1*> \brief \b DHGEQZ
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DHGEQZ + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dhgeqz.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dhgeqz.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dhgeqz.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
22*                          ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK,
23*                          LWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          COMPQ, COMPZ, JOB
27*       INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
28*       ..
29*       .. Array Arguments ..
30*       DOUBLE PRECISION   ALPHAI( * ), ALPHAR( * ), BETA( * ),
31*      $                   H( LDH, * ), Q( LDQ, * ), T( LDT, * ),
32*      $                   WORK( * ), Z( LDZ, * )
33*       ..
34*
35*
36*> \par Purpose:
37*  =============
38*>
39*> \verbatim
40*>
41*> DHGEQZ computes the eigenvalues of a real matrix pair (H,T),
42*> where H is an upper Hessenberg matrix and T is upper triangular,
43*> using the double-shift QZ method.
44*> Matrix pairs of this type are produced by the reduction to
45*> generalized upper Hessenberg form of a real matrix pair (A,B):
46*>
47*>    A = Q1*H*Z1**T,  B = Q1*T*Z1**T,
48*>
49*> as computed by DGGHRD.
50*>
51*> If JOB='S', then the Hessenberg-triangular pair (H,T) is
52*> also reduced to generalized Schur form,
53*>
54*>    H = Q*S*Z**T,  T = Q*P*Z**T,
55*>
56*> where Q and Z are orthogonal matrices, P is an upper triangular
57*> matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2
58*> diagonal blocks.
59*>
60*> The 1-by-1 blocks correspond to real eigenvalues of the matrix pair
61*> (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of
62*> eigenvalues.
63*>
64*> Additionally, the 2-by-2 upper triangular diagonal blocks of P
65*> corresponding to 2-by-2 blocks of S are reduced to positive diagonal
66*> form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0,
67*> P(j,j) > 0, and P(j+1,j+1) > 0.
68*>
69*> Optionally, the orthogonal matrix Q from the generalized Schur
70*> factorization may be postmultiplied into an input matrix Q1, and the
71*> orthogonal matrix Z may be postmultiplied into an input matrix Z1.
72*> If Q1 and Z1 are the orthogonal matrices from DGGHRD that reduced
73*> the matrix pair (A,B) to generalized upper Hessenberg form, then the
74*> output matrices Q1*Q and Z1*Z are the orthogonal factors from the
75*> generalized Schur factorization of (A,B):
76*>
77*>    A = (Q1*Q)*S*(Z1*Z)**T,  B = (Q1*Q)*P*(Z1*Z)**T.
78*>
79*> To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,
80*> of (A,B)) are computed as a pair of values (alpha,beta), where alpha is
81*> complex and beta real.
82*> If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
83*> generalized nonsymmetric eigenvalue problem (GNEP)
84*>    A*x = lambda*B*x
85*> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
86*> alternate form of the GNEP
87*>    mu*A*y = B*y.
88*> Real eigenvalues can be read directly from the generalized Schur
89*> form:
90*>   alpha = S(i,i), beta = P(i,i).
91*>
92*> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
93*>      Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
94*>      pp. 241--256.
95*> \endverbatim
96*
97*  Arguments:
98*  ==========
99*
100*> \param[in] JOB
101*> \verbatim
102*>          JOB is CHARACTER*1
103*>          = 'E': Compute eigenvalues only;
104*>          = 'S': Compute eigenvalues and the Schur form.
105*> \endverbatim
106*>
107*> \param[in] COMPQ
108*> \verbatim
109*>          COMPQ is CHARACTER*1
110*>          = 'N': Left Schur vectors (Q) are not computed;
111*>          = 'I': Q is initialized to the unit matrix and the matrix Q
112*>                 of left Schur vectors of (H,T) is returned;
113*>          = 'V': Q must contain an orthogonal matrix Q1 on entry and
114*>                 the product Q1*Q is returned.
115*> \endverbatim
116*>
117*> \param[in] COMPZ
118*> \verbatim
119*>          COMPZ is CHARACTER*1
120*>          = 'N': Right Schur vectors (Z) are not computed;
121*>          = 'I': Z is initialized to the unit matrix and the matrix Z
122*>                 of right Schur vectors of (H,T) is returned;
123*>          = 'V': Z must contain an orthogonal matrix Z1 on entry and
124*>                 the product Z1*Z is returned.
125*> \endverbatim
126*>
127*> \param[in] N
128*> \verbatim
129*>          N is INTEGER
130*>          The order of the matrices H, T, Q, and Z.  N >= 0.
131*> \endverbatim
132*>
133*> \param[in] ILO
134*> \verbatim
135*>          ILO is INTEGER
136*> \endverbatim
137*>
138*> \param[in] IHI
139*> \verbatim
140*>          IHI is INTEGER
141*>          ILO and IHI mark the rows and columns of H which are in
142*>          Hessenberg form.  It is assumed that A is already upper
143*>          triangular in rows and columns 1:ILO-1 and IHI+1:N.
