1 /* ../netlib/dsbtrd.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib;
2  on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */
3 #include "FLA_f2c.h" /* Table of constant values */
4 static doublereal c_b9 = 0.;
5 static doublereal c_b10 = 1.;
6 static integer c__1 = 1;
7 /* > \brief \b DSBTRD */
8 /* =========== DOCUMENTATION =========== */
9 /* Online html documentation available at */
10 /* http://www.netlib.org/lapack/explore-html/ */
11 /* > \htmlonly */
12 /* > Download DSBTRD + dependencies */
13 /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbtrd. f"> */
14 /* > [TGZ]</a> */
15 /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbtrd. f"> */
16 /* > [ZIP]</a> */
17 /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbtrd. f"> */
18 /* > [TXT]</a> */
19 /* > \endhtmlonly */
20 /* Definition: */
21 /* =========== */
22 /* SUBROUTINE DSBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, */
23 /* WORK, INFO ) */
24 /* .. Scalar Arguments .. */
25 /* CHARACTER UPLO, VECT */
26 /* INTEGER INFO, KD, LDAB, LDQ, N */
27 /* .. */
28 /* .. Array Arguments .. */
29 /* DOUBLE PRECISION AB( LDAB, * ), D( * ), E( * ), Q( LDQ, * ), */
30 /* $ WORK( * ) */
31 /* .. */
32 /* > \par Purpose: */
33 /* ============= */
34 /* > */
35 /* > \verbatim */
36 /* > */
37 /* > DSBTRD reduces a real symmetric band matrix A to symmetric */
38 /* > tridiagonal form T by an orthogonal similarity transformation: */
39 /* > Q**T * A * Q = T. */
40 /* > \endverbatim */
41 /* Arguments: */
42 /* ========== */
43 /* > \param[in] VECT */
44 /* > \verbatim */
45 /* > VECT is CHARACTER*1 */
46 /* > = 'N': do not form Q;
47 */
48 /* > = 'V': form Q;
49 */
50 /* > = 'U': update a matrix X, by forming X*Q. */
51 /* > \endverbatim */
52 /* > */
53 /* > \param[in] UPLO */
54 /* > \verbatim */
55 /* > UPLO is CHARACTER*1 */
56 /* > = 'U': Upper triangle of A is stored;
57 */
58 /* > = 'L': Lower triangle of A is stored. */
59 /* > \endverbatim */
60 /* > */
61 /* > \param[in] N */
62 /* > \verbatim */
63 /* > N is INTEGER */
64 /* > The order of the matrix A. N >= 0. */
65 /* > \endverbatim */
66 /* > */
67 /* > \param[in] KD */
68 /* > \verbatim */
69 /* > KD is INTEGER */
70 /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
71 /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
72 /* > \endverbatim */
73 /* > */
74 /* > \param[in,out] AB */
75 /* > \verbatim */
76 /* > AB is DOUBLE PRECISION array, dimension (LDAB,N) */
77 /* > On entry, the upper or lower triangle of the symmetric band */
78 /* > matrix A, stored in the first KD+1 rows of the array. The */
79 /* > j-th column of A is stored in the j-th column of the array AB */
80 /* > as follows: */
81 /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
82 */
83 /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
84 /* > On exit, the diagonal elements of AB are overwritten by the */
85 /* > diagonal elements of the tridiagonal matrix T;
86 if KD > 0, the */
87 /* > elements on the first superdiagonal (if UPLO = 'U') or the */
88 /* > first subdiagonal (if UPLO = 'L') are overwritten by the */
89 /* > off-diagonal elements of T;
90 the rest of AB is overwritten by */
91 /* > values generated during the reduction. */
92 /* > \endverbatim */
93 /* > */
94 /* > \param[in] LDAB */
95 /* > \verbatim */
96 /* > LDAB is INTEGER */
97 /* > The leading dimension of the array AB. LDAB >= KD+1. */
98 /* > \endverbatim */
99 /* > */
100 /* > \param[out] D */
101 /* > \verbatim */
102 /* > D is DOUBLE PRECISION array, dimension (N) */
103 /* > The diagonal elements of the tridiagonal matrix T. */
104 /* > \endverbatim */
105 /* > */
106 /* > \param[out] E */
107 /* > \verbatim */
108 /* > E is DOUBLE PRECISION array, dimension (N-1) */
109 /* > The off-diagonal elements of the tridiagonal matrix T: */
110 /* > E(i) = T(i,i+1) if UPLO = 'U';
111 E(i) = T(i+1,i) if UPLO = 'L'. */
112 /* > \endverbatim */
113 /* > */
114 /* > \param[in,out] Q */
115 /* > \verbatim */
116 /* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
117 /* > On entry, if VECT = 'U', then Q must contain an N-by-N */
118 /* > matrix X;
119 if VECT = 'N' or 'V', then Q need not be set. */
120 /* > */
121 /* > On exit: */
122 /* > if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
123 */
124 /* > if VECT = 'U', Q contains the product X*Q;
125 */
126 /* > if VECT = 'N', the array Q is not referenced. */
127 /* > \endverbatim */
128 /* > */
129 /* > \param[in] LDQ */
130 /* > \verbatim */
131 /* > LDQ is INTEGER */
132 /* > The leading dimension of the array Q. */
