1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:04:08 EST 2020 */
23 
24 #include "dft/codelet-dft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 14 -name n1_14 -include dft/scalar/n.h */
29 
30 /*
31  * This function contains 148 FP additions, 84 FP multiplications,
32  * (or, 64 additions, 0 multiplications, 84 fused multiply/add),
33  * 67 stack variables, 6 constants, and 56 memory accesses
34  */
35 #include "dft/scalar/n.h"
36 
n1_14(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)37 static void n1_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39      DK(KP974927912, +0.974927912181823607018131682993931217232785801);
40      DK(KP801937735, +0.801937735804838252472204639014890102331838324);
41      DK(KP554958132, +0.554958132087371191422194871006410481067288862);
42      DK(KP900968867, +0.900968867902419126236102319507445051165919162);
43      DK(KP692021471, +0.692021471630095869627814897002069140197260599);
44      DK(KP356895867, +0.356895867892209443894399510021300583399127187);
45      {
46 	  INT i;
47 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(56, is), MAKE_VOLATILE_STRIDE(56, os)) {
48 	       E T3, Tp, T1b, T1x, T1i, T1L, T1M, T1j, T1k, T1K, Ta, To, Th, Tz, T14;
49 	       E TZ, Ts, Ty, Tv, T1Z, T2c, T27, TI, T23, T24, TP, TW, T22, T1c, T1e;
50 	       E T1d, T1f, T1s, T1n, T1A, T1G, T1D, T1H, T1U, T1P;
51 	       {
52 		    E T1, T2, T19, T1a;
53 		    T1 = ri[0];
54 		    T2 = ri[WS(is, 7)];
55 		    T3 = T1 - T2;
56 		    Tp = T1 + T2;
57 		    T19 = ii[0];
58 		    T1a = ii[WS(is, 7)];
59 		    T1b = T19 - T1a;
60 		    T1x = T19 + T1a;
61 	       }
62 	       {
63 		    E T6, Tq, T9, Tr, Tn, Tx, Tk, Tw, Tg, Tu, Td, Tt;
64 		    {
65 			 E T4, T5, Ti, Tj;
66 			 T4 = ri[WS(is, 2)];
67 			 T5 = ri[WS(is, 9)];
68 			 T6 = T4 - T5;
69 			 Tq = T4 + T5;
70 			 {
71 			      E T7, T8, Tl, Tm;
72 			      T7 = ri[WS(is, 12)];
73 			      T8 = ri[WS(is, 5)];
74 			      T9 = T7 - T8;
75 			      Tr = T7 + T8;
76 			      Tl = ri[WS(is, 8)];
77 			      Tm = ri[WS(is, 1)];
78 			      Tn = Tl - Tm;
79 			      Tx = Tl + Tm;
80 			 }
81 			 Ti = ri[WS(is, 6)];
82 			 Tj = ri[WS(is, 13)];
83 			 Tk = Ti - Tj;
84 			 Tw = Ti + Tj;
85 			 {
86 			      E Te, Tf, Tb, Tc;
87 			      Te = ri[WS(is, 10)];
88 			      Tf = ri[WS(is, 3)];
89 			      Tg = Te - Tf;
90 			      Tu = Te + Tf;
91 			      Tb = ri[WS(is, 4)];
92 			      Tc = ri[WS(is, 11)];
93 			      Td = Tb - Tc;
94 			      Tt = Tb + Tc;
95 			 }
96 		    }
97 		    T1i = Tn - Tk;
98 		    T1L = Tt - Tu;
99 		    T1M = Tr - Tq;
100 		    T1j = Tg - Td;
101 		    T1k = T9 - T6;
102 		    T1K = Tw - Tx;
103 		    Ta = T6 + T9;
104 		    To = Tk + Tn;
105 		    Th = Td + Tg;
106 		    Tz = FNMS(KP356895867, Th, Ta);
107 		    T14 = FNMS(KP356895867, To, Th);
108 		    TZ = FNMS(KP356895867, Ta, To);
109 		    Ts = Tq + Tr;
110 		    Ty = Tw + Tx;
111 		    Tv = Tt + Tu;
112 		    T1Z = FNMS(KP356895867, Ts, Ty);
113 		    T2c = FNMS(KP356895867, Ty, Tv);
114 		    T27 = FNMS(KP356895867, Tv, Ts);
115 	       }
116 	       {
117 		    E TE, T1B, TH, T1C, TV, T1F, TS, T1E, TO, T1z, TL, T1y;
118 		    {
119 			 E TC, TD, TQ, TR;
120 			 TC = ii[WS(is, 4)];
121 			 TD = ii[WS(is, 11)];
122 			 TE = TC - TD;
123 			 T1B = TC + TD;
124 			 {
125 			      E TF, TG, TT, TU;
126 			      TF = ii[WS(is, 10)];
127 			      TG = ii[WS(is, 3)];
128 			      TH = TF - TG;
129 			      T1C = TF + TG;
130 			      TT = ii[WS(is, 8)];
131 			      TU = ii[WS(is, 1)];
132 			      TV = TT - TU;
133 			      T1F = TT + TU;
134 			 }
135 			 TQ = ii[WS(is, 6)];
136 			 TR = ii[WS(is, 13)];
137 			 TS = TQ - TR;
138 			 T1E = TQ + TR;
139 			 {
140 			      E TM, TN, TJ, TK;
141 			      TM = ii[WS(is, 12)];
142 			      TN = ii[WS(is, 5)];
143 			      TO = TM - TN;
144 			      T1z = TM + TN;
145 			      TJ = ii[WS(is, 2)];
146 			      TK = ii[WS(is, 9)];
147 			      TL = TJ - TK;
148 			      T1y = TJ + TK;
149 			 }
150 		    }
151 		    TI = TE - TH;
152 		    T23 = T1F - T1E;
153 		    T24 = T1C - T1B;
154 		    TP = TL - TO;
155 		    TW = TS - TV;
156 		    T22 = T1y - T1z;
157 		    T1c = TL + TO;
158 		    T1e = TS + TV;
159 		    T1d = TE + TH;
160 		    T1f = FNMS(KP356895867, T1e, T1d);
161 		    T1s = FNMS(KP356895867, T1d, T1c);
162 		    T1n = FNMS(KP356895867, T1c, T1e);
163 		    T1A = T1y + T1z;
164 		    T1G = T1E + T1F;
165 		    T1D = T1B + T1C;
166 		    T1H = FNMS(KP356895867, T1G, T1D);
167 		    T1U = FNMS(KP356895867, T1D, T1A);
168 		    T1P = FNMS(KP356895867, T1A, T1G);
169 	       }
170 	       ro[WS(os, 7)] = T3 + Ta + Th + To;
171 	       io[WS(os, 7)] = T1b + T1c + T1d + T1e;
172 	       ro[0] = Tp + Ts + Tv + Ty;
173 	       io[0] = T1x + T1A + T1D + T1G;
174 	       {
175 		    E TB, TY, TA, TX;
176 		    TA = FNMS(KP692021471, Tz, To);
177 		    TB = FNMS(KP900968867, TA, T3);
178 		    TX = FMA(KP554958132, TW, TP);
179 		    TY = FMA(KP801937735, TX, TI);
180 		    ro[WS(os, 13)] = FNMS(KP974927912, TY, TB);
181 		    ro[WS(os, 1)] = FMA(KP974927912, TY, TB);
182 	       }
183 	       {
184 		    E T1u, T1w, T1t, T1v;
185 		    T1t = FNMS(KP692021471, T1s, T1e);
186 		    T1u = FNMS(KP900968867, T1t, T1b);
187 		    T1v = FMA(KP554958132, T1i, T1k);
188 		    T1w = FMA(KP801937735, T1v, T1j);
189 		    io[WS(os, 1)] = FMA(KP974927912, T1w, T1u);
190 		    io[WS(os, 13)] = FNMS(KP974927912, T1w, T1u);
191 	       }
192 	       {
193 		    E T11, T13, T10, T12;
194 		    T10 = FNMS(KP692021471, TZ, Th);
195 		    T11 = FNMS(KP900968867, T10, T3);