144*>          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
145*> \endverbatim
146*>
147*> \param[in,out] H
148*> \verbatim
149*>          H is DOUBLE PRECISION array, dimension (LDH, N)
150*>          On entry, the N-by-N upper Hessenberg matrix H.
151*>          On exit, if JOB = 'S', H contains the upper quasi-triangular
152*>          matrix S from the generalized Schur factorization.
153*>          If JOB = 'E', the diagonal blocks of H match those of S, but
154*>          the rest of H is unspecified.
155*> \endverbatim
156*>
157*> \param[in] LDH
158*> \verbatim
159*>          LDH is INTEGER
160*>          The leading dimension of the array H.  LDH >= max( 1, N ).
161*> \endverbatim
162*>
163*> \param[in,out] T
164*> \verbatim
165*>          T is DOUBLE PRECISION array, dimension (LDT, N)
166*>          On entry, the N-by-N upper triangular matrix T.
167*>          On exit, if JOB = 'S', T contains the upper triangular
168*>          matrix P from the generalized Schur factorization;
169*>          2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S
170*>          are reduced to positive diagonal form, i.e., if H(j+1,j) is
171*>          non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and
172*>          T(j+1,j+1) > 0.
173*>          If JOB = 'E', the diagonal blocks of T match those of P, but
174*>          the rest of T is unspecified.
175*> \endverbatim
176*>
177*> \param[in] LDT
178*> \verbatim
179*>          LDT is INTEGER
180*>          The leading dimension of the array T.  LDT >= max( 1, N ).
181*> \endverbatim
182*>
183*> \param[out] ALPHAR
184*> \verbatim
185*>          ALPHAR is DOUBLE PRECISION array, dimension (N)
186*>          The real parts of each scalar alpha defining an eigenvalue
187*>          of GNEP.
188*> \endverbatim
189*>
190*> \param[out] ALPHAI
191*> \verbatim
192*>          ALPHAI is DOUBLE PRECISION array, dimension (N)
193*>          The imaginary parts of each scalar alpha defining an
194*>          eigenvalue of GNEP.
195*>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
196*>          positive, then the j-th and (j+1)-st eigenvalues are a
197*>          complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
198*> \endverbatim
199*>
200*> \param[out] BETA
201*> \verbatim
202*>          BETA is DOUBLE PRECISION array, dimension (N)
203*>          The scalars beta that define the eigenvalues of GNEP.
204*>          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
205*>          beta = BETA(j) represent the j-th eigenvalue of the matrix
206*>          pair (A,B), in one of the forms lambda = alpha/beta or
207*>          mu = beta/alpha.  Since either lambda or mu may overflow,
208*>          they should not, in general, be computed.
209*> \endverbatim
210*>
211*> \param[in,out] Q
212*> \verbatim
213*>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
214*>          On entry, if COMPQ = 'V', the orthogonal matrix Q1 used in
215*>          the reduction of (A,B) to generalized Hessenberg form.
216*>          On exit, if COMPQ = 'I', the orthogonal matrix of left Schur
217*>          vectors of (H,T), and if COMPQ = 'V', the orthogonal matrix
218*>          of left Schur vectors of (A,B).
219*>          Not referenced if COMPQ = 'N'.
220*> \endverbatim
221*>
222*> \param[in] LDQ
223*> \verbatim
224*>          LDQ is INTEGER
225*>          The leading dimension of the array Q.  LDQ >= 1.
226*>          If COMPQ='V' or 'I', then LDQ >= N.
227*> \endverbatim
228*>
229*> \param[in,out] Z
230*> \verbatim
231*>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
232*>          On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in
233*>          the reduction of (A,B) to generalized Hessenberg form.
234*>          On exit, if COMPZ = 'I', the orthogonal matrix of
235*>          right Schur vectors of (H,T), and if COMPZ = 'V', the
236*>          orthogonal matrix of right Schur vectors of (A,B).
237*>          Not referenced if COMPZ = 'N'.
238*> \endverbatim
239*>
240*> \param[in] LDZ
241*> \verbatim
242*>          LDZ is INTEGER
243*>          The leading dimension of the array Z.  LDZ >= 1.
244*>          If COMPZ='V' or 'I', then LDZ >= N.
245*> \endverbatim
246*>
247*> \param[out] WORK
248*> \verbatim
249*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
250*>          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
251*> \endverbatim
252*>
253*> \param[in] LWORK
254*> \verbatim
255*>          LWORK is INTEGER
256*>          The dimension of the array WORK.  LWORK >= max(1,N).
