1*> \brief \b DLAEBZ computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than or equal to a given value, and performs other tasks required by the routine sstebz.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DLAEBZ + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaebz.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaebz.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaebz.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,
22*                          RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,
23*                          NAB, WORK, IWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       INTEGER            IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
27*       DOUBLE PRECISION   ABSTOL, PIVMIN, RELTOL
28*       ..
29*       .. Array Arguments ..
30*       INTEGER            IWORK( * ), NAB( MMAX, * ), NVAL( * )
31*       DOUBLE PRECISION   AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
32*      $                   WORK( * )
33*       ..
34*
35*
36*> \par Purpose:
37*  =============
38*>
39*> \verbatim
40*>
41*> DLAEBZ contains the iteration loops which compute and use the
42*> function N(w), which is the count of eigenvalues of a symmetric
43*> tridiagonal matrix T less than or equal to its argument  w.  It
44*> performs a choice of two types of loops:
45*>
46*> IJOB=1, followed by
47*> IJOB=2: It takes as input a list of intervals and returns a list of
48*>         sufficiently small intervals whose union contains the same
49*>         eigenvalues as the union of the original intervals.
50*>         The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.
51*>         The output interval (AB(j,1),AB(j,2)] will contain
52*>         eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.
53*>
54*> IJOB=3: It performs a binary search in each input interval
55*>         (AB(j,1),AB(j,2)] for a point  w(j)  such that
56*>         N(w(j))=NVAL(j), and uses  C(j)  as the starting point of
57*>         the search.  If such a w(j) is found, then on output
58*>         AB(j,1)=AB(j,2)=w.  If no such w(j) is found, then on output
59*>         (AB(j,1),AB(j,2)] will be a small interval containing the
60*>         point where N(w) jumps through NVAL(j), unless that point
61*>         lies outside the initial interval.
62*>
63*> Note that the intervals are in all cases half-open intervals,
64*> i.e., of the form  (a,b] , which includes  b  but not  a .
65*>
66*> To avoid underflow, the matrix should be scaled so that its largest
67*> element is no greater than  overflow**(1/2) * underflow**(1/4)
68*> in absolute value.  To assure the most accurate computation
69*> of small eigenvalues, the matrix should be scaled to be
70*> not much smaller than that, either.
71*>
72*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
73*> Matrix", Report CS41, Computer Science Dept., Stanford
74*> University, July 21, 1966
75*>
76*> Note: the arguments are, in general, *not* checked for unreasonable
77*> values.
78*> \endverbatim
79*
80*  Arguments:
81*  ==========
82*
83*> \param[in] IJOB
84*> \verbatim
85*>          IJOB is INTEGER
86*>          Specifies what is to be done:
87*>          = 1:  Compute NAB for the initial intervals.
88*>          = 2:  Perform bisection iteration to find eigenvalues of T.
89*>          = 3:  Perform bisection iteration to invert N(w), i.e.,
90*>                to find a point which has a specified number of
91*>                eigenvalues of T to its left.
92*>          Other values will cause DLAEBZ to return with INFO=-1.
93*> \endverbatim
94*>
95*> \param[in] NITMAX
96*> \verbatim
97*>          NITMAX is INTEGER
98*>          The maximum number of "levels" of bisection to be
99*>          performed, i.e., an interval of width W will not be made
100*>          smaller than 2^(-NITMAX) * W.  If not all intervals
101*>          have converged after NITMAX iterations, then INFO is set
102*>          to the number of non-converged intervals.
103*> \endverbatim
104*>
105*> \param[in] N
106*> \verbatim
107*>          N is INTEGER
108*>          The dimension n of the tridiagonal matrix T.  It must be at
109*>          least 1.
110*> \endverbatim
111*>
112*> \param[in] MMAX
113*> \verbatim
114*>          MMAX is INTEGER
115*>          The maximum number of intervals.  If more than MMAX intervals
116*>          are generated, then DLAEBZ will quit with INFO=MMAX+1.
117*> \endverbatim
118*>
119*> \param[in] MINP
120*> \verbatim
121*>          MINP is INTEGER
122*>          The initial number of intervals.  It may not be greater than
123*>          MMAX.
