1 ////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (C) 1996-2021 The Octave Project Developers
4 //
5 // See the file COPYRIGHT.md in the top-level directory of this
6 // distribution or <https://octave.org/copyright/>.
7 //
8 // This file is part of Octave.
9 //
10 // Octave is free software: you can redistribute it and/or modify it
11 // under the terms of the GNU General Public License as published by
12 // the Free Software Foundation, either version 3 of the License, or
13 // (at your option) any later version.
14 //
15 // Octave is distributed in the hope that it will be useful, but
16 // WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 // GNU General Public License for more details.
19 //
20 // You should have received a copy of the GNU General Public License
21 // along with Octave; see the file COPYING.  If not, see
22 // <https://www.gnu.org/licenses/>.
23 //
24 ////////////////////////////////////////////////////////////////////////
25 
26 #if defined (HAVE_CONFIG_H)
27 #  include "config.h"
28 #endif
29 
30 #include "defun.h"
31 #include "error.h"
32 #include "errwarn.h"
33 #include "ovl.h"
34 #include "ops.h"
35 #include "ov-re-diag.h"
36 #include "ov-cx-diag.h"
37 #include "ov-flt-re-diag.h"
38 #include "ov-flt-cx-diag.h"
39 #include "ov-perm.h"
40 
41 DEFUN (inv, args, nargout,
42        doc: /* -*- texinfo -*-
43 @deftypefn  {} {@var{x} =} inv (@var{A})
44 @deftypefnx {} {[@var{x}, @var{rcond}] =} inv (@var{A})
45 @deftypefnx {} {[@dots{}] =} inverse (@dots{})
46 Compute the inverse of the square matrix @var{A}.
47 
48 Return an estimate of the reciprocal condition number if requested,
49 otherwise warn of an ill-conditioned matrix if the reciprocal condition
50 number is small.
51 
52 In general it is best to avoid calculating the inverse of a matrix directly.
53 For example, it is both faster and more accurate to solve systems of
54 equations (@var{A}*@math{x} = @math{b}) with
55 @code{@var{y} = @var{A} \ @math{b}}, rather than
56 @code{@var{y} = inv (@var{A}) * @math{b}}.
57 
58 If called with a sparse matrix, then in general @var{x} will be a full
59 matrix requiring significantly more storage.  Avoid forming the inverse of a
60 sparse matrix if possible.
61 
62 @code{inverse} is an alias and may be used identically in place of @code{inv}.
63 @seealso{ldivide, rdivide, pinv}
64 @end deftypefn */)
65 {
66   if (args.length () != 1)
67     print_usage ();
68 
69   octave_value arg = args(0);
70 
71   if (arg.isempty ())
72     return ovl (Matrix ());
73 
74   if (arg.rows () != arg.columns ())
75     err_square_matrix_required ("inverse", "A");
76 
77   octave_value result;
78   octave_idx_type info;
79   double rcond = 0.0;
80   float frcond = 0.0;
81   bool isfloat = arg.is_single_type ();
82 
83   if (arg.is_diag_matrix ())
84     {
85       rcond = 1.0;
86       frcond = 1.0f;
87       if (arg.iscomplex ())
88         {
89           if (isfloat)
90             {
91               result = arg.float_complex_diag_matrix_value ().inverse (info);
92               if (info == -1)
93                 frcond = 0.0f;
94               else if (nargout > 1)
95                 frcond = arg.float_complex_diag_matrix_value ().rcond ();
96             }
97           else
98             {
99               result = arg.complex_diag_matrix_value ().inverse (info);
100               if (info == -1)
101                 rcond = 0.0;
102               else if (nargout > 1)
103                 rcond = arg.complex_diag_matrix_value ().rcond ();
104             }
105         }
106       else
107         {
108           if (isfloat)
109             {
110               result = arg.float_diag_matrix_value ().inverse (info);
111               if (info == -1)
112                 frcond = 0.0f;
113               else if (nargout > 1)
114                 frcond = arg.float_diag_matrix_value ().rcond ();
115             }
116           else
117             {
118               result = arg.diag_matrix_value ().inverse (info);
119               if (info == -1)
120                 rcond = 0.0;
121               else if (nargout > 1)
122                 rcond = arg.diag_matrix_value ().rcond ();
123             }
124         }
125     }
126   else if (arg.is_perm_matrix ())
127     {
128       rcond = 1.0;
129       info = 0;
130       result = arg.perm_matrix_value ().inverse ();
131     }
132   else if (isfloat)
133     {
134       if (arg.isreal ())
135         {
136           FloatMatrix m = arg.float_matrix_value ();
137 
