1@c ------------------------------------------------------------------
2@chapter Other classes
3@nav{}
4
5There are few end-user classes: @code{mglGraph} (see @ref{MathGL core}), @code{mglWindow} and @code{mglGLUT} (see @ref{Widget classes}), @code{mglData} (see @ref{Data processing}), @code{mglParse} (see @ref{MGL scripts}). Exactly these classes I recommend to use in most of user programs. All methods in all of these classes are inline and have exact C/Fortran analogue functions. This give compiler independent binary libraries for MathGL.
6
7However, sometimes you may need to extend MathGL by writing yours own plotting functions or handling yours own data structures. In these cases you may need to use low-level API. This chapter describes it.
8
9@fig{classes, Class diagram for MathGL}
10
11The internal structure of MathGL is rather complicated. There are C++ classes @code{mglBase}, @code{mglCanvas}, ... for drawing primitives and positioning the plot (blue ones in the figure). There is a layer of C functions, which include interface for most important methods of these classes. Also most of plotting functions are implemented as C functions. After it, there are ``inline'' front-end classes which are created for user convenience (yellow ones in the figure). Also there are widgets for FLTK, Qt and other libraries (green ones in the figure).
12
13Below I show how this internal classes can be used.
14
15@menu
16* mglBase class::
17* mglDataA class::
18* mglColor class::
19* mglPoint class::
20@end menu
21
22
23@c ------------------------------------------------------------------
24@external{}
25@node mglBase class, mglDataA class, , Other classes
26@section Define new kind of plot (mglBase class)
27@nav{}
28
29Basically most of new kinds of plot can be created using just MathGL primitives (see @ref{Primitives}). However the usage of @code{mglBase} methods can give you higher speed of drawing and better control of plot settings.
30
31All plotting functions should use a pointer to @code{mglBase} class (or @code{HMGL} type in C functions) due to compatibility issues. Exactly such type of pointers are used in front-end classes (@code{mglGraph, mglWindow}) and in widgets (@code{QMathGL, Fl_MathGL}).
32
33MathGL tries to remember all vertexes and all primitives and plot creation stage, and to use them for making final picture by demand. Basically for making plot, you need to add vertexes by @code{AddPnt()} function, which return index for new vertex, and call one of primitive drawing function (like @code{mark_plot(), arrow_plot(), line_plot(), trig_plot(), quad_plot(), text_plot()}), using vertex indexes as argument(s). @code{AddPnt()} function use 2 mreal numbers for color specification. First one is positioning in textures -- integer part is texture index, fractional part is relative coordinate in the texture. Second number is like a transparency of plot (or second coordinate in the 2D texture).
34
35I don't want to put here detailed description of @code{mglBase} class. It was rather well documented in @code{mgl2/base.h} file. I just show and example of its usage on the base of circle drawing.
36
37First, we should prototype new function @code{circle()} as C function.
38@verbatim
39#ifdef __cplusplus
40extern "C" {
41#endif
42void circle(HMGL gr, mreal x, mreal y, mreal z, mreal r, const char *stl, const char *opt);
43#ifdef __cplusplus
44}
45#endif
46@end verbatim
47This is done for generating compiler independent binary. Because only C-functions have standard naming mechanism, the same for any compilers.
48
49Now, we create a C++ file and put the code of function. I'll write it line by line and try to comment all important points.
50@verbatim
51void circle(HMGL gr, mreal x, mreal y, mreal z, mreal r, const char *stl, const char *opt)
52{
53@end verbatim
54First, we need to check all input arguments and send warnings if something is wrong. In our case it is negative value of @var{r} argument. We just send warning, since it is not critical situation -- other plot still can be drawn.
55@verbatim
56  if(r<=0)  { gr->SetWarn(mglWarnNeg,"Circle"); return; }
57@end verbatim
58Next step is creating a group. Group keep some general setting for plot (like options) and useful for export in 3d files.
59@verbatim
60  static int cgid=1;  gr->StartGroup("Circle",cgid++);
61@end verbatim
62Now let apply options. Options are rather useful things, generally, which allow one easily redefine axis range(s), transparency and other settings (see @ref{Command options}).
63@verbatim
64  gr->SaveState(opt);
65@end verbatim
66I use global setting for determining the number of points in circle approximation. Note, that user can change @code{MeshNum} by options easily.
