1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 
22 #include "rdft/rdft.h"
23 #include <stddef.h>
24 
destroy(problem * ego_)25 static void destroy(problem *ego_)
26 {
27      problem_rdft *ego = (problem_rdft *) ego_;
28 #if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR)
29      X(ifree0)(ego->kind);
30 #endif
31      X(tensor_destroy2)(ego->vecsz, ego->sz);
32      X(ifree)(ego_);
33 }
34 
kind_hash(md5 * m,const rdft_kind * kind,int rnk)35 static void kind_hash(md5 *m, const rdft_kind *kind, int rnk)
36 {
37      int i;
38      for (i = 0; i < rnk; ++i)
39 	  X(md5int)(m, kind[i]);
40 }
41 
hash(const problem * p_,md5 * m)42 static void hash(const problem *p_, md5 *m)
43 {
44      const problem_rdft *p = (const problem_rdft *) p_;
45      X(md5puts)(m, "rdft");
46      X(md5int)(m, p->I == p->O);
47      kind_hash(m, p->kind, p->sz->rnk);
48      X(md5int)(m, X(ialignment_of)(p->I));
49      X(md5int)(m, X(ialignment_of)(p->O));
50      X(tensor_md5)(m, p->sz);
51      X(tensor_md5)(m, p->vecsz);
52 }
53 
recur(const iodim * dims,int rnk,R * I)54 static void recur(const iodim *dims, int rnk, R *I)
55 {
56      if (rnk == RNK_MINFTY)
57           return;
58      else if (rnk == 0)
59           I[0] = K(0.0);
60      else if (rnk > 0) {
61           INT i, n = dims[0].n, is = dims[0].is;
62 
63 	  if (rnk == 1) {
64 	       /* this case is redundant but faster */
65 	       for (i = 0; i < n; ++i)
66 		    I[i * is] = K(0.0);
67 	  } else {
68 	       for (i = 0; i < n; ++i)
69 		    recur(dims + 1, rnk - 1, I + i * is);
70 	  }
71      }
72 }
73 
X(rdft_zerotens)74 void X(rdft_zerotens)(tensor *sz, R *I)
75 {
76      recur(sz->dims, sz->rnk, I);
77 }
78 
79 #define KSTR_LEN 8
80 
X(rdft_kind_str)81 const char *X(rdft_kind_str)(rdft_kind kind)
82 {
83      static const char kstr[][KSTR_LEN] = {
84 	  "r2hc", "r2hc01", "r2hc10", "r2hc11",
85 	  "hc2r", "hc2r01", "hc2r10", "hc2r11",
86 	  "dht",
87 	  "redft00", "redft01", "redft10", "redft11",
88 	  "rodft00", "rodft01", "rodft10", "rodft11"
89      };
90      A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN);
91      return kstr[kind];
92 }
93 
print(const problem * ego_,printer * p)94 static void print(const problem *ego_, printer *p)
95 {
96      const problem_rdft *ego = (const problem_rdft *) ego_;
97      int i;
98      p->print(p, "(rdft %d %D %T %T",
99 	      X(ialignment_of)(ego->I),
100 	      (INT)(ego->O - ego->I),
101 	      ego->sz,
102 	      ego->vecsz);
103      for (i = 0; i < ego->sz->rnk; ++i)
104 	  p->print(p, " %d", (int)ego->kind[i]);
105      p->print(p, ")");
106 }
107 
zero(const problem * ego_)108 static void zero(const problem *ego_)
109 {
110      const problem_rdft *ego = (const problem_rdft *) ego_;
111      tensor *sz = X(tensor_append)(ego->vecsz, ego->sz);
112      X(rdft_zerotens)(sz, UNTAINT(ego->I));
113      X(tensor_destroy)(sz);
114 }
115 
116 static const problem_adt padt =
117 {
118      PROBLEM_RDFT,
119      hash,
120      zero,
121      print,
122      destroy
123 };
124 
125 /* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be
126    eliminated.  REDFT/RODFT unit dimensions often have factors of 2.0
127    and suchlike from normalization and phases, although in principle
128    these constant factors from different dimensions could be combined. */
nontrivial(const iodim * d,rdft_kind kind)129 static int nontrivial(const iodim *d, rdft_kind kind)
130 {
131      return (d->n > 1 || kind == R2HC11 || kind == HC2R11
132 	     || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01));
133 }
134 
X(mkproblem_rdft)135 problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz,
136 			   R *I, R *O, const rdft_kind *kind)
137 {
138      problem_rdft *ego;
139      int rnk = sz->rnk;
140      int i;
141 
142      A(X(tensor_kosherp)(sz));
143      A(X(tensor_kosherp)(vecsz));
144      A(FINITE_RNK(sz->rnk));
145 
146      if (UNTAINT(I) == UNTAINT(O))
147 	  I = O = JOIN_TAINT(I, O);
148 
149      if (I == O && !X(tensor_inplace_locations)(sz, vecsz))
150 	  return X(mkproblem_unsolvable)();
151 
152      for (i = rnk = 0; i < sz->rnk; ++i) {
153           A(sz->dims[i].n > 0);
154           if (nontrivial(sz->dims + i, kind[i]))
155                ++rnk;
156      }
157 
158 #if defined(STRUCT_HACK_KR)
159      ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
160 					 + sizeof(rdft_kind)
161 					 * (rnk > 0 ? rnk - 1u : 0u), &padt);
162 #elif defined(STRUCT_HACK_C99)
163      ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
164 					 + sizeof(rdft_kind) * (unsigned)rnk, &padt);
165 #else
166      ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt);
167      ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * (unsigned)rnk, PROBLEMS);
168 #endif
169 
170      /* do compression and sorting as in X(tensor_compress), but take
171 	transform kind into account (sigh) */
172      ego->sz = X(mktensor)(rnk);
173      for (i = rnk = 0; i < sz->rnk; ++i) {
174           if (nontrivial(sz->dims + i, kind[i])) {
175 	       ego->kind[rnk] = kind[i];
176                ego->sz->dims[rnk++] = sz->dims[i];
177 	  }
178      }
179      for (i = 0; i + 1 < rnk; ++i) {
180 	  int j;
181 	  for (j = i + 1; j < rnk; ++j)
182 	       if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) {
183 		    iodim dswap;
184 		    rdft_kind kswap;
185 		    dswap = ego->sz->dims[i];
186 		    ego->sz->dims[i] = ego->sz->dims[j];
187 		    ego->sz->dims[j] = dswap;
188 		    kswap = ego->kind[i];
189 		    ego->kind[i] = ego->kind[j];
190 		    ego->kind[j] = kswap;
191 	       }
192      }
193 
194      for (i = 0; i < rnk; ++i)
195 	  if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00
196 					  || ego->kind[i] == DHT
197 					  || ego->kind[i] == HC2R))
198 	       ego->kind[i] = R2HC; /* size-2 transforms are equivalent */
199 
200      ego->vecsz = X(tensor_compress_contiguous)(vecsz);
201      ego->I = I;
202      ego->O = O;
203 
204      A(FINITE_RNK(ego->sz->rnk));
205 
206      return &(ego->super);
207 }
208 
209 /* Same as X(mkproblem_rdft), but also destroy input tensors. */
X(mkproblem_rdft_d)210 problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz,
211 			     R *I, R *O, const rdft_kind *kind)
212 {
213      problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind);
214      X(tensor_destroy2)(vecsz, sz);
215      return p;
216 }
217 
218 /* As above, but for rnk <= 1 only and takes a scalar kind parameter */
X(mkproblem_rdft_1)219 problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz,
220 			     R *I, R *O, rdft_kind kind)
221 {
222      A(sz->rnk <= 1);
223      return X(mkproblem_rdft)(sz, vecsz, I, O, &kind);
224 }
225 
X(mkproblem_rdft_1_d)226 problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz,
227 			       R *I, R *O, rdft_kind kind)
228 {
229      A(sz->rnk <= 1);
230      return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind);
231 }
232 
233 /* create a zero-dimensional problem */
X(mkproblem_rdft_0_d)234 problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O)
235 {
236      return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O,
237 				(const rdft_kind *)0);
238 }
239