1*> \brief <b> DGELSS solves overdetermined or underdetermined systems for GE matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DGELSS + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelss.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelss.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelss.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
22*                          WORK, LWORK, INFO )
23*
24*       .. Scalar Arguments ..
25*       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
26*       DOUBLE PRECISION   RCOND
27*       ..
28*       .. Array Arguments ..
29*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
30*       ..
31*
32*
33*> \par Purpose:
34*  =============
35*>
36*> \verbatim
37*>
38*> DGELSS computes the minimum norm solution to a real linear least
39*> squares problem:
40*>
41*> Minimize 2-norm(| b - A*x |).
42*>
43*> using the singular value decomposition (SVD) of A. A is an M-by-N
44*> matrix which may be rank-deficient.
45*>
46*> Several right hand side vectors b and solution vectors x can be
47*> handled in a single call; they are stored as the columns of the
48*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
49*> X.
50*>
51*> The effective rank of A is determined by treating as zero those
52*> singular values which are less than RCOND times the largest singular
53*> value.
54*> \endverbatim
55*
56*  Arguments:
57*  ==========
58*
59*> \param[in] M
60*> \verbatim
61*>          M is INTEGER
62*>          The number of rows of the matrix A. M >= 0.
63*> \endverbatim
64*>
65*> \param[in] N
66*> \verbatim
67*>          N is INTEGER
68*>          The number of columns of the matrix A. N >= 0.
69*> \endverbatim
70*>
71*> \param[in] NRHS
72*> \verbatim
73*>          NRHS is INTEGER
74*>          The number of right hand sides, i.e., the number of columns
75*>          of the matrices B and X. NRHS >= 0.
76*> \endverbatim
77*>
78*> \param[in,out] A
79*> \verbatim
80*>          A is DOUBLE PRECISION array, dimension (LDA,N)
81*>          On entry, the M-by-N matrix A.
82*>          On exit, the first min(m,n) rows of A are overwritten with
83*>          its right singular vectors, stored rowwise.
84*> \endverbatim
85*>
86*> \param[in] LDA
87*> \verbatim
88*>          LDA is INTEGER
89*>          The leading dimension of the array A.  LDA >= max(1,M).
90*> \endverbatim
91*>
92*> \param[in,out] B
93*> \verbatim
94*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
95*>          On entry, the M-by-NRHS right hand side matrix B.
96*>          On exit, B is overwritten by the N-by-NRHS solution
97*>          matrix X.  If m >= n and RANK = n, the residual
98*>          sum-of-squares for the solution in the i-th column is given
99*>          by the sum of squares of elements n+1:m in that column.
100*> \endverbatim
101*>
102*> \param[in] LDB
103*> \verbatim
104*>          LDB is INTEGER
105*>          The leading dimension of the array B. LDB >= max(1,max(M,N)).
106*> \endverbatim
107*>
108*> \param[out] S
109*> \verbatim
110*>          S is DOUBLE PRECISION array, dimension (min(M,N))
111*>          The singular values of A in decreasing order.
112*>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
113*> \endverbatim
114*>
115*> \param[in] RCOND
116*> \verbatim
117*>          RCOND is DOUBLE PRECISION
118*>          RCOND is used to determine the effective rank of A.
119*>          Singular values S(i) <= RCOND*S(1) are treated as zero.
120*>          If RCOND < 0, machine precision is used instead.
121*> \endverbatim
122*>
123*> \param[out] RANK
124*> \verbatim
125*>          RANK is INTEGER
126*>          The effective rank of A, i.e., the number of singular values
127*>          which are greater than RCOND*S(1).
128*> \endverbatim
129*>
130*> \param[out] WORK
131*> \verbatim
132*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
133*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
134*> \endverbatim
135*>
136*> \param[in] LWORK
137*> \verbatim
138*>          LWORK is INTEGER
139*>          The dimension of the array WORK. LWORK >= 1, and also:
140*>          LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )
141*>          For good performance, LWORK should generally be larger.
142*>
143*>          If LWORK = -1, then a workspace query is assumed; the routine
144*>          only calculates the optimal size of the WORK array, returns
145*>          this value as the first entry of the WORK array, and no error
146*>          message related to LWORK is issued by XERBLA.