133 /* > LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. */
134 /* > \endverbatim */
135 /* > */
136 /* > \param[out] WORK */
137 /* > \verbatim */
138 /* > WORK is DOUBLE PRECISION array, dimension (N) */
139 /* > \endverbatim */
140 /* > */
141 /* > \param[out] INFO */
142 /* > \verbatim */
143 /* > INFO is INTEGER */
144 /* > = 0: successful exit */
145 /* > < 0: if INFO = -i, the i-th argument had an illegal value */
146 /* > \endverbatim */
147 /* Authors: */
148 /* ======== */
149 /* > \author Univ. of Tennessee */
150 /* > \author Univ. of California Berkeley */
151 /* > \author Univ. of Colorado Denver */
152 /* > \author NAG Ltd. */
153 /* > \date November 2011 */
154 /* > \ingroup doubleOTHERcomputational */
155 /* > \par Further Details: */
156 /* ===================== */
157 /* > */
158 /* > \verbatim */
159 /* > */
160 /* > Modified by Linda Kaufman, Bell Labs. */
161 /* > \endverbatim */
162 /* > */
163 /* ===================================================================== */
164 /* Subroutine */
dsbtrd_(char * vect,char * uplo,integer * n,integer * kd,doublereal * ab,integer * ldab,doublereal * d__,doublereal * e,doublereal * q,integer * ldq,doublereal * work,integer * info)165 int dsbtrd_(char *vect, char *uplo, integer *n, integer *kd, doublereal *ab, integer *ldab, doublereal *d__, doublereal *e, doublereal *q, integer *ldq, doublereal *work, integer *info)
166 {
167     /* System generated locals */
168     integer ab_dim1, ab_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4, i__5;
169     /* Local variables */
170     integer i__, j, k, l, i2, j1, j2, nq, nr, kd1, ibl, iqb, kdn, jin, nrt, kdm1, inca, jend, lend, jinc, incx, last;
171     doublereal temp;
172     extern /* Subroutine */
173     int drot_(integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *);
174     integer j1end, j1inc, iqend;
175     extern logical lsame_(char *, char *);
176     logical initq, wantq, upper;
177     extern /* Subroutine */
178     int dlar2v_(integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *);
179     integer iqaend;
180     extern /* Subroutine */
181     int dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), dlartg_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), xerbla_(char *, integer *), dlargv_( integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), dlartv_(integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *);
182     /* -- LAPACK computational routine (version 3.4.0) -- */
183     /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
184     /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
185     /* November 2011 */
186     /* .. Scalar Arguments .. */
187     /* .. */
188     /* .. Array Arguments .. */
189     /* .. */
190     /* ===================================================================== */
191     /* .. Parameters .. */
192     /* .. */
193     /* .. Local Scalars .. */
194     /* .. */
195     /* .. External Subroutines .. */
196     /* .. */
197     /* .. Intrinsic Functions .. */
198     /* .. */
199     /* .. External Functions .. */
200     /* .. */
201     /* .. Executable Statements .. */
202     /* Test the input parameters */
203     /* Parameter adjustments */
204     ab_dim1 = *ldab;
205     ab_offset = 1 + ab_dim1;
206     ab -= ab_offset;
207     --d__;
208     --e;
209     q_dim1 = *ldq;
210     q_offset = 1 + q_dim1;
211     q -= q_offset;
212     --work;
213     /* Function Body */
214     initq = lsame_(vect, "V");
215     wantq = initq || lsame_(vect, "U");
216     upper = lsame_(uplo, "U");
217     kd1 = *kd + 1;
218     kdm1 = *kd - 1;
219     incx = *ldab - 1;
220     iqend = 1;
221     *info = 0;
222     if (! wantq && ! lsame_(vect, "N"))
223     {
224         *info = -1;
225     }
226     else if (! upper && ! lsame_(uplo, "L"))
227     {
228         *info = -2;
229     }
230     else if (*n < 0)
231     {
232         *info = -3;
233     }
234     else if (*kd < 0)
235     {
236         *info = -4;
237     }
238     else if (*ldab < kd1)
239     {
240         *info = -6;
241     }
242     else if (*ldq < max(1,*n) && wantq)
243     {
244         *info = -10;
245     }
246     if (*info != 0)
247     {
248         i__1 = -(*info);
249         xerbla_("DSBTRD", &i__1);
250         return 0;
251     }
252     /* Quick return if possible */
253     if (*n == 0)
254     {
255         return 0;
256     }
257     /* Initialize Q to the unit matrix, if needed */
258     if (initq)
259     {
260         dlaset_("Full", n, n, &c_b9, &c_b10, &q[q_offset], ldq);
261     }