124*> \endverbatim
125*>
126*> \param[in] NBMIN
127*> \verbatim
128*>          NBMIN is INTEGER
129*>          The smallest number of intervals that should be processed
130*>          using a vector loop.  If zero, then only the scalar loop
131*>          will be used.
132*> \endverbatim
133*>
134*> \param[in] ABSTOL
135*> \verbatim
136*>          ABSTOL is DOUBLE PRECISION
137*>          The minimum (absolute) width of an interval.  When an
138*>          interval is narrower than ABSTOL, or than RELTOL times the
139*>          larger (in magnitude) endpoint, then it is considered to be
140*>          sufficiently small, i.e., converged.  This must be at least
141*>          zero.
142*> \endverbatim
143*>
144*> \param[in] RELTOL
145*> \verbatim
146*>          RELTOL is DOUBLE PRECISION
147*>          The minimum relative width of an interval.  When an interval
148*>          is narrower than ABSTOL, or than RELTOL times the larger (in
149*>          magnitude) endpoint, then it is considered to be
150*>          sufficiently small, i.e., converged.  Note: this should
151*>          always be at least radix*machine epsilon.
152*> \endverbatim
153*>
154*> \param[in] PIVMIN
155*> \verbatim
156*>          PIVMIN is DOUBLE PRECISION
157*>          The minimum absolute value of a "pivot" in the Sturm
158*>          sequence loop.
159*>          This must be at least  max |e(j)**2|*safe_min  and at
160*>          least safe_min, where safe_min is at least
161*>          the smallest number that can divide one without overflow.
162*> \endverbatim
163*>
164*> \param[in] D
165*> \verbatim
166*>          D is DOUBLE PRECISION array, dimension (N)
167*>          The diagonal elements of the tridiagonal matrix T.
168*> \endverbatim
169*>
170*> \param[in] E
171*> \verbatim
172*>          E is DOUBLE PRECISION array, dimension (N)
173*>          The offdiagonal elements of the tridiagonal matrix T in
174*>          positions 1 through N-1.  E(N) is arbitrary.
175*> \endverbatim
176*>
177*> \param[in] E2
178*> \verbatim
179*>          E2 is DOUBLE PRECISION array, dimension (N)
180*>          The squares of the offdiagonal elements of the tridiagonal
181*>          matrix T.  E2(N) is ignored.
182*> \endverbatim
183*>
184*> \param[in,out] NVAL
185*> \verbatim
186*>          NVAL is INTEGER array, dimension (MINP)
187*>          If IJOB=1 or 2, not referenced.
188*>          If IJOB=3, the desired values of N(w).  The elements of NVAL
189*>          will be reordered to correspond with the intervals in AB.
190*>          Thus, NVAL(j) on output will not, in general be the same as
191*>          NVAL(j) on input, but it will correspond with the interval
192*>          (AB(j,1),AB(j,2)] on output.
193*> \endverbatim
194*>
195*> \param[in,out] AB
196*> \verbatim
197*>          AB is DOUBLE PRECISION array, dimension (MMAX,2)
198*>          The endpoints of the intervals.  AB(j,1) is  a(j), the left
199*>          endpoint of the j-th interval, and AB(j,2) is b(j), the
200*>          right endpoint of the j-th interval.  The input intervals
201*>          will, in general, be modified, split, and reordered by the
202*>          calculation.
203*> \endverbatim
204*>
205*> \param[in,out] C
206*> \verbatim
207*>          C is DOUBLE PRECISION array, dimension (MMAX)
208*>          If IJOB=1, ignored.
209*>          If IJOB=2, workspace.
210*>          If IJOB=3, then on input C(j) should be initialized to the
211*>          first search point in the binary search.
212*> \endverbatim
213*>
214*> \param[out] MOUT
215*> \verbatim
216*>          MOUT is INTEGER
217*>          If IJOB=1, the number of eigenvalues in the intervals.
218*>          If IJOB=2 or 3, the number of intervals output.
219*>          If IJOB=3, MOUT will equal MINP.
