1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:06:56 EST 2020 */
23 
24 #include "rdft/codelet-rdft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_r2r.native -fma -compact -variables 4 -pipeline-latency 4 -redft10 -n 8 -name e10_8 -include rdft/scalar/r2r.h */
29 
30 /*
31  * This function contains 26 FP additions, 18 FP multiplications,
32  * (or, 16 additions, 8 multiplications, 10 fused multiply/add),
33  * 28 stack variables, 9 constants, and 16 memory accesses
34  */
35 #include "rdft/scalar/r2r.h"
36 
e10_8(const R * I,R * O,stride is,stride os,INT v,INT ivs,INT ovs)37 static void e10_8(const R *I, R *O, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39      DK(KP414213562, +0.414213562373095048801688724209698078569671875);
40      DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
41      DK(KP198912367, +0.198912367379658006911597622644676228597850501);
42      DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
43      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
44      DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
45      DK(KP668178637, +0.668178637919298919997757686523080761552472251);
46      DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
47      DK(KP707106781, +0.707106781186547524400844362104849039284835938);
48      {
49 	  INT i;
50 	  for (i = v; i > 0; i = i - 1, I = I + ivs, O = O + ovs, MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
51 	       E T3, Tj, Te, Tk, Ta, Tn, Tf, Tm;
52 	       {
53 		    E T1, T2, Tc, Td;
54 		    T1 = I[0];
55 		    T2 = I[WS(is, 7)];
56 		    T3 = T1 - T2;
57 		    Tj = T1 + T2;
58 		    Tc = I[WS(is, 4)];
59 		    Td = I[WS(is, 3)];
60 		    Te = Tc - Td;
61 		    Tk = Tc + Td;
62 		    {
63 			 E T4, T5, T6, T7, T8, T9;
64 			 T4 = I[WS(is, 2)];
65 			 T5 = I[WS(is, 5)];
66 			 T6 = T4 - T5;
67 			 T7 = I[WS(is, 1)];
68 			 T8 = I[WS(is, 6)];
69 			 T9 = T7 - T8;
70 			 Ta = T6 + T9;
71 			 Tn = T7 + T8;
72 			 Tf = T6 - T9;
73 			 Tm = T4 + T5;
74 		    }
75 	       }
76 	       {
77 		    E Tb, Tg, Tp, Tq;
78 		    Tb = FNMS(KP707106781, Ta, T3);
79 		    Tg = FNMS(KP707106781, Tf, Te);
80 		    O[WS(os, 3)] = KP1_662939224 * (FMA(KP668178637, Tg, Tb));
81 		    O[WS(os, 5)] = -(KP1_662939224 * (FNMS(KP668178637, Tb, Tg)));
82 		    Tp = Tj + Tk;
83 		    Tq = Tm + Tn;
84 		    O[WS(os, 4)] = KP1_414213562 * (Tp - Tq);
85 		    O[0] = KP2_000000000 * (Tp + Tq);
86 	       }
87 	       {
88 		    E Th, Ti, Tl, To;
89 		    Th = FMA(KP707106781, Ta, T3);
90 		    Ti = FMA(KP707106781, Tf, Te);
91 		    O[WS(os, 1)] = KP1_961570560 * (FNMS(KP198912367, Ti, Th));
92 		    O[WS(os, 7)] = KP1_961570560 * (FMA(KP198912367, Th, Ti));
93 		    Tl = Tj - Tk;
94 		    To = Tm - Tn;
95 		    O[WS(os, 2)] = KP1_847759065 * (FNMS(KP414213562, To, Tl));
96 		    O[WS(os, 6)] = KP1_847759065 * (FMA(KP414213562, Tl, To));
97 	       }
98 	  }
99      }
100 }
101 
102 static const kr2r_desc desc = { 8, "e10_8", { 16, 8, 10, 0 }, &GENUS, REDFT10 };
103 
X(codelet_e10_8)104 void X(codelet_e10_8) (planner *p) { X(kr2r_register) (p, e10_8, &desc);