257*>
258*>          If LWORK = -1, then a workspace query is assumed; the routine
259*>          only calculates the optimal size of the WORK array, returns
260*>          this value as the first entry of the WORK array, and no error
261*>          message related to LWORK is issued by XERBLA.
262*> \endverbatim
263*>
264*> \param[out] INFO
265*> \verbatim
266*>          INFO is INTEGER
267*>          = 0: successful exit
268*>          < 0: if INFO = -i, the i-th argument had an illegal value
269*>          = 1,...,N: the QZ iteration did not converge.  (H,T) is not
270*>                     in Schur form, but ALPHAR(i), ALPHAI(i), and
271*>                     BETA(i), i=INFO+1,...,N should be correct.
272*>          = N+1,...,2*N: the shift calculation failed.  (H,T) is not
273*>                     in Schur form, but ALPHAR(i), ALPHAI(i), and
274*>                     BETA(i), i=INFO-N+1,...,N should be correct.
275*> \endverbatim
276*
277*  Authors:
278*  ========
279*
280*> \author Univ. of Tennessee
281*> \author Univ. of California Berkeley
282*> \author Univ. of Colorado Denver
283*> \author NAG Ltd.
284*
285*> \date June 2016
286*
287*> \ingroup doubleGEcomputational
288*
289*> \par Further Details:
290*  =====================
291*>
292*> \verbatim
293*>
294*>  Iteration counters:
295*>
296*>  JITER  -- counts iterations.
297*>  IITER  -- counts iterations run since ILAST was last
298*>            changed.  This is therefore reset only when a 1-by-1 or
299*>            2-by-2 block deflates off the bottom.
300*> \endverbatim
301*>
302*  =====================================================================
303      SUBROUTINE DHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
304     $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK,
305     $                   LWORK, INFO )
306*
307*  -- LAPACK computational routine (version 3.7.0) --
308*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
309*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
310*     June 2016
311*
312*     .. Scalar Arguments ..
313      CHARACTER          COMPQ, COMPZ, JOB
314      INTEGER            IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
315*     ..
316*     .. Array Arguments ..
317      DOUBLE PRECISION   ALPHAI( * ), ALPHAR( * ), BETA( * ),
318     $                   H( LDH, * ), Q( LDQ, * ), T( LDT, * ),
319     $                   WORK( * ), Z( LDZ, * )
320*     ..
321*
322*  =====================================================================
323*
324*     .. Parameters ..
325*    $                     SAFETY = 1.0E+0 )
326      DOUBLE PRECISION   HALF, ZERO, ONE, SAFETY
327      PARAMETER          ( HALF = 0.5D+0, ZERO = 0.0D+0, ONE = 1.0D+0,
328     $                   SAFETY = 1.0D+2 )
329*     ..
330*     .. Local Scalars ..
331      LOGICAL            ILAZR2, ILAZRO, ILPIVT, ILQ, ILSCHR, ILZ,
332     $                   LQUERY
333      INTEGER            ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST,
334     $                   ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER,
335     $                   JR, MAXIT
336      DOUBLE PRECISION   A11, A12, A1I, A1R, A21, A22, A2I, A2R, AD11,
337     $                   AD11L, AD12, AD12L, AD21, AD21L, AD22, AD22L,
338     $                   AD32L, AN, ANORM, ASCALE, ATOL, B11, B1A, B1I,
339     $                   B1R, B22, B2A, B2I, B2R, BN, BNORM, BSCALE,
340     $                   BTOL, C, C11I, C11R, C12, C21, C22I, C22R, CL,
341     $                   CQ, CR, CZ, ESHIFT, S, S1, S1INV, S2, SAFMAX,
342     $                   SAFMIN, SCALE, SL, SQI, SQR, SR, SZI, SZR, T1,
343     $                   TAU, TEMP, TEMP2, TEMPI, TEMPR, U1, U12, U12L,
344     $                   U2, ULP, VS, W11, W12, W21, W22, WABS, WI, WR,
345     $                   WR2
346*     ..
347*     .. Local Arrays ..
348      DOUBLE PRECISION   V( 3 )
349*     ..
350*     .. External Functions ..
351      LOGICAL            LSAME
352      DOUBLE PRECISION   DLAMCH, DLANHS, DLAPY2, DLAPY3
353      EXTERNAL           LSAME, DLAMCH, DLANHS, DLAPY2, DLAPY3
354*     ..
355*     .. External Subroutines ..
356      EXTERNAL           DLAG2, DLARFG, DLARTG, DLASET, DLASV2, DROT,
357     $                   XERBLA
358*     ..
359*     .. Intrinsic Functions ..
360      INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
361*     ..
362*     .. Executable Statements ..
363*
364*     Decode JOB, COMPQ, COMPZ
365*
366      IF( LSAME( JOB, 'E' ) ) THEN
367         ILSCHR = .FALSE.
368         ISCHUR = 1
369      ELSE IