1*> \brief \b SCHKHS
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE SCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
12*                          NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, WR1,
13*                          WI1, WR3, WI3, EVECTL, EVECTR, EVECTY, EVECTX,
14*                          UU, TAU, WORK, NWORK, IWORK, SELECT, RESULT,
15*                          INFO )
16*
17*       .. Scalar Arguments ..
18*       INTEGER            INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK
19*       REAL               THRESH
20*       ..
21*       .. Array Arguments ..
22*       LOGICAL            DOTYPE( * ), SELECT( * )
23*       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
24*       REAL               A( LDA, * ), EVECTL( LDU, * ),
25*      $                   EVECTR( LDU, * ), EVECTX( LDU, * ),
26*      $                   EVECTY( LDU, * ), H( LDA, * ), RESULT( 14 ),
27*      $                   T1( LDA, * ), T2( LDA, * ), TAU( * ),
28*      $                   U( LDU, * ), UU( LDU, * ), UZ( LDU, * ),
29*      $                   WI1( * ), WI3( * ), WORK( * ), WR1( * ),
30*      $                   WR3( * ), Z( LDU, * )
31*       ..
32*
33*
34*> \par Purpose:
35*  =============
36*>
37*> \verbatim
38*>
39*>    SCHKHS  checks the nonsymmetric eigenvalue problem routines.
40*>
41*>            SGEHRD factors A as  U H U' , where ' means transpose,
42*>            H is hessenberg, and U is an orthogonal matrix.
43*>
44*>            SORGHR generates the orthogonal matrix U.
45*>
46*>            SORMHR multiplies a matrix by the orthogonal matrix U.
47*>
48*>            SHSEQR factors H as  Z T Z' , where Z is orthogonal and
49*>            T is "quasi-triangular", and the eigenvalue vector W.
50*>
51*>            STREVC computes the left and right eigenvector matrices
52*>            L and R for T.
53*>
54*>            SHSEIN computes the left and right eigenvector matrices
55*>            Y and X for H, using inverse iteration.
56*>
57*>    When SCHKHS is called, a number of matrix "sizes" ("n's") and a
58*>    number of matrix "types" are specified.  For each size ("n")
59*>    and each type of matrix, one matrix will be generated and used
60*>    to test the nonsymmetric eigenroutines.  For each matrix, 14
61*>    tests will be performed:
62*>
63*>    (1)     | A - U H U**T | / ( |A| n ulp )
64*>
65*>    (2)     | I - UU**T | / ( n ulp )
66*>
67*>    (3)     | H - Z T Z**T | / ( |H| n ulp )
68*>
69*>    (4)     | I - ZZ**T | / ( n ulp )
70*>
71*>    (5)     | A - UZ H (UZ)**T | / ( |A| n ulp )
72*>
73*>    (6)     | I - UZ (UZ)**T | / ( n ulp )
74*>
75*>    (7)     | T(Z computed) - T(Z not computed) | / ( |T| ulp )
76*>
77*>    (8)     | W(Z computed) - W(Z not computed) | / ( |W| ulp )
78*>
79*>    (9)     | TR - RW | / ( |T| |R| ulp )
80*>
81*>    (10)    | L**H T - W**H L | / ( |T| |L| ulp )
82*>
83*>    (11)    | HX - XW | / ( |H| |X| ulp )
84*>
85*>    (12)    | Y**H H - W**H Y | / ( |H| |Y| ulp )
86*>
87*>    (13)    | AX - XW | / ( |A| |X| ulp )
88*>
89*>    (14)    | Y**H A - W**H Y | / ( |A| |Y| ulp )
90*>
91*>    The "sizes" are specified by an array NN(1:NSIZES); the value of
92*>    each element NN(j) specifies one size.
93*>    The "types" are specified by a logical array DOTYPE( 1:NTYPES );
94*>    if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
95*>    Currently, the list of possible types is:
96*>
97*>    (1)  The zero matrix.
98*>    (2)  The identity matrix.
99*>    (3)  A (transposed) Jordan block, with 1's on the diagonal.
100*>
101*>    (4)  A diagonal matrix with evenly spaced entries
102*>         1, ..., ULP  and random signs.
103*>         (ULP = (first number larger than 1) - 1 )
104*>    (5)  A diagonal matrix with geometrically spaced entries
105*>         1, ..., ULP  and random signs.
106*>    (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
107*>         and random signs.
108*>
109*>    (7)  Same as (4), but multiplied by SQRT( overflow threshold )
110*>    (8)  Same as (4), but multiplied by SQRT( underflow threshold )
111*>
112*>    (9)  A matrix of the form  U' T U, where U is orthogonal and
113*>         T has evenly spaced entries 1, ..., ULP with random signs
114*>         on the diagonal and random O(1) entries in the upper
115*>         triangle.
116*>
117*>    (10) A matrix of the form  U' T U, where U is orthogonal and
118*>         T has geometrically spaced entries 1, ..., ULP with random
119*>         signs on the diagonal and random O(1) entries in the upper
120*>         triangle.
121*>
122*>    (11) A matrix of the form  U' T U, where U is orthogonal and
123*>         T has "clustered" entries 1, ULP,..., ULP with random
124*>         signs on the diagonal and random O(1) entries in the upper
125*>         triangle.
126*>
127*>    (12) A matrix of the form  U' T U, where U is orthogonal and
128*>         T has real or complex conjugate paired eigenvalues randomly
129*>         chosen from ( ULP, 1 ) and random O(1) entries in the upper
130*>         triangle.
131*>
132*>    (13) A matrix of the form  X' T X, where X has condition
133*>         SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
134*>         with random signs on the diagonal and random O(1) entries
135*>         in the upper triangle.
136*>
137*>    (14) A matrix of the form  X' T X, where X has condition
138*>         SQRT( ULP ) and T has geometrically spaced entries
139*>         1, ..., ULP with random signs on the diagonal and random
140*>         O(1) entries in the upper triangle.
