1*> \brief <b> CSPSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CSPSVX + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cspsvx.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cspsvx.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cspsvx.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE CSPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X,
22*                          LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )
23*
24*       .. Scalar Arguments ..
25*       CHARACTER          FACT, UPLO
26*       INTEGER            INFO, LDB, LDX, N, NRHS
27*       REAL               RCOND
28*       ..
29*       .. Array Arguments ..
30*       INTEGER            IPIV( * )
31*       REAL               BERR( * ), FERR( * ), RWORK( * )
32*       COMPLEX            AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
33*      $                   X( LDX, * )
34*       ..
35*
36*
37*> \par Purpose:
38*  =============
39*>
40*> \verbatim
41*>
42*> CSPSVX uses the diagonal pivoting factorization A = U*D*U**T or
43*> A = L*D*L**T to compute the solution to a complex system of linear
44*> equations A * X = B, where A is an N-by-N symmetric matrix stored
45*> in packed format and X and B are N-by-NRHS matrices.
46*>
47*> Error bounds on the solution and a condition estimate are also
48*> provided.
49*> \endverbatim
50*
51*> \par Description:
52*  =================
53*>
54*> \verbatim
55*>
56*> The following steps are performed:
57*>
58*> 1. If FACT = 'N', the diagonal pivoting method is used to factor A as
59*>       A = U * D * U**T,  if UPLO = 'U', or
60*>       A = L * D * L**T,  if UPLO = 'L',
61*>    where U (or L) is a product of permutation and unit upper (lower)
62*>    triangular matrices and D is symmetric and block diagonal with
63*>    1-by-1 and 2-by-2 diagonal blocks.
64*>
65*> 2. If some D(i,i)=0, so that D is exactly singular, then the routine
66*>    returns with INFO = i. Otherwise, the factored form of A is used
67*>    to estimate the condition number of the matrix A.  If the
68*>    reciprocal of the condition number is less than machine precision,
69*>    INFO = N+1 is returned as a warning, but the routine still goes on
70*>    to solve for X and compute error bounds as described below.
71*>
72*> 3. The system of equations is solved for X using the factored form
73*>    of A.
74*>
75*> 4. Iterative refinement is applied to improve the computed solution
76*>    matrix and calculate error bounds and backward error estimates
77*>    for it.
78*> \endverbatim
79*
80*  Arguments:
81*  ==========
82*
83*> \param[in] FACT
84*> \verbatim
85*>          FACT is CHARACTER*1
86*>          Specifies whether or not the factored form of A has been
87*>          supplied on entry.
88*>          = 'F':  On entry, AFP and IPIV contain the factored form
89*>                  of A.  AP, AFP and IPIV will not be modified.
90*>          = 'N':  The matrix A will be copied to AFP and factored.
91*> \endverbatim
92*>
93*> \param[in] UPLO
94*> \verbatim
95*>          UPLO is CHARACTER*1
96*>          = 'U':  Upper triangle of A is stored;
97*>          = 'L':  Lower triangle of A is stored.
98*> \endverbatim
99*>
100*> \param[in] N
101*> \verbatim
102*>          N is INTEGER
103*>          The number of linear equations, i.e., the order of the
104*>          matrix A.  N >= 0.
105*> \endverbatim
106*>
107*> \param[in] NRHS
108*> \verbatim
109*>          NRHS is INTEGER
110*>          The number of right hand sides, i.e., the number of columns
111*>          of the matrices B and X.  NRHS >= 0.
112*> \endverbatim
113*>
114*> \param[in] AP
115*> \verbatim
116*>          AP is COMPLEX array, dimension (N*(N+1)/2)
117*>          The upper or lower triangle of the symmetric matrix A, packed
118*>          columnwise in a linear array.  The j-th column of A is stored
119*>          in the array AP as follows:
120*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
121*>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
122*>          See below for further details.
123*> \endverbatim
124*>
125*> \param[in,out] AFP
126*> \verbatim
127*>          AFP is COMPLEX array, dimension (N*(N+1)/2)
128*>          If FACT = 'F', then AFP is an input argument and on entry
129*>          contains the block diagonal matrix D and the multipliers used
130*>          to obtain the factor U or L from the factorization
131*>          A = U*D*U**T or A = L*D*L**T as computed by CSPTRF, stored as
132*>          a packed triangular matrix in the same storage format as A.