196 		    T12 = FMA(KP554958132, TI, TW);
197 		    T13 = FNMS(KP801937735, T12, TP);
198 		    ro[WS(os, 5)] = FNMS(KP974927912, T13, T11);
199 		    ro[WS(os, 9)] = FMA(KP974927912, T13, T11);
200 	       }
201 	       {
202 		    E T1p, T1r, T1o, T1q;
203 		    T1o = FNMS(KP692021471, T1n, T1d);
204 		    T1p = FNMS(KP900968867, T1o, T1b);
205 		    T1q = FMA(KP554958132, T1j, T1i);
206 		    T1r = FNMS(KP801937735, T1q, T1k);
207 		    io[WS(os, 5)] = FNMS(KP974927912, T1r, T1p);
208 		    io[WS(os, 9)] = FMA(KP974927912, T1r, T1p);
209 	       }
210 	       {
211 		    E T16, T18, T15, T17;
212 		    T15 = FNMS(KP692021471, T14, Ta);
213 		    T16 = FNMS(KP900968867, T15, T3);
214 		    T17 = FNMS(KP554958132, TP, TI);
215 		    T18 = FNMS(KP801937735, T17, TW);
216 		    ro[WS(os, 11)] = FNMS(KP974927912, T18, T16);
217 		    ro[WS(os, 3)] = FMA(KP974927912, T18, T16);
218 	       }
219 	       {
220 		    E T1h, T1m, T1g, T1l;
221 		    T1g = FNMS(KP692021471, T1f, T1c);
222 		    T1h = FNMS(KP900968867, T1g, T1b);
223 		    T1l = FNMS(KP554958132, T1k, T1j);
224 		    T1m = FNMS(KP801937735, T1l, T1i);
225 		    io[WS(os, 3)] = FMA(KP974927912, T1m, T1h);
226 		    io[WS(os, 11)] = FNMS(KP974927912, T1m, T1h);
227 	       }
228 	       {
229 		    E T1J, T1O, T1I, T1N;
230 		    T1I = FNMS(KP692021471, T1H, T1A);
231 		    T1J = FNMS(KP900968867, T1I, T1x);
232 		    T1N = FMA(KP554958132, T1M, T1L);
233 		    T1O = FNMS(KP801937735, T1N, T1K);
234 		    io[WS(os, 4)] = FMA(KP974927912, T1O, T1J);
235 		    io[WS(os, 10)] = FNMS(KP974927912, T1O, T1J);
236 	       }
237 	       {
238 		    E T2e, T2g, T2d, T2f;
239 		    T2d = FNMS(KP692021471, T2c, Ts);
240 		    T2e = FNMS(KP900968867, T2d, Tp);
241 		    T2f = FMA(KP554958132, T22, T24);
242 		    T2g = FNMS(KP801937735, T2f, T23);
243 		    ro[WS(os, 10)] = FNMS(KP974927912, T2g, T2e);
244 		    ro[WS(os, 4)] = FMA(KP974927912, T2g, T2e);
245 	       }
246 	       {
247 		    E T1R, T1T, T1Q, T1S;
248 		    T1Q = FNMS(KP692021471, T1P, T1D);
249 		    T1R = FNMS(KP900968867, T1Q, T1x);
250 		    T1S = FMA(KP554958132, T1L, T1K);
251 		    T1T = FMA(KP801937735, T1S, T1M);
252 		    io[WS(os, 2)] = FMA(KP974927912, T1T, T1R);
253 		    io[WS(os, 12)] = FNMS(KP974927912, T1T, T1R);
254 	       }
255 	       {
256 		    E T21, T26, T20, T25;
257 		    T20 = FNMS(KP692021471, T1Z, Tv);
258 		    T21 = FNMS(KP900968867, T20, Tp);
259 		    T25 = FMA(KP554958132, T24, T23);
260 		    T26 = FMA(KP801937735, T25, T22);
261 		    ro[WS(os, 12)] = FNMS(KP974927912, T26, T21);
262 		    ro[WS(os, 2)] = FMA(KP974927912, T26, T21);
263 	       }
264 	       {
265 		    E T1W, T1Y, T1V, T1X;
266 		    T1V = FNMS(KP692021471, T1U, T1G);
267 		    T1W = FNMS(KP900968867, T1V, T1x);
268 		    T1X = FNMS(KP554958132, T1K, T1M);