67@verbatim
68  const int n = gr->MeshNum>1?gr->MeshNum : 41;
69@end verbatim
70Let try to determine plot specific flags. MathGL functions expect that most of flags will be sent in string. In our case it is symbol @samp{@@} which set to draw filled circle instead of border only (last will be default). Note, you have to handle @code{NULL} as string pointer.
71@verbatim
72  bool fill = mglchr(stl,'@');
73@end verbatim
74Now, time for coloring. I use palette mechanism because circle have few colors: one for filling and another for border. @code{SetPenPal()} function parse input string and write resulting texture index in @var{pal}. Function return the character for marker, which can be specified in string @var{str}. Marker will be plotted at the center of circle. I'll show on next sample how you can use color schemes (smooth colors) too.
75@verbatim
76  long pal=0;
77  char mk=gr->SetPenPal(stl,&pal);
78@end verbatim
79Next step, is determining colors for filling and for border. First one for filling.
80@verbatim
81  mreal c=gr->NextColor(pal), d;
82@end verbatim
83Second one for border. I use black color (call @code{gr->AddTexture('k')}) if second color is not specified.
84@verbatim
85  mreal k=(gr->GetNumPal(pal)>1)?gr->NextColor(pal):gr->AddTexture('k');
86@end verbatim
87If user want draw only border (@code{fill=false}) then I use first color for border.
88@verbatim
89  if(!fill) k=c;
90@end verbatim
91Now we should reserve space for vertexes. This functions need @code{n} for border, @code{n+1} for filling and @code{1} for marker. So, maximal number of vertexes is @code{2*n+2}. Note, that such reservation is not required for normal work but can sufficiently speed up the plotting.
92@verbatim
93  gr->Reserve(2*n+2);
94@end verbatim
95We've done with setup and ready to start drawing. First, we need to add vertex(es). Let define NAN as normals, since I don't want handle lighting for this plot,
96@verbatim
97  mglPoint q(NAN,NAN);
98@end verbatim
99and start adding vertexes. First one for central point of filling. I use @code{-1} if I don't need this point. The arguments of @code{AddPnt()} function is: @code{mglPoint(x,y,z)} -- coordinate of vertex, @code{c} -- vertex color, @code{q} -- normal at vertex, @code{-1} -- vertex transparency (@code{-1} for default), @code{3} bitwise flag which show that coordinates will be scaled (@code{0x1}) and will not be cutted (@code{0x2}).
100@verbatim
101  long n0,n1,n2,m1,m2,i;
102  n0 = fill ? gr->AddPnt(mglPoint(x,y,z),c,q,-1,3):-1;
103@end verbatim
104Similar for marker, but we use different color @var{k}.
105@verbatim
106  n2 = mk ? gr->AddPnt(mglPoint(x,y,z),k,q,-1,3):-1;
107@end verbatim
108Draw marker.
109@verbatim
110  if(mk)  gr->mark_plot(n2,mk);
111@end verbatim
112Time for drawing circle itself. I use @code{-1} for @var{m1}, @var{n1} as sign that primitives shouldn't be drawn for first point @code{i=0}.
113@verbatim
114  for(i=0,m1=n1=-1;i<n;i++)
115  {
116@end verbatim
117Each function should check @code{Stop} variable and return if it is non-zero. It is done for interrupting drawing for system which don't support multi-threading.
118@verbatim
119    if(gr->Stop)  return;
120@end verbatim
121Let find coordinates of vertex.
122@verbatim
123    mreal t = i*2*M_PI/(n-1.);
124    mglPoint p(x+r*cos(t), y+r*sin(t), z);
125@end verbatim
126Save previous vertex and add next one
127@verbatim
128    n2 = n1;  n1 = gr->AddPnt(p,c,q,-1,3);
129@end verbatim
130and copy it for border but with different color. Such copying is much faster than adding new vertex using @code{AddPnt()}.
131@verbatim
132    m2 = m1;  m1 = gr->CopyNtoC(n1,k);
133@end verbatim
134Now draw triangle for filling internal part
135@verbatim
136    if(fill)  gr->trig_plot(n0,n1,n2);
137@end verbatim
138and draw line for border.
139@verbatim
140    gr->line_plot(m1,m2);
141  }
142@end verbatim
143Drawing is done. Let close group and return.