262     /* Wherever possible, plane rotations are generated and applied in */
263     /* vector operations of length NR over the index set J1:J2:KD1. */
264     /* The cosines and sines of the plane rotations are stored in the */
265     /* arrays D and WORK. */
266     inca = kd1 * *ldab;
267     /* Computing MIN */
268     i__1 = *n - 1;
269     kdn = min(i__1,*kd);
270     if (upper)
271     {
272         if (*kd > 1)
273         {
274             /* Reduce to tridiagonal form, working with upper triangle */
275             nr = 0;
276             j1 = kdn + 2;
277             j2 = 1;
278             i__1 = *n - 2;
279             for (i__ = 1;
280                     i__ <= i__1;
281                     ++i__)
282             {
283                 /* Reduce i-th row of matrix to tridiagonal form */
284                 for (k = kdn + 1;
285                         k >= 2;
286                         --k)
287                 {
288                     j1 += kdn;
289                     j2 += kdn;
290                     if (nr > 0)
291                     {
292                         /* generate plane rotations to annihilate nonzero */
293                         /* elements which have been created outside the band */
294                         dlargv_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &inca, & work[j1], &kd1, &d__[j1], &kd1);
295                         /* apply rotations from the right */
296                         /* Dependent on the the number of diagonals either */
297                         /* DLARTV or DROT is used */
298                         if (nr >= (*kd << 1) - 1)
299                         {
300                             i__2 = *kd - 1;
301                             for (l = 1;
302                                     l <= i__2;
303                                     ++l)
304                             {
305                                 dlartv_(&nr, &ab[l + 1 + (j1 - 1) * ab_dim1], &inca, &ab[l + j1 * ab_dim1], &inca, & d__[j1], &work[j1], &kd1);
306                                 /* L10: */
307                             }
308                         }
309                         else
310                         {
311                             jend = j1 + (nr - 1) * kd1;
312                             i__2 = jend;
313                             i__3 = kd1;
314                             for (jinc = j1;
315                                     i__3 < 0 ? jinc >= i__2 : jinc <= i__2;
316                                     jinc += i__3)
317                             {
318                                 drot_(&kdm1, &ab[(jinc - 1) * ab_dim1 + 2], & c__1, &ab[jinc * ab_dim1 + 1], &c__1, &d__[jinc], &work[jinc]);
319                                 /* L20: */
320                             }
321                         }
322                     }
323                     if (k > 2)
324                     {
325                         if (k <= *n - i__ + 1)
326                         {
327                             /* generate plane rotation to annihilate a(i,i+k-1) */
328                             /* within the band */
329                             dlartg_(&ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1] , &ab[*kd - k + 2 + (i__ + k - 1) * ab_dim1], &d__[i__ + k - 1], &work[i__ + k - 1], &temp);
330                             ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1] = temp;
331                             /* apply rotation from the right */
332                             i__3 = k - 3;
333                             drot_(&i__3, &ab[*kd - k + 4 + (i__ + k - 2) * ab_dim1], &c__1, &ab[*kd - k + 3 + (i__ + k - 1) * ab_dim1], &c__1, &d__[i__ + k - 1], &work[i__ + k - 1]);
334                         }
335                         ++nr;
336                         j1 = j1 - kdn - 1;
337                     }
338                     /* apply plane rotations from both sides to diagonal */
339                     /* blocks */
340                     if (nr > 0)
341                     {
342                         dlar2v_(&nr, &ab[kd1 + (j1 - 1) * ab_dim1], &ab[kd1 + j1 * ab_dim1], &ab[*kd + j1 * ab_dim1], &inca, &d__[j1], &work[j1], &kd1);
343                     }
344                     /* apply plane rotations from the left */
345                     if (nr > 0)
346                     {
347                         if ((*kd << 1) - 1 < nr)
348                         {
349                             /* Dependent on the the number of diagonals either */
350                             /* DLARTV or DROT is used */
