1*> \brief \b ZHPT21
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE ZHPT21( ITYPE, UPLO, N, KBAND, AP, D, E, U, LDU, VP,
12*                          TAU, WORK, RWORK, RESULT )
13*
14*       .. Scalar Arguments ..
15*       CHARACTER          UPLO
16*       INTEGER            ITYPE, KBAND, LDU, N
17*       ..
18*       .. Array Arguments ..
19*       DOUBLE PRECISION   D( * ), E( * ), RESULT( 2 ), RWORK( * )
20*       COMPLEX*16         AP( * ), TAU( * ), U( LDU, * ), VP( * ),
21*      $                   WORK( * )
22*       ..
23*
24*
25*> \par Purpose:
26*  =============
27*>
28*> \verbatim
29*>
30*> ZHPT21  generally checks a decomposition of the form
31*>
32*>         A = U S UC>
33*> where * means conjugate transpose, A is hermitian, U is
34*> unitary, and S is diagonal (if KBAND=0) or (real) symmetric
35*> tridiagonal (if KBAND=1).  If ITYPE=1, then U is represented as
36*> a dense matrix, otherwise the U is expressed as a product of
37*> Householder transformations, whose vectors are stored in the
38*> array "V" and whose scaling constants are in "TAU"; we shall
39*> use the letter "V" to refer to the product of Householder
40*> transformations (which should be equal to U).
41*>
42*> Specifically, if ITYPE=1, then:
43*>
44*>         RESULT(1) = | A - U S U* | / ( |A| n ulp ) *andC>         RESULT(2) = | I - UU* | / ( n ulp )
45*>
46*> If ITYPE=2, then:
47*>
48*>         RESULT(1) = | A - V S V* | / ( |A| n ulp )
49*>
50*> If ITYPE=3, then:
51*>
52*>         RESULT(1) = | I - UV* | / ( n ulp )
53*>
54*> Packed storage means that, for example, if UPLO='U', then the columns
55*> of the upper triangle of A are stored one after another, so that
56*> A(1,j+1) immediately follows A(j,j) in the array AP.  Similarly, if
57*> UPLO='L', then the columns of the lower triangle of A are stored one
58*> after another in AP, so that A(j+1,j+1) immediately follows A(n,j)
59*> in the array AP.  This means that A(i,j) is stored in:
60*>
61*>    AP( i + j*(j-1)/2 )                 if UPLO='U'
62*>
63*>    AP( i + (2*n-j)*(j-1)/2 )           if UPLO='L'
64*>
65*> The array VP bears the same relation to the matrix V that A does to
66*> AP.
67*>
68*> For ITYPE > 1, the transformation U is expressed as a product
69*> of Householder transformations:
70*>
71*>    If UPLO='U', then  V = H(n-1)...H(1),  where
72*>
73*>        H(j) = I  -  tau(j) v(j) v(j)C>
74*>    and the first j-1 elements of v(j) are stored in V(1:j-1,j+1),
75*>    (i.e., VP( j*(j+1)/2 + 1 : j*(j+1)/2 + j-1 ) ),
76*>    the j-th element is 1, and the last n-j elements are 0.
77*>
78*>    If UPLO='L', then  V = H(1)...H(n-1),  where
79*>
80*>        H(j) = I  -  tau(j) v(j) v(j)C>
81*>    and the first j elements of v(j) are 0, the (j+1)-st is 1, and the
82*>    (j+2)-nd through n-th elements are stored in V(j+2:n,j) (i.e.,
83*>    in VP( (2*n-j)*(j-1)/2 + j+2 : (2*n-j)*(j-1)/2 + n ) .)
84*> \endverbatim
85*
86*  Arguments:
87*  ==========
88*
89*> \param[in] ITYPE
90*> \verbatim
91*>          ITYPE is INTEGER
92*>          Specifies the type of tests to be performed.
93*>          1: U expressed as a dense unitary matrix:
94*>             RESULT(1) = | A - U S U* | / ( |A| n ulp )   *andC>             RESULT(2) = | I - UU* | / ( n ulp )
95*>
96*>          2: U expressed as a product V of Housholder transformations:
97*>             RESULT(1) = | A - V S V* | / ( |A| n ulp )
98*>
99*>          3: U expressed both as a dense unitary matrix and
100*>             as a product of Housholder transformations:
101*>             RESULT(1) = | I - UV* | / ( n ulp )
102*> \endverbatim
103*>
104*> \param[in] UPLO
105*> \verbatim
106*>          UPLO is CHARACTER
107*>          If UPLO='U', the upper triangle of A and V will be used and
108*>          the (strictly) lower triangle will not be referenced.
109*>          If UPLO='L', the lower triangle of A and V will be used and
110*>          the (strictly) upper triangle will not be referenced.
111*> \endverbatim
112*>
113*> \param[in] N
114*> \verbatim
115*>          N is INTEGER
116*>          The size of the matrix.  If it is zero, ZHPT21 does nothing.
117*>          It must be at least zero.
118*> \endverbatim
119*>
120*> \param[in] KBAND
121*> \verbatim
122*>          KBAND is INTEGER
123*>          The bandwidth of the matrix.  It may only be zero or one.
124*>          If zero, then S is diagonal, and E is not referenced.  If
125*>          one, then S is symmetric tri-diagonal.
126*> \endverbatim
127*>
128*> \param[in] AP
129*> \verbatim
130*>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
131*>          The original (unfactored) matrix.  It is assumed to be
132*>          hermitian, and contains the columns of just the upper
133*>          triangle (UPLO='U') or only the lower triangle (UPLO='L'),
134*>          packed one after another.
135*> \endverbatim
136*>
137*> \param[in] D
138*> \verbatim
139*>          D is DOUBLE PRECISION array, dimension (N)
140*>          The diagonal of the (symmetric tri-) diagonal matrix.
141*> \endverbatim
142*>
143*> \param[in] E
144*> \verbatim
145*>          E is DOUBLE PRECISION array, dimension (N)
146*>          The off-diagonal of the (symmetric tri-) diagonal matrix.
147*>          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
148*>          (3,2) element, etc.
149*>          Not referenced if KBAND=0.
150*> \endverbatim
151*>
152*> \param[in] U
153*> \verbatim
154*>          U is COMPLEX*16 array, dimension (LDU, N)
155*>          If ITYPE=1 or 3, this contains the unitary matrix in
156*>          the decomposition, expressed as a dense matrix.  If ITYPE=2,
157*>          then it is not referenced.
158*> \endverbatim
159*>
160*> \param[in] LDU
161*> \verbatim
162*>          LDU is INTEGER
163*>          The leading dimension of U.  LDU must be at least N and
164*>          at least 1.
165*> \endverbatim
166*>
167*> \param[in] VP
168*> \verbatim
169*>          VP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
170*>          If ITYPE=2 or 3, the columns of this array contain the
171*>          Householder vectors used to describe the unitary matrix
172*>          in the decomposition, as described in purpose.
173*>          *NOTE* If ITYPE=2 or 3, V is modified and restored.  The
174*>          subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U')
175*>          is set to one, and later reset to its original value, during
176*>          the course of the calculation.
177*>          If ITYPE=1, then it is neither referenced nor modified.
178*> \endverbatim
179*>
180*> \param[in] TAU
181*> \verbatim
182*>          TAU is COMPLEX*16 array, dimension (N)
183*>          If ITYPE >= 2, then TAU(j) is the scalar factor of
184*>          v(j) v(j)* in the Householder transformation H(j) of
185*>          the product  U = H(1)...H(n-2)
186*>          If ITYPE < 2, then TAU is not referenced.
187*> \endverbatim
188*>
189*> \param[out] WORK
190*> \verbatim
191*>          WORK is COMPLEX*16 array, dimension (N**2)
192*>          Workspace.
193*> \endverbatim
194*>
195*> \param[out] RWORK
196*> \verbatim
197*>          RWORK is DOUBLE PRECISION array, dimension (N)
198*>          Workspace.
199*> \endverbatim
200*>
201*> \param[out] RESULT
202*> \verbatim
203*>          RESULT is DOUBLE PRECISION array, dimension (2)
204*>          The values computed by the two tests described above.  The
205*>          values are currently limited to 1/ulp, to avoid overflow.
206*>          RESULT(1) is always modified.  RESULT(2) is modified only
207*>          if ITYPE=1.
208*> \endverbatim
209*
210*  Authors:
211*  ========
212*
213*> \author Univ. of Tennessee
214*> \author Univ. of California Berkeley
215*> \author Univ. of Colorado Denver
216*> \author NAG Ltd.