147*> \endverbatim
148*>
149*> \param[out] INFO
150*> \verbatim
151*>          INFO is INTEGER
152*>          = 0:  successful exit
153*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
154*>          > 0:  the algorithm for computing the SVD failed to converge;
155*>                if INFO = i, i off-diagonal elements of an intermediate
156*>                bidiagonal form did not converge to zero.
157*> \endverbatim
158*
159*  Authors:
160*  ========
161*
162*> \author Univ. of Tennessee
163*> \author Univ. of California Berkeley
164*> \author Univ. of Colorado Denver
165*> \author NAG Ltd.
166*
167*> \ingroup doubleGEsolve
168*
169*  =====================================================================
170      SUBROUTINE DGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
171     $                   WORK, LWORK, INFO )
172*
173*  -- LAPACK driver routine --
174*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
175*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
176*
177*     .. Scalar Arguments ..
178      INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
179      DOUBLE PRECISION   RCOND
180*     ..
181*     .. Array Arguments ..
182      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
183*     ..
184*
185*  =====================================================================
186*
187*     .. Parameters ..
188      DOUBLE PRECISION   ZERO, ONE
189      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
190*     ..
191*     .. Local Scalars ..
192      LOGICAL            LQUERY
193      INTEGER            BDSPAC, BL, CHUNK, I, IASCL, IBSCL, IE, IL,
194     $                   ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,
195     $                   MAXWRK, MINMN, MINWRK, MM, MNTHR
196      INTEGER            LWORK_DGEQRF, LWORK_DORMQR, LWORK_DGEBRD,
197     $                   LWORK_DORMBR, LWORK_DORGBR, LWORK_DORMLQ,
198     $                   LWORK_DGELQF
199      DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR
200*     ..
201*     .. Local Arrays ..
202      DOUBLE PRECISION   DUM( 1 )
203*     ..
204*     .. External Subroutines ..
205      EXTERNAL           DBDSQR, DCOPY, DGEBRD, DGELQF, DGEMM, DGEMV,
206     $                   DGEQRF, DLABAD, DLACPY, DLASCL, DLASET, DORGBR,
207     $                   DORMBR, DORMLQ, DORMQR, DRSCL, XERBLA
208*     ..
209*     .. External Functions ..
210      INTEGER            ILAENV
211      DOUBLE PRECISION   DLAMCH, DLANGE
212      EXTERNAL           ILAENV, DLAMCH, DLANGE
213*     ..
214*     .. Intrinsic Functions ..
215      INTRINSIC          MAX, MIN
216*     ..
217*     .. Executable Statements ..
218*
219*     Test the input arguments
220*
221      INFO = 0
222      MINMN = MIN( M, N )
223      MAXMN = MAX( M, N )
224      LQUERY = ( LWORK.EQ.-1 )
225      IF( M.LT.0 ) THEN
226         INFO = -1
227      ELSE IF( N.LT.0 ) THEN
228         INFO = -2
229      ELSE IF( NRHS.LT.0 ) THEN
230         INFO = -3
231      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
232         INFO = -5
233      ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
234         INFO = -7
235      END IF
236*
237*     Compute workspace
238*      (Note: Comments in the code beginning "Workspace:" describe the
239*       minimal amount of workspace needed at that point in the code,
240*       as well as the preferred amount for good performance.
241*       NB refers to the optimal block size for the immediately
242*       following subroutine, as returned by ILAENV.)