351                             i__3 = *kd - 1;
352                             for (l = 1;
353                                     l <= i__3;
354                                     ++l)
355                             {
356                                 if (j2 + l > *n)
357                                 {
358                                     nrt = nr - 1;
359                                 }
360                                 else
361                                 {
362                                     nrt = nr;
363                                 }
364                                 if (nrt > 0)
365                                 {
366                                     dlartv_(&nrt, &ab[*kd - l + (j1 + l) * ab_dim1], &inca, &ab[*kd - l + 1 + (j1 + l) * ab_dim1], &inca, & d__[j1], &work[j1], &kd1);
367                                 }
368                                 /* L30: */
369                             }
370                         }
371                         else
372                         {
373                             j1end = j1 + kd1 * (nr - 2);
374                             if (j1end >= j1)
375                             {
376                                 i__3 = j1end;
377                                 i__2 = kd1;
378                                 for (jin = j1;
379                                         i__2 < 0 ? jin >= i__3 : jin <= i__3;
380                                         jin += i__2)
381                                 {
382                                     i__4 = *kd - 1;
383                                     drot_(&i__4, &ab[*kd - 1 + (jin + 1) * ab_dim1], &incx, &ab[*kd + (jin + 1) * ab_dim1], &incx, &d__[jin], & work[jin]);
384                                     /* L40: */
385                                 }
386                             }
387                             /* Computing MIN */
388                             i__2 = kdm1;
389                             i__3 = *n - j2; // , expr subst
390                             lend = min(i__2,i__3);
391                             last = j1end + kd1;
392                             if (lend > 0)
393                             {
394                                 drot_(&lend, &ab[*kd - 1 + (last + 1) * ab_dim1], &incx, &ab[*kd + (last + 1) * ab_dim1], &incx, &d__[last], &work[ last]);
395                             }
396                         }
397                     }
398                     if (wantq)
399                     {
400                         /* accumulate product of plane rotations in Q */
401                         if (initq)
402                         {
403                             /* take advantage of the fact that Q was */
404                             /* initially the Identity matrix */
405                             iqend = max(iqend,j2);
406                             /* Computing MAX */
407                             i__2 = 0;
408                             i__3 = k - 3; // , expr subst
409                             i2 = max(i__2,i__3);
410                             iqaend = i__ * *kd + 1;
411                             if (k == 2)
412                             {
413                                 iqaend += *kd;
414                             }
415                             iqaend = min(iqaend,iqend);
416                             i__2 = j2;
417                             i__3 = kd1;
418                             for (j = j1;
419                                     i__3 < 0 ? j >= i__2 : j <= i__2;
420                                     j += i__3)
421                             {
422                                 ibl = i__ - i2 / kdm1;
423                                 ++i2;
424                                 /* Computing MAX */
425                                 i__4 = 1;
426                                 i__5 = j - ibl; // , expr subst
427                                 iqb = max(i__4,i__5);
428                                 nq = iqaend + 1 - iqb;
429                                 /* Computing MIN */
430                                 i__4 = iqaend + *kd;
431                                 iqaend = min(i__4,iqend);
432                                 drot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1, &q[iqb + j * q_dim1], &c__1, &d__[j], &work[j]);
433                                 /* L50: */
434                             }
435                         }
436                         else
437                         {
438                             i__3 = j2;
439                             i__2 = kd1;