220*> \endverbatim
221*>
222*> \param[in,out] NAB
223*> \verbatim
224*>          NAB is INTEGER array, dimension (MMAX,2)
225*>          If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).
226*>          If IJOB=2, then on input, NAB(i,j) should be set.  It must
227*>             satisfy the condition:
228*>             N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),
229*>             which means that in interval i only eigenvalues
230*>             NAB(i,1)+1,...,NAB(i,2) will be considered.  Usually,
231*>             NAB(i,j)=N(AB(i,j)), from a previous call to DLAEBZ with
232*>             IJOB=1.
233*>             On output, NAB(i,j) will contain
234*>             max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of
235*>             the input interval that the output interval
236*>             (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the
237*>             the input values of NAB(k,1) and NAB(k,2).
238*>          If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),
239*>             unless N(w) > NVAL(i) for all search points  w , in which
240*>             case NAB(i,1) will not be modified, i.e., the output
241*>             value will be the same as the input value (modulo
242*>             reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)
243*>             for all search points  w , in which case NAB(i,2) will
244*>             not be modified.  Normally, NAB should be set to some
245*>             distinctive value(s) before DLAEBZ is called.
246*> \endverbatim
247*>
248*> \param[out] WORK
249*> \verbatim
250*>          WORK is DOUBLE PRECISION array, dimension (MMAX)
251*>          Workspace.
252*> \endverbatim
253*>
254*> \param[out] IWORK
255*> \verbatim
256*>          IWORK is INTEGER array, dimension (MMAX)
257*>          Workspace.
258*> \endverbatim
259*>
260*> \param[out] INFO
261*> \verbatim
262*>          INFO is INTEGER
263*>          = 0:       All intervals converged.
264*>          = 1--MMAX: The last INFO intervals did not converge.
265*>          = MMAX+1:  More than MMAX intervals were generated.
266*> \endverbatim
267*
268*  Authors:
269*  ========
270*
271*> \author Univ. of Tennessee
272*> \author Univ. of California Berkeley
273*> \author Univ. of Colorado Denver
274*> \author NAG Ltd.
275*
276*> \ingroup OTHERauxiliary
277*
278*> \par Further Details:
279*  =====================
280*>
281*> \verbatim
282*>
283*>      This routine is intended to be called only by other LAPACK
284*>  routines, thus the interface is less user-friendly.  It is intended
285*>  for two purposes:
286*>
287*>  (a) finding eigenvalues.  In this case, DLAEBZ should have one or
288*>      more initial intervals set up in AB, and DLAEBZ should be called
289*>      with IJOB=1.  This sets up NAB, and also counts the eigenvalues.
290*>      Intervals with no eigenvalues would usually be thrown out at
291*>      this point.  Also, if not all the eigenvalues in an interval i
292*>      are desired, NAB(i,1) can be increased or NAB(i,2) decreased.
293*>      For example, set NAB(i,1)=NAB(i,2)-1 to get the largest
294*>      eigenvalue.  DLAEBZ is then called with IJOB=2 and MMAX
295*>      no smaller than the value of MOUT returned by the call with
296*>      IJOB=1.  After this (IJOB=2) call, eigenvalues NAB(i,1)+1
297*>      through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the
298*>      tolerance specified by ABSTOL and RELTOL.
299*>
300*>  (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).
301*>      In this case, start with a Gershgorin interval  (a,b).  Set up
302*>      AB to contain 2 search intervals, both initially (a,b).  One
303*>      NVAL element should contain  f-1  and the other should contain  l
304*>      , while C should contain a and b, resp.  NAB(i,1) should be -1
305*>      and NAB(i,2) should be N+1, to flag an error if the desired
306*>      interval does not lie in (a,b).  DLAEBZ is then called with
307*>      IJOB=3.  On exit, if w(f-1) < w(f), then one of the intervals --
308*>      j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while
309*>      if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r
310*>      >= 0, then the interval will have  N(AB(j,1))=NAB(j,1)=f-k and
311*>      N(AB(j,2))=NAB(j,2)=f+r.  The cases w(l) < w(l+1) and
312*>      w(l-r)=...=w(l+k) are handled similarly.