141*>
142*>    (15) A matrix of the form  X' T X, where X has condition
143*>         SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
144*>         with random signs on the diagonal and random O(1) entries
145*>         in the upper triangle.
146*>
147*>    (16) A matrix of the form  X' T X, where X has condition
148*>         SQRT( ULP ) and T has real or complex conjugate paired
149*>         eigenvalues randomly chosen from ( ULP, 1 ) and random
150*>         O(1) entries in the upper triangle.
151*>
152*>    (17) Same as (16), but multiplied by SQRT( overflow threshold )
153*>    (18) Same as (16), but multiplied by SQRT( underflow threshold )
154*>
155*>    (19) Nonsymmetric matrix with random entries chosen from (-1,1).
156*>    (20) Same as (19), but multiplied by SQRT( overflow threshold )
157*>    (21) Same as (19), but multiplied by SQRT( underflow threshold )
158*> \endverbatim
159*
160*  Arguments:
161*  ==========
162*
163*> \verbatim
164*>  NSIZES - INTEGER
165*>           The number of sizes of matrices to use.  If it is zero,
166*>           SCHKHS does nothing.  It must be at least zero.
167*>           Not modified.
168*>
169*>  NN     - INTEGER array, dimension (NSIZES)
170*>           An array containing the sizes to be used for the matrices.
171*>           Zero values will be skipped.  The values must be at least
172*>           zero.
173*>           Not modified.
174*>
175*>  NTYPES - INTEGER
176*>           The number of elements in DOTYPE.   If it is zero, SCHKHS
177*>           does nothing.  It must be at least zero.  If it is MAXTYP+1
178*>           and NSIZES is 1, then an additional type, MAXTYP+1 is
179*>           defined, which is to use whatever matrix is in A.  This
180*>           is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
181*>           DOTYPE(MAXTYP+1) is .TRUE. .
182*>           Not modified.
183*>
184*>  DOTYPE - LOGICAL array, dimension (NTYPES)
185*>           If DOTYPE(j) is .TRUE., then for each size in NN a
186*>           matrix of that size and of type j will be generated.
187*>           If NTYPES is smaller than the maximum number of types
188*>           defined (PARAMETER MAXTYP), then types NTYPES+1 through
189*>           MAXTYP will not be generated.  If NTYPES is larger
190*>           than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
191*>           will be ignored.
192*>           Not modified.
193*>
194*>  ISEED  - INTEGER array, dimension (4)
195*>           On entry ISEED specifies the seed of the random number
196*>           generator. The array elements should be between 0 and 4095;
197*>           if not they will be reduced mod 4096.  Also, ISEED(4) must
198*>           be odd.  The random number generator uses a linear
199*>           congruential sequence limited to small integers, and so
200*>           should produce machine independent random numbers. The
201*>           values of ISEED are changed on exit, and can be used in the
202*>           next call to SCHKHS to continue the same random number
203*>           sequence.
204*>           Modified.
205*>
206*>  THRESH - REAL
207*>           A test will count as "failed" if the "error", computed as
208*>           described above, exceeds THRESH.  Note that the error
209*>           is scaled to be O(1), so THRESH should be a reasonably
210*>           small multiple of 1, e.g., 10 or 100.  In particular,
211*>           it should not depend on the precision (single vs. double)
212*>           or the size of the matrix.  It must be at least zero.
213*>           Not modified.
214*>
215*>  NOUNIT - INTEGER
216*>           The FORTRAN unit number for printing out error messages
217*>           (e.g., if a routine returns IINFO not equal to 0.)
218*>           Not modified.
219*>
220*>  A      - REAL array, dimension (LDA,max(NN))
221*>           Used to hold the matrix whose eigenvalues are to be
222*>           computed.  On exit, A contains the last matrix actually
223*>           used.
224*>           Modified.
225*>
226*>  LDA    - INTEGER
227*>           The leading dimension of A, H, T1 and T2.  It must be at
228*>           least 1 and at least max( NN ).
229*>           Not modified.
230*>
231*>  H      - REAL array, dimension (LDA,max(NN))
232*>           The upper hessenberg matrix computed by SGEHRD.  On exit,
233*>           H contains the Hessenberg form of the matrix in A.
234*>           Modified.
235*>
236*>  T1     - REAL array, dimension (LDA,max(NN))
237*>           The Schur (="quasi-triangular") matrix computed by SHSEQR
238*>           if Z is computed.  On exit, T1 contains the Schur form of
239*>           the matrix in A.
240*>           Modified.
241*>
242*>  T2     - REAL array, dimension (LDA,max(NN))
243*>           The Schur matrix computed by SHSEQR when Z is not computed.
244*>           This should be identical to T1.
245*>           Modified.
246*>
247*>  LDU    - INTEGER
248*>           The leading dimension of U, Z, UZ and UU.  It must be at
249*>           least 1 and at least max( NN ).
250*>           Not modified.
251*>
252*>  U      - REAL array, dimension (LDU,max(NN))
253*>           The orthogonal matrix computed by SGEHRD.
254*>           Modified.
255*>
256*>  Z      - REAL array, dimension (LDU,max(NN))
257*>           The orthogonal matrix computed by SHSEQR.
258*>           Modified.
259*>
260*>  UZ     - REAL array, dimension (LDU,max(NN))
261*>           The product of U times Z.
262*>           Modified.
263*>
264*>  WR1    - REAL array, dimension (max(NN))
265*>  WI1    - REAL array, dimension (max(NN))
266*>           The real and imaginary parts of the eigenvalues of A,
267*>           as computed when Z is computed.
268*>           On exit, WR1 + WI1*i are the eigenvalues of the matrix in A.
269*>           Modified.