144@verbatim
145  gr->EndGroup();
146}
147@end verbatim
148
149Another sample I want to show is exactly the same function but with smooth coloring using color scheme. So, I'll add comments only in the place of difference.
150
151@verbatim
152void circle_cs(HMGL gr, mreal x, mreal y, mreal z, mreal r, const char *stl, const char *opt)
153{
154@end verbatim
155In this case let allow negative radius too. Formally it is not the problem for plotting (formulas the same) and this allow us to handle all color range.
156@verbatim
157//if(r<=0)  { gr->SetWarn(mglWarnNeg,"Circle"); return; }
158
159  static int cgid=1;  gr->StartGroup("CircleCS",cgid++);
160  gr->SaveState(opt);
161  const int n = gr->MeshNum>1?gr->MeshNum : 41;
162  bool fill = mglchr(stl,'@');
163@end verbatim
164Here is main difference. We need to create texture for color scheme specified by user
165@verbatim
166  long ss = gr->AddTexture(stl);
167@end verbatim
168But we need also get marker and color for it (if filling is enabled). Let suppose that marker and color is specified after @samp{:}. This is standard delimiter which stop color scheme entering. So, just lets find it and use for setting pen.
169@verbatim
170  const char *pen=0;
171  if(stl) pen = strchr(stl,':');
172  if(pen) pen++;
173@end verbatim
174The substring is placed in @var{pen} and it will be used as line style.
175@verbatim
176  long pal=0;
177  char mk=gr->SetPenPal(pen,&pal);
178@end verbatim
179Next step, is determining colors for filling and for border. First one for filling.
180@verbatim
181  mreal c=gr->GetC(ss,r);
182@end verbatim
183Second one for border.
184@verbatim
185  mreal k=gr->NextColor(pal);
186@end verbatim
187The rest part is the same as in previous function.
188@verbatim
189  if(!fill) k=c;
190
191  gr->Reserve(2*n+2);
192  mglPoint q(NAN,NAN);
193  long n0,n1,n2,m1,m2,i;
194  n0 = fill ? gr->AddPnt(mglPoint(x,y,z),c,q,-1,3):-1;
195  n2 = mk ? gr->AddPnt(mglPoint(x,y,z),k,q,-1,3):-1;
196  if(mk)  gr->mark_plot(n2,mk);
197  for(i=0,m1=n1=-1;i<n;i++)
198  {
199    if(gr->Stop)  return;
200    mreal t = i*2*M_PI/(n-1.);
201    mglPoint p(x+r*cos(t), y+r*sin(t), z);
202    n2 = n1;  n1 = gr->AddPnt(p,c,q,-1,3);
203    m2 = m1;  m1 = gr->CopyNtoC(n1,k);
204    if(fill)  gr->trig_plot(n0,n1,n2);
205    gr->line_plot(m1,m2);
206  }
207  gr->EndGroup();
208}
209@end verbatim
210
211The last thing which we can do is derive our own class with new plotting functions. Good idea is to derive it from @code{mglGraph} (if you don't need extended window), or from @code{mglWindow} (if you need to extend window). So, in our case it will be
212@verbatim
213class MyGraph : public mglGraph
214{
215public:
216  inline void Circle(mglPoint p, mreal r, const char *stl="", const char *opt="")
217  { circle(p.x,p.y,p.z, r, stl, opt); }
218  inline void CircleCS(mglPoint p, mreal r, const char *stl="", const char *opt="")
219  { circle_cs(p.x,p.y,p.z, r, stl, opt); }
220};
221@end verbatim
222Note, that I use @code{inline} modifier for using the same binary code with different compilers.