105 }
106 
107 #else
108 
109 /* Generated by: ../../../genfft/gen_r2r.native -compact -variables 4 -pipeline-latency 4 -redft10 -n 8 -name e10_8 -include rdft/scalar/r2r.h */
110 
111 /*
112  * This function contains 26 FP additions, 16 FP multiplications,
113  * (or, 20 additions, 10 multiplications, 6 fused multiply/add),
114  * 28 stack variables, 9 constants, and 16 memory accesses
115  */
116 #include "rdft/scalar/r2r.h"
117 
e10_8(const R * I,R * O,stride is,stride os,INT v,INT ivs,INT ovs)118 static void e10_8(const R *I, R *O, stride is, stride os, INT v, INT ivs, INT ovs)
119 {
120      DK(KP765366864, +0.765366864730179543456919968060797733522689125);
121      DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
122      DK(KP390180644, +0.390180644032256535696569736954044481855383236);
123      DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
124      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
125      DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
126      DK(KP1_111140466, +1.111140466039204449485661627897065748749874382);
127      DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
128      DK(KP707106781, +0.707106781186547524400844362104849039284835938);
129      {
130 	  INT i;
131 	  for (i = v; i > 0; i = i - 1, I = I + ivs, O = O + ovs, MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
132 	       E T3, Tj, Tf, Tk, Ta, Tn, Tc, Tm;
133 	       {
134 		    E T1, T2, Td, Te;
135 		    T1 = I[0];
136 		    T2 = I[WS(is, 7)];
137 		    T3 = T1 - T2;
138 		    Tj = T1 + T2;
139 		    Td = I[WS(is, 4)];
140 		    Te = I[WS(is, 3)];
141 		    Tf = Td - Te;
142 		    Tk = Td + Te;
143 		    {
144 			 E T4, T5, T6, T7, T8, T9;
145 			 T4 = I[WS(is, 2)];
146 			 T5 = I[WS(is, 5)];
147 			 T6 = T4 - T5;
148 			 T7 = I[WS(is, 1)];
149 			 T8 = I[WS(is, 6)];
150 			 T9 = T7 - T8;
151 			 Ta = KP707106781 * (T6 + T9);
152 			 Tn = T7 + T8;
153 			 Tc = KP707106781 * (T6 - T9);
154 			 Tm = T4 + T5;
155 		    }
156 	       }
157 	       {
158 		    E Tb, Tg, Tp, Tq;
159 		    Tb = T3 - Ta;
160 		    Tg = Tc - Tf;
161 		    O[WS(os, 3)] = FNMS(KP1_111140466, Tg, KP1_662939224 * Tb);
162 		    O[WS(os, 5)] = FMA(KP1_662939224, Tg, KP1_111140466 * Tb);
163 		    Tp = Tj + Tk;
164 		    Tq = Tm + Tn;
165 		    O[WS(os, 4)] = KP1_414213562 * (Tp - Tq);
166 		    O[0] = KP2_000000000 * (Tp + Tq);
167 	       }
168 	       {
169 		    E Th, Ti, Tl, To;
170 		    Th = T3 + Ta;
171 		    Ti = Tf + Tc;
172 		    O[WS(os, 1)] = FNMS(KP390180644, Ti, KP1_961570560 * Th);
173 		    O[WS(os, 7)] = FMA(KP1_961570560, Ti, KP390180644 * Th);
174 		    Tl = Tj - Tk;
175 		    To = Tm - Tn;
176 		    O[WS(os, 2)] = FNMS(KP765366864, To, KP1_847759065 * Tl);
177 		    O[WS(os, 6)] = FMA(KP765366864, Tl, KP1_847759065 * To);
178 	       }
179 	  }
180      }
181 }
182 
183 static const kr2r_desc desc = { 8, "e10_8", { 20, 10, 6, 0 }, &GENUS, REDFT10 };
184 
X(codelet_e10_8)185 void X(codelet_e10_8) (planner *p) { X(kr2r_register) (p, e10_8, &desc);
186 }
187 
188 #endif
189