1 /* hgcd_jacobi.c.
2 
3    THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY
4    SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
5    GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
6 
7 Copyright 2003-2005, 2008, 2011, 2012 Free Software Foundation, Inc.
8 
9 This file is part of the GNU MP Library.
10 
11 The GNU MP Library is free software; you can redistribute it and/or modify
12 it under the terms of either:
13 
14   * the GNU Lesser General Public License as published by the Free
15     Software Foundation; either version 3 of the License, or (at your
16     option) any later version.
17 
18 or
19 
20   * the GNU General Public License as published by the Free Software
21     Foundation; either version 2 of the License, or (at your option) any
22     later version.
23 
24 or both in parallel, as here.
25 
26 The GNU MP Library is distributed in the hope that it will be useful, but
27 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
28 or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
29 for more details.
30 
31 You should have received copies of the GNU General Public License and the
32 GNU Lesser General Public License along with the GNU MP Library.  If not,
33 see https://www.gnu.org/licenses/.  */
34 
35 #include "gmp-impl.h"
36 #include "longlong.h"
37 
38 /* This file is almost a copy of hgcd.c, with some added calls to
39    mpn_jacobi_update */
40 
41 struct hgcd_jacobi_ctx
42 {
43   struct hgcd_matrix *M;
44   unsigned *bitsp;
45 };
46 
47 static void
hgcd_jacobi_hook(void * p,mp_srcptr gp,mp_size_t gn,mp_srcptr qp,mp_size_t qn,int d)48 hgcd_jacobi_hook (void *p, mp_srcptr gp, mp_size_t gn,
49 		  mp_srcptr qp, mp_size_t qn, int d)
50 {
51   ASSERT (!gp);
52   ASSERT (d >= 0);
53 
54   MPN_NORMALIZE (qp, qn);
55   if (qn > 0)
56     {
57       struct hgcd_jacobi_ctx *ctx = (struct hgcd_jacobi_ctx *) p;
58       /* NOTES: This is a bit ugly. A tp area is passed to
59 	 gcd_subdiv_step, which stores q at the start of that area. We
60 	 now use the rest. */
61       mp_ptr tp = (mp_ptr) qp + qn;
62 
63       mpn_hgcd_matrix_update_q (ctx->M, qp, qn, d, tp);
64       *ctx->bitsp = mpn_jacobi_update (*ctx->bitsp, d, qp[0] & 3);
65     }
66 }
67 
68 /* Perform a few steps, using some of mpn_hgcd2, subtraction and
69    division. Reduces the size by almost one limb or more, but never
70    below the given size s. Return new size for a and b, or 0 if no
71    more steps are possible.
72 
73    If hgcd2 succeeds, needs temporary space for hgcd_matrix_mul_1, M->n
74    limbs, and hgcd_mul_matrix1_inverse_vector, n limbs. If hgcd2
75    fails, needs space for the quotient, qn <= n - s + 1 limbs, for and
76    hgcd_matrix_update_q, qn + (size of the appropriate column of M) <=
77    resulting size of M.
78 
79    If N is the input size to the calling hgcd, then s = floor(N/2) +
80    1, M->n < N, qn + matrix size <= n - s + 1 + n - s = 2 (n - s) + 1
81    < N, so N is sufficient.
82 */
83 
84 static mp_size_t
hgcd_jacobi_step(mp_size_t n,mp_ptr ap,mp_ptr bp,mp_size_t s,struct hgcd_matrix * M,unsigned * bitsp,mp_ptr tp)85 hgcd_jacobi_step (mp_size_t n, mp_ptr ap, mp_ptr bp, mp_size_t s,
86 		  struct hgcd_matrix *M, unsigned *bitsp, mp_ptr tp)
87 {
88   struct hgcd_matrix1 M1;
89   mp_limb_t mask;
90   mp_limb_t ah, al, bh, bl;
91 
92   ASSERT (n > s);
93 
94   mask = ap[n-1] | bp[n-1];
95   ASSERT (mask > 0);
96 
97   if (n == s + 1)
98     {
99       if (mask < 4)
100 	goto subtract;
101 
102       ah = ap[n-1]; al = ap[n-2];
103       bh = bp[n-1]; bl = bp[n-2];
104     }
105   else if (mask & GMP_NUMB_HIGHBIT)
106     {
107       ah = ap[n-1]; al = ap[n-2];
108       bh = bp[n-1]; bl = bp[n-2];
109     }
110   else
111     {
112       int shift;
113 
114       count_leading_zeros (shift, mask);
115       ah = MPN_EXTRACT_NUMB (shift, ap[n-1], ap[n-2]);
