1*> \brief <b> DGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DGELSD + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsd.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsd.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsd.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
22*                          WORK, LWORK, IWORK, INFO )
23*
24*       .. Scalar Arguments ..
25*       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
26*       DOUBLE PRECISION   RCOND
27*       ..
28*       .. Array Arguments ..
29*       INTEGER            IWORK( * )
30*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
31*       ..
32*
33*
34*> \par Purpose:
35*  =============
36*>
37*> \verbatim
38*>
39*> DGELSD computes the minimum-norm solution to a real linear least
40*> squares problem:
41*>     minimize 2-norm(| b - A*x |)
42*> using the singular value decomposition (SVD) of A. A is an M-by-N
43*> matrix which may be rank-deficient.
44*>
45*> Several right hand side vectors b and solution vectors x can be
46*> handled in a single call; they are stored as the columns of the
47*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
48*> matrix X.
49*>
50*> The problem is solved in three steps:
51*> (1) Reduce the coefficient matrix A to bidiagonal form with
52*>     Householder transformations, reducing the original problem
53*>     into a "bidiagonal least squares problem" (BLS)
54*> (2) Solve the BLS using a divide and conquer approach.
55*> (3) Apply back all the Householder transformations to solve
56*>     the original least squares problem.
57*>
58*> The effective rank of A is determined by treating as zero those
59*> singular values which are less than RCOND times the largest singular
60*> value.
61*>
62*> The divide and conquer algorithm makes very mild assumptions about
63*> floating point arithmetic. It will work on machines with a guard
64*> digit in add/subtract, or on those binary machines without guard
65*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
66*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
67*> without guard digits, but we know of none.
68*> \endverbatim
69*
70*  Arguments:
71*  ==========
72*
73*> \param[in] M
74*> \verbatim
75*>          M is INTEGER
76*>          The number of rows of A. M >= 0.
77*> \endverbatim
78*>
79*> \param[in] N
80*> \verbatim
81*>          N is INTEGER
82*>          The number of columns of A. N >= 0.
83*> \endverbatim
84*>
85*> \param[in] NRHS
86*> \verbatim
87*>          NRHS is INTEGER
88*>          The number of right hand sides, i.e., the number of columns
89*>          of the matrices B and X. NRHS >= 0.
90*> \endverbatim
91*>
92*> \param[in,out] A
93*> \verbatim
94*>          A is DOUBLE PRECISION array, dimension (LDA,N)
95*>          On entry, the M-by-N matrix A.
96*>          On exit, A has been destroyed.
97*> \endverbatim
98*>
99*> \param[in] LDA
100*> \verbatim
101*>          LDA is INTEGER
102*>          The leading dimension of the array A.  LDA >= max(1,M).
103*> \endverbatim
104*>
105*> \param[in,out] B
106*> \verbatim
107*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
108*>          On entry, the M-by-NRHS right hand side matrix B.
109*>          On exit, B is overwritten by the N-by-NRHS solution
110*>          matrix X.  If m >= n and RANK = n, the residual
111*>          sum-of-squares for the solution in the i-th column is given
112*>          by the sum of squares of elements n+1:m in that column.
113*> \endverbatim
114*>
115*> \param[in] LDB
116*> \verbatim
117*>          LDB is INTEGER
118*>          The leading dimension of the array B. LDB >= max(1,max(M,N)).
119*> \endverbatim
120*>
121*> \param[out] S
122*> \verbatim
123*>          S is DOUBLE PRECISION array, dimension (min(M,N))
124*>          The singular values of A in decreasing order.
125*>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
126*> \endverbatim
127*>
128*> \param[in] RCOND
129*> \verbatim
130*>          RCOND is DOUBLE PRECISION
131*>          RCOND is used to determine the effective rank of A.
132*>          Singular values S(i) <= RCOND*S(1) are treated as zero.
133*>          If RCOND < 0, machine precision is used instead.
134*> \endverbatim
135*>
136*> \param[out] RANK
137*> \verbatim
138*>          RANK is INTEGER
139*>          The effective rank of A, i.e., the number of singular values
140*>          which are greater than RCOND*S(1).
141*> \endverbatim
142*>
143*> \param[out] WORK
144*> \verbatim
145*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
146*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
147*> \endverbatim
148*>
149*> \param[in] LWORK
150*> \verbatim
151*>          LWORK is INTEGER
152*>          The dimension of the array WORK. LWORK must be at least 1.
153*>          The exact minimum amount of workspace needed depends on M,
154*>          N and NRHS. As long as LWORK is at least
155*>              12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
156*>          if M is greater than or equal to N or
157*>              12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
158*>          if M is less than N, the code will execute correctly.
159*>          SMLSIZ is returned by ILAENV and is equal to the maximum
160*>          size of the subproblems at the bottom of the computation
161*>          tree (usually about 25), and
162*>             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
163*>          For good performance, LWORK should generally be larger.
164*>
165*>          If LWORK = -1, then a workspace query is assumed; the routine
166*>          only calculates the optimal size of the WORK array, returns
167*>          this value as the first entry of the WORK array, and no error
168*>          message related to LWORK is issued by XERBLA.
169*> \endverbatim
170*>
171*> \param[out] IWORK
172*> \verbatim
173*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
174*>          LIWORK >= max(1, 3 * MINMN * NLVL + 11 * MINMN),
175*>          where MINMN = MIN( M,N ).
176*>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
177*> \endverbatim
178*>
179*> \param[out] INFO
180*> \verbatim
181*>          INFO is INTEGER
182*>          = 0:  successful exit
183*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
184*>          > 0:  the algorithm for computing the SVD failed to converge;
185*>                if INFO = i, i off-diagonal elements of an intermediate
186*>                bidiagonal form did not converge to zero.
187*> \endverbatim
188*
189*  Authors:
190*  ========
191*
192*> \author Univ. of Tennessee
193*> \author Univ. of California Berkeley
194*> \author Univ. of Colorado Denver
195*> \author NAG Ltd.
196*
197*> \ingroup doubleGEsolve
198*
199*> \par Contributors:
200*  ==================
201*>
202*>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
203*>       California at Berkeley, USA \n
204*>     Osni Marques, LBNL/NERSC, USA \n
205*
206*  =====================================================================
207      SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
208     $                   WORK, LWORK, IWORK, INFO )
209*
210*  -- LAPACK driver routine --
211*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
212*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
213*
214*     .. Scalar Arguments ..
215      INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
216      DOUBLE PRECISION   RCOND
217*     ..
218*     .. Array Arguments ..
219      INTEGER            IWORK( * )
220      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
221*     ..
222*
223*  =====================================================================
224*
225*     .. Parameters ..
226      DOUBLE PRECISION   ZERO, ONE, TWO
227      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
228*     ..
229*     .. Local Scalars ..
230      LOGICAL            LQUERY
231      INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
232     $                   LDWORK, LIWORK, MAXMN, MAXWRK, MINMN, MINWRK,
233     $                   MM, MNTHR, NLVL, NWORK, SMLSIZ, WLALSD
234      DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
235*     ..
236*     .. External Subroutines ..
237      EXTERNAL           DGEBRD, DGELQF, DGEQRF, DLABAD, DLACPY, DLALSD,
238     $                   DLASCL, DLASET, DORMBR, DORMLQ, DORMQR, XERBLA
239*     ..
240*     .. External Functions ..
241      INTEGER            ILAENV
242      DOUBLE PRECISION   DLAMCH, DLANGE
243      EXTERNAL           ILAENV, DLAMCH, DLANGE
244*     ..
245*     .. Intrinsic Functions ..
246      INTRINSIC          DBLE, INT, LOG, MAX, MIN
247*     ..
248*     .. Executable Statements ..
249*
250*     Test the input arguments.
251*
252      INFO = 0
253      MINMN = MIN( M, N )
254      MAXMN = MAX( M, N )
255      MNTHR = ILAENV( 6, 'DGELSD', ' ', M, N, NRHS, -1 )
256      LQUERY = ( LWORK.EQ.-1 )
257      IF( M.LT.0 ) THEN
258         INFO = -1
259      ELSE IF( N.LT.0 ) THEN
260         INFO = -2
261      ELSE IF( NRHS.LT.0 ) THEN
262         INFO = -3
263      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
264         INFO = -5
265      ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
266         INFO = -7
267      END IF
268*
269      SMLSIZ = ILAENV( 9, 'DGELSD', ' ', 0, 0, 0, 0 )
270*
271*     Compute workspace.
272*     (Note: Comments in the code beginning "Workspace:" describe the
273*     minimal amount of workspace needed at that point in the code,
274*     as well as the preferred amount for good performance.
275*     NB refers to the optimal block size for the immediately
276*     following subroutine, as returned by ILAENV.)
277*
278      MINWRK = 1
279      LIWORK = 1
280      MINMN = MAX( 1, MINMN )
281      NLVL = MAX( INT( LOG( DBLE( MINMN ) / DBLE( SMLSIZ+1 ) ) /
282     $       LOG( TWO ) ) + 1, 0 )
283*
284      IF( INFO.EQ.0 ) THEN
285         MAXWRK = 0
286         LIWORK = 3*MINMN*NLVL + 11*MINMN
287         MM = M
288         IF( M.GE.N .AND. M.GE.MNTHR ) THEN
289*
290*           Path 1a - overdetermined, with many more rows than columns.
291*
292            MM = N
293            MAXWRK = MAX( MAXWRK, N+N*ILAENV( 1, 'DGEQRF', ' ', M, N,
294     $               -1, -1 ) )
295            MAXWRK = MAX( MAXWRK, N+NRHS*
296     $               ILAENV( 1, 'DORMQR', 'LT', M, NRHS, N, -1 ) )
297         END IF
298         IF( M.GE.N ) THEN
299*
300*           Path 1 - overdetermined or exactly determined.
301*
302            MAXWRK = MAX( MAXWRK, 3*N+( MM+N )*
303     $               ILAENV( 1, 'DGEBRD', ' ', MM, N, -1, -1 ) )
304            MAXWRK = MAX( MAXWRK, 3*N+NRHS*
305     $               ILAENV( 1, 'DORMBR', 'QLT', MM, NRHS, N, -1 ) )
306            MAXWRK = MAX( MAXWRK, 3*N+( N-1 )*
307     $               ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, N, -1 ) )
308            WLALSD = 9*N+2*N*SMLSIZ+8*N*NLVL+N*NRHS+(SMLSIZ+1)**2
309            MAXWRK = MAX( MAXWRK, 3*N+WLALSD )
310            MINWRK = MAX( 3*N+MM, 3*N+NRHS, 3*N+WLALSD )
311         END IF
312         IF( N.GT.M ) THEN
313            WLALSD = 9*M+2*M*SMLSIZ+8*M*NLVL+M*NRHS+(SMLSIZ+1)**2
314            IF( N.GE.MNTHR ) THEN
315*
316*              Path 2a - underdetermined, with many more columns
317*              than rows.
318*
319               MAXWRK = M + M*ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 )
320               MAXWRK = MAX( MAXWRK, M*M+4*M+2*M*
321     $                  ILAENV( 1, 'DGEBRD', ' ', M, M, -1, -1 ) )
322               MAXWRK = MAX( MAXWRK, M*M+4*M+NRHS*
323     $                  ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, M, -1 ) )
324               MAXWRK = MAX( MAXWRK, M*M+4*M+( M-1 )*
325     $                  ILAENV( 1, 'DORMBR', 'PLN', M, NRHS, M, -1 ) )
326               IF( NRHS.GT.1 ) THEN
327                  MAXWRK = MAX( MAXWRK, M*M+M+M*NRHS )
328               ELSE
329                  MAXWRK = MAX( MAXWRK, M*M+2*M )
330               END IF
331               MAXWRK = MAX( MAXWRK, M+NRHS*
332     $                  ILAENV( 1, 'DORMLQ', 'LT', N, NRHS, M, -1 ) )
333               MAXWRK = MAX( MAXWRK, M*M+4*M+WLALSD )
334!     XXX: Ensure the Path 2a case below is triggered.  The workspace
335!     calculation should use queries for all routines eventually.
336               MAXWRK = MAX( MAXWRK,
337     $              4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
338            ELSE
339*
340*              Path 2 - remaining underdetermined cases.
341*
342               MAXWRK = 3*M + ( N+M )*ILAENV( 1, 'DGEBRD', ' ', M, N,
343     $                  -1, -1 )
344               MAXWRK = MAX( MAXWRK, 3*M+NRHS*
345     $                  ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, N, -1 ) )
346               MAXWRK = MAX( MAXWRK, 3*M+M*
347     $                  ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, M, -1 ) )
348               MAXWRK = MAX( MAXWRK, 3*M+WLALSD )
349            END IF
350            MINWRK = MAX( 3*M+NRHS, 3*M+M, 3*M+WLALSD )
351         END IF
352         MINWRK = MIN( MINWRK, MAXWRK )
353         WORK( 1 ) = MAXWRK
354         IWORK( 1 ) = LIWORK
355
356         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
357            INFO = -12
358         END IF
359      END IF
360*
361      IF( INFO.NE.0 ) THEN
362         CALL XERBLA( 'DGELSD', -INFO )
363         RETURN
364      ELSE IF( LQUERY ) THEN
365         GO TO 10
366      END IF
367*
368*     Quick return if possible.
369*
370      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
371         RANK = 0
372         RETURN
373      END IF
374*
375*     Get machine parameters.
376*
377      EPS = DLAMCH( 'P' )
378      SFMIN = DLAMCH( 'S' )
379      SMLNUM = SFMIN / EPS
380      BIGNUM = ONE / SMLNUM
381      CALL DLABAD( SMLNUM, BIGNUM )
382*
383*     Scale A if max entry outside range [SMLNUM,BIGNUM].
384*
385      ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
386      IASCL = 0
387      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
388*
389*        Scale matrix norm up to SMLNUM.
390*
391         CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
392         IASCL = 1
393      ELSE IF( ANRM.GT.BIGNUM ) THEN
394*
395*        Scale matrix norm down to BIGNUM.
396*
397         CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
398         IASCL = 2
399      ELSE IF( ANRM.EQ.ZERO ) THEN
400*
401*        Matrix all zero. Return zero solution.
402*
403         CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
404         CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
405         RANK = 0
406         GO TO 10
407      END IF
408*
409*     Scale B if max entry outside range [SMLNUM,BIGNUM].
410*
411      BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
412      IBSCL = 0
413      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
414*
415*        Scale matrix norm up to SMLNUM.
416*
417         CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
418         IBSCL = 1
419      ELSE IF( BNRM.GT.BIGNUM ) THEN
420*
421*        Scale matrix norm down to BIGNUM.
422*
423         CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
424         IBSCL = 2
425      END IF
426*
427*     If M < N make sure certain entries of B are zero.
428*
429      IF( M.LT.N )
430     $   CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
431*
432*     Overdetermined case.
433*
434      IF( M.GE.N ) THEN
435*
436*        Path 1 - overdetermined or exactly determined.
437*
438         MM = M
439         IF( M.GE.MNTHR ) THEN
440*
441*           Path 1a - overdetermined, with many more rows than columns.
442*
443            MM = N
444            ITAU = 1
445            NWORK = ITAU + N
446*
447*           Compute A=Q*R.
448*           (Workspace: need 2*N, prefer N+N*NB)
449*
450            CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
451     $                   LWORK-NWORK+1, INFO )
452*
453*           Multiply B by transpose(Q).
454*           (Workspace: need N+NRHS, prefer N+NRHS*NB)
455*
456            CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
457     $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
458*
459*           Zero out below R.
460*
461            IF( N.GT.1 ) THEN
462               CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
463            END IF
464         END IF
465*
466         IE = 1
467         ITAUQ = IE + N
468         ITAUP = ITAUQ + N
469         NWORK = ITAUP + N
470*
471*        Bidiagonalize R in A.
472*        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
473*
474         CALL DGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
475     $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
476     $                INFO )
477*
478*        Multiply B by transpose of left bidiagonalizing vectors of R.
479*        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
480*
481         CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
482     $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
483*
484*        Solve the bidiagonal least squares problem.
485*
486         CALL DLALSD( 'U', SMLSIZ, N, NRHS, S, WORK( IE ), B, LDB,
487     $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
488         IF( INFO.NE.0 ) THEN
489            GO TO 10
490         END IF
491*
492*        Multiply B by right bidiagonalizing vectors of R.
493*
494         CALL DORMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
495     $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
496*
497      ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
498     $         MAX( M, 2*M-4, NRHS, N-3*M, WLALSD ) ) THEN
499*
500*        Path 2a - underdetermined, with many more columns than rows
501*        and sufficient workspace for an efficient algorithm.
502*
503         LDWORK = M
504         IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
505     $       M*LDA+M+M*NRHS, 4*M+M*LDA+WLALSD ) )LDWORK = LDA
506         ITAU = 1
507         NWORK = M + 1
508*
509*        Compute A=L*Q.
510*        (Workspace: need 2*M, prefer M+M*NB)
511*
512         CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
513     $                LWORK-NWORK+1, INFO )
514         IL = NWORK
515*
516*        Copy L to WORK(IL), zeroing out above its diagonal.
517*
518         CALL DLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
519         CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
520     $                LDWORK )
521         IE = IL + LDWORK*M
522         ITAUQ = IE + M
523         ITAUP = ITAUQ + M
524         NWORK = ITAUP + M
525*
526*        Bidiagonalize L in WORK(IL).
527*        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
528*
529         CALL DGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
530     $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
531     $                LWORK-NWORK+1, INFO )
532*
533*        Multiply B by transpose of left bidiagonalizing vectors of L.
534*        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
535*
536         CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK,
537     $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
538     $                LWORK-NWORK+1, INFO )
539*
540*        Solve the bidiagonal least squares problem.
541*
542         CALL DLALSD( 'U', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
543     $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
544         IF( INFO.NE.0 ) THEN
545            GO TO 10
546         END IF
547*
548*        Multiply B by right bidiagonalizing vectors of L.
549*
550         CALL DORMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
551     $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
552     $                LWORK-NWORK+1, INFO )
553*
554*        Zero out below first M rows of B.
555*
556         CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
557         NWORK = ITAU + M
558*
559*        Multiply transpose(Q) by B.
560*        (Workspace: need M+NRHS, prefer M+NRHS*NB)
561*
562         CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
563     $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
564*
565      ELSE
566*
567*        Path 2 - remaining underdetermined cases.
568*
569         IE = 1
570         ITAUQ = IE + M
571         ITAUP = ITAUQ + M
572         NWORK = ITAUP + M
573*
574*        Bidiagonalize A.
575*        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
576*
577         CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
578     $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
579     $                INFO )
580*
581*        Multiply B by transpose of left bidiagonalizing vectors.
582*        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
583*
584         CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
585     $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
586*
587*        Solve the bidiagonal least squares problem.
588*
589         CALL DLALSD( 'L', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
590     $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
591         IF( INFO.NE.0 ) THEN
592            GO TO 10
593         END IF
594*
595*        Multiply B by right bidiagonalizing vectors of A.
596*
597         CALL DORMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
598     $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
599*
600      END IF
601*
602*     Undo scaling.
603*
604      IF( IASCL.EQ.1 ) THEN
605         CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
606         CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
607     $                INFO )
608      ELSE IF( IASCL.EQ.2 ) THEN
609         CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
610         CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
611     $                INFO )
612      END IF
613      IF( IBSCL.EQ.1 ) THEN
614         CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
615      ELSE IF( IBSCL.EQ.2 ) THEN
616         CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
617      END IF
618*
619   10 CONTINUE
620      WORK( 1 ) = MAXWRK
621      IWORK( 1 ) = LIWORK
622      RETURN
623*
624*     End of DGELSD
625*
626      END
627