1 /* adler32.c -- compute the Adler-32 checksum of a data stream
2  * Copyright (C) 1995-2011 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /* @(#) $Id$ */
7 
8 /* [Bruno] full path to geogram to avoid including wrong zlib header */
9 #include <geogram/third_party/zlib/zutil.h>
10 
11 #define local static
12 
13 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
14 
15 #define BASE 65521      /* largest prime smaller than 65536 */
16 #define NMAX 5552
17 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
18 
19 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
20 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
21 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
22 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
23 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
24 
25 /* use NO_DIVIDE if your processor does not do division in hardware --
26    try it both ways to see which is faster */
27 #ifdef NO_DIVIDE
28 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
29    (thank you to John Reiser for pointing this out) */
30 #  define CHOP(a) \
31     do { \
32         unsigned long tmp = a >> 16; \
33         a &= 0xffffUL; \
34         a += (tmp << 4) - tmp; \
35     } while (0)
36 #  define MOD28(a) \
37     do { \
38         CHOP(a); \
39         if (a >= BASE) a -= BASE; \
40     } while (0)
41 #  define MOD(a) \
42     do { \
43         CHOP(a); \
44         MOD28(a); \
45     } while (0)
46 #  define MOD63(a) \
47     do { /* this assumes a is not negative */ \
48         z_off64_t tmp = a >> 32; \
49         a &= 0xffffffffL; \
50         a += (tmp << 8) - (tmp << 5) + tmp; \
51         tmp = a >> 16; \
52         a &= 0xffffL; \
53         a += (tmp << 4) - tmp; \
54         tmp = a >> 16; \
55         a &= 0xffffL; \
56         a += (tmp << 4) - tmp; \
57         if (a >= BASE) a -= BASE; \
58     } while (0)
59 #else
60 #  define MOD(a) a %= BASE
61 #  define MOD28(a) a %= BASE
62 #  define MOD63(a) a %= BASE
63 #endif
64 
65 /* ========================================================================= */
adler32(adler,buf,len)66 uLong ZEXPORT adler32(adler, buf, len)
67     uLong adler;
68     const Bytef *buf;
69     uInt len;
70 {
71     unsigned long sum2;
72     unsigned n;
73 
74     /* split Adler-32 into component sums */
75     sum2 = (adler >> 16) & 0xffff;
76     adler &= 0xffff;
77 
78     /* in case user likes doing a byte at a time, keep it fast */
79     if (len == 1) {
80         adler += buf[0];
81         if (adler >= BASE)
82             adler -= BASE;
83         sum2 += adler;
84         if (sum2 >= BASE)
85             sum2 -= BASE;
86         return adler | (sum2 << 16);
87     }
88 
89     /* initial Adler-32 value (deferred check for len == 1 speed) */
90     if (buf == Z_NULL)
91         return 1L;
92 
93     /* in case short lengths are provided, keep it somewhat fast */
94     if (len < 16) {
95         while (len--) {
96             adler += *buf++;
97             sum2 += adler;
98         }
99         if (adler >= BASE)
100             adler -= BASE;
101         MOD28(sum2);            /* only added so many BASE's */
102         return adler | (sum2 << 16);
103     }
104 
105     /* do length NMAX blocks -- requires just one modulo operation */
106     while (len >= NMAX) {
107         len -= NMAX;
108         n = NMAX / 16;          /* NMAX is divisible by 16 */
109         do {
110             DO16(buf);          /* 16 sums unrolled */
111             buf += 16;
112         } while (--n);
113         MOD(adler);
114         MOD(sum2);
115     }
116 
117     /* do remaining bytes (less than NMAX, still just one modulo) */
118     if (len) {                  /* avoid modulos if none remaining */
119         while (len >= 16) {
120             len -= 16;
121             DO16(buf);
122             buf += 16;
123         }
124         while (len--) {
125             adler += *buf++;
126             sum2 += adler;
127         }
128         MOD(adler);
129         MOD(sum2);
130     }
131 
132     /* return recombined sums */
133     return adler | (sum2 << 16);
134 }
135 
136 /* ========================================================================= */
adler32_combine_(adler1,adler2,len2)137 local uLong adler32_combine_(adler1, adler2, len2)
138     uLong adler1;
139     uLong adler2;
140     z_off64_t len2;
141 {
142     unsigned long sum1;
143     unsigned long sum2;
144     unsigned rem;
145 
146     /* for negative len, return invalid adler32 as a clue for debugging */
147     if (len2 < 0)
148         return 0xffffffffUL;
149 
150     /* the derivation of this formula is left as an exercise for the reader */
151     MOD63(len2);                /* assumes len2 >= 0 */
152     rem = (unsigned)len2;
153     sum1 = adler1 & 0xffff;
154     sum2 = rem * sum1;
155     MOD(sum2);
156     sum1 += (adler2 & 0xffff) + BASE - 1;
157     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
158     if (sum1 >= BASE) sum1 -= BASE;
159     if (sum1 >= BASE) sum1 -= BASE;
160     if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
161     if (sum2 >= BASE) sum2 -= BASE;
162     return sum1 | (sum2 << 16);
163 }
164 
165 /* ========================================================================= */
adler32_combine(adler1,adler2,len2)166 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
167     uLong adler1;
168     uLong adler2;
169     z_off_t len2;
170 {
171     return adler32_combine_(adler1, adler2, len2);
172 }
173 
adler32_combine64(adler1,adler2,len2)174 uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
175     uLong adler1;
176     uLong adler2;
177     z_off64_t len2;
178 {
179     return adler32_combine_(adler1, adler2, len2);
180 }
181