223
224So, the complete sample will be
225@verbatim
226#include <mgl2/mgl.h>
227//---------------------------------------------------------
228#ifdef __cplusplus
229extern "C" {
230#endif
231void circle(HMGL gr, mreal x, mreal y, mreal z, mreal r, const char *stl, const char *opt);
232void circle_cs(HMGL gr, mreal x, mreal y, mreal z, mreal r, const char *stl, const char *opt);
233#ifdef __cplusplus
234}
235#endif
236//---------------------------------------------------------
237class MyGraph : public mglGraph
238{
239public:
240  inline void CircleCF(mglPoint p, mreal r, const char *stl="", const char *opt="")
241  { circle(p.x,p.y,p.z, r, stl, opt); }
242  inline void CircleCS(mglPoint p, mreal r, const char *stl="", const char *opt="")
243  { circle_cs(p.x,p.y,p.z, r, stl, opt); }
244};
245//---------------------------------------------------------
246void circle(HMGL gr, mreal x, mreal y, mreal z, mreal r, const char *stl, const char *opt)
247{
248  if(r<=0)  { gr->SetWarn(mglWarnNeg,"Circle"); return; }
249  static int cgid=1;  gr->StartGroup("Circle",cgid++);
250  gr->SaveState(opt);
251  const int n = gr->MeshNum>1?gr->MeshNum : 41;
252  bool fill = mglchr(stl,'@');
253  long pal=0;
254  char mk=gr->SetPenPal(stl,&pal);
255  mreal c=gr->NextColor(pal), d;
256  mreal k=(gr->GetNumPal(pal)>1)?gr->NextColor(pal):gr->AddTexture('k');
257  if(!fill) k=c;
258  gr->Reserve(2*n+2);
259  mglPoint q(NAN,NAN);
260  long n0,n1,n2,m1,m2,i;
261  n0 = fill ? gr->AddPnt(mglPoint(x,y,z),c,q,-1,3):-1;
262  n2 = mk ? gr->AddPnt(mglPoint(x,y,z),k,q,-1,3):-1;
263  if(mk)  gr->mark_plot(n2,mk);
264  for(i=0,m1=n1=-1;i<n;i++)
265  {
266    if(gr->Stop)  return;
267    mreal t = i*2*M_PI/(n-1.);
268    mglPoint p(x+r*cos(t), y+r*sin(t), z);
269    n2 = n1;  n1 = gr->AddPnt(p,c,q,-1,3);
270    m2 = m1;  m1 = gr->CopyNtoC(n1,k);
271    if(fill)  gr->trig_plot(n0,n1,n2);
272    gr->line_plot(m1,m2);
273  }
274  gr->EndGroup();
275}
276//---------------------------------------------------------
277void circle_cs(HMGL gr, mreal x, mreal y, mreal z, mreal r, const char *stl, const char *opt)
278{
279  static int cgid=1;  gr->StartGroup("CircleCS",cgid++);
280  gr->SaveState(opt);
281  const int n = gr->MeshNum>1?gr->MeshNum : 41;
282  bool fill = mglchr(stl,'@');
283  long ss = gr->AddTexture(stl);
284  const char *pen=0;
285  if(stl) pen = strchr(stl,':');
286  if(pen) pen++;
287  long pal=0;
288  char mk=gr->SetPenPal(pen,&pal);
289  mreal c=gr->GetC(ss,r);
290  mreal k=gr->NextColor(pal);
291  if(!fill) k=c;
292
293  gr->Reserve(2*n+2);
294  mglPoint q(NAN,NAN);
295  long n0,n1,n2,m1,m2,i;
296  n0 = fill ? gr->AddPnt(mglPoint(x,y,z),c,q,-1,3):-1;
297  n2 = mk ? gr->AddPnt(mglPoint(x,y,z),k,q,-1,3):-1;
298  if(mk)  gr->mark_plot(n2,mk);
299  for(i=0,m1=n1=-1;i<n;i++)
300  {
301    if(gr->Stop)  return;
302    mreal t = i*2*M_PI/(n-1.);
303    mglPoint p(x+r*cos(t), y+r*sin(t), z);
304    n2 = n1;  n1 = gr->AddPnt(p,c,q,-1,3);
305    m2 = m1;  m1 = gr->CopyNtoC(n1,k);
306    if(fill)  gr->trig_plot(n0,n1,n2);
307    gr->line_plot(m1,m2);
308  }
309  gr->EndGroup();
310}
311//---------------------------------------------------------
312int main()
313{
314  MyGraph gr;
315  gr.Box();
316  // first let draw circles with fixed colors
317  for(int i=0;i<10;i++)
318    gr.CircleCF(mglPoint(2*mgl_rnd()-1, 2*mgl_rnd()-1), mgl_rnd());
319  // now let draw circles with color scheme
320  for(int i=0;i<10;i++)
321    gr.CircleCS(mglPoint(2*mgl_rnd()-1, 2*mgl_rnd()-1), 2*mgl_rnd()-1);
322}
323@end verbatim
324
325
326
327
328@c ------------------------------------------------------------------
329@external{}
330@node mglDataA class, mglColor class, mglBase class, Other classes
331@section User defined types (mglDataA class)
332@nav{}
333
334@code{mglData} class have abstract predecessor class @code{mglDataA}. Exactly the pointers to @code{mglDataA} instances are used in all plotting functions and some of data processing functions. This was done for taking possibility to define yours own class, which will handle yours own data (for example, complex numbers, or differently organized data). And this new class will be almost the same as @code{mglData} for plotting purposes.