133*>
134*>          If FACT = 'N', then AFP is an output argument and on exit
135*>          contains the block diagonal matrix D and the multipliers used
136*>          to obtain the factor U or L from the factorization
137*>          A = U*D*U**T or A = L*D*L**T as computed by CSPTRF, stored as
138*>          a packed triangular matrix in the same storage format as A.
139*> \endverbatim
140*>
141*> \param[in,out] IPIV
142*> \verbatim
143*>          IPIV is INTEGER array, dimension (N)
144*>          If FACT = 'F', then IPIV is an input argument and on entry
145*>          contains details of the interchanges and the block structure
146*>          of D, as determined by CSPTRF.
147*>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
148*>          interchanged and D(k,k) is a 1-by-1 diagonal block.
149*>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
150*>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
151*>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
152*>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
153*>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
154*>
155*>          If FACT = 'N', then IPIV is an output argument and on exit
156*>          contains details of the interchanges and the block structure
157*>          of D, as determined by CSPTRF.
158*> \endverbatim
159*>
160*> \param[in] B
161*> \verbatim
162*>          B is COMPLEX array, dimension (LDB,NRHS)
163*>          The N-by-NRHS right hand side matrix B.
164*> \endverbatim
165*>
166*> \param[in] LDB
167*> \verbatim
168*>          LDB is INTEGER
169*>          The leading dimension of the array B.  LDB >= max(1,N).
170*> \endverbatim
171*>
172*> \param[out] X
173*> \verbatim
174*>          X is COMPLEX array, dimension (LDX,NRHS)
175*>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
176*> \endverbatim
177*>
178*> \param[in] LDX
179*> \verbatim
180*>          LDX is INTEGER
181*>          The leading dimension of the array X.  LDX >= max(1,N).
182*> \endverbatim
183*>
184*> \param[out] RCOND
185*> \verbatim
186*>          RCOND is REAL
187*>          The estimate of the reciprocal condition number of the matrix
188*>          A.  If RCOND is less than the machine precision (in
189*>          particular, if RCOND = 0), the matrix is singular to working
190*>          precision.  This condition is indicated by a return code of
191*>          INFO > 0.
192*> \endverbatim
193*>
194*> \param[out] FERR
195*> \verbatim
196*>          FERR is REAL array, dimension (NRHS)
197*>          The estimated forward error bound for each solution vector
198*>          X(j) (the j-th column of the solution matrix X).
199*>          If XTRUE is the true solution corresponding to X(j), FERR(j)
200*>          is an estimated upper bound for the magnitude of the largest
201*>          element in (X(j) - XTRUE) divided by the magnitude of the
202*>          largest element in X(j).  The estimate is as reliable as
203*>          the estimate for RCOND, and is almost always a slight
204*>          overestimate of the true error.
205*> \endverbatim
206*>
207*> \param[out] BERR
208*> \verbatim
209*>          BERR is REAL array, dimension (NRHS)
210*>          The componentwise relative backward error of each solution
211*>          vector X(j) (i.e., the smallest relative change in
212*>          any element of A or B that makes X(j) an exact solution).
213*> \endverbatim
214*>
215*> \param[out] WORK
216*> \verbatim
217*>          WORK is COMPLEX array, dimension (2*N)
218*> \endverbatim
219*>
220*> \param[out] RWORK
221*> \verbatim
222*>          RWORK is REAL array, dimension (N)
223*> \endverbatim
224*>
225*> \param[out] INFO
226*> \verbatim
227*>          INFO is INTEGER
228*>          = 0: successful exit
229*>          < 0: if INFO = -i, the i-th argument had an illegal value
230*>          > 0:  if INFO = i, and i is
231*>                <= N:  D(i,i) is exactly zero.  The factorization
232*>                       has been completed but the factor D is exactly
233*>                       singular, so the solution and error bounds could
234*>                       not be computed. RCOND = 0 is returned.
235*>                = N+1: D is nonsingular, but RCOND is less than machine
236*>                       precision, meaning that the matrix is singular
237*>                       to working precision.  Nevertheless, the
238*>                       solution and error bounds are computed because
239*>                       there are a number of situations where the
240*>                       computed solution can be more accurate than the
241*>                       value of RCOND would suggest.
