1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:06:27 EST 2020 */
23 
24 #include "rdft/codelet-rdft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 4 -dif -name hb_4 -include rdft/scalar/hb.h */
29 
30 /*
31  * This function contains 22 FP additions, 12 FP multiplications,
32  * (or, 16 additions, 6 multiplications, 6 fused multiply/add),
33  * 22 stack variables, 0 constants, and 16 memory accesses
34  */
35 #include "rdft/scalar/hb.h"
36 
hb_4(R * cr,R * ci,const R * W,stride rs,INT mb,INT me,INT ms)37 static void hb_4(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39      {
40 	  INT m;
41 	  for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs)) {
42 	       E T3, T6, T8, Td, Tx, Tu, Tm, Tg, Tr;
43 	       {
44 		    E Tb, Tc, Tq, Te, Tf, Tl, Tk, Tp;
45 		    Tb = ci[WS(rs, 3)];
46 		    Tc = cr[WS(rs, 2)];
47 		    Tq = Tb + Tc;
48 		    Te = ci[WS(rs, 2)];
49 		    Tf = cr[WS(rs, 3)];
50 		    Tl = Te + Tf;
51 		    {
52 			 E T1, T2, T4, T5;
53 			 T1 = cr[0];
54 			 T2 = ci[WS(rs, 1)];
55 			 T3 = T1 + T2;
56 			 Tk = T1 - T2;
57 			 T4 = cr[WS(rs, 1)];
58 			 T5 = ci[0];
59 			 T6 = T4 + T5;
60 			 Tp = T4 - T5;
61 		    }
62 		    T8 = T3 - T6;
63 		    Td = Tb - Tc;
64 		    Tx = Tq - Tp;
65 		    Tu = Tk + Tl;
66 		    Tm = Tk - Tl;
67 		    Tg = Te - Tf;
68 		    Tr = Tp + Tq;
69 	       }
70 	       cr[0] = T3 + T6;
71 	       ci[0] = Td + Tg;
72 	       {
73 		    E Tn, Ts, Tj, To;
74 		    Tj = W[0];
75 		    Tn = Tj * Tm;
76 		    Ts = Tj * Tr;
77 		    To = W[1];
78 		    cr[WS(rs, 1)] = FNMS(To, Tr, Tn);
79 		    ci[WS(rs, 1)] = FMA(To, Tm, Ts);
80 	       }
81 	       {
82 		    E Tv, Ty, Tt, Tw;
83 		    Tt = W[4];
84 		    Tv = Tt * Tu;
85 		    Ty = Tt * Tx;
86 		    Tw = W[5];
87 		    cr[WS(rs, 3)] = FNMS(Tw, Tx, Tv);
88 		    ci[WS(rs, 3)] = FMA(Tw, Tu, Ty);
89 	       }
90 	       {
91 		    E Th, Ta, Ti, T7, T9;
92 		    Th = Td - Tg;
93 		    Ta = W[3];
94 		    Ti = Ta * T8;
95 		    T7 = W[2];
96 		    T9 = T7 * T8;
97 		    cr[WS(rs, 2)] = FNMS(Ta, Th, T9);
98 		    ci[WS(rs, 2)] = FMA(T7, Th, Ti);
99 	       }
100 	  }
101      }
102 }
103 
104 static const tw_instr twinstr[] = {
105      { TW_FULL, 1, 4 },
106      { TW_NEXT, 1, 0 }
107 };
108 
109 static const hc2hc_desc desc = { 4, "hb_4", twinstr, &GENUS, { 16, 6, 6, 0 } };
110 
X(codelet_hb_4)111 void X(codelet_hb_4) (planner *p) {
112      X(khc2hc_register) (p, hb_4, &desc);
113 }
114 #else
115 
116 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 4 -dif -name hb_4 -include rdft/scalar/hb.h */
117 
118 /*
119  * This function contains 22 FP additions, 12 FP multiplications,
120  * (or, 16 additions, 6 multiplications, 6 fused multiply/add),
121  * 13 stack variables, 0 constants, and 16 memory accesses
122  */
123 #include "rdft/scalar/hb.h"
124 
hb_4(R * cr,R * ci,const R * W,stride rs,INT mb,INT me,INT ms)125 static void hb_4(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
126 {
127      {
128 	  INT m;
129 	  for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs)) {
130 	       E T3, Ti, T6, Tm, Tc, Tn, Tf, Tj;
131 	       {
132 		    E T1, T2, T4, T5;
133 		    T1 = cr[0];
134 		    T2 = ci[WS(rs, 1)];
135 		    T3 = T1 + T2;
136 		    Ti = T1 - T2;
137 		    T4 = cr[WS(rs, 1)];
138 		    T5 = ci[0];
139 		    T6 = T4 + T5;
140 		    Tm = T4 - T5;
141 	       }
142 	       {
143 		    E Ta, Tb, Td, Te;
144 		    Ta = ci[WS(rs, 3)];
145 		    Tb = cr[WS(rs, 2)];
146 		    Tc = Ta - Tb;
147 		    Tn = Ta + Tb;
148 		    Td = ci[WS(rs, 2)];
149 		    Te = cr[WS(rs, 3)];
150 		    Tf = Td - Te;
151 		    Tj = Td + Te;
152 	       }
153 	       cr[0] = T3 + T6;
154 	       ci[0] = Tc + Tf;
155 	       {
156 		    E T8, Tg, T7, T9;
157 		    T8 = T3 - T6;
158 		    Tg = Tc - Tf;
159 		    T7 = W[2];
160 		    T9 = W[3];
161 		    cr[WS(rs, 2)] = FNMS(T9, Tg, T7 * T8);
162 		    ci[WS(rs, 2)] = FMA(T9, T8, T7 * Tg);
163 	       }
164 	       {
165 		    E Tk, To, Th, Tl;
166 		    Tk = Ti - Tj;
167 		    To = Tm + Tn;
168 		    Th = W[0];
169 		    Tl = W[1];
170 		    cr[WS(rs, 1)] = FNMS(Tl, To, Th * Tk);
171 		    ci[WS(rs, 1)] = FMA(Th, To, Tl * Tk);
172 	       }
173 	       {
174 		    E Tq, Ts, Tp, Tr;
175 		    Tq = Ti + Tj;
176 		    Ts = Tn - Tm;
177 		    Tp = W[4];
178 		    Tr = W[5];
179 		    cr[WS(rs, 3)] = FNMS(Tr, Ts, Tp * Tq);
180 		    ci[WS(rs, 3)] = FMA(Tp, Ts, Tr * Tq);
181 	       }
182 	  }
183      }
184 }
185 
186 static const tw_instr twinstr[] = {
187      { TW_FULL, 1, 4 },
188      { TW_NEXT, 1, 0 }
189 };
190 
191 static const hc2hc_desc desc = { 4, "hb_4", twinstr, &GENUS, { 16, 6, 6, 0 } };
192 
X(codelet_hb_4)193 void X(codelet_hb_4) (planner *p) {
194      X(khc2hc_register) (p, hb_4, &desc);
195 }
196 #endif
197