1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 
22 /* plans for rank-0 RDFTs (copy operations) */
23 
24 #include "rdft/rdft.h"
25 
26 #ifdef HAVE_STRING_H
27 #include <string.h>		/* for memcpy() */
28 #endif
29 
30 #define MAXRNK 32 /* FIXME: should malloc() */
31 
32 typedef struct {
33      plan_rdft super;
34      INT vl;
35      int rnk;
36      iodim d[MAXRNK];
37      const char *nam;
38 } P;
39 
40 typedef struct {
41      solver super;
42      rdftapply apply;
43      int (*applicable)(const P *pln, const problem_rdft *p);
44      const char *nam;
45 } S;
46 
47 /* copy up to MAXRNK dimensions from problem into plan.  If a
48    contiguous dimension exists, save its length in pln->vl */
fill_iodim(P * pln,const problem_rdft * p)49 static int fill_iodim(P *pln, const problem_rdft *p)
50 {
51      int i;
52      const tensor *vecsz = p->vecsz;
53 
54      pln->vl = 1;
55      pln->rnk = 0;
56      for (i = 0; i < vecsz->rnk; ++i) {
57 	  /* extract contiguous dimensions */
58 	  if (pln->vl == 1 &&
59 	      vecsz->dims[i].is == 1 && vecsz->dims[i].os == 1)
60 	       pln->vl = vecsz->dims[i].n;
61 	  else if (pln->rnk == MAXRNK)
62 	       return 0;
63 	  else
64 	       pln->d[pln->rnk++] = vecsz->dims[i];
65      }
66 
67      return 1;
68 }
69 
70 /* generic higher-rank copy routine, calls cpy2d() to do the real work */
copy(const iodim * d,int rnk,INT vl,R * I,R * O,cpy2d_func cpy2d)71 static void copy(const iodim *d, int rnk, INT vl,
72 		 R *I, R *O,
73 		 cpy2d_func cpy2d)
74 {
75      A(rnk >= 2);
76      if (rnk == 2)
77 	  cpy2d(I, O, d[0].n, d[0].is, d[0].os, d[1].n, d[1].is, d[1].os, vl);
78      else {
79 	  INT i;
80 	  for (i = 0; i < d[0].n; ++i, I += d[0].is, O += d[0].os)
81 	       copy(d + 1, rnk - 1, vl, I, O, cpy2d);
82      }
83 }
84 
85 /* FIXME: should be more general */
transposep(const P * pln)86 static int transposep(const P *pln)
87 {
88      int i;
89 
90      for (i = 0; i < pln->rnk - 2; ++i)
91 	  if (pln->d[i].is != pln->d[i].os)
92 	       return 0;
93 
94      return (pln->d[i].n == pln->d[i+1].n &&
95 	     pln->d[i].is == pln->d[i+1].os &&
96 	     pln->d[i].os == pln->d[i+1].is);
97 }
98 
99 /* generic higher-rank transpose routine, calls transpose2d() to do
100  * the real work */
transpose(const iodim * d,int rnk,INT vl,R * I,transpose_func transpose2d)101 static void transpose(const iodim *d, int rnk, INT vl,
102 		      R *I,
103 		      transpose_func transpose2d)
104 {
105      A(rnk >= 2);
106      if (rnk == 2)
107 	  transpose2d(I, d[0].n, d[0].is, d[0].os, vl);
108      else {
109 	  INT i;
110 	  for (i = 0; i < d[0].n; ++i, I += d[0].is)
111 	       transpose(d + 1, rnk - 1, vl, I, transpose2d);
112      }
113 }
114 
115 /**************************************************************/
116 /* rank 0,1,2, out of place, iterative */
apply_iter(const plan * ego_,R * I,R * O)117 static void apply_iter(const plan *ego_, R *I, R *O)
118 {
119      const P *ego = (const P *) ego_;
120 
121      switch (ego->rnk) {
122 	 case 0:
123 	      X(cpy1d)(I, O, ego->vl, 1, 1, 1);
124 	      break;
125 	 case 1:
126 	      X(cpy1d)(I, O,
127 		       ego->d[0].n, ego->d[0].is, ego->d[0].os,
128 		       ego->vl);
129 	      break;
130 	 default:
131 	      copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_ci));
132 	      break;
133      }
134 }
135 
applicable_iter(const P * pln,const problem_rdft * p)136 static int applicable_iter(const P *pln, const problem_rdft *p)
137 {
138      UNUSED(pln);
139      return (p->I != p->O);
140 }
141 
142 /**************************************************************/
143 /* out of place, write contiguous output */
apply_cpy2dco(const plan * ego_,R * I,R * O)144 static void apply_cpy2dco(const plan *ego_, R *I, R *O)
145 {
146      const P *ego = (const P *) ego_;
147      copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_co));
148 }
149 
applicable_cpy2dco(const P * pln,const problem_rdft * p)150 static int applicable_cpy2dco(const P *pln, const problem_rdft *p)
151 {
152      int rnk = pln->rnk;