217*
218*> \date November 2011
219*
220*> \ingroup complex16_eig
221*
222*  =====================================================================
223      SUBROUTINE ZHPT21( ITYPE, UPLO, N, KBAND, AP, D, E, U, LDU, VP,
224     $                   TAU, WORK, RWORK, RESULT )
225*
226*  -- LAPACK test routine (version 3.4.0) --
227*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
228*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
229*     November 2011
230*
231*     .. Scalar Arguments ..
232      CHARACTER          UPLO
233      INTEGER            ITYPE, KBAND, LDU, N
234*     ..
235*     .. Array Arguments ..
236      DOUBLE PRECISION   D( * ), E( * ), RESULT( 2 ), RWORK( * )
237      COMPLEX*16         AP( * ), TAU( * ), U( LDU, * ), VP( * ),
238     $                   WORK( * )
239*     ..
240*
241*  =====================================================================
242*
243*     .. Parameters ..
244      DOUBLE PRECISION   ZERO, ONE, TEN
245      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 )
246      DOUBLE PRECISION   HALF
247      PARAMETER          ( HALF = 1.0D+0 / 2.0D+0 )
248      COMPLEX*16         CZERO, CONE
249      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
250     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
251*     ..
252*     .. Local Scalars ..
253      LOGICAL            LOWER
254      CHARACTER          CUPLO
255      INTEGER            IINFO, J, JP, JP1, JR, LAP
256      DOUBLE PRECISION   ANORM, ULP, UNFL, WNORM
257      COMPLEX*16         TEMP, VSAVE
258*     ..
259*     .. External Functions ..
260      LOGICAL            LSAME
261      DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANHP
262      COMPLEX*16         ZDOTC
263      EXTERNAL           LSAME, DLAMCH, ZLANGE, ZLANHP, ZDOTC
264*     ..
265*     .. External Subroutines ..
266      EXTERNAL           ZAXPY, ZCOPY, ZGEMM, ZHPMV, ZHPR, ZHPR2,
267     $                   ZLACPY, ZLASET, ZUPMTR
268*     ..
269*     .. Intrinsic Functions ..
270      INTRINSIC          DBLE, DCMPLX, MAX, MIN
271*     ..
272*     .. Executable Statements ..
273*
274*     Constants
275*
276      RESULT( 1 ) = ZERO
277      IF( ITYPE.EQ.1 )
278     $   RESULT( 2 ) = ZERO
279      IF( N.LE.0 )
280     $   RETURN
281*
282      LAP = ( N*( N+1 ) ) / 2
283*
284      IF( LSAME( UPLO, 'U' ) ) THEN
285         LOWER = .FALSE.
286         CUPLO = 'U'
287      ELSE
288         LOWER = .TRUE.
289         CUPLO = 'L'
290      END IF
291*
292      UNFL = DLAMCH( 'Safe minimum' )
293      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
294*
295*     Some Error Checks
296*
297      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
298         RESULT( 1 ) = TEN / ULP
299         RETURN
300      END IF
301*
302*     Do Test 1
303*
304*     Norm of A:
305*
306      IF( ITYPE.EQ.3 ) THEN
307         ANORM = ONE
308      ELSE
309         ANORM = MAX( ZLANHP( '1', CUPLO, N, AP, RWORK ), UNFL )
310      END IF
311*
312*     Compute error matrix:
313*
314      IF( ITYPE.EQ.1 ) THEN
315*
316*        ITYPE=1: error = A - U S U*
317*
318         CALL ZLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
319         CALL ZCOPY( LAP, AP, 1, WORK, 1 )
320*
321         DO 10 J = 1, N
322            CALL ZHPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
323   10    CONTINUE
324*
325         IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
326            DO 20 J = 1, N - 1
327               CALL ZHPR2( CUPLO, N, -DCMPLX( E( J ) ), U( 1, J ), 1,
328     $                     U( 1, J-1 ), 1, WORK )
329   20       CONTINUE
330         END IF
331         WNORM = ZLANHP( '1', CUPLO, N, WORK, RWORK )
332*
333      ELSE IF( ITYPE.EQ.2 ) THEN
334*
335*        ITYPE=2: error = V S V* - A
336*
337         CALL ZLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
338*
339         IF( LOWER ) THEN
340            WORK( LAP ) = D( N )
341            DO 40 J = N - 1, 1, -1
342               JP = ( ( 2*N-J )*( J-1 ) ) / 2