335
336However, the most of data processing functions will be slower as if you used @code{mglData} instance. This is more or less understandable -- I don't know how data in yours particular class will be organized, and couldn't optimize the these functions generally.
337
338There are few virtual functions which must be provided in derived classes. This functions give:
339@itemize @bullet
340@item
341the sizes of the data (@code{GetNx}, @code{GetNy}, @code{GetNz}),
342@item
343give data value and numerical derivatives for selected cell (@code{v}, @code{dvx}, @code{dvy}, @code{dvz}),
344@item
345give maximal and minimal values (@code{Maximal}, @code{Minimal}) -- you can use provided functions (like @code{mgl_data_max} and @code{mgl_data_min}), but yours own realization can be more efficient,
346@item
347give access to all element as in single array (@code{vthr}) -- you need this only if you want using MathGL's data processing functions.
348@end itemize
349
350Let me, for example define class @code{mglComplex} which will handle complex number and draw its amplitude or phase, depending on flag @var{use_abs}:
351@verbatim
352#include <complex>
353#include <mgl2/mgl.h>
354#define dual std::complex<double>
355class mglComplex : public mglDataA
356{
357public:
358  long nx;      ///< number of points in 1st dimensions ('x' dimension)
359  long ny;      ///< number of points in 2nd dimensions ('y' dimension)
360  long nz;      ///< number of points in 3d dimensions ('z' dimension)
361  dual *a;      ///< data array
362  bool use_abs; ///< flag to use abs() or arg()
363
364  inline mglComplex(long xx=1,long yy=1,long zz=1)
365  { a=0;  use_abs=true; Create(xx,yy,zz); }
366  virtual ~mglComplex()  { if(a)  delete []a; }
367
368  /// Get sizes
369  inline long GetNx() const { return nx;  }
370  inline long GetNy() const { return ny;  }
371  inline long GetNz() const { return nz;  }
372  /// Create or recreate the array with specified size and fill it by zero
373  inline void Create(long mx,long my=1,long mz=1)
374  { nx=mx;  ny=my;  nz=mz;  if(a) delete []a;
375  a = new dual[nx*ny*nz]; }
376  /// Get maximal value of the data
377  inline mreal Maximal() const  { return mgl_data_max(this);  }
378  /// Get minimal value of the data
379  inline mreal Minimal() const  { return mgl_data_min(this);  }
380
381protected:
382  inline mreal v(long i,long j=0,long k=0) const
383  { return use_abs ? abs(a[i+nx*(j+ny*k)]) : arg(a[i+nx*(j+ny*k)]);  }
384  inline mreal vthr(long i) const
385  { return use_abs ? abs(a[i]) : arg(a[i]);  }
386  inline mreal dvx(long i,long j=0,long k=0) const
387  { long i0=i+nx*(j+ny*k);
388    std::complex<double> res=i>0? (i<nx-1? (a[i0+1]-a[i0-1])/2.:a[i0]-a[i0-1]) : a[i0+1]-a[i0];
389    return use_abs? abs(res) : arg(res);  }
390  inline mreal dvy(long i,long j=0,long k=0) const
391  { long i0=i+nx*(j+ny*k);
392    std::complex<double> res=j>0? (j<ny-1? (a[i0+nx]-a[i0-nx])/2.:a[i0]-a[i0-nx]) : a[i0+nx]-a[i0];
393    return use_abs? abs(res) : arg(res);  }
394  inline mreal dvz(long i,long j=0,long k=0) const
395  { long i0=i+nx*(j+ny*k), n=nx*ny;
396    std::complex<double> res=k>0? (k<nz-1? (a[i0+n]-a[i0-n])/2.:a[i0]-a[i0-n]) : a[i0+n]-a[i0];
397    return use_abs? abs(res) : arg(res);  }
398};
399int main()
400{
401  mglComplex dat(20);
402  for(long i=0;i<20;i++)
403    dat.a[i] = 3*exp(-0.05*(i-10)*(i-10))*dual(cos(M_PI*i*0.3), sin(M_PI*i*0.3));
404  mglGraph gr;
405  gr.SetRange('y', -M_PI, M_PI);  gr.Box();
406
407  gr.Plot(dat,"r","legend 'abs'");
408  dat.use_abs=false;
409  gr.Plot(dat,"b","legend 'arg'");
410  gr.Legend();
411  gr.WritePNG("complex.png");
412  return 0;
413}
414@end verbatim
415
416
417@c ------------------------------------------------------------------
418@external{}
419@node mglColor class, mglPoint class, mglDataA class, Other classes
420@section mglColor class
421@nav{}
422@cindex mglColor
423
424Structure for working with colors. This structure is defined in @code{#include <mgl2/type.h>}.