243*
244      IF( INFO.EQ.0 ) THEN
245         MINWRK = 1
246         MAXWRK = 1
247         IF( MINMN.GT.0 ) THEN
248            MM = M
249            MNTHR = ILAENV( 6, 'DGELSS', ' ', M, N, NRHS, -1 )
250            IF( M.GE.N .AND. M.GE.MNTHR ) THEN
251*
252*              Path 1a - overdetermined, with many more rows than
253*                        columns
254*
255*              Compute space needed for DGEQRF
256               CALL DGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, INFO )
257               LWORK_DGEQRF=DUM(1)
258*              Compute space needed for DORMQR
259               CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, DUM(1), B,
260     $                   LDB, DUM(1), -1, INFO )
261               LWORK_DORMQR=DUM(1)
262               MM = N
263               MAXWRK = MAX( MAXWRK, N + LWORK_DGEQRF )
264               MAXWRK = MAX( MAXWRK, N + LWORK_DORMQR )
265            END IF
266            IF( M.GE.N ) THEN
267*
268*              Path 1 - overdetermined or exactly determined
269*
270*              Compute workspace needed for DBDSQR
271*
272               BDSPAC = MAX( 1, 5*N )
273*              Compute space needed for DGEBRD
274               CALL DGEBRD( MM, N, A, LDA, S, DUM(1), DUM(1),
275     $                      DUM(1), DUM(1), -1, INFO )
276               LWORK_DGEBRD=DUM(1)
277*              Compute space needed for DORMBR
278               CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, DUM(1),
279     $                B, LDB, DUM(1), -1, INFO )
280               LWORK_DORMBR=DUM(1)
281*              Compute space needed for DORGBR
282               CALL DORGBR( 'P', N, N, N, A, LDA, DUM(1),
283     $                   DUM(1), -1, INFO )
284               LWORK_DORGBR=DUM(1)
285*              Compute total workspace needed
286               MAXWRK = MAX( MAXWRK, 3*N + LWORK_DGEBRD )
287               MAXWRK = MAX( MAXWRK, 3*N + LWORK_DORMBR )
288               MAXWRK = MAX( MAXWRK, 3*N + LWORK_DORGBR )
289               MAXWRK = MAX( MAXWRK, BDSPAC )
290               MAXWRK = MAX( MAXWRK, N*NRHS )
291               MINWRK = MAX( 3*N + MM, 3*N + NRHS, BDSPAC )
292               MAXWRK = MAX( MINWRK, MAXWRK )
293            END IF
294            IF( N.GT.M ) THEN
295*
296*              Compute workspace needed for DBDSQR
297*
298               BDSPAC = MAX( 1, 5*M )
299               MINWRK = MAX( 3*M+NRHS, 3*M+N, BDSPAC )
300               IF( N.GE.MNTHR ) THEN
301*
302*                 Path 2a - underdetermined, with many more columns
303*                 than rows
304*
305*                 Compute space needed for DGELQF
306                  CALL DGELQF( M, N, A, LDA, DUM(1), DUM(1),
307     $                -1, INFO )
308                  LWORK_DGELQF=DUM(1)
309*                 Compute space needed for DGEBRD
310                  CALL DGEBRD( M, M, A, LDA, S, DUM(1), DUM(1),
311     $                      DUM(1), DUM(1), -1, INFO )
312                  LWORK_DGEBRD=DUM(1)
313*                 Compute space needed for DORMBR
314                  CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA,
315     $                DUM(1), B, LDB, DUM(1), -1, INFO )
316                  LWORK_DORMBR=DUM(1)
317*                 Compute space needed for DORGBR
318                  CALL DORGBR( 'P', M, M, M, A, LDA, DUM(1),
319     $                   DUM(1), -1, INFO )
320                  LWORK_DORGBR=DUM(1)
321*                 Compute space needed for DORMLQ
322                  CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, DUM(1),
323     $                 B, LDB, DUM(1), -1, INFO )
324                  LWORK_DORMLQ=DUM(1)
325*                 Compute total workspace needed
326                  MAXWRK = M + LWORK_DGELQF
327                  MAXWRK = MAX( MAXWRK, M*M + 4*M + LWORK_DGEBRD )
328                  MAXWRK = MAX( MAXWRK, M*M + 4*M + LWORK_DORMBR )
329                  MAXWRK = MAX( MAXWRK, M*M + 4*M + LWORK_DORGBR )
330                  MAXWRK = MAX( MAXWRK, M*M + M + BDSPAC )
331                  IF( NRHS.GT.1 ) THEN
332                     MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
333                  ELSE
334                     MAXWRK = MAX( MAXWRK, M*M + 2*M )
335                  END IF
336                  MAXWRK = MAX( MAXWRK, M + LWORK_DORMLQ )
337               ELSE
338*
339*                 Path 2 - underdetermined
340*
341*                 Compute space needed for DGEBRD
342                  CALL DGEBRD( M, N, A, LDA, S, DUM(1), DUM(1),
343     $                      DUM(1), DUM(1), -1, INFO )
344                  LWORK_DGEBRD=DUM(1)
345*                 Compute space needed for DORMBR
346                  CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, A, LDA,
347     $                DUM(1), B, LDB, DUM(1), -1, INFO )
348                  LWORK_DORMBR=DUM(1)