153      return (1
154 	     && p->I != p->O
155 	     && rnk >= 2
156 
157 	     /* must not duplicate apply_iter */
158 	     && (X(iabs)(pln->d[rnk - 2].is) <= X(iabs)(pln->d[rnk - 1].is)
159 		 ||
160 		 X(iabs)(pln->d[rnk - 2].os) <= X(iabs)(pln->d[rnk - 1].os))
161 	  );
162 }
163 
164 /**************************************************************/
165 /* out of place, tiled, no buffering */
apply_tiled(const plan * ego_,R * I,R * O)166 static void apply_tiled(const plan *ego_, R *I, R *O)
167 {
168      const P *ego = (const P *) ego_;
169      copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiled));
170 }
171 
applicable_tiled(const P * pln,const problem_rdft * p)172 static int applicable_tiled(const P *pln, const problem_rdft *p)
173 {
174      return (1
175 	     && p->I != p->O
176 	     && pln->rnk >= 2
177 
178 	     /* somewhat arbitrary */
179 	     && X(compute_tilesz)(pln->vl, 1) > 4
180 	  );
181 }
182 
183 /**************************************************************/
184 /* out of place, tiled, with buffer */
apply_tiledbuf(const plan * ego_,R * I,R * O)185 static void apply_tiledbuf(const plan *ego_, R *I, R *O)
186 {
187      const P *ego = (const P *) ego_;
188      copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiledbuf));
189 }
190 
191 #define applicable_tiledbuf applicable_tiled
192 
193 /**************************************************************/
194 /* rank 0, out of place, using memcpy */
apply_memcpy(const plan * ego_,R * I,R * O)195 static void apply_memcpy(const plan *ego_, R *I, R *O)
196 {
197      const P *ego = (const P *) ego_;
198 
199      A(ego->rnk == 0);
200      memcpy(O, I, ego->vl * sizeof(R));
201 }
202 
applicable_memcpy(const P * pln,const problem_rdft * p)203 static int applicable_memcpy(const P *pln, const problem_rdft *p)
204 {
205      return (1
206 	     && p->I != p->O
207 	     && pln->rnk == 0
208 	     && pln->vl > 2 /* do not bother memcpy-ing complex numbers */
209 	     );
210 }
211 
212 /**************************************************************/
213 /* rank > 0 vecloop, out of place, using memcpy (e.g. out-of-place
214    transposes of vl-tuples ... for large vl it should be more
215    efficient to use memcpy than the tiled stuff). */
216 
memcpy_loop(size_t cpysz,int rnk,const iodim * d,R * I,R * O)217 static void memcpy_loop(size_t cpysz, int rnk, const iodim *d, R *I, R *O)
218 {
219      INT i, n = d->n, is = d->is, os = d->os;
220      if (rnk == 1)
221 	  for (i = 0; i < n; ++i, I += is, O += os)
222 	       memcpy(O, I, cpysz);
223      else {
224 	  --rnk; ++d;
225 	  for (i = 0; i < n; ++i, I += is, O += os)
226 	       memcpy_loop(cpysz, rnk, d, I, O);
227      }
228 }
229 
apply_memcpy_loop(const plan * ego_,R * I,R * O)230 static void apply_memcpy_loop(const plan *ego_, R *I, R *O)
231 {
232      const P *ego = (const P *) ego_;
233      memcpy_loop(ego->vl * sizeof(R), ego->rnk, ego->d, I, O);
234 }
235 
applicable_memcpy_loop(const P * pln,const problem_rdft * p)236 static int applicable_memcpy_loop(const P *pln, const problem_rdft *p)
237 {
238      return (p->I != p->O
239 	     && pln->rnk > 0
240              && pln->vl > 2 /* do not bother memcpy-ing complex numbers */);
241 }
242 
243 /**************************************************************/
244 /* rank 2, in place, square transpose, iterative */
apply_ip_sq(const plan * ego_,R * I,R * O)245 static void apply_ip_sq(const plan *ego_, R *I, R *O)
246 {
247      const P *ego = (const P *) ego_;
248      UNUSED(O);
249      transpose(ego->d, ego->rnk, ego->vl, I, X(transpose));
250 }
251 
252 
applicable_ip_sq(const P * pln,const problem_rdft * p)253 static int applicable_ip_sq(const P *pln, const problem_rdft *p)
254 {
255      return (1
256 	     && p->I == p->O
257 	     && pln->rnk >= 2
258 	     && transposep(pln));
259 }
260 
261 /**************************************************************/
262 /* rank 2, in place, square transpose, tiled */
apply_ip_sq_tiled(const plan * ego_,R * I,R * O)263 static void apply_ip_sq_tiled(const plan *ego_, R *I, R *O)