269 		    T1Y = FNMS(KP801937735, T1X, T1L);
270 		    io[WS(os, 6)] = FMA(KP974927912, T1Y, T1W);
271 		    io[WS(os, 8)] = FNMS(KP974927912, T1Y, T1W);
272 	       }
273 	       {
274 		    E T29, T2b, T28, T2a;
275 		    T28 = FNMS(KP692021471, T27, Ty);
276 		    T29 = FNMS(KP900968867, T28, Tp);
277 		    T2a = FNMS(KP554958132, T23, T22);
278 		    T2b = FNMS(KP801937735, T2a, T24);
279 		    ro[WS(os, 8)] = FNMS(KP974927912, T2b, T29);
280 		    ro[WS(os, 6)] = FMA(KP974927912, T2b, T29);
281 	       }
282 	  }
283      }
284 }
285 
286 static const kdft_desc desc = { 14, "n1_14", { 64, 0, 84, 0 }, &GENUS, 0, 0, 0, 0 };
287 
X(codelet_n1_14)288 void X(codelet_n1_14) (planner *p) { X(kdft_register) (p, n1_14, &desc);
289 }
290 
291 #else
292 
293 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 14 -name n1_14 -include dft/scalar/n.h */
294 
295 /*
296  * This function contains 148 FP additions, 72 FP multiplications,
297  * (or, 100 additions, 24 multiplications, 48 fused multiply/add),
298  * 43 stack variables, 6 constants, and 56 memory accesses
299  */
300 #include "dft/scalar/n.h"
301 
n1_14(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)302 static void n1_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
303 {
304      DK(KP222520933, +0.222520933956314404288902564496794759466355569);
305      DK(KP900968867, +0.900968867902419126236102319507445051165919162);
306      DK(KP623489801, +0.623489801858733530525004884004239810632274731);
307      DK(KP433883739, +0.433883739117558120475768332848358754609990728);
308      DK(KP781831482, +0.781831482468029808708444526674057750232334519);
309      DK(KP974927912, +0.974927912181823607018131682993931217232785801);
310      {
311 	  INT i;
312 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(56, is), MAKE_VOLATILE_STRIDE(56, os)) {
313 	       E T3, Tp, T16, T1f, Ta, T1q, Ts, T10, TG, T1z, T19, T1i, Th, T1s, Tv;
314 	       E T12, TU, T1B, T17, T1o, To, T1r, Ty, T11, TN, T1A, T18, T1l;
315 	       {
316 		    E T1, T2, T14, T15;
317 		    T1 = ri[0];
318 		    T2 = ri[WS(is, 7)];
319 		    T3 = T1 - T2;
320 		    Tp = T1 + T2;
321 		    T14 = ii[0];
322 		    T15 = ii[WS(is, 7)];
323 		    T16 = T14 - T15;
324 		    T1f = T14 + T15;
325 	       }
326 	       {
327 		    E T6, Tq, T9, Tr;
328 		    {
329 			 E T4, T5, T7, T8;
330 			 T4 = ri[WS(is, 2)];
331 			 T5 = ri[WS(is, 9)];
332 			 T6 = T4 - T5;
333 			 Tq = T4 + T5;
334 			 T7 = ri[WS(is, 12)];
335 			 T8 = ri[WS(is, 5)];
336 			 T9 = T7 - T8;
337 			 Tr = T7 + T8;
338 		    }
339 		    Ta = T6 + T9;
340 		    T1q = Tr - Tq;
341 		    Ts = Tq + Tr;
342 		    T10 = T9 - T6;
343 	       }
344 	       {
345 		    E TC, T1g, TF, T1h;
346 		    {
347 			 E TA, TB, TD, TE;
348 			 TA = ii[WS(is, 2)];