349*                 Compute space needed for DORGBR
350                  CALL DORGBR( 'P', M, N, M, A, LDA, DUM(1),
351     $                   DUM(1), -1, INFO )
352                  LWORK_DORGBR=DUM(1)
353                  MAXWRK = 3*M + LWORK_DGEBRD
354                  MAXWRK = MAX( MAXWRK, 3*M + LWORK_DORMBR )
355                  MAXWRK = MAX( MAXWRK, 3*M + LWORK_DORGBR )
356                  MAXWRK = MAX( MAXWRK, BDSPAC )
357                  MAXWRK = MAX( MAXWRK, N*NRHS )
358               END IF
359            END IF
360            MAXWRK = MAX( MINWRK, MAXWRK )
361         END IF
362         WORK( 1 ) = MAXWRK
363*
364         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
365     $      INFO = -12
366      END IF
367*
368      IF( INFO.NE.0 ) THEN
369         CALL XERBLA( 'DGELSS', -INFO )
370         RETURN
371      ELSE IF( LQUERY ) THEN
372         RETURN
373      END IF
374*
375*     Quick return if possible
376*
377      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
378         RANK = 0
379         RETURN
380      END IF
381*
382*     Get machine parameters
383*
384      EPS = DLAMCH( 'P' )
385      SFMIN = DLAMCH( 'S' )
386      SMLNUM = SFMIN / EPS
387      BIGNUM = ONE / SMLNUM
388      CALL DLABAD( SMLNUM, BIGNUM )
389*
390*     Scale A if max element outside range [SMLNUM,BIGNUM]
391*
392      ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
393      IASCL = 0
394      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
395*
396*        Scale matrix norm up to SMLNUM
397*
398         CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
399         IASCL = 1
400      ELSE IF( ANRM.GT.BIGNUM ) THEN
401*
402*        Scale matrix norm down to BIGNUM
403*
404         CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
405         IASCL = 2
406      ELSE IF( ANRM.EQ.ZERO ) THEN
407*
408*        Matrix all zero. Return zero solution.
409*
410         CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
411         CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, MINMN )
412         RANK = 0
413         GO TO 70
414      END IF
415*
416*     Scale B if max element outside range [SMLNUM,BIGNUM]
417*
418      BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
419      IBSCL = 0
420      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
421*
422*        Scale matrix norm up to SMLNUM
423*
424         CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
425         IBSCL = 1
426      ELSE IF( BNRM.GT.BIGNUM ) THEN
427*
428*        Scale matrix norm down to BIGNUM
429*
430         CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
431         IBSCL = 2
432      END IF
433*
434*     Overdetermined case
435*
436      IF( M.GE.N ) THEN
437*
438*        Path 1 - overdetermined or exactly determined
439*
440         MM = M
441         IF( M.GE.MNTHR ) THEN
442*
443*           Path 1a - overdetermined, with many more rows than columns
444*
445            MM = N
446            ITAU = 1
447            IWORK = ITAU + N
448*
449*           Compute A=Q*R
450*           (Workspace: need 2*N, prefer N+N*NB)
451*
452            CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
453     $                   LWORK-IWORK+1, INFO )
454*
455*           Multiply B by transpose(Q)
456*           (Workspace: need N+NRHS, prefer N+NRHS*NB)
457*
458            CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
459     $                   LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
460*
461*           Zero out below R
462*
463            IF( N.GT.1 )
464     $         CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
465         END IF
466*
467         IE = 1
468         ITAUQ = IE + N
469         ITAUP = ITAUQ + N
470         IWORK = ITAUP + N
471*
472*        Bidiagonalize R in A
473*        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
474*
475         CALL DGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
476     $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
477     $                INFO )
478*
479*        Multiply B by transpose of left bidiagonalizing vectors of R
480*        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
481*
482         CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
483     $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
484*
485*        Generate right bidiagonalizing vectors of R in A
486*        (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
487*
488         CALL DORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
489     $                WORK( IWORK ), LWORK-IWORK+1, INFO )
490         IWORK = IE + N
491*
492*        Perform bidiagonal QR iteration
493*          multiply B by transpose of left singular vectors
494*          compute right singular vectors in A
495*        (Workspace: need BDSPAC)
496*
