1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:06:37 EST 2020 */
23 
24 #include "rdft/codelet-rdft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include rdft/scalar/r2cbIII.h */
29 
30 /*
31  * This function contains 32 FP additions, 28 FP multiplications,
32  * (or, 14 additions, 10 multiplications, 18 fused multiply/add),
33  * 22 stack variables, 5 constants, and 20 memory accesses
34  */
35 #include "rdft/scalar/r2cbIII.h"
36 
r2cbIII_10(R * R0,R * R1,R * Cr,R * Ci,stride rs,stride csr,stride csi,INT v,INT ivs,INT ovs)37 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39      DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40      DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41      DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42      DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
44      {
45 	  INT i;
46 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
47 	       E T1, To, T8, Tt, Ta, Ts, Te, Tq, Th, Tn;
48 	       T1 = Cr[WS(csr, 2)];
49 	       To = Ci[WS(csi, 2)];
50 	       {
51 		    E T2, T3, T4, T5, T6, T7;
52 		    T2 = Cr[WS(csr, 4)];
53 		    T3 = Cr[0];
54 		    T4 = T2 + T3;
55 		    T5 = Cr[WS(csr, 3)];
56 		    T6 = Cr[WS(csr, 1)];
57 		    T7 = T5 + T6;
58 		    T8 = T4 + T7;
59 		    Tt = T5 - T6;
60 		    Ta = T7 - T4;
61 		    Ts = T2 - T3;
62 	       }
63 	       {
64 		    E Tc, Td, Tl, Tf, Tg, Tm;
65 		    Tc = Ci[WS(csi, 3)];
66 		    Td = Ci[WS(csi, 1)];
67 		    Tl = Tc + Td;
68 		    Tf = Ci[WS(csi, 4)];
69 		    Tg = Ci[0];
70 		    Tm = Tf + Tg;
71 		    Te = Tc - Td;
72 		    Tq = Tl + Tm;
73 		    Th = Tf - Tg;
74 		    Tn = Tl - Tm;
75 	       }
76 	       R0[0] = KP2_000000000 * (T1 + T8);
77 	       R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
78 	       {
79 		    E Ti, Tk, Tb, Tj, T9;
80 		    Ti = FMA(KP618033988, Th, Te);
81 		    Tk = FNMS(KP618033988, Te, Th);
82 		    T9 = FMS(KP250000000, T8, T1);
83 		    Tb = FNMS(KP559016994, Ta, T9);
84 		    Tj = FMA(KP559016994, Ta, T9);
85 		    R0[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Ti, Tb));
86 		    R0[WS(rs, 3)] = KP2_000000000 * (FMA(KP951056516, Tk, Tj));
87 		    R0[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Ti, Tb)));
88 		    R0[WS(rs, 2)] = -(KP2_000000000 * (FNMS(KP951056516, Tk, Tj)));
89 	       }
90 	       {
91 		    E Tu, Tw, Tr, Tv, Tp;
92 		    Tu = FMA(KP618033988, Tt, Ts);
93 		    Tw = FNMS(KP618033988, Ts, Tt);
94 		    Tp = FMA(KP250000000, Tn, To);
95 		    Tr = FMA(KP559016994, Tq, Tp);
96 		    Tv = FNMS(KP559016994, Tq, Tp);
97 		    R1[0] = -(KP2_000000000 * (FMA(KP951056516, Tu, Tr)));
98 		    R1[WS(rs, 3)] = KP2_000000000 * (FNMS(KP951056516, Tw, Tv));
99 		    R1[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Tu, Tr)));
100 		    R1[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Tw, Tv));
101 	       }
102 	  }
103      }
104 }
105 
106 static const kr2c_desc desc = { 10, "r2cbIII_10", { 14, 10, 18, 0 }, &GENUS };
107 