313*> \endverbatim
314*>
315*  =====================================================================
316      SUBROUTINE DLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,
317     $                   RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,
318     $                   NAB, WORK, IWORK, INFO )
319*
320*  -- LAPACK auxiliary routine --
321*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
322*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
323*
324*     .. Scalar Arguments ..
325      INTEGER            IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
326      DOUBLE PRECISION   ABSTOL, PIVMIN, RELTOL
327*     ..
328*     .. Array Arguments ..
329      INTEGER            IWORK( * ), NAB( MMAX, * ), NVAL( * )
330      DOUBLE PRECISION   AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
331     $                   WORK( * )
332*     ..
333*
334*  =====================================================================
335*
336*     .. Parameters ..
337      DOUBLE PRECISION   ZERO, TWO, HALF
338      PARAMETER          ( ZERO = 0.0D0, TWO = 2.0D0,
339     $                   HALF = 1.0D0 / TWO )
340*     ..
341*     .. Local Scalars ..
342      INTEGER            ITMP1, ITMP2, J, JI, JIT, JP, KF, KFNEW, KL,
343     $                   KLNEW
344      DOUBLE PRECISION   TMP1, TMP2
345*     ..
346*     .. Intrinsic Functions ..
347      INTRINSIC          ABS, MAX, MIN
348*     ..
349*     .. Executable Statements ..
350*
351*     Check for Errors
352*
353      INFO = 0
354      IF( IJOB.LT.1 .OR. IJOB.GT.3 ) THEN
355         INFO = -1
356         RETURN
357      END IF
358*
359*     Initialize NAB
360*
361      IF( IJOB.EQ.1 ) THEN
362*
363*        Compute the number of eigenvalues in the initial intervals.
364*
365         MOUT = 0
366         DO 30 JI = 1, MINP
367            DO 20 JP = 1, 2
368               TMP1 = D( 1 ) - AB( JI, JP )
369               IF( ABS( TMP1 ).LT.PIVMIN )
370     $            TMP1 = -PIVMIN
371               NAB( JI, JP ) = 0
372               IF( TMP1.LE.ZERO )
373     $            NAB( JI, JP ) = 1
374*
375               DO 10 J = 2, N
376                  TMP1 = D( J ) - E2( J-1 ) / TMP1 - AB( JI, JP )
377                  IF( ABS( TMP1 ).LT.PIVMIN )
378     $               TMP1 = -PIVMIN
379                  IF( TMP1.LE.ZERO )
380     $               NAB( JI, JP ) = NAB( JI, JP ) + 1
381   10          CONTINUE
382   20       CONTINUE
383            MOUT = MOUT + NAB( JI, 2 ) - NAB( JI, 1 )
384   30    CONTINUE
385         RETURN
386      END IF
387*
388*     Initialize for loop
389*
390*     KF and KL have the following meaning:
391*        Intervals 1,...,KF-1 have converged.
392*        Intervals KF,...,KL  still need to be refined.
393*
394      KF = 1
395      KL = MINP
396*
397*     If IJOB=2, initialize C.
398*     If IJOB=3, use the user-supplied starting point.
399*
400      IF( IJOB.EQ.2 ) THEN
401         DO 40 JI = 1, MINP
402            C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
403   40    CONTINUE
404      END IF
405*
406*     Iteration loop
407*
408      DO 130 JIT = 1, NITMAX
409*
410*        Loop over intervals
411*
412         IF( KL-KF+1.GE.NBMIN .AND. NBMIN.GT.0 ) THEN
413*
414*           Begin of Parallel Version of the loop
415*
416            DO 60 JI = KF, KL
417*
418*              Compute N(c), the number of eigenvalues less than c
419*
420               WORK( JI ) = D( 1 ) - C( JI )
421               IWORK( JI ) = 0
422               IF( WORK( JI ).LE.PIVMIN ) THEN
423                  IWORK( JI ) = 1
424                  WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
425               END IF
426*
427               DO 50 J = 2, N
428                  WORK( JI ) = D( J ) - E2( J-1 ) / WORK( JI ) - C( JI )
429                  IF( WORK( JI ).LE.PIVMIN ) THEN
430                     IWORK( JI ) = IWORK( JI ) + 1
431                     WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
432                  END IF
433   50          CONTINUE
434   60       CONTINUE
435*
436            IF( IJOB.LE.2 ) THEN
437*
438*              IJOB=2: Choose all intervals containing eigenvalues.
439*
440               KLNEW = KL
441               DO 70 JI = KF, KL
442*
443*                 Insure that N(w) is monotone
444*
445                  IWORK( JI ) = MIN( NAB( JI, 2 ),
446     $                          MAX( NAB( JI, 1 ), IWORK( JI ) ) )
447*
448*                 Update the Queue -- add intervals if both halves
449*                 contain eigenvalues.
450*
451                  IF( IWORK( JI ).EQ.NAB( JI, 2 ) ) THEN
452*
453*                    No eigenvalue in the upper interval:
454*                    just use the lower interval.
455*
456                     AB( JI, 2 ) = C( JI )
457*
458                  ELSE IF( IWORK( JI ).EQ.NAB( JI, 1 ) ) THEN
459*
460*                    No eigenvalue in the lower interval:
461*                    just use the upper interval.
462*
463                     AB( JI, 1 ) = C( JI )
464                  ELSE
465                     KLNEW = KLNEW + 1
466                     IF( KLNEW.LE.MMAX ) THEN
467*
468*                       Eigenvalue in both intervals -- add upper to
469*                       queue.
470*
471                        AB( KLNEW, 2 ) = AB( JI, 2 )
472                        NAB( KLNEW, 2 ) = NAB( JI, 2 )
473                        AB( KLNEW, 1 ) = C( JI )
474                        NAB( KLNEW, 1 ) = IWORK( JI )
475                        AB( JI, 2 ) = C( JI )
476                        NAB( JI, 2 ) = IWORK( JI )
477                     ELSE
478                        INFO = MMAX + 1
479                     END IF
480                  END IF
481   70          CONTINUE
482               IF( INFO.NE.0 )
483     $            RETURN
484               KL = KLNEW
485            ELSE
486*
487*              IJOB=3: Binary search.  Keep only the interval containing
488*                      w   s.t. N(w) = NVAL
489*
490               DO 80 JI = KF, KL
491                  IF( IWORK( JI ).LE.NVAL( JI ) ) THEN
492                     AB( JI, 1 ) = C( JI )
493                     NAB( JI, 1 ) = IWORK( JI )
494                  END IF
495                  IF( IWORK( JI ).GE.NVAL( JI ) ) THEN
496                     AB( JI, 2 ) = C( JI )
497                     NAB( JI, 2 ) = IWORK( JI )
498                  END IF
499   80          CONTINUE
500            END IF
501*
502         ELSE
503*
504*           End of Parallel Version of the loop
505*
506*           Begin of Serial Version of the loop
507*
508            KLNEW = KL
509            DO 100 JI = KF, KL
510*
511*              Compute N(w), the number of eigenvalues less than w
512*
513               TMP1 = C( JI )
514               TMP2 = D( 1 ) - TMP1
515               ITMP1 = 0
516               IF( TMP2.LE.PIVMIN ) THEN
517                  ITMP1 = 1
518                  TMP2 = MIN( TMP2, -PIVMIN )
519               END IF
520*
521               DO 90 J = 2, N
522                  TMP2 = D( J ) - E2( J-1 ) / TMP2 - TMP1
523                  IF( TMP2.LE.PIVMIN ) THEN
524                     ITMP1 = ITMP1 + 1
525                     TMP2 = MIN( TMP2, -PIVMIN )
526                  END IF
527   90          CONTINUE
528*
529               IF( IJOB.LE.2 ) THEN
530*
531*                 IJOB=2: Choose all intervals containing eigenvalues.
532*
533*                 Insure that N(w) is monotone
534*
535                  ITMP1 = MIN( NAB( JI, 2 ),
536     $                    MAX( NAB( JI, 1 ), ITMP1 ) )
537*
538*                 Update the Queue -- add intervals if both halves
539*                 contain eigenvalues.