425
426There are two ways to set the color in MathGL. First one is using of mreal values of red, green and blue channels for precise color definition. The second way is the using of character id. There are a set of characters specifying frequently used colors. Normally capital letter gives more dark color than lowercase one. @xref{Line styles}.
427
428@deftypecv {Parameter} mglColor @code{mreal} {r, g, b, a}
429Reg, green and blue component of color.
430@end deftypecv
431
432@deftypemethod mglColor @code{} mglColor (@code{mreal} R, @code{mreal} G, @code{mreal} B, @code{mreal} A=@code{1})
433Constructor sets the color by mreal values of Red, Green, Blue and Alpha channels. These values should be in interval [0,1].
434@end deftypemethod
435@deftypemethod mglColor @code{} mglColor (@code{char} c=@code{'k'}, @code{mreal} bright=@code{1})
436Constructor sets the color from character id. The black color is used by default. Parameter @var{br} set additional ``lightness'' of color.
437@end deftypemethod
438@deftypemethod mglColor @code{void} Set (@code{mreal} R, @code{mreal} G, @code{mreal} B, @code{mreal} A=@code{1})
439Sets color from values of Red, Green, Blue and Alpha channels. These values should be in interval [0,1].
440@end deftypemethod
441@deftypemethod mglColor @code{void} Set (@code{mglColor} c, @code{mreal} bright=@code{1})
442Sets color as ``lighted'' version of color @var{c}.
443@end deftypemethod
444@deftypemethod mglColor @code{void} Set (@code{char} p, @code{mreal} bright=@code{1})
445Sets color from symbolic id.
446@end deftypemethod
447@deftypemethod mglColor @code{bool} Valid ()
448Checks correctness of the color.
449@end deftypemethod
450@deftypemethod mglColor @code{mreal} Norm ()
451Gets maximal of spectral component.
452@end deftypemethod
453@deftypemethod mglColor @code{bool} operator== (@code{const mglColor &}c)
454@deftypemethodx mglColor @code{bool} operator!= (@code{const mglColor &}c)
455Compare with another color
456@end deftypemethod
457
458@deftypemethod mglColor @code{bool} operator*= (@code{mreal} v)
459Multiplies color components by number @var{v}.
460@end deftypemethod
461
462@deftypemethod mglColor @code{bool} operator+= (@code{const mglColor &}c)
463Adds color @var{c} component by component.
464@end deftypemethod
465
466@deftypemethod mglColor @code{bool} operator-= (@code{const mglColor &}c)
467Subtracts color @var{c} component by component.
468@end deftypemethod
469
470
471@deftypefn {Library Function} {mglColor} operator+ (@code{const mglColor &}a, @code{const mglColor &}b)
472Adds colors by its RGB values.
473@end deftypefn
474@deftypefn {Library Function} @code{mglColor} operator- (@code{const mglColor &}a, @code{const mglColor &}b)
475Subtracts colors by its RGB values.
476@end deftypefn
477@deftypefn {Library Function} @code{mglColor} operator* (@code{const mglColor &}a, @code{mreal} b)
478@deftypefnx {Library Function} @code{mglColor} operator* (@code{mreal} a, @code{const mglColor &}b)
479Multiplies color by number.
480@end deftypefn
481@deftypefn {Library Function} @code{mglColor} operator/ (@code{const mglColor &}a, @code{mreal} b)
482Divide color by number.
483@end deftypefn
484@deftypefn {Library Function} @code{mglColor} operator! (@code{const mglColor &}a)
485Return inverted color.