440                             for (j = j1;
441                                     i__2 < 0 ? j >= i__3 : j <= i__3;
442                                     j += i__2)
443                             {
444                                 drot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[ j * q_dim1 + 1], &c__1, &d__[j], & work[j]);
445                                 /* L60: */
446                             }
447                         }
448                     }
449                     if (j2 + kdn > *n)
450                     {
451                         /* adjust J2 to keep within the bounds of the matrix */
452                         --nr;
453                         j2 = j2 - kdn - 1;
454                     }
455                     i__2 = j2;
456                     i__3 = kd1;
457                     for (j = j1;
458                             i__3 < 0 ? j >= i__2 : j <= i__2;
459                             j += i__3)
460                     {
461                         /* create nonzero element a(j-1,j+kd) outside the band */
462                         /* and store it in WORK */
463                         work[j + *kd] = work[j] * ab[(j + *kd) * ab_dim1 + 1];
464                         ab[(j + *kd) * ab_dim1 + 1] = d__[j] * ab[(j + *kd) * ab_dim1 + 1];
465                         /* L70: */
466                     }
467                     /* L80: */
468                 }
469                 /* L90: */
470             }
471         }
472         if (*kd > 0)
473         {
474             /* copy off-diagonal elements to E */
475             i__1 = *n - 1;
476             for (i__ = 1;
477                     i__ <= i__1;
478                     ++i__)
479             {
480                 e[i__] = ab[*kd + (i__ + 1) * ab_dim1];
481                 /* L100: */
482             }
483         }
484         else
485         {
486             /* set E to zero if original matrix was diagonal */
487             i__1 = *n - 1;
488             for (i__ = 1;
489                     i__ <= i__1;
490                     ++i__)
491             {
492                 e[i__] = 0.;
493                 /* L110: */
494             }
495         }
496         /* copy diagonal elements to D */
497         i__1 = *n;
498         for (i__ = 1;
499                 i__ <= i__1;
500                 ++i__)
501         {
502             d__[i__] = ab[kd1 + i__ * ab_dim1];
503             /* L120: */
504         }
505     }
506     else
507     {
508         if (*kd > 1)
509         {
510             /* Reduce to tridiagonal form, working with lower triangle */
511             nr = 0;
512             j1 = kdn + 2;
513             j2 = 1;
514             i__1 = *n - 2;
515             for (i__ = 1;
516                     i__ <= i__1;
517                     ++i__)
518             {
519                 /* Reduce i-th column of matrix to tridiagonal form */
520                 for (k = kdn + 1;
521                         k >= 2;
522                         --k)
523                 {
524                     j1 += kdn;
525                     j2 += kdn;
526                     if (nr > 0)
527                     {
528                         /* generate plane rotations to annihilate nonzero */
529                         /* elements which have been created outside the band */
530                         dlargv_(&nr, &ab[kd1 + (j1 - kd1) * ab_dim1], &inca, & work[j1], &kd1, &d__[j1], &kd1);
531                         /* apply plane rotations from one side */
532                         /* Dependent on the the number of diagonals either */
533                         /* DLARTV or DROT is used */
534                         if (nr > (*kd << 1) - 1)
535                         {
536                             i__3 = *kd - 1;
537                             for (l = 1;
538                                     l <= i__3;
539                                     ++l)
540                             {
541                                 dlartv_(&nr, &ab[kd1 - l + (j1 - kd1 + l) * ab_dim1], &inca, &ab[kd1 - l + 1 + ( j1 - kd1 + l) * ab_dim1], &inca, &d__[ j1], &work[j1], &kd1);
542                                 /* L130: */
543                             }
544                         }
545                         else
546                         {
547                             jend = j1 + kd1 * (nr - 1);
548                             i__3 = jend;
549                             i__2 = kd1;
550                             for (jinc = j1;
551                                     i__2 < 0 ? jinc >= i__3 : jinc <= i__3;