540*
541                  IF( ITMP1.EQ.NAB( JI, 2 ) ) THEN
542*
543*                    No eigenvalue in the upper interval:
544*                    just use the lower interval.
545*
546                     AB( JI, 2 ) = TMP1
547*
548                  ELSE IF( ITMP1.EQ.NAB( JI, 1 ) ) THEN
549*
550*                    No eigenvalue in the lower interval:
551*                    just use the upper interval.
552*
553                     AB( JI, 1 ) = TMP1
554                  ELSE IF( KLNEW.LT.MMAX ) THEN
555*
556*                    Eigenvalue in both intervals -- add upper to queue.
557*
558                     KLNEW = KLNEW + 1
559                     AB( KLNEW, 2 ) = AB( JI, 2 )
560                     NAB( KLNEW, 2 ) = NAB( JI, 2 )
561                     AB( KLNEW, 1 ) = TMP1
562                     NAB( KLNEW, 1 ) = ITMP1
563                     AB( JI, 2 ) = TMP1
564                     NAB( JI, 2 ) = ITMP1
565                  ELSE
566                     INFO = MMAX + 1
567                     RETURN
568                  END IF
569               ELSE
570*
571*                 IJOB=3: Binary search.  Keep only the interval
572*                         containing  w  s.t. N(w) = NVAL
573*
574                  IF( ITMP1.LE.NVAL( JI ) ) THEN
575                     AB( JI, 1 ) = TMP1
576                     NAB( JI, 1 ) = ITMP1
577                  END IF
578                  IF( ITMP1.GE.NVAL( JI ) ) THEN
579                     AB( JI, 2 ) = TMP1
580                     NAB( JI, 2 ) = ITMP1
581                  END IF
582               END IF
583  100       CONTINUE
584            KL = KLNEW
585*
586         END IF
587*
588*        Check for convergence
589*
590         KFNEW = KF
591         DO 110 JI = KF, KL
592            TMP1 = ABS( AB( JI, 2 )-AB( JI, 1 ) )
593            TMP2 = MAX( ABS( AB( JI, 2 ) ), ABS( AB( JI, 1 ) ) )
594            IF( TMP1.LT.MAX( ABSTOL, PIVMIN, RELTOL*TMP2 ) .OR.
595     $          NAB( JI, 1 ).GE.NAB( JI, 2 ) ) THEN
596*
597*              Converged -- Swap with position KFNEW,
598*                           then increment KFNEW
599*
600               IF( JI.GT.KFNEW ) THEN
601                  TMP1 = AB( JI, 1 )
602                  TMP2 = AB( JI, 2 )
603                  ITMP1 = NAB( JI, 1 )
604                  ITMP2 = NAB( JI, 2 )
605                  AB( JI, 1 ) = AB( KFNEW, 1 )
606                  AB( JI, 2 ) = AB( KFNEW, 2 )
607                  NAB( JI, 1 ) = NAB( KFNEW, 1 )
608                  NAB( JI, 2 ) = NAB( KFNEW, 2 )
609                  AB( KFNEW, 1 ) = TMP1
610                  AB( KFNEW, 2 ) = TMP2
611                  NAB( KFNEW, 1 ) = ITMP1
612                  NAB( KFNEW, 2 ) = ITMP2
613                  IF( IJOB.EQ.3 ) THEN
614                     ITMP1 = NVAL( JI )
615                     NVAL( JI ) = NVAL( KFNEW )
616                     NVAL( KFNEW ) = ITMP1
617                  END IF
618               END IF
619               KFNEW = KFNEW + 1
620            END IF
621  110    CONTINUE
622         KF = KFNEW
623*
624*        Choose Midpoints
625*
626         DO 120 JI = KF, KL
627            C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
628  120    CONTINUE
629*
630*        If no more intervals to refine, quit.
631*
632         IF( KF.GT.KL )
633     $      GO TO 140
634  130 CONTINUE
635*
636*     Converged
637*
638  140 CONTINUE
639      INFO = MAX( KL+1-KF, 0 )
640      MOUT = KL
641*
642      RETURN
643*
644*     End of DLAEBZ
645*
646      END
647