264 {
265      const P *ego = (const P *) ego_;
266      UNUSED(O);
267      transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiled));
268 }
269 
applicable_ip_sq_tiled(const P * pln,const problem_rdft * p)270 static int applicable_ip_sq_tiled(const P *pln, const problem_rdft *p)
271 {
272      return (1
273 	     && applicable_ip_sq(pln, p)
274 
275 	     /* somewhat arbitrary */
276 	     && X(compute_tilesz)(pln->vl, 2) > 4
277 	  );
278 }
279 
280 /**************************************************************/
281 /* rank 2, in place, square transpose, tiled, buffered */
apply_ip_sq_tiledbuf(const plan * ego_,R * I,R * O)282 static void apply_ip_sq_tiledbuf(const plan *ego_, R *I, R *O)
283 {
284      const P *ego = (const P *) ego_;
285      UNUSED(O);
286      transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiledbuf));
287 }
288 
289 #define applicable_ip_sq_tiledbuf applicable_ip_sq_tiled
290 
291 /**************************************************************/
applicable(const S * ego,const problem * p_)292 static int applicable(const S *ego, const problem *p_)
293 {
294      const problem_rdft *p = (const problem_rdft *) p_;
295      P pln;
296      return (1
297 	     && p->sz->rnk == 0
298 	     && FINITE_RNK(p->vecsz->rnk)
299 	     && fill_iodim(&pln, p)
300 	     && ego->applicable(&pln, p)
301 	  );
302 }
303 
print(const plan * ego_,printer * p)304 static void print(const plan *ego_, printer *p)
305 {
306      const P *ego = (const P *) ego_;
307      int i;
308      p->print(p, "(%s/%D", ego->nam, ego->vl);
309      for (i = 0; i < ego->rnk; ++i)
310 	  p->print(p, "%v", ego->d[i].n);
311      p->print(p, ")");
312 }
313 
mkplan(const solver * ego_,const problem * p_,planner * plnr)314 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
315 {
316      const problem_rdft *p;
317      const S *ego = (const S *) ego_;
318      P *pln;
319      int retval;
320 
321      static const plan_adt padt = {
322 	  X(rdft_solve), X(null_awake), print, X(plan_null_destroy)
323      };
324 
325      UNUSED(plnr);
326 
327      if (!applicable(ego, p_))
328           return (plan *) 0;
329 
330      p = (const problem_rdft *) p_;
331      pln = MKPLAN_RDFT(P, &padt, ego->apply);
332 
333      retval = fill_iodim(pln, p);
334      (void)retval; /* UNUSED unless DEBUG */
335      A(retval);
336      A(pln->vl > 0); /* because FINITE_RNK(p->vecsz->rnk) holds */
337      pln->nam = ego->nam;
338 
339      /* X(tensor_sz)(p->vecsz) loads, X(tensor_sz)(p->vecsz) stores */
340      X(ops_other)(2 * X(tensor_sz)(p->vecsz), &pln->super.super.ops);
341      return &(pln->super.super);
342 }
343 
344 
X(rdft_rank0_register)345 void X(rdft_rank0_register)(planner *p)
346 {
347      unsigned i;
348      static struct {
349 	  rdftapply apply;
350 	  int (*applicable)(const P *, const problem_rdft *);
351 	  const char *nam;
352      } tab[] = {
353 	  { apply_memcpy,   applicable_memcpy,   "rdft-rank0-memcpy" },
354 	  { apply_memcpy_loop,   applicable_memcpy_loop,
355 	    "rdft-rank0-memcpy-loop" },
356 	  { apply_iter,     applicable_iter,     "rdft-rank0-iter-ci" },
357 	  { apply_cpy2dco,  applicable_cpy2dco,  "rdft-rank0-iter-co" },
358 	  { apply_tiled,    applicable_tiled,    "rdft-rank0-tiled" },
359 	  { apply_tiledbuf, applicable_tiledbuf, "rdft-rank0-tiledbuf" },
360 	  { apply_ip_sq,    applicable_ip_sq,    "rdft-rank0-ip-sq" },
361 	  {
362 	       apply_ip_sq_tiled,
363 	       applicable_ip_sq_tiled,
364 	       "rdft-rank0-ip-sq-tiled"
365 	  },
366 	  {
367 	       apply_ip_sq_tiledbuf,
368 	       applicable_ip_sq_tiledbuf,
369 	       "rdft-rank0-ip-sq-tiledbuf"
370 	  },
371      };
372 
373      for (i = 0; i < sizeof(tab) / sizeof(tab[0]); ++i) {
374 	  static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
375 	  S *slv = MKSOLVER(S, &sadt);
376 	  slv->apply = tab[i].apply;
377 	  slv->applicable = tab[i].applicable;
378 	  slv->nam = tab[i].nam;
379 	  REGISTER_SOLVER(p, &(slv->super));
380      }
381 }
382