552                                     jinc += i__2)
553                             {
554                                 drot_(&kdm1, &ab[*kd + (jinc - *kd) * ab_dim1] , &incx, &ab[kd1 + (jinc - *kd) * ab_dim1], &incx, &d__[jinc], &work[ jinc]);
555                                 /* L140: */
556                             }
557                         }
558                     }
559                     if (k > 2)
560                     {
561                         if (k <= *n - i__ + 1)
562                         {
563                             /* generate plane rotation to annihilate a(i+k-1,i) */
564                             /* within the band */
565                             dlartg_(&ab[k - 1 + i__ * ab_dim1], &ab[k + i__ * ab_dim1], &d__[i__ + k - 1], &work[i__ + k - 1], &temp);
566                             ab[k - 1 + i__ * ab_dim1] = temp;
567                             /* apply rotation from the left */
568                             i__2 = k - 3;
569                             i__3 = *ldab - 1;
570                             i__4 = *ldab - 1;
571                             drot_(&i__2, &ab[k - 2 + (i__ + 1) * ab_dim1], & i__3, &ab[k - 1 + (i__ + 1) * ab_dim1], & i__4, &d__[i__ + k - 1], &work[i__ + k - 1]);
572                         }
573                         ++nr;
574                         j1 = j1 - kdn - 1;
575                     }
576                     /* apply plane rotations from both sides to diagonal */
577                     /* blocks */
578                     if (nr > 0)
579                     {
580                         dlar2v_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + 2], & inca, &d__[j1], &work[j1], &kd1);
581                     }
582                     /* apply plane rotations from the right */
583                     /* Dependent on the the number of diagonals either */
584                     /* DLARTV or DROT is used */
585                     if (nr > 0)
586                     {
587                         if (nr > (*kd << 1) - 1)
588                         {
589                             i__2 = *kd - 1;
590                             for (l = 1;
591                                     l <= i__2;
592                                     ++l)
593                             {
594                                 if (j2 + l > *n)
595                                 {
596                                     nrt = nr - 1;
597                                 }
598                                 else
599                                 {
600                                     nrt = nr;
601                                 }
602                                 if (nrt > 0)
603                                 {
604                                     dlartv_(&nrt, &ab[l + 2 + (j1 - 1) * ab_dim1], &inca, &ab[l + 1 + j1 * ab_dim1], &inca, &d__[j1], &work[ j1], &kd1);
605                                 }
606                                 /* L150: */
607                             }
608                         }
609                         else
610                         {
611                             j1end = j1 + kd1 * (nr - 2);
612                             if (j1end >= j1)
613                             {
614                                 i__2 = j1end;
615                                 i__3 = kd1;
616                                 for (j1inc = j1;
617                                         i__3 < 0 ? j1inc >= i__2 : j1inc <= i__2;
618                                         j1inc += i__3)
619                                 {
620                                     drot_(&kdm1, &ab[(j1inc - 1) * ab_dim1 + 3], &c__1, &ab[j1inc * ab_dim1 + 2], &c__1, &d__[j1inc], &work[ j1inc]);
621                                     /* L160: */
622                                 }
623                             }
624                             /* Computing MIN */
625                             i__3 = kdm1;
626                             i__2 = *n - j2; // , expr subst
627                             lend = min(i__3,i__2);
628                             last = j1end + kd1;
629                             if (lend > 0)
630                             {
631                                 drot_(&lend, &ab[(last - 1) * ab_dim1 + 3], & c__1, &ab[last * ab_dim1 + 2], &c__1, &d__[last], &work[last]);
632                             }
633                         }
634                     }
635                     if (wantq)
636                     {
637                         /* accumulate product of plane rotations in Q */