497         CALL DBDSQR( 'U', N, N, 0, NRHS, S, WORK( IE ), A, LDA, DUM,
498     $                1, B, LDB, WORK( IWORK ), INFO )
499         IF( INFO.NE.0 )
500     $      GO TO 70
501*
502*        Multiply B by reciprocals of singular values
503*
504         THR = MAX( RCOND*S( 1 ), SFMIN )
505         IF( RCOND.LT.ZERO )
506     $      THR = MAX( EPS*S( 1 ), SFMIN )
507         RANK = 0
508         DO 10 I = 1, N
509            IF( S( I ).GT.THR ) THEN
510               CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB )
511               RANK = RANK + 1
512            ELSE
513               CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
514            END IF
515   10    CONTINUE
516*
517*        Multiply B by right singular vectors
518*        (Workspace: need N, prefer N*NRHS)
519*
520         IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
521            CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, A, LDA, B, LDB, ZERO,
522     $                  WORK, LDB )
523            CALL DLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
524         ELSE IF( NRHS.GT.1 ) THEN
525            CHUNK = LWORK / N
526            DO 20 I = 1, NRHS, CHUNK
527               BL = MIN( NRHS-I+1, CHUNK )
528               CALL DGEMM( 'T', 'N', N, BL, N, ONE, A, LDA, B( 1, I ),
529     $                     LDB, ZERO, WORK, N )
530               CALL DLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB )
531   20       CONTINUE
532         ELSE
533            CALL DGEMV( 'T', N, N, ONE, A, LDA, B, 1, ZERO, WORK, 1 )
534            CALL DCOPY( N, WORK, 1, B, 1 )
535         END IF
536*
537      ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
538     $         MAX( M, 2*M-4, NRHS, N-3*M ) ) THEN
539*
540*        Path 2a - underdetermined, with many more columns than rows
541*        and sufficient workspace for an efficient algorithm
542*
543         LDWORK = M
544         IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
545     $       M*LDA+M+M*NRHS ) )LDWORK = LDA
546         ITAU = 1
547         IWORK = M + 1
548*
549*        Compute A=L*Q
550*        (Workspace: need 2*M, prefer M+M*NB)
551*
552         CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
553     $                LWORK-IWORK+1, INFO )
554         IL = IWORK
555*
556*        Copy L to WORK(IL), zeroing out above it
557*
558         CALL DLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
559         CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
560     $                LDWORK )
561         IE = IL + LDWORK*M
562         ITAUQ = IE + M
563         ITAUP = ITAUQ + M
564         IWORK = ITAUP + M
565*
566*        Bidiagonalize L in WORK(IL)
567*        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
568*
569         CALL DGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
570     $                WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ),
571     $                LWORK-IWORK+1, INFO )
572*
573*        Multiply B by transpose of left bidiagonalizing vectors of L
574*        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
575*
576         CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK,
577     $                WORK( ITAUQ ), B, LDB, WORK( IWORK ),
578     $                LWORK-IWORK+1, INFO )
579*
580*        Generate right bidiagonalizing vectors of R in WORK(IL)
581*        (Workspace: need M*M+5*M-1, prefer M*M+4*M+(M-1)*NB)
582*
583         CALL DORGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ),
584     $                WORK( IWORK ), LWORK-IWORK+1, INFO )
585         IWORK = IE + M
586*
587*        Perform bidiagonal QR iteration,
588*           computing right singular vectors of L in WORK(IL) and
589*           multiplying B by transpose of left singular vectors
590*        (Workspace: need M*M+M+BDSPAC)
591*
592         CALL DBDSQR( 'U', M, M, 0, NRHS, S, WORK( IE ), WORK( IL ),
593     $                LDWORK, A, LDA, B, LDB, WORK( IWORK ), INFO )
594         IF( INFO.NE.0 )
595     $      GO TO 70
596*
597*        Multiply B by reciprocals of singular values
598*
599         THR = MAX( RCOND*S( 1 ), SFMIN )
600         IF( RCOND.LT.ZERO )
601     $      THR = MAX( EPS*S( 1 ), SFMIN )
602         RANK = 0
603         DO 30 I = 1, M
604            IF( S( I ).GT.THR ) THEN
605               CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB )
606               RANK = RANK + 1
607            ELSE
608               CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
609            END IF
610   30    CONTINUE
611         IWORK = IE
612*
613*        Multiply B by right singular vectors of L in WORK(IL)
614*        (Workspace: need M*M+2*M, prefer M*M+M+M*NRHS)
615*
616         IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN
617            CALL DGEMM( 'T', 'N', M, NRHS, M, ONE, WORK( IL ), LDWORK,