242*> \endverbatim
243*
244*  Authors:
245*  ========
246*
247*> \author Univ. of Tennessee
248*> \author Univ. of California Berkeley
249*> \author Univ. of Colorado Denver
250*> \author NAG Ltd.
251*
252*> \ingroup complexOTHERsolve
253*
254*> \par Further Details:
255*  =====================
256*>
257*> \verbatim
258*>
259*>  The packed storage scheme is illustrated by the following example
260*>  when N = 4, UPLO = 'U':
261*>
262*>  Two-dimensional storage of the symmetric matrix A:
263*>
264*>     a11 a12 a13 a14
265*>         a22 a23 a24
266*>             a33 a34     (aij = aji)
267*>                 a44
268*>
269*>  Packed storage of the upper triangle of A:
270*>
271*>  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
272*> \endverbatim
273*>
274*  =====================================================================
275      SUBROUTINE CSPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X,
276     $                   LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )
277*
278*  -- LAPACK driver routine --
279*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
280*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
281*
282*     .. Scalar Arguments ..
283      CHARACTER          FACT, UPLO
284      INTEGER            INFO, LDB, LDX, N, NRHS
285      REAL               RCOND
286*     ..
287*     .. Array Arguments ..
288      INTEGER            IPIV( * )
289      REAL               BERR( * ), FERR( * ), RWORK( * )
290      COMPLEX            AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
291     $                   X( LDX, * )
292*     ..
293*
294*  =====================================================================
295*
296*     .. Parameters ..
297      REAL               ZERO
298      PARAMETER          ( ZERO = 0.0E+0 )
299*     ..
300*     .. Local Scalars ..
301      LOGICAL            NOFACT
302      REAL               ANORM
303*     ..
304*     .. External Functions ..
305      LOGICAL            LSAME
306      REAL               CLANSP, SLAMCH
307      EXTERNAL           LSAME, CLANSP, SLAMCH
308*     ..
309*     .. External Subroutines ..
310      EXTERNAL           CCOPY, CLACPY, CSPCON, CSPRFS, CSPTRF, CSPTRS,
311     $                   XERBLA
312*     ..
313*     .. Intrinsic Functions ..
314      INTRINSIC          MAX
315*     ..
316*     .. Executable Statements ..
317*
318*     Test the input parameters.
319*
320      INFO = 0
321      NOFACT = LSAME( FACT, 'N' )
322      IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
323         INFO = -1
324      ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
325     $          THEN
326         INFO = -2
327      ELSE IF( N.LT.0 ) THEN
328         INFO = -3
329      ELSE IF( NRHS.LT.0 ) THEN
330         INFO = -4
331      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
332         INFO = -9
333      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
334         INFO = -11
335      END IF
336      IF( INFO.NE.0 ) THEN
337         CALL XERBLA( 'CSPSVX', -INFO )
338         RETURN
339      END IF
340*
341      IF( NOFACT ) THEN
342*
343*        Compute the factorization A = U*D*U**T or A = L*D*L**T.
344*
345         CALL CCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 )
346         CALL CSPTRF( UPLO, N, AFP, IPIV, INFO )
347*
348*        Return if INFO is non-zero.
349*
350         IF( INFO.GT.0 )THEN
351            RCOND = ZERO
352            RETURN
353         END IF
354      END IF
355*
356*     Compute the norm of the matrix A.
357*
358      ANORM = CLANSP( 'I', UPLO, N, AP, RWORK )
359*
360*     Compute the reciprocal of the condition number of A.
361*
362      CALL CSPCON( UPLO, N, AFP, IPIV, ANORM, RCOND, WORK, INFO )
363*
364*     Compute the solution vectors X.
365*
366      CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
367      CALL CSPTRS( UPLO, N, NRHS, AFP, IPIV, X, LDX, INFO )
368*
369*     Use iterative refinement to improve the computed solutions and
370*     compute error bounds and backward error estimates for them.
371*
372      CALL CSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR,
373     $             BERR, WORK, RWORK, INFO )
374*
375*     Set INFO = N+1 if the matrix is singular to working precision.
376*
377      IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
378     $   INFO = N + 1
379*
380      RETURN
381*
382*     End of CSPSVX
383*
384      END
385