116       al = MPN_EXTRACT_NUMB (shift, ap[n-2], ap[n-3]);
117       bh = MPN_EXTRACT_NUMB (shift, bp[n-1], bp[n-2]);
118       bl = MPN_EXTRACT_NUMB (shift, bp[n-2], bp[n-3]);
119     }
120 
121   /* Try an mpn_hgcd2 step */
122   if (mpn_hgcd2_jacobi (ah, al, bh, bl, &M1, bitsp))
123     {
124       /* Multiply M <- M * M1 */
125       mpn_hgcd_matrix_mul_1 (M, &M1, tp);
126 
127       /* Can't swap inputs, so we need to copy. */
128       MPN_COPY (tp, ap, n);
129       /* Multiply M1^{-1} (a;b) */
130       return mpn_matrix22_mul1_inverse_vector (&M1, ap, tp, bp, n);
131     }
132 
133  subtract:
134   {
135     struct hgcd_jacobi_ctx ctx;
136     ctx.M = M;
137     ctx.bitsp = bitsp;
138 
139     return mpn_gcd_subdiv_step (ap, bp, n, s, hgcd_jacobi_hook, &ctx, tp);
140   }
141 }
142 
143 /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
144    with elements of size at most (n+1)/2 - 1. Returns new size of a,
145    b, or zero if no reduction is possible. */
146 
147 /* Same scratch requirements as for mpn_hgcd. */
148 mp_size_t
mpn_hgcd_jacobi(mp_ptr ap,mp_ptr bp,mp_size_t n,struct hgcd_matrix * M,unsigned * bitsp,mp_ptr tp)149 mpn_hgcd_jacobi (mp_ptr ap, mp_ptr bp, mp_size_t n,
150 		 struct hgcd_matrix *M, unsigned *bitsp, mp_ptr tp)
151 {
152   mp_size_t s = n/2 + 1;
153 
154   mp_size_t nn;
155   int success = 0;
156 
157   if (n <= s)
158     /* Happens when n <= 2, a fairly uninteresting case but exercised
159        by the random inputs of the testsuite. */
160     return 0;
161 
162   ASSERT ((ap[n-1] | bp[n-1]) > 0);
163 
164   ASSERT ((n+1)/2 - 1 < M->alloc);
165 
166   if (ABOVE_THRESHOLD (n, HGCD_THRESHOLD))
167     {
168       mp_size_t n2 = (3*n)/4 + 1;
169       mp_size_t p = n/2;
170 
171       nn = mpn_hgcd_jacobi (ap + p, bp + p, n - p, M, bitsp, tp);
172       if (nn > 0)
173 	{
174 	  /* Needs 2*(p + M->n) <= 2*(floor(n/2) + ceil(n/2) - 1)
175 	     = 2 (n - 1) */
176 	  n = mpn_hgcd_matrix_adjust (M, p + nn, ap, bp, p, tp);
177 	  success = 1;
178 	}
179       while (n > n2)
180 	{
181 	  /* Needs n + 1 storage */
182 	  nn = hgcd_jacobi_step (n, ap, bp, s, M, bitsp, tp);
183 	  if (!nn)
184 	    return success ? n : 0;
185 	  n = nn;
186 	  success = 1;
187 	}
188 
189       if (n > s + 2)
190 	{
191 	  struct hgcd_matrix M1;
192 	  mp_size_t scratch;
193 
194 	  p = 2*s - n + 1;
195 	  scratch = MPN_HGCD_MATRIX_INIT_ITCH (n-p);
196 
197 	  mpn_hgcd_matrix_init(&M1, n - p, tp);
198 	  nn = mpn_hgcd_jacobi (ap + p, bp + p, n - p, &M1, bitsp, tp + scratch);
199 	  if (nn > 0)
200 	    {
201 	      /* We always have max(M) > 2^{-(GMP_NUMB_BITS + 1)} max(M1) */
202 	      ASSERT (M->n + 2 >= M1.n);
203 
204 	      /* Furthermore, assume M ends with a quotient (1, q; 0, 1),
205 		 then either q or q + 1 is a correct quotient, and M1 will
206 		 start with either (1, 0; 1, 1) or (2, 1; 1, 1). This
207 		 rules out the case that the size of M * M1 is much
208 		 smaller than the expected M->n + M1->n. */
209 
210 	      ASSERT (M->n + M1.n < M->alloc);
211 
212 	      /* Needs 2 (p + M->n) <= 2 (2*s - n2 + 1 + n2 - s - 1)
213 		 = 2*s <= 2*(floor(n/2) + 1) <= n + 2. */
214 	      n = mpn_hgcd_matrix_adjust (&M1, p + nn, ap, bp, p, tp + scratch);
215 
216 	      /* We need a bound for of M->n + M1.n. Let n be the original
217 		 input size. Then
218 
219 		 ceil(n/2) - 1 >= size of product >= M.n + M1.n - 2
220 
221 		 and it follows that
222 
223 		 M.n + M1.n <= ceil(n/2) + 1
224 
225 		 Then 3*(M.n + M1.n) + 5 <= 3 * ceil(n/2) + 8 is the
226 		 amount of needed scratch space. */
227 	      mpn_hgcd_matrix_mul (M, &M1, tp + scratch);
228 	      success = 1;
229 	    }
230 	}
231     }
232 
233   for (;;)
234     {
235       /* Needs s+3 < n */
236       nn = hgcd_jacobi_step (n, ap, bp, s, M, bitsp, tp);
237       if (!nn)
238 	return success ? n : 0;
239 
240       n = nn;
241       success = 1;
242     }
243 }
244