618     $                  B, LDB, ZERO, WORK( IWORK ), LDB )
619            CALL DLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB )
620         ELSE IF( NRHS.GT.1 ) THEN
621            CHUNK = ( LWORK-IWORK+1 ) / M
622            DO 40 I = 1, NRHS, CHUNK
623               BL = MIN( NRHS-I+1, CHUNK )
624               CALL DGEMM( 'T', 'N', M, BL, M, ONE, WORK( IL ), LDWORK,
625     $                     B( 1, I ), LDB, ZERO, WORK( IWORK ), M )
626               CALL DLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ),
627     $                      LDB )
628   40       CONTINUE
629         ELSE
630            CALL DGEMV( 'T', M, M, ONE, WORK( IL ), LDWORK, B( 1, 1 ),
631     $                  1, ZERO, WORK( IWORK ), 1 )
632            CALL DCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 )
633         END IF
634*
635*        Zero out below first M rows of B
636*
637         CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
638         IWORK = ITAU + M
639*
640*        Multiply transpose(Q) by B
641*        (Workspace: need M+NRHS, prefer M+NRHS*NB)
642*
643         CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
644     $                LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
645*
646      ELSE
647*
648*        Path 2 - remaining underdetermined cases
649*
650         IE = 1
651         ITAUQ = IE + M
652         ITAUP = ITAUQ + M
653         IWORK = ITAUP + M
654*
655*        Bidiagonalize A
656*        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
657*
658         CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
659     $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
660     $                INFO )
661*
662*        Multiply B by transpose of left bidiagonalizing vectors
663*        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
664*
665         CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
666     $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
667*
668*        Generate right bidiagonalizing vectors in A
669*        (Workspace: need 4*M, prefer 3*M+M*NB)
670*
671         CALL DORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
672     $                WORK( IWORK ), LWORK-IWORK+1, INFO )
673         IWORK = IE + M
674*
675*        Perform bidiagonal QR iteration,
676*           computing right singular vectors of A in A and
677*           multiplying B by transpose of left singular vectors
678*        (Workspace: need BDSPAC)
679*
680         CALL DBDSQR( 'L', M, N, 0, NRHS, S, WORK( IE ), A, LDA, DUM,
681     $                1, B, LDB, WORK( IWORK ), INFO )
682         IF( INFO.NE.0 )
683     $      GO TO 70
684*
685*        Multiply B by reciprocals of singular values
686*
687         THR = MAX( RCOND*S( 1 ), SFMIN )
688         IF( RCOND.LT.ZERO )
689     $      THR = MAX( EPS*S( 1 ), SFMIN )
690         RANK = 0
691         DO 50 I = 1, M
692            IF( S( I ).GT.THR ) THEN
693               CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB )
694               RANK = RANK + 1
695            ELSE
696               CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
697            END IF
698   50    CONTINUE
699*
700*        Multiply B by right singular vectors of A
701*        (Workspace: need N, prefer N*NRHS)
702*
703         IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
704            CALL DGEMM( 'T', 'N', N, NRHS, M, ONE, A, LDA, B, LDB, ZERO,
705     $                  WORK, LDB )
706            CALL DLACPY( 'F', N, NRHS, WORK, LDB, B, LDB )
707         ELSE IF( NRHS.GT.1 ) THEN
708            CHUNK = LWORK / N
709            DO 60 I = 1, NRHS, CHUNK
710               BL = MIN( NRHS-I+1, CHUNK )
711               CALL DGEMM( 'T', 'N', N, BL, M, ONE, A, LDA, B( 1, I ),
712     $                     LDB, ZERO, WORK, N )
713               CALL DLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB )
714   60       CONTINUE
715         ELSE
716            CALL DGEMV( 'T', M, N, ONE, A, LDA, B, 1, ZERO, WORK, 1 )
717            CALL DCOPY( N, WORK, 1, B, 1 )
718         END IF
719      END IF
720*
721*     Undo scaling
722*
723      IF( IASCL.EQ.1 ) THEN
724         CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
725         CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
726     $                INFO )
727      ELSE IF( IASCL.EQ.2 ) THEN
728         CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
729         CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
730     $                INFO )
731      END IF
732      IF( IBSCL.EQ.1 ) THEN
733         CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
734      ELSE IF( IBSCL.EQ.2 ) THEN
735         CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
736      END IF
737*
738   70 CONTINUE
739      WORK( 1 ) = MAXWRK
740      RETURN
741*
742*     End of DGELSS
743*
744      END
745