270*>
271*>  WR3    - REAL array, dimension (max(NN))
272*>  WI3    - REAL array, dimension (max(NN))
273*>           Like WR1, WI1, these arrays contain the eigenvalues of A,
274*>           but those computed when SHSEQR only computes the
275*>           eigenvalues, i.e., not the Schur vectors and no more of the
276*>           Schur form than is necessary for computing the
277*>           eigenvalues.
278*>           Modified.
279*>
280*>  EVECTL - REAL array, dimension (LDU,max(NN))
281*>           The (upper triangular) left eigenvector matrix for the
282*>           matrix in T1.  For complex conjugate pairs, the real part
283*>           is stored in one row and the imaginary part in the next.
284*>           Modified.
285*>
286*>  EVECTR - REAL array, dimension (LDU,max(NN))
287*>           The (upper triangular) right eigenvector matrix for the
288*>           matrix in T1.  For complex conjugate pairs, the real part
289*>           is stored in one column and the imaginary part in the next.
290*>           Modified.
291*>
292*>  EVECTY - REAL array, dimension (LDU,max(NN))
293*>           The left eigenvector matrix for the
294*>           matrix in H.  For complex conjugate pairs, the real part
295*>           is stored in one row and the imaginary part in the next.
296*>           Modified.
297*>
298*>  EVECTX - REAL array, dimension (LDU,max(NN))
299*>           The right eigenvector matrix for the
300*>           matrix in H.  For complex conjugate pairs, the real part
301*>           is stored in one column and the imaginary part in the next.
302*>           Modified.
303*>
304*>  UU     - REAL array, dimension (LDU,max(NN))
305*>           Details of the orthogonal matrix computed by SGEHRD.
306*>           Modified.
307*>
308*>  TAU    - REAL array, dimension(max(NN))
309*>           Further details of the orthogonal matrix computed by SGEHRD.
310*>           Modified.
311*>
312*>  WORK   - REAL array, dimension (NWORK)
313*>           Workspace.
314*>           Modified.
315*>
316*>  NWORK  - INTEGER
317*>           The number of entries in WORK.  NWORK >= 4*NN(j)*NN(j) + 2.
318*>
319*>  IWORK  - INTEGER array, dimension (max(NN))
320*>           Workspace.
321*>           Modified.
322*>
323*>  SELECT - LOGICAL array, dimension (max(NN))
324*>           Workspace.
325*>           Modified.
326*>
327*>  RESULT - REAL array, dimension (14)
328*>           The values computed by the fourteen tests described above.
329*>           The values are currently limited to 1/ulp, to avoid
330*>           overflow.
331*>           Modified.
332*>
333*>  INFO   - INTEGER
334*>           If 0, then everything ran OK.
335*>            -1: NSIZES < 0
336*>            -2: Some NN(j) < 0
337*>            -3: NTYPES < 0
338*>            -6: THRESH < 0
339*>            -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
340*>           -14: LDU < 1 or LDU < NMAX.
341*>           -28: NWORK too small.
342*>           If  SLATMR, SLATMS, or SLATME returns an error code, the
343*>               absolute value of it is returned.
344*>           If 1, then SHSEQR could not find all the shifts.
345*>           If 2, then the EISPACK code (for small blocks) failed.
346*>           If >2, then 30*N iterations were not enough to find an
347*>               eigenvalue or to decompose the problem.
348*>           Modified.
349*>
350*>-----------------------------------------------------------------------
351*>
352*>     Some Local Variables and Parameters:
353*>     ---- ----- --------- --- ----------
354*>
355*>     ZERO, ONE       Real 0 and 1.
356*>     MAXTYP          The number of types defined.
357*>     MTEST           The number of tests defined: care must be taken
358*>                     that (1) the size of RESULT, (2) the number of
359*>                     tests actually performed, and (3) MTEST agree.
360*>     NTEST           The number of tests performed on this matrix
361*>                     so far.  This should be less than MTEST, and
362*>                     equal to it by the last test.  It will be less
363*>                     if any of the routines being tested indicates
364*>                     that it could not compute the matrices that
365*>                     would be tested.
366*>     NMAX            Largest value in NN.
367*>     NMATS           The number of matrices generated so far.
368*>     NERRS           The number of tests which have exceeded THRESH
369*>                     so far (computed by SLAFTS).
370*>     COND, CONDS,
371*>     IMODE           Values to be passed to the matrix generators.
372*>     ANORM           Norm of A; passed to matrix generators.
373*>
374*>     OVFL, UNFL      Overflow and underflow thresholds.
375*>     ULP, ULPINV     Finest relative precision and its inverse.
376*>     RTOVFL, RTUNFL,
377*>     RTULP, RTULPI   Square roots of the previous 4 values.
378*>
379*>             The following four arrays decode JTYPE:
380*>     KTYPE(j)        The general type (1-10) for type "j".
381*>     KMODE(j)        The MODE value to be passed to the matrix
382*>                     generator for type "j".
383*>     KMAGN(j)        The order of magnitude ( O(1),
384*>                     O(overflow^(1/2) ), O(underflow^(1/2) )
385*>     KCONDS(j)       Selects whether CONDS is to be 1 or
386*>                     1/sqrt(ulp).  (0 means irrelevant.)
387*> \endverbatim
388*
389*  Authors:
390*  ========
391*
392*> \author Univ. of Tennessee
393*> \author Univ. of California Berkeley
394*> \author Univ. of Colorado Denver
395*> \author NAG Ltd.
396*
397*> \date November 2011
398*
399*> \ingroup single_eig
400*
401*  =====================================================================
402      SUBROUTINE SCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
403     $                   NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, WR1,
404     $                   WI1, WR3, WI3, EVECTL, EVECTR, EVECTY, EVECTX,
405     $                   UU, TAU, WORK, NWORK, IWORK, SELECT, RESULT,
406     $                   INFO )
407*
408*  -- LAPACK test routine (version 3.4.0) --
409*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
410*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
411*     November 2011
412*
413*     .. Scalar Arguments ..
414      INTEGER            INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK
415      REAL               THRESH
416*     ..
417*     .. Array Arguments ..
418      LOGICAL            DOTYPE( * ), SELECT( * )
419      INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
420      REAL               A( LDA, * ), EVECTL( LDU, * ),
421     $                   EVECTR( LDU, * ), EVECTX( LDU, * ),
422     $                   EVECTY( LDU, * ), H( LDA, * ), RESULT( 14 ),
423     $                   T1( LDA, * ), T2( LDA, * ), TAU( * ),
424     $                   U( LDU, * ), UU( LDU, * ), UZ( LDU, * ),
425     $                   WI1( * ), WI3( * ), WORK( * ), WR1( * ),
426     $                   WR3( * ), Z( LDU, * )
427*     ..
428*
429*  =====================================================================
430*
431*     .. Parameters ..
432      REAL               ZERO, ONE
433      PARAMETER          ( ZERO = 0.0, ONE = 1.0 )
434      INTEGER            MAXTYP
435      PARAMETER          ( MAXTYP = 21 )
436*     ..
437*     .. Local Scalars ..
438      LOGICAL            BADNN, MATCH
439      INTEGER            I, IHI, IINFO, ILO, IMODE, IN, ITYPE, J, JCOL,
440     $                   JJ, JSIZE, JTYPE, K, MTYPES, N, N1, NERRS,
441     $                   NMATS, NMAX, NSELC, NSELR, NTEST, NTESTT
442      REAL               ANINV, ANORM, COND, CONDS, OVFL, RTOVFL, RTULP,
443     $                   RTULPI, RTUNFL, TEMP1, TEMP2, ULP, ULPINV, UNFL
444*     ..
445*     .. Local Arrays ..
446      CHARACTER          ADUMMA( 1 )
447      INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
448     $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
449     $                   KTYPE( MAXTYP )
450      REAL               DUMMA( 6 )
451*     ..
452*     .. External Functions ..
453      REAL               SLAMCH
454      EXTERNAL           SLAMCH
455*     ..
456*     .. External Subroutines ..
457      EXTERNAL           SCOPY, SGEHRD, SGEMM, SGET10, SGET22, SHSEIN,
458     $                   SHSEQR, SHST01, SLABAD, SLACPY, SLAFTS, SLASET,
459     $                   SLASUM, SLATME, SLATMR, SLATMS, SORGHR, SORMHR,
460     $                   STREVC, XERBLA
461*     ..
462*     .. Intrinsic Functions ..
463      INTRINSIC          ABS, MAX, MIN, REAL, SQRT
464*     ..
465*     .. Data statements ..
466      DATA               KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
467      DATA               KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
468     $                   3, 1, 2, 3 /
469      DATA               KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
470     $                   1, 5, 5, 5, 4, 3, 1 /
471      DATA               KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
472*     ..
473*     .. Executable Statements ..
474*
475*     Check for errors
476*
477      NTESTT = 0
478      INFO = 0
479*
480      BADNN = .FALSE.
481      NMAX = 0
482      DO 10 J = 1, NSIZES
483         NMAX = MAX( NMAX, NN( J ) )
484         IF( NN( J ).LT.0 )
485     $      BADNN = .TRUE.
486   10 CONTINUE
487*
488*     Check for errors
489*
490      IF( NSIZES.LT.0 ) THEN
491         INFO = -1
492      ELSE IF( BADNN ) THEN
493         INFO = -2
494      ELSE IF( NTYPES.LT.0 ) THEN
495         INFO = -3
496      ELSE IF( THRESH.LT.ZERO ) THEN
497         INFO = -6
498      ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
499         INFO = -9
500      ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN
501         INFO = -14
502      ELSE IF( 4*NMAX*NMAX+2.GT.NWORK ) THEN
503         INFO = -28
504      END IF
505*
506      IF( INFO.NE.0 ) THEN
507         CALL XERBLA( 'SCHKHS', -INFO )
508         RETURN
509      END IF
510*
511*     Quick return if possible
512*
513      IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
514     $   RETURN
515*
516*     More important constants
517*
518      UNFL = SLAMCH( 'Safe minimum' )
519      OVFL = SLAMCH( 'Overflow' )
520      CALL SLABAD( UNFL, OVFL )
521      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
522      ULPINV = ONE / ULP
523      RTUNFL = SQRT( UNFL )
524      RTOVFL = SQRT( OVFL )
525      RTULP = SQRT( ULP )
526      RTULPI = ONE / RTULP
527*
528*     Loop over sizes, types
529*
530      NERRS = 0
531      NMATS = 0
532*
533      DO 270 JSIZE = 1, NSIZES
534         N = NN( JSIZE )
535         IF( N.EQ.0 )
536     $      GO TO 270
537         N1 = MAX( 1, N )
538         ANINV = ONE / REAL( N1 )
539*
540         IF( NSIZES.NE.1 ) THEN
541            MTYPES = MIN( MAXTYP, NTYPES )
542         ELSE
543            MTYPES = MIN( MAXTYP+1, NTYPES )
544         END IF
545*
546         DO 260 JTYPE = 1, MTYPES
547            IF( .NOT.DOTYPE( JTYPE ) )
548     $         GO TO 260
549            NMATS = NMATS + 1
550            NTEST = 0
551*
552*           Save ISEED in case of an error.
553*
554            DO 20 J = 1, 4
555               IOLDSD( J ) = ISEED( J )
556   20       CONTINUE
557*
558*           Initialize RESULT
559*
560            DO 30 J = 1, 14
561               RESULT( J ) = ZERO
562   30       CONTINUE
563*
564*           Compute "A"
565*
566*           Control parameters:
567*
568*           KMAGN  KCONDS  KMODE        KTYPE
569*       =1  O(1)   1       clustered 1  zero
570*       =2  large  large   clustered 2  identity
571*       =3  small          exponential  Jordan
572*       =4                 arithmetic   diagonal, (w/ eigenvalues)
573*       =5                 random log   symmetric, w/ eigenvalues
574*       =6                 random       general, w/ eigenvalues
575*       =7                              random diagonal
576*       =8                              random symmetric
577*       =9                              random general
578*       =10                             random triangular
579*
580            IF( MTYPES.GT.MAXTYP )
581     $         GO TO 100
582*
583            ITYPE = KTYPE( JTYPE )
584            IMODE = KMODE( JTYPE )
585*
586*           Compute norm
587*
588            GO TO ( 40, 50, 60 )KMAGN( JTYPE )
589*
590   40       CONTINUE
591            ANORM = ONE
592            GO TO 70
593*
594   50       CONTINUE
595            ANORM = ( RTOVFL*ULP )*ANINV
596            GO TO 70
597*
598   60       CONTINUE
599            ANORM = RTUNFL*N*ULPINV
600            GO TO 70
601*
602   70       CONTINUE
603*
604            CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
605            IINFO = 0
606            COND = ULPINV
607*
608*           Special Matrices
609*
610            IF( ITYPE.EQ.1 ) THEN
611*
612*              Zero
613*
614               IINFO = 0
615*
616            ELSE IF( ITYPE.EQ.2 ) THEN
617*
618*              Identity
619*
620               DO 80 JCOL = 1, N
621                  A( JCOL, JCOL ) = ANORM
622   80          CONTINUE
623*
624            ELSE IF( ITYPE.EQ.3 ) THEN
625*
626*              Jordan Block
627*
628               DO 90 JCOL = 1, N
629                  A( JCOL, JCOL ) = ANORM
630                  IF( JCOL.GT.1 )
631     $               A( JCOL, JCOL-1 ) = ONE
632   90          CONTINUE
633*
634            ELSE IF( ITYPE.EQ.4 ) THEN
635*
636*              Diagonal Matrix, [Eigen]values Specified
637*
638               CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
639     $                      ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
640     $                      IINFO )
641*
642            ELSE IF( ITYPE.EQ.5 ) THEN
643*
644*              Symmetric, eigenvalues specified
645*
646               CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
647     $                      ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
648     $                      IINFO )
649*
650            ELSE IF( ITYPE.EQ.6 ) THEN
651*
652*              General, eigenvalues specified
653*
654               IF( KCONDS( JTYPE ).EQ.1 ) THEN
655                  CONDS = ONE
656               ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
657                  CONDS = RTULPI
658               ELSE
659                  CONDS = ZERO
660               END IF
661*
662               ADUMMA( 1 ) = ' '
663               CALL SLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE,
664     $                      ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4,
665     $                      CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ),
666     $                      IINFO )
667*
668            ELSE IF( ITYPE.EQ.7 ) THEN
669*
670*              Diagonal, random eigenvalues
671*
672               CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
673     $                      'T', 'N', WORK( N+1 ), 1, ONE,
674     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
675     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
676*
677            ELSE IF( ITYPE.EQ.8 ) THEN
678*
679*              Symmetric, random eigenvalues
680*
681               CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
682     $                      'T', 'N', WORK( N+1 ), 1, ONE,
683     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
684     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
685*
686            ELSE IF( ITYPE.EQ.9 ) THEN
687*
688*              General, random eigenvalues
689*
690               CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
691     $                      'T', 'N', WORK( N+1 ), 1, ONE,
692     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
693     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
694*
695            ELSE IF( ITYPE.EQ.10 ) THEN
696*
697*              Triangular, random eigenvalues
698*
699               CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
700     $                      'T', 'N', WORK( N+1 ), 1, ONE,
701     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
702     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
703*
704            ELSE
705*
706               IINFO = 1
707            END IF
708*
709            IF( IINFO.NE.0 ) THEN
710               WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
711     $            IOLDSD
712               INFO = ABS( IINFO )
713               RETURN
714            END IF
715*
716  100       CONTINUE
717*
718*           Call SGEHRD to compute H and U, do tests.
719*
720            CALL SLACPY( ' ', N, N, A, LDA, H, LDA )
721*
722            NTEST = 1
723*
724            ILO = 1
725            IHI = N
726*
727            CALL SGEHRD( N, ILO, IHI, H, LDA, WORK, WORK( N+1 ),
728     $                   NWORK-N, IINFO )
729*
730            IF( IINFO.NE.0 ) THEN
731               RESULT( 1 ) = ULPINV
732               WRITE( NOUNIT, FMT = 9999 )'SGEHRD', IINFO, N, JTYPE,
733     $            IOLDSD
734               INFO = ABS( IINFO )
735               GO TO 250
736            END IF
737*
738            DO 120 J = 1, N - 1
739               UU( J+1, J ) = ZERO
740               DO 110 I = J + 2, N
741                  U( I, J ) = H( I, J )
742                  UU( I, J ) = H( I, J )
743                  H( I, J ) = ZERO
744  110          CONTINUE
745  120       CONTINUE
746            CALL SCOPY( N-1, WORK, 1, TAU, 1 )
747            CALL SORGHR( N, ILO, IHI, U, LDU, WORK, WORK( N+1 ),
748     $                   NWORK-N, IINFO )
749            NTEST = 2
750*
751            CALL SHST01( N, ILO, IHI, A, LDA, H, LDA, U, LDU, WORK,
752     $                   NWORK, RESULT( 1 ) )
753*
754*           Call SHSEQR to compute T1, T2 and Z, do tests.
755*
756*           Eigenvalues only (WR3,WI3)
757*
758            CALL SLACPY( ' ', N, N, H, LDA, T2, LDA )
759            NTEST = 3
760            RESULT( 3 ) = ULPINV
761*
762            CALL SHSEQR( 'E', 'N', N, ILO, IHI, T2, LDA, WR3, WI3, UZ,
763     $                   LDU, WORK, NWORK, IINFO )
764            IF( IINFO.NE.0 ) THEN
765               WRITE( NOUNIT, FMT = 9999 )'SHSEQR(E)', IINFO, N, JTYPE,
766     $            IOLDSD
767               IF( IINFO.LE.N+2 ) THEN
768                  INFO = ABS( IINFO )
769                  GO TO 250
770               END IF
771            END IF
772*
773*           Eigenvalues (WR1,WI1) and Full Schur Form (T2)
774*
775            CALL SLACPY( ' ', N, N, H, LDA, T2, LDA )
776*
777            CALL SHSEQR( 'S', 'N', N, ILO, IHI, T2, LDA, WR1, WI1, UZ,
778     $                   LDU, WORK, NWORK, IINFO )
779            IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN
780               WRITE( NOUNIT, FMT = 9999 )'SHSEQR(S)', IINFO, N, JTYPE,
781     $            IOLDSD
782               INFO = ABS( IINFO )
783               GO TO 250
784            END IF
785*
786*           Eigenvalues (WR1,WI1), Schur Form (T1), and Schur vectors
787*           (UZ)
788*
789            CALL SLACPY( ' ', N, N, H, LDA, T1, LDA )
790            CALL SLACPY( ' ', N, N, U, LDU, UZ, LDA )
791*
792            CALL SHSEQR( 'S', 'V', N, ILO, IHI, T1, LDA, WR1, WI1, UZ,
793     $                   LDU, WORK, NWORK, IINFO )
794            IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN
795               WRITE( NOUNIT, FMT = 9999 )'SHSEQR(V)', IINFO, N, JTYPE,
796     $            IOLDSD
797               INFO = ABS( IINFO )
798               GO TO 250
799            END IF
800*
801*           Compute Z = U' UZ
802*
803            CALL SGEMM( 'T', 'N', N, N, N, ONE, U, LDU, UZ, LDU, ZERO,
804     $                  Z, LDU )
805            NTEST = 8
806*
807*           Do Tests 3: | H - Z T Z' | / ( |H| n ulp )
808*                and 4: | I - Z Z' | / ( n ulp )
809*
810            CALL SHST01( N, ILO, IHI, H, LDA, T1, LDA, Z, LDU, WORK,
811     $                   NWORK, RESULT( 3 ) )
812*
813*           Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp )
814*                and 6: | I - UZ (UZ)' | / ( n ulp )
815*
816            CALL SHST01( N, ILO, IHI, A, LDA, T1, LDA, UZ, LDU, WORK,
817     $                   NWORK, RESULT( 5 ) )
818*
819*           Do Test 7: | T2 - T1 | / ( |T| n ulp )
820*
821            CALL SGET10( N, N, T2, LDA, T1, LDA, WORK, RESULT( 7 ) )
822*
823*           Do Test 8: | W3 - W1 | / ( max(|W1|,|W3|) ulp )
824*
825            TEMP1 = ZERO
826            TEMP2 = ZERO
827            DO 130 J = 1, N
828               TEMP1 = MAX( TEMP1, ABS( WR1( J ) )+ABS( WI1( J ) ),
829     $                 ABS( WR3( J ) )+ABS( WI3( J ) ) )
830               TEMP2 = MAX( TEMP2, ABS( WR1( J )-WR3( J ) )+
831     $                 ABS( WR1( J )-WR3( J ) ) )
832  130       CONTINUE
833*
834            RESULT( 8 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
835*
836*           Compute the Left and Right Eigenvectors of T
837*
838*           Compute the Right eigenvector Matrix:
839*
840            NTEST = 9
841            RESULT( 9 ) = ULPINV
842*
843*           Select last max(N/4,1) real, max(N/4,1) complex eigenvectors
844*
845            NSELC = 0
846            NSELR = 0
847            J = N
848  140       CONTINUE
849            IF( WI1( J ).EQ.ZERO ) THEN
850               IF( NSELR.LT.MAX( N / 4, 1 ) ) THEN
851                  NSELR = NSELR + 1
852                  SELECT( J ) = .TRUE.
853               ELSE
854                  SELECT( J ) = .FALSE.
855               END IF
856               J = J - 1
857            ELSE
858               IF( NSELC.LT.MAX( N / 4, 1 ) ) THEN
859                  NSELC = NSELC + 1
860                  SELECT( J ) = .TRUE.
861                  SELECT( J-1 ) = .FALSE.
862               ELSE
863                  SELECT( J ) = .FALSE.
864                  SELECT( J-1 ) = .FALSE.
865               END IF
866               J = J - 2
867            END IF
868            IF( J.GT.0 )
869     $         GO TO 140
870*
871            CALL STREVC( 'Right', 'All', SELECT, N, T1, LDA, DUMMA, LDU,
872     $                   EVECTR, LDU, N, IN, WORK, IINFO )
873            IF( IINFO.NE.0 ) THEN
874               WRITE( NOUNIT, FMT = 9999 )'STREVC(R,A)', IINFO, N,
875     $            JTYPE, IOLDSD
876               INFO = ABS( IINFO )
877               GO TO 250
878            END IF
879*
880*           Test 9:  | TR - RW | / ( |T| |R| ulp )
881*
882            CALL SGET22( 'N', 'N', 'N', N, T1, LDA, EVECTR, LDU, WR1,
883     $                   WI1, WORK, DUMMA( 1 ) )
884            RESULT( 9 ) = DUMMA( 1 )
885            IF( DUMMA( 2 ).GT.THRESH ) THEN
886               WRITE( NOUNIT, FMT = 9998 )'Right', 'STREVC',
887     $            DUMMA( 2 ), N, JTYPE, IOLDSD
888            END IF
889*
890*           Compute selected right eigenvectors and confirm that
891*           they agree with previous right eigenvectors
892*
893            CALL STREVC( 'Right', 'Some', SELECT, N, T1, LDA, DUMMA,
894     $                   LDU, EVECTL, LDU, N, IN, WORK, IINFO )
895            IF( IINFO.NE.0 ) THEN
896               WRITE( NOUNIT, FMT = 9999 )'STREVC(R,S)', IINFO, N,
897     $            JTYPE, IOLDSD
898               INFO = ABS( IINFO )
899               GO TO 250
900            END IF
901*
902            K = 1
903            MATCH = .TRUE.
904            DO 170 J = 1, N
905               IF( SELECT( J ) .AND. WI1( J ).EQ.ZERO ) THEN
906                  DO 150 JJ = 1, N
907                     IF( EVECTR( JJ, J ).NE.EVECTL( JJ, K ) ) THEN
908                        MATCH = .FALSE.
909                        GO TO 180
910                     END IF
911  150             CONTINUE
912                  K = K + 1
913               ELSE IF( SELECT( J ) .AND. WI1( J ).NE.ZERO ) THEN
914                  DO 160 JJ = 1, N
915                     IF( EVECTR( JJ, J ).NE.EVECTL( JJ, K ) .OR.
916     $                   EVECTR( JJ, J+1 ).NE.EVECTL( JJ, K+1 ) ) THEN
917                        MATCH = .FALSE.
918                        GO TO 180
919                     END IF
920  160             CONTINUE
921                  K = K + 2
922               END IF
923  170       CONTINUE
924  180       CONTINUE
925            IF( .NOT.MATCH )
926     $         WRITE( NOUNIT, FMT = 9997 )'Right', 'STREVC', N, JTYPE,
927     $         IOLDSD
928*
929*           Compute the Left eigenvector Matrix:
930*
931            NTEST = 10
932            RESULT( 10 ) = ULPINV
933            CALL STREVC( 'Left', 'All', SELECT, N, T1, LDA, EVECTL, LDU,
934     $                   DUMMA, LDU, N, IN, WORK, IINFO )
935            IF( IINFO.NE.0 ) THEN
936               WRITE( NOUNIT, FMT = 9999 )'STREVC(L,A)', IINFO, N,
937     $            JTYPE, IOLDSD
938               INFO = ABS( IINFO )
939               GO TO 250
940            END IF
941*
942*           Test 10:  | LT - WL | / ( |T| |L| ulp )
943*
944            CALL SGET22( 'Trans', 'N', 'Conj', N, T1, LDA, EVECTL, LDU,
945     $                   WR1, WI1, WORK, DUMMA( 3 ) )
946            RESULT( 10 ) = DUMMA( 3 )
947            IF( DUMMA( 4 ).GT.THRESH ) THEN
948               WRITE( NOUNIT, FMT = 9998 )'Left', 'STREVC', DUMMA( 4 ),
949     $            N, JTYPE, IOLDSD
950            END IF
951*
952*           Compute selected left eigenvectors and confirm that
953*           they agree with previous left eigenvectors
954*
955            CALL STREVC( 'Left', 'Some', SELECT, N, T1, LDA, EVECTR,
956     $                   LDU, DUMMA, LDU, N, IN, WORK, IINFO )
957            IF( IINFO.NE.0 ) THEN
958               WRITE( NOUNIT, FMT = 9999 )'STREVC(L,S)', IINFO, N,
959     $            JTYPE, IOLDSD
960               INFO = ABS( IINFO )
961               GO TO 250
962            END IF
963*
964            K = 1
965            MATCH = .TRUE.
966            DO 210 J = 1, N
967               IF( SELECT( J ) .AND. WI1( J ).EQ.ZERO ) THEN
968                  DO 190 JJ = 1, N
969                     IF( EVECTL( JJ, J ).NE.EVECTR( JJ, K ) ) THEN
970                        MATCH = .FALSE.
971                        GO TO 220
972                     END IF
973  190             CONTINUE
974                  K = K + 1
975               ELSE IF( SELECT( J ) .AND. WI1( J ).NE.ZERO ) THEN
976                  DO 200 JJ = 1, N
977                     IF( EVECTL( JJ, J ).NE.EVECTR( JJ, K ) .OR.
978     $                   EVECTL( JJ, J+1 ).NE.EVECTR( JJ, K+1 ) ) THEN
979                        MATCH = .FALSE.
980                        GO TO 220
981                     END IF
982  200             CONTINUE
983                  K = K + 2
984               END IF
985  210       CONTINUE
986  220       CONTINUE
987            IF( .NOT.MATCH )
988     $         WRITE( NOUNIT, FMT = 9997 )'Left', 'STREVC', N, JTYPE,
989     $         IOLDSD
990*
991*           Call SHSEIN for Right eigenvectors of H, do test 11
992*
993            NTEST = 11
994            RESULT( 11 ) = ULPINV
995            DO 230 J = 1, N
996               SELECT( J ) = .TRUE.
997  230       CONTINUE
998*
999            CALL SHSEIN( 'Right', 'Qr', 'Ninitv', SELECT, N, H, LDA,
1000     $                   WR3, WI3, DUMMA, LDU, EVECTX, LDU, N1, IN,
1001     $                   WORK, IWORK, IWORK, IINFO )
1002            IF( IINFO.NE.0 ) THEN
1003               WRITE( NOUNIT, FMT = 9999 )'SHSEIN(R)', IINFO, N, JTYPE,
1004     $            IOLDSD
1005               INFO = ABS( IINFO )
1006               IF( IINFO.LT.0 )
1007     $            GO TO 250
1008            ELSE
1009*
1010*              Test 11:  | HX - XW | / ( |H| |X| ulp )
1011*
1012*                        (from inverse iteration)
1013*
1014               CALL SGET22( 'N', 'N', 'N', N, H, LDA, EVECTX, LDU, WR3,
1015     $                      WI3, WORK, DUMMA( 1 ) )
1016               IF( DUMMA( 1 ).LT.ULPINV )
1017     $            RESULT( 11 ) = DUMMA( 1 )*ANINV
1018               IF( DUMMA( 2 ).GT.THRESH ) THEN
1019                  WRITE( NOUNIT, FMT = 9998 )'Right', 'SHSEIN',
1020     $               DUMMA( 2 ), N, JTYPE, IOLDSD
1021               END IF
1022            END IF
1023*
1024*           Call SHSEIN for Left eigenvectors of H, do test 12
1025*
1026            NTEST = 12
1027            RESULT( 12 ) = ULPINV
1028            DO 240 J = 1, N
1029               SELECT( J ) = .TRUE.
1030  240       CONTINUE
1031*
1032            CALL SHSEIN( 'Left', 'Qr', 'Ninitv', SELECT, N, H, LDA, WR3,
1033     $                   WI3, EVECTY, LDU, DUMMA, LDU, N1, IN, WORK,
1034     $                   IWORK, IWORK, IINFO )
1035            IF( IINFO.NE.0 ) THEN
1036               WRITE( NOUNIT, FMT = 9999 )'SHSEIN(L)', IINFO, N, JTYPE,
1037     $            IOLDSD
1038               INFO = ABS( IINFO )
1039               IF( IINFO.LT.0 )
1040     $            GO TO 250
1041            ELSE
1042*
1043*              Test 12:  | YH - WY | / ( |H| |Y| ulp )
1044*
1045*                        (from inverse iteration)
1046*
1047               CALL SGET22( 'C', 'N', 'C', N, H, LDA, EVECTY, LDU, WR3,
1048     $                      WI3, WORK, DUMMA( 3 ) )
1049               IF( DUMMA( 3 ).LT.ULPINV )
1050     $            RESULT( 12 ) = DUMMA( 3 )*ANINV
1051               IF( DUMMA( 4 ).GT.THRESH ) THEN
1052                  WRITE( NOUNIT, FMT = 9998 )'Left', 'SHSEIN',
1053     $               DUMMA( 4 ), N, JTYPE, IOLDSD
1054               END IF
1055            END IF
1056*
1057*           Call SORMHR for Right eigenvectors of A, do test 13
1058*
1059            NTEST = 13
1060            RESULT( 13 ) = ULPINV
1061*
1062            CALL SORMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU,
1063     $                   LDU, TAU, EVECTX, LDU, WORK, NWORK, IINFO )
1064            IF( IINFO.NE.0 ) THEN
1065               WRITE( NOUNIT, FMT = 9999 )'SORMHR(R)', IINFO, N, JTYPE,
1066     $            IOLDSD
1067               INFO = ABS( IINFO )
1068               IF( IINFO.LT.0 )
1069     $            GO TO 250
1070            ELSE
1071*
1072*              Test 13:  | AX - XW | / ( |A| |X| ulp )
1073*
1074*                        (from inverse iteration)
1075*
1076               CALL SGET22( 'N', 'N', 'N', N, A, LDA, EVECTX, LDU, WR3,
1077     $                      WI3, WORK, DUMMA( 1 ) )
1078               IF( DUMMA( 1 ).LT.ULPINV )
1079     $            RESULT( 13 ) = DUMMA( 1 )*ANINV
1080            END IF
1081*
1082*           Call SORMHR for Left eigenvectors of A, do test 14
1083*
1084            NTEST = 14
1085            RESULT( 14 ) = ULPINV
1086*
1087            CALL SORMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU,
1088     $                   LDU, TAU, EVECTY, LDU, WORK, NWORK, IINFO )
1089            IF( IINFO.NE.0 ) THEN
1090               WRITE( NOUNIT, FMT = 9999 )'SORMHR(L)', IINFO, N, JTYPE,
1091     $            IOLDSD
1092               INFO = ABS( IINFO )
1093               IF( IINFO.LT.0 )
1094     $            GO TO 250
1095            ELSE
1096*
1097*              Test 14:  | YA - WY | / ( |A| |Y| ulp )
1098*
1099*                        (from inverse iteration)
1100*
1101               CALL SGET22( 'C', 'N', 'C', N, A, LDA, EVECTY, LDU, WR3,
1102     $                      WI3, WORK, DUMMA( 3 ) )
1103               IF( DUMMA( 3 ).LT.ULPINV )
1104     $            RESULT( 14 ) = DUMMA( 3 )*ANINV
1105            END IF
1106*
1107*           End of Loop -- Check for RESULT(j) > THRESH
1108*
1109  250       CONTINUE
1110*
1111            NTESTT = NTESTT + NTEST
1112            CALL SLAFTS( 'SHS', N, N, JTYPE, NTEST, RESULT, IOLDSD,
1113     $                   THRESH, NOUNIT, NERRS )
1114*
1115  260    CONTINUE
1116  270 CONTINUE
1117*
1118*     Summary
1119*
1120      CALL SLASUM( 'SHS', NOUNIT, NERRS, NTESTT )
1121*
1122      RETURN
1123*
1124 9999 FORMAT( ' SCHKHS: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
1125     $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
1126 9998 FORMAT( ' SCHKHS: ', A, ' Eigenvectors from ', A, ' incorrectly ',
1127     $      'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
1128     $      'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
1129     $      ')' )
1130 9997 FORMAT( ' SCHKHS: Selected ', A, ' Eigenvectors from ', A,
1131     $      ' do not match other eigenvectors ', 9X, 'N=', I6,
1132     $      ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
1133*
1134*     End of SCHKHS
1135*
1136      END
1137