343               JP1 = JP + N - J
344               IF( KBAND.EQ.1 ) THEN
345                  WORK( JP+J+1 ) = ( CONE-TAU( J ) )*E( J )
346                  DO 30 JR = J + 2, N
347                     WORK( JP+JR ) = -TAU( J )*E( J )*VP( JP+JR )
348   30             CONTINUE
349               END IF
350*
351               IF( TAU( J ).NE.CZERO ) THEN
352                  VSAVE = VP( JP+J+1 )
353                  VP( JP+J+1 ) = CONE
354                  CALL ZHPMV( 'L', N-J, CONE, WORK( JP1+J+1 ),
355     $                        VP( JP+J+1 ), 1, CZERO, WORK( LAP+1 ), 1 )
356                  TEMP = -HALF*TAU( J )*ZDOTC( N-J, WORK( LAP+1 ), 1,
357     $                   VP( JP+J+1 ), 1 )
358                  CALL ZAXPY( N-J, TEMP, VP( JP+J+1 ), 1, WORK( LAP+1 ),
359     $                        1 )
360                  CALL ZHPR2( 'L', N-J, -TAU( J ), VP( JP+J+1 ), 1,
361     $                        WORK( LAP+1 ), 1, WORK( JP1+J+1 ) )
362*
363                  VP( JP+J+1 ) = VSAVE
364               END IF
365               WORK( JP+J ) = D( J )
366   40       CONTINUE
367         ELSE
368            WORK( 1 ) = D( 1 )
369            DO 60 J = 1, N - 1
370               JP = ( J*( J-1 ) ) / 2
371               JP1 = JP + J
372               IF( KBAND.EQ.1 ) THEN
373                  WORK( JP1+J ) = ( CONE-TAU( J ) )*E( J )
374                  DO 50 JR = 1, J - 1
375                     WORK( JP1+JR ) = -TAU( J )*E( J )*VP( JP1+JR )
376   50             CONTINUE
377               END IF
378*
379               IF( TAU( J ).NE.CZERO ) THEN
380                  VSAVE = VP( JP1+J )
381                  VP( JP1+J ) = CONE
382                  CALL ZHPMV( 'U', J, CONE, WORK, VP( JP1+1 ), 1, CZERO,
383     $                        WORK( LAP+1 ), 1 )
384                  TEMP = -HALF*TAU( J )*ZDOTC( J, WORK( LAP+1 ), 1,
385     $                   VP( JP1+1 ), 1 )
386                  CALL ZAXPY( J, TEMP, VP( JP1+1 ), 1, WORK( LAP+1 ),
387     $                        1 )
388                  CALL ZHPR2( 'U', J, -TAU( J ), VP( JP1+1 ), 1,
389     $                        WORK( LAP+1 ), 1, WORK )
390                  VP( JP1+J ) = VSAVE
391               END IF
392               WORK( JP1+J+1 ) = D( J+1 )
393   60       CONTINUE
394         END IF
395*
396         DO 70 J = 1, LAP
397            WORK( J ) = WORK( J ) - AP( J )
398   70    CONTINUE
399         WNORM = ZLANHP( '1', CUPLO, N, WORK, RWORK )
400*
401      ELSE IF( ITYPE.EQ.3 ) THEN
402*
403*        ITYPE=3: error = U V* - I
404*
405         IF( N.LT.2 )
406     $      RETURN
407         CALL ZLACPY( ' ', N, N, U, LDU, WORK, N )
408         CALL ZUPMTR( 'R', CUPLO, 'C', N, N, VP, TAU, WORK, N,
409     $                WORK( N**2+1 ), IINFO )
410         IF( IINFO.NE.0 ) THEN
411            RESULT( 1 ) = TEN / ULP
412            RETURN
413         END IF
414*
415         DO 80 J = 1, N
416            WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
417   80    CONTINUE
418*
419         WNORM = ZLANGE( '1', N, N, WORK, N, RWORK )
420      END IF
421*
422      IF( ANORM.GT.WNORM ) THEN
423         RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
424      ELSE
425         IF( ANORM.LT.ONE ) THEN
426            RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
427         ELSE
428            RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
429         END IF
430      END IF
431*
432*     Do Test 2
433*
434*     Compute  UU* - I
435*
436      IF( ITYPE.EQ.1 ) THEN
437         CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO,
438     $               WORK, N )
439*
440         DO 90 J = 1, N
441            WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
442   90    CONTINUE
443*
444         RESULT( 2 ) = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ),
445     $                 DBLE( N ) ) / ( N*ULP )
446      END IF
447*
448      RETURN
449*
450*     End of ZHPT21
451*
452      END
453