X(codelet_r2cbIII_10)108 void X(codelet_r2cbIII_10) (planner *p) { X(kr2c_register) (p, r2cbIII_10, &desc);
109 }
110 
111 #else
112 
113 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include rdft/scalar/r2cbIII.h */
114 
115 /*
116  * This function contains 32 FP additions, 16 FP multiplications,
117  * (or, 26 additions, 10 multiplications, 6 fused multiply/add),
118  * 22 stack variables, 5 constants, and 20 memory accesses
119  */
120 #include "rdft/scalar/r2cbIII.h"
121 
r2cbIII_10(R * R0,R * R1,R * Cr,R * Ci,stride rs,stride csr,stride csi,INT v,INT ivs,INT ovs)122 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
123 {
124      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
125      DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
126      DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
127      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
128      DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
129      {
130 	  INT i;
131 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
132 	       E T1, To, T8, Tq, Ta, Tp, Te, Ts, Th, Tn;
133 	       T1 = Cr[WS(csr, 2)];
134 	       To = Ci[WS(csi, 2)];
135 	       {
136 		    E T2, T3, T4, T5, T6, T7;
137 		    T2 = Cr[WS(csr, 4)];
138 		    T3 = Cr[0];
139 		    T4 = T2 + T3;
140 		    T5 = Cr[WS(csr, 3)];
141 		    T6 = Cr[WS(csr, 1)];
142 		    T7 = T5 + T6;
143 		    T8 = T4 + T7;
144 		    Tq = T5 - T6;
145 		    Ta = KP1_118033988 * (T7 - T4);
146 		    Tp = T2 - T3;
147 	       }
148 	       {
149 		    E Tc, Td, Tm, Tf, Tg, Tl;
150 		    Tc = Ci[WS(csi, 4)];
151 		    Td = Ci[0];
152 		    Tm = Tc + Td;
153 		    Tf = Ci[WS(csi, 1)];
154 		    Tg = Ci[WS(csi, 3)];
155 		    Tl = Tg + Tf;
156 		    Te = Tc - Td;
157 		    Ts = KP1_118033988 * (Tl + Tm);
158 		    Th = Tf - Tg;
159 		    Tn = Tl - Tm;
160 	       }
161 	       R0[0] = KP2_000000000 * (T1 + T8);
162 	       R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
163 	       {
164 		    E Ti, Tj, Tb, Tk, T9;
165 		    Ti = FNMS(KP1_902113032, Th, KP1_175570504 * Te);
166 		    Tj = FMA(KP1_175570504, Th, KP1_902113032 * Te);
167 		    T9 = FNMS(KP2_000000000, T1, KP500000000 * T8);
168 		    Tb = T9 - Ta;
169 		    Tk = T9 + Ta;
170 		    R0[WS(rs, 1)] = Tb + Ti;
171 		    R0[WS(rs, 3)] = Tk + Tj;
172 		    R0[WS(rs, 4)] = Ti - Tb;
173 		    R0[WS(rs, 2)] = Tj - Tk;
174 	       }
175 	       {
176 		    E Tr, Tv, Tu, Tw, Tt;
177 		    Tr = FMA(KP1_902113032, Tp, KP1_175570504 * Tq);
178 		    Tv = FNMS(KP1_175570504, Tp, KP1_902113032 * Tq);
179 		    Tt = FMA(KP500000000, Tn, KP2_000000000 * To);
180 		    Tu = Ts + Tt;
181 		    Tw = Tt - Ts;
182 		    R1[0] = -(Tr + Tu);
183 		    R1[WS(rs, 3)] = Tw - Tv;
184 		    R1[WS(rs, 4)] = Tr - Tu;
185 		    R1[WS(rs, 1)] = Tv + Tw;
186 	       }
187 	  }
188      }
189 }
190 
191 static const kr2c_desc desc = { 10, "r2cbIII_10", { 26, 10, 6, 0 }, &GENUS };
192 
X(codelet_r2cbIII_10)193 void X(codelet_r2cbIII_10) (planner *p) { X(kr2c_register) (p, r2cbIII_10, &desc);
194 }
195 
196 #endif
197