349 			 TB = ii[WS(is, 9)];
350 			 TC = TA - TB;
351 			 T1g = TA + TB;
352 			 TD = ii[WS(is, 12)];
353 			 TE = ii[WS(is, 5)];
354 			 TF = TD - TE;
355 			 T1h = TD + TE;
356 		    }
357 		    TG = TC - TF;
358 		    T1z = T1g - T1h;
359 		    T19 = TC + TF;
360 		    T1i = T1g + T1h;
361 	       }
362 	       {
363 		    E Td, Tt, Tg, Tu;
364 		    {
365 			 E Tb, Tc, Te, Tf;
366 			 Tb = ri[WS(is, 4)];
367 			 Tc = ri[WS(is, 11)];
368 			 Td = Tb - Tc;
369 			 Tt = Tb + Tc;
370 			 Te = ri[WS(is, 10)];
371 			 Tf = ri[WS(is, 3)];
372 			 Tg = Te - Tf;
373 			 Tu = Te + Tf;
374 		    }
375 		    Th = Td + Tg;
376 		    T1s = Tt - Tu;
377 		    Tv = Tt + Tu;
378 		    T12 = Tg - Td;
379 	       }
380 	       {
381 		    E TQ, T1m, TT, T1n;
382 		    {
383 			 E TO, TP, TR, TS;
384 			 TO = ii[WS(is, 4)];
385 			 TP = ii[WS(is, 11)];
386 			 TQ = TO - TP;
387 			 T1m = TO + TP;
388 			 TR = ii[WS(is, 10)];
389 			 TS = ii[WS(is, 3)];
390 			 TT = TR - TS;
391 			 T1n = TR + TS;
392 		    }
393 		    TU = TQ - TT;
394 		    T1B = T1n - T1m;
395 		    T17 = TQ + TT;
396 		    T1o = T1m + T1n;
397 	       }
398 	       {
399 		    E Tk, Tw, Tn, Tx;
400 		    {
401 			 E Ti, Tj, Tl, Tm;
402 			 Ti = ri[WS(is, 6)];
403 			 Tj = ri[WS(is, 13)];
404 			 Tk = Ti - Tj;
405 			 Tw = Ti + Tj;
406 			 Tl = ri[WS(is, 8)];
407 			 Tm = ri[WS(is, 1)];
408 			 Tn = Tl - Tm;
409 			 Tx = Tl + Tm;
410 		    }
411 		    To = Tk + Tn;
412 		    T1r = Tw - Tx;
413 		    Ty = Tw + Tx;
414 		    T11 = Tn - Tk;
415 	       }
416 	       {
417 		    E TJ, T1j, TM, T1k;
418 		    {
419 			 E TH, TI, TK, TL;
420 			 TH = ii[WS(is, 6)];
421 			 TI = ii[WS(is, 13)];
422 			 TJ = TH - TI;
423 			 T1j = TH + TI;
424 			 TK = ii[WS(is, 8)];
425 			 TL = ii[WS(is, 1)];
426 			 TM = TK - TL;
427 			 T1k = TK + TL;
428 		    }
429 		    TN = TJ - TM;
430 		    T1A = T1k - T1j;
431 		    T18 = TJ + TM;
432 		    T1l = T1j + T1k;
433 	       }
434 	       ro[WS(os, 7)] = T3 + Ta + Th + To;
435 	       io[WS(os, 7)] = T16 + T19 + T17 + T18;
436 	       ro[0] = Tp + Ts + Tv + Ty;
437 	       io[0] = T1f + T1i + T1o + T1l;
438 	       {
439 		    E TV, Tz, T1e, T1d;
440 		    TV = FNMS(KP781831482, TN, KP974927912 * TG) - (KP433883739 * TU);
441 		    Tz = FMA(KP623489801, To, T3) + FNMA(KP900968867, Th, KP222520933 * Ta);
442 		    ro[WS(os, 5)] = Tz - TV;
443 		    ro[WS(os, 9)] = Tz + TV;
444 		    T1e = FNMS(KP781831482, T11, KP974927912 * T10) - (KP433883739 * T12);
445 		    T1d = FMA(KP623489801, T18, T16) + FNMA(KP900968867, T17, KP222520933 * T19);
446 		    io[WS(os, 5)] = T1d - T1e;
447 		    io[WS(os, 9)] = T1e + T1d;
448 	       }
449 	       {
450 		    E TX, TW, T1b, T1c;
451 		    TX = FMA(KP781831482, TG, KP974927912 * TU) + (KP433883739 * TN);