486@end deftypefn
487
488@c ------------------------------------------------------------------
489@external{}
490@node mglPoint class, , mglColor class, Other classes
491@section mglPoint class
492@nav{}
493@cindex mglPoint
494
495Structure describes point in space. This structure is defined in @code{#include <mgl2/type.h>}
496
497@deftypecv {Parameter} mglPoint @code{mreal} {x, y, z, c}
498Point coordinates @{x,y,z@} and one extra value @var{c} used for amplitude, transparency and so on. By default all values are zero.
499@end deftypecv
500
501@deftypemethod mglPoint @code{} mglPoint (@code{mreal} X=@code{0}, @code{mreal} Y=@code{0}, @code{mreal} Z=@code{0}, @code{mreal} C=@code{0})
502Constructor sets the color by mreal values of Red, Green, Blue and Alpha channels. These values should be in interval [0,1].
503@end deftypemethod
504
505@deftypemethod mglPoint @code{bool} IsNAN ()
506Returns @code{true} if point contain NAN values.
507@end deftypemethod
508@deftypemethod mglPoint @code{mreal} norm ()
509Returns the norm @math{\sqrt@{x^2+y^2+z^2@}} of vector.
510@end deftypemethod
511@deftypemethod mglPoint @code{void} Normalize ()
512Normalizes vector to be unit vector.
513@end deftypemethod
514@deftypemethod mglPoint @code{mreal} val (@code{int} i)
515Returns point component: @var{x} for @var{i}=0, @var{y} for @var{i}=1, @var{z} for @var{i}=2, @var{c} for @var{i}=3.
516@end deftypemethod
517
518
519@deftypefn {Library Function} @code{mglPoint} operator+ (@code{const mglPoint &}a, @code{const mglPoint &}b)
520Point of summation (summation of vectors).
521@end deftypefn
522@deftypefn {Library Function} @code{mglPoint} operator- (@code{const mglPoint &}a, @code{const mglPoint &}b)
523Point of difference (difference of vectors).
524@end deftypefn
525@deftypefn {Library Function} @code{mglPoint} operator* (@code{mreal} a, @code{const mglPoint &}b)
526@deftypefnx {Library Function} @code{mglPoint} operator* (@code{const mglPoint &}a, @code{mreal} b)
527Multiplies (scale) points by number.
528@end deftypefn
529@deftypefn {Library Function} @code{mglPoint} operator/ (@code{const mglPoint &}a, @code{mreal} b)
530Multiplies (scale) points by number 1/b.
531@end deftypefn
532@deftypefn {Library Function} @code{mreal} operator* (@code{const mglPoint &}a, @code{const mglPoint &}b)
533Scalar product of vectors.
534@end deftypefn
535
536@deftypefn {Library Function} @code{mglPoint} operator/ (@code{const mglPoint &}a, @code{const mglPoint &}b)
537Return vector of element-by-element product.
538@end deftypefn
539
540@deftypefn {Library Function} @code{mglPoint} operator^ (@code{const mglPoint &}a, @code{const mglPoint &}b)
541Cross-product of vectors.
542@end deftypefn
543@deftypefn {Library Function} @code{mglPoint} operator& (@code{const mglPoint &}a, @code{const mglPoint &}b)
544The part of @var{a} which is perpendicular to vector @var{b}.
545@end deftypefn
546@deftypefn {Library Function} @code{mglPoint} operator| (@code{const mglPoint &}a, @code{const mglPoint &}b)
547The part of @var{a} which is parallel to vector @var{b}.
548@end deftypefn
549
550@deftypefn {Library Function} @code{mglPoint} operator! (@code{const mglPoint &}a)
551Return vector perpendicular to vector @var{a}.
552@end deftypefn
553@deftypefn {Library Function} @code{mreal} mgl_norm (@code{const mglPoint &}a)
554Return the norm sqrt(|@var{a}|^2) of vector @var{a}.
555@end deftypefn
556
557@deftypefn {Library Function} @code{bool} operator== (@code{const mglPoint &}a, @code{const mglPoint &}b)
558Return true if points are the same.
559@end deftypefn
560@deftypefn {Library Function} @code{bool} operator!= (@code{const mglPoint &}a, @code{const mglPoint &}b)
561Return true if points are different.
562@end deftypefn
563
564@external{}
565
566