->as_expression();
2121 
2122    if (!expr || expr->operation != ir_binop_min)
2123       return NULL;
2124 
2125    if (expr->operands[0]->is_one())
2126       return expr->operands[1];
2127 
2128    if (expr->operands[1]->is_one())
2129       return expr->operands[0];
2130 
2131    return NULL;
2132 }
2133 
2134 static ir_rvalue *
try_max_zero(ir_rvalue * ir)2135 try_max_zero(ir_rvalue *ir)
2136 {
2137    ir_expression *expr = ir->as_expression();
2138 
2139    if (!expr || expr->operation != ir_binop_max)
2140       return NULL;
2141 
2142    if (expr->operands[0]->is_zero())
2143       return expr->operands[1];
2144 
2145    if (expr->operands[1]->is_zero())
2146       return expr->operands[0];
2147 
2148    return NULL;
2149 }
2150 
2151 ir_rvalue *
as_rvalue_to_saturate()2152 ir_rvalue::as_rvalue_to_saturate()
2153 {
2154    ir_expression *expr = this->as_expression();
2155 
2156    if (!expr)
2157       return NULL;
2158 
2159    ir_rvalue *max_zero = try_max_zero(expr);
2160    if (max_zero) {
2161       return try_min_one(max_zero);
2162    } else {
2163       ir_rvalue *min_one = try_min_one(expr);
2164       if (min_one) {
2165 	 return try_max_zero(min_one);
2166       }
2167    }
2168 
2169    return NULL;
2170 }
2171 
2172 
2173 unsigned
vertices_per_prim(GLenum prim)2174 vertices_per_prim(GLenum prim)
2175 {
2176    switch (prim) {
2177    case GL_POINTS:
2178       return 1;
2179    case GL_LINES:
2180       return 2;
2181    case GL_TRIANGLES:
2182       return 3;
2183    case GL_LINES_ADJACENCY:
2184       return 4;
2185    case GL_TRIANGLES_ADJACENCY:
2186       return 6;
2187    default:
2188       assert(!"Bad primitive");
2189       return 3;
2190    }
2191 }
2192 
2193 /**
2194  * Generate a string describing the mode of a variable
2195  */
2196 const char *
mode_string(const ir_variable * var)2197 mode_string(const ir_variable *var)
2198 {
2199    switch (var->data.mode) {
2200    case ir_var_auto:
2201       return (var->data.read_only) ? "global constant" : "global variable";
2202 
2203    case ir_var_uniform:
2204       return "uniform";
2205 
2206    case ir_var_shader_storage:
2207       return "buffer";
2208 
2209    case ir_var_shader_in:
2210       return "shader input";
2211 
2212    case ir_var_shader_out:
2213       return "shader output";
2214 
2215    case ir_var_function_in:
2216    case ir_var_const_in:
2217       return "function input";
2218 
2219    case ir_var_function_out:
2220       return "function output";
2221 
2222    case ir_var_function_inout:
2223       return "function inout";
2224 
2225    case ir_var_system_value:
2226       return "shader input";
2227 
2228    case ir_var_temporary:
2229       return "compiler temporary";
2230 
2231    case ir_var_mode_count:
2232       break;
2233    }
2234 
2235    assert(!"Should not get here.");
2236    return "invalid variable";
2237 }
2238