452 		    TW = FMA(KP623489801, Ta, T3) + FNMA(KP900968867, To, KP222520933 * Th);
453 		    ro[WS(os, 13)] = TW - TX;
454 		    ro[WS(os, 1)] = TW + TX;
455 		    T1b = FMA(KP781831482, T10, KP974927912 * T12) + (KP433883739 * T11);
456 		    T1c = FMA(KP623489801, T19, T16) + FNMA(KP900968867, T18, KP222520933 * T17);
457 		    io[WS(os, 1)] = T1b + T1c;
458 		    io[WS(os, 13)] = T1c - T1b;
459 	       }
460 	       {
461 		    E TZ, TY, T13, T1a;
462 		    TZ = FMA(KP433883739, TG, KP974927912 * TN) - (KP781831482 * TU);
463 		    TY = FMA(KP623489801, Th, T3) + FNMA(KP222520933, To, KP900968867 * Ta);
464 		    ro[WS(os, 11)] = TY - TZ;
465 		    ro[WS(os, 3)] = TY + TZ;
466 		    T13 = FMA(KP433883739, T10, KP974927912 * T11) - (KP781831482 * T12);
467 		    T1a = FMA(KP623489801, T17, T16) + FNMA(KP222520933, T18, KP900968867 * T19);
468 		    io[WS(os, 3)] = T13 + T1a;
469 		    io[WS(os, 11)] = T1a - T13;
470 	       }
471 	       {
472 		    E T1t, T1p, T1C, T1y;
473 		    T1t = FNMS(KP433883739, T1r, KP781831482 * T1q) - (KP974927912 * T1s);
474 		    T1p = FMA(KP623489801, T1i, T1f) + FNMA(KP900968867, T1l, KP222520933 * T1o);
475 		    io[WS(os, 6)] = T1p - T1t;
476 		    io[WS(os, 8)] = T1t + T1p;
477 		    T1C = FNMS(KP433883739, T1A, KP781831482 * T1z) - (KP974927912 * T1B);
478 		    T1y = FMA(KP623489801, Ts, Tp) + FNMA(KP900968867, Ty, KP222520933 * Tv);
479 		    ro[WS(os, 6)] = T1y - T1C;
480 		    ro[WS(os, 8)] = T1y + T1C;
481 	       }
482 	       {
483 		    E T1v, T1u, T1E, T1D;
484 		    T1v = FMA(KP433883739, T1q, KP781831482 * T1s) - (KP974927912 * T1r);
485 		    T1u = FMA(KP623489801, T1o, T1f) + FNMA(KP222520933, T1l, KP900968867 * T1i);
486 		    io[WS(os, 4)] = T1u - T1v;
487 		    io[WS(os, 10)] = T1v + T1u;
488 		    T1E = FMA(KP433883739, T1z, KP781831482 * T1B) - (KP974927912 * T1A);
489 		    T1D = FMA(KP623489801, Tv, Tp) + FNMA(KP222520933, Ty, KP900968867 * Ts);
490 		    ro[WS(os, 4)] = T1D - T1E;
491 		    ro[WS(os, 10)] = T1D + T1E;
492 	       }
493 	       {
494 		    E T1w, T1x, T1G, T1F;
495 		    T1w = FMA(KP974927912, T1q, KP433883739 * T1s) + (KP781831482 * T1r);
496 		    T1x = FMA(KP623489801, T1l, T1f) + FNMA(KP900968867, T1o, KP222520933 * T1i);
497 		    io[WS(os, 2)] = T1w + T1x;
498 		    io[WS(os, 12)] = T1x - T1w;
499 		    T1G = FMA(KP974927912, T1z, KP433883739 * T1B) + (KP781831482 * T1A);
500 		    T1F = FMA(KP623489801, Ty, Tp) + FNMA(KP900968867, Tv, KP222520933 * Ts);
501 		    ro[WS(os, 12)] = T1F - T1G;
502 		    ro[WS(os, 2)] = T1F + T1G;
503 	       }
504 	  }
505      }
506 }
507 
508 static const kdft_desc desc = { 14, "n1_14", { 100, 24, 48, 0 }, &GENUS, 0, 0, 0, 0 };
509 
X(codelet_n1_14)510 void X(codelet_n1_14) (planner *p) { X(kdft_register) (p, n1_14, &desc);
511 }
512 
513 #endif
514