638                         if (initq)
639                         {
640                             /* take advantage of the fact that Q was */
641                             /* initially the Identity matrix */
642                             iqend = max(iqend,j2);
643                             /* Computing MAX */
644                             i__3 = 0;
645                             i__2 = k - 3; // , expr subst
646                             i2 = max(i__3,i__2);
647                             iqaend = i__ * *kd + 1;
648                             if (k == 2)
649                             {
650                                 iqaend += *kd;
651                             }
652                             iqaend = min(iqaend,iqend);
653                             i__3 = j2;
654                             i__2 = kd1;
655                             for (j = j1;
656                                     i__2 < 0 ? j >= i__3 : j <= i__3;
657                                     j += i__2)
658                             {
659                                 ibl = i__ - i2 / kdm1;
660                                 ++i2;
661                                 /* Computing MAX */
662                                 i__4 = 1;
663                                 i__5 = j - ibl; // , expr subst
664                                 iqb = max(i__4,i__5);
665                                 nq = iqaend + 1 - iqb;
666                                 /* Computing MIN */
667                                 i__4 = iqaend + *kd;
668                                 iqaend = min(i__4,iqend);
669                                 drot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1, &q[iqb + j * q_dim1], &c__1, &d__[j], &work[j]);
670                                 /* L170: */
671                             }
672                         }
673                         else
674                         {
675                             i__2 = j2;
676                             i__3 = kd1;
677                             for (j = j1;
678                                     i__3 < 0 ? j >= i__2 : j <= i__2;
679                                     j += i__3)
680                             {
681                                 drot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[ j * q_dim1 + 1], &c__1, &d__[j], & work[j]);
682                                 /* L180: */
683                             }
684                         }
685                     }
686                     if (j2 + kdn > *n)
687                     {
688                         /* adjust J2 to keep within the bounds of the matrix */
689                         --nr;
690                         j2 = j2 - kdn - 1;
691                     }
692                     i__3 = j2;
693                     i__2 = kd1;
694                     for (j = j1;
695                             i__2 < 0 ? j >= i__3 : j <= i__3;
696                             j += i__2)
697                     {
698                         /* create nonzero element a(j+kd,j-1) outside the */
699                         /* band and store it in WORK */
700                         work[j + *kd] = work[j] * ab[kd1 + j * ab_dim1];
701                         ab[kd1 + j * ab_dim1] = d__[j] * ab[kd1 + j * ab_dim1] ;
702                         /* L190: */
703                     }
704                     /* L200: */
705                 }
706                 /* L210: */
707             }
708         }
709         if (*kd > 0)
710         {
711             /* copy off-diagonal elements to E */
712             i__1 = *n - 1;
713             for (i__ = 1;
714                     i__ <= i__1;
715                     ++i__)
716             {
717                 e[i__] = ab[i__ * ab_dim1 + 2];
718                 /* L220: */
719             }
720         }
721         else
722         {
723             /* set E to zero if original matrix was diagonal */
724             i__1 = *n - 1;
725             for (i__ = 1;
726                     i__ <= i__1;
727                     ++i__)
728             {
729                 e[i__] = 0.;
730                 /* L230: */
731             }
732         }
733         /* copy diagonal elements to D */
734         i__1 = *n;
735         for (i__ = 1;
736                 i__ <= i__1;
737                 ++i__)
738         {
739             d__[i__] = ab[i__ * ab_dim1 + 1];
740             /* L240: */
741         }
742     }
743     return 0;
744     /* End of DSBTRD */
745 }
746 /* dsbtrd_ */
747