138           MatrixType mattyp = args(0).matrix_type ();
139           result = m.inverse (mattyp, info, frcond, 1);
140           args(0).matrix_type (mattyp);
141         }
142       else if (arg.iscomplex ())
143         {
144           FloatComplexMatrix m = arg.float_complex_matrix_value ();
145 
146           MatrixType mattyp = args(0).matrix_type ();
147           result = m.inverse (mattyp, info, frcond, 1);
148           args(0).matrix_type (mattyp);
149         }
150     }
151   else
152     {
153       if (arg.isreal ())
154         {
155           if (arg.issparse ())
156             {
157               SparseMatrix m = arg.sparse_matrix_value ();
158 
159               MatrixType mattyp = args(0).matrix_type ();
160               result = m.inverse (mattyp, info, rcond, 1);
161               args(0).matrix_type (mattyp);
162             }
163           else
164             {
165               Matrix m = arg.matrix_value ();
166 
167               MatrixType mattyp = args(0).matrix_type ();
168               result = m.inverse (mattyp, info, rcond, 1);
169               args(0).matrix_type (mattyp);
170             }
171         }
172       else if (arg.iscomplex ())
173         {
174           if (arg.issparse ())
175             {
176               SparseComplexMatrix m = arg.sparse_complex_matrix_value ();
177 
178               MatrixType mattyp = args(0).matrix_type ();
179               result = m.inverse (mattyp, info, rcond, 1);
180               args(0).matrix_type (mattyp);
181             }
182           else
183             {
184               ComplexMatrix m = arg.complex_matrix_value ();
185 
186               MatrixType mattyp = args(0).matrix_type ();
187               result = m.inverse (mattyp, info, rcond, 1);
188               args(0).matrix_type (mattyp);
189             }
190         }
191       else
192         err_wrong_type_arg ("inv", arg);
193     }
194 
195   octave_value_list retval (nargout > 1 ? 2 : 1);
196 
197   retval(0) = result;
198   if (nargout > 1)
199     retval(1) = (isfloat ? octave_value (frcond) : octave_value (rcond));
200 
201   bool rcond_plus_one_eq_one = false;
202 
203   if (isfloat)
204     {
205       volatile float xrcond = frcond;
206       rcond_plus_one_eq_one = xrcond + 1.0f == 1.0f;
207     }
208   else
209     {
210       volatile double xrcond = rcond;
211       rcond_plus_one_eq_one = xrcond + 1.0 == 1.0;
212     }
213 
214   if (nargout < 2 && (info == -1 || rcond_plus_one_eq_one))
215     octave::warn_singular_matrix (isfloat ? frcond : rcond);
216 
217   return retval;
218 }
219 
220 /*
221 %!assert (inv ([1, 2; 3, 4]), [-2, 1; 1.5, -0.5], sqrt (eps))
222 %!assert (inv (single ([1, 2; 3, 4])), single ([-2, 1; 1.5, -0.5]), sqrt (eps ("single")))
223 
224 ## Test special inputs
225 %!assert (inv (zeros (2,0)), [])
226 %!warning <matrix singular> assert (inv (Inf), 0)
227 %!warning <matrix singular> assert (inv (-Inf), -0)
228 %!warning <matrix singular> assert (inv (single (Inf)), single (0))
229 %!warning <matrix singular> assert (inv (complex (1, Inf)), 0)
230 %!warning <matrix singular> assert (inv (single (complex (1,Inf))), single (0))
231 
232 %!test
233 %! [xinv, rcond] = inv (single ([1,2;3,4]));
234 %! assert (isa (xinv, "single"));
235 %! assert (isa (rcond, "single"));
236 
237 %!test
238 %! [xinv, rcond] = inv ([1,2;3,4]);
239 %! assert (isa (xinv, "double"));
240 %! assert (isa (rcond, "double"));
241 
242 %!testif HAVE_UMFPACK <*56232>
243 %! fail ("A = inv (sparse ([1, 2;0 ,0]))", "warning", "matrix singular");
244 %! assert (A, sparse ([Inf, Inf; 0, 0]));
245 
246 %!testif HAVE_UMFPACK <*56232>
247 %! fail ("A = inv (sparse ([1i, 2;0 ,0]))", "warning", "matrix singular");
248 %! assert (A, sparse ([Inf, Inf; 0, 0]));
249 
250 %!test
251 %! fail ("A = inv (diag ([1, 0, 1]))", "warning", "matrix singular");
252 %! assert (A, diag ([Inf, Inf, Inf]));
253 
254 %!error <inverse of the null matrix not defined> inv (diag ([0, 0]))
255 %!error <inverse of the null matrix not defined> inv (diag (complex ([0, 0])))
256 
257 %!testif HAVE_UMFPACK <*56232>
258 %! fail ("A = inv (sparse ([1, 0, 0; 0, 0, 0; 0, 0, 1]))", "warning", "matrix singular");
259 %! assert (A, sparse ([Inf, 0, 0; 0, 0, 0; 0, 0, Inf]));
260 
261 %!error inv ()
262 %!error inv ([1, 2; 3, 4], 2)
263 %!error <must be a square matrix> inv ([1, 2; 3, 4; 5, 6])
264 %!error <inverse of the null matrix not defined> inv (sparse (2, 2, 0))
265 */
266 
267 DEFALIAS (inverse, inv);
268