1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 
22 #include "dft/dft.h"
23 #include "rdft/rdft.h"
24 #include <stddef.h>
25 
destroy(problem * ego_)26 static void destroy(problem *ego_)
27 {
28      problem_rdft2 *ego = (problem_rdft2 *) ego_;
29      X(tensor_destroy2)(ego->vecsz, ego->sz);
30      X(ifree)(ego_);
31 }
32 
hash(const problem * p_,md5 * m)33 static void hash(const problem *p_, md5 *m)
34 {
35      const problem_rdft2 *p = (const problem_rdft2 *) p_;
36      X(md5puts)(m, "rdft2");
37      X(md5int)(m, p->r0 == p->cr);
38      X(md5INT)(m, p->r1 - p->r0);
39      X(md5INT)(m, p->ci - p->cr);
40      X(md5int)(m, X(ialignment_of)(p->r0));
41      X(md5int)(m, X(ialignment_of)(p->r1));
42      X(md5int)(m, X(ialignment_of)(p->cr));
43      X(md5int)(m, X(ialignment_of)(p->ci));
44      X(md5int)(m, p->kind);
45      X(tensor_md5)(m, p->sz);
46      X(tensor_md5)(m, p->vecsz);
47 }
48 
print(const problem * ego_,printer * p)49 static void print(const problem *ego_, printer *p)
50 {
51      const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
52      p->print(p, "(rdft2 %d %d %T %T)",
53 	      (int)(ego->cr == ego->r0),
54 	      (int)(ego->kind),
55 	      ego->sz,
56 	      ego->vecsz);
57 }
58 
recur(const iodim * dims,int rnk,R * I0,R * I1)59 static void recur(const iodim *dims, int rnk, R *I0, R *I1)
60 {
61      if (rnk == RNK_MINFTY)
62           return;
63      else if (rnk == 0)
64           I0[0] = K(0.0);
65      else if (rnk > 0) {
66           INT i, n = dims[0].n, is = dims[0].is;
67 
68 	  if (rnk == 1) {
69 	       for (i = 0; i < n - 1; i += 2) {
70 		    *I0 = *I1 = K(0.0);
71 		    I0 += is; I1 += is;
72 	       }
73 	       if (i < n)
74 		    *I0 = K(0.0);
75 	  } else {
76 	       for (i = 0; i < n; ++i)
77 		    recur(dims + 1, rnk - 1, I0 + i * is, I1 + i * is);
78 	  }
79      }
80 }
81 
vrecur(const iodim * vdims,int vrnk,const iodim * dims,int rnk,R * I0,R * I1)82 static void vrecur(const iodim *vdims, int vrnk,
83 		   const iodim *dims, int rnk, R *I0, R *I1)
84 {
85      if (vrnk == RNK_MINFTY)
86           return;
87      else if (vrnk == 0)
88 	  recur(dims, rnk, I0, I1);
89      else if (vrnk > 0) {
90           INT i, n = vdims[0].n, is = vdims[0].is;
91 
92 	  for (i = 0; i < n; ++i)
93 	       vrecur(vdims + 1, vrnk - 1,
94 		      dims, rnk, I0 + i * is, I1 + i * is);
95      }
96 }
97 
X(rdft2_complex_n)98 INT X(rdft2_complex_n)(INT real_n, rdft_kind kind)
99 {
100      switch (kind) {
101 	 case R2HC:
102 	 case HC2R:
103 	      return (real_n / 2) + 1;
104 	 case R2HCII:
105 	 case HC2RIII:
106 	      return (real_n + 1) / 2;
107 	 default:
108 	      /* can't happen */
109 	      A(0);
110 	      return 0;
111      }
112 }
113 
zero(const problem * ego_)114 static void zero(const problem *ego_)
115 {
116      const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
117      if (R2HC_KINDP(ego->kind)) {
118 	  /* FIXME: can we avoid the double recursion somehow? */
119 	  vrecur(ego->vecsz->dims, ego->vecsz->rnk,
120 		 ego->sz->dims, ego->sz->rnk,
121 		 UNTAINT(ego->r0), UNTAINT(ego->r1));
122      } else {
123 	  tensor *sz;
124 	  tensor *sz2 = X(tensor_copy)(ego->sz);
125 	  int rnk = sz2->rnk;
126 	  if (rnk > 0) /* ~half as many complex outputs */
127 	       sz2->dims[rnk-1].n =
128 		    X(rdft2_complex_n)(sz2->dims[rnk-1].n, ego->kind);
129 	  sz = X(tensor_append)(ego->vecsz, sz2);
130 	  X(tensor_destroy)(sz2);
131 	  X(dft_zerotens)(sz, UNTAINT(ego->cr), UNTAINT(ego->ci));
132 	  X(tensor_destroy)(sz);
133      }
134 }
135 
136 static const problem_adt padt =
137 {
138      PROBLEM_RDFT2,
139      hash,
140      zero,
141      print,
142      destroy
143 };
144 
X(mkproblem_rdft2)145 problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
146 			    R *r0, R *r1, R *cr, R *ci,
147 			    rdft_kind kind)
148 {
149      problem_rdft2 *ego;
150 
151      A(kind == R2HC || kind == R2HCII || kind == HC2R || kind == HC2RIII);
152      A(X(tensor_kosherp)(sz));
153      A(X(tensor_kosherp)(vecsz));
154      A(FINITE_RNK(sz->rnk));
155 
156      /* require in-place problems to use r0 == cr */
157      if (UNTAINT(r0) == UNTAINT(ci))
158 	  return X(mkproblem_unsolvable)();
159 
160      /* FIXME: should check UNTAINT(r1) == UNTAINT(cr) but
161 	only if odd elements exist, which requires compressing the
162 	tensors first */
163 
164      if (UNTAINT(r0) == UNTAINT(cr))
165 	  r0 = cr = JOIN_TAINT(r0, cr);
166 
167      ego = (problem_rdft2 *)X(mkproblem)(sizeof(problem_rdft2), &padt);
168 
169      if (sz->rnk > 1) { /* have to compress rnk-1 dims separately, ugh */
170 	  tensor *szc = X(tensor_copy_except)(sz, sz->rnk - 1);
171 	  tensor *szr = X(tensor_copy_sub)(sz, sz->rnk - 1, 1);
172 	  tensor *szcc = X(tensor_compress)(szc);
173 	  if (szcc->rnk > 0)
174 	       ego->sz = X(tensor_append)(szcc, szr);
175 	  else
176 	       ego->sz = X(tensor_compress)(szr);
177 	  X(tensor_destroy2)(szc, szr); X(tensor_destroy)(szcc);
178      } else {
179 	  ego->sz = X(tensor_compress)(sz);
180      }
181      ego->vecsz = X(tensor_compress_contiguous)(vecsz);
182      ego->r0 = r0;
183      ego->r1 = r1;
184      ego->cr = cr;
185      ego->ci = ci;
186      ego->kind = kind;
187 
188      A(FINITE_RNK(ego->sz->rnk));
189      return &(ego->super);
190 
191 }
192 
193 /* Same as X(mkproblem_rdft2), but also destroy input tensors. */
X(mkproblem_rdft2_d)194 problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz,
195 			      R *r0, R *r1, R *cr, R *ci, rdft_kind kind)
196 {
197      problem *p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
198      X(tensor_destroy2)(vecsz, sz);
199      return p;
200 }
201 
202 /* Same as X(mkproblem_rdft2_d), but with only one R pointer.
203    Used by the API. */
X(mkproblem_rdft2_d_3pointers)204 problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz,
205 					R *r0, R *cr, R *ci, rdft_kind kind)
206 {
207      problem *p;
208      int rnk = sz->rnk;
209      R *r1;
210 
211      if (rnk == 0)
212 	  r1 = r0;
213      else if (R2HC_KINDP(kind)) {
214 	  r1 = r0 + sz->dims[rnk-1].is;
215 	  sz->dims[rnk-1].is *= 2;
216      } else {
217 	  r1 = r0 + sz->dims[rnk-1].os;
218 	  sz->dims[rnk-1].os *= 2;
219      }
220 
221      p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
222      X(tensor_destroy2)(vecsz, sz);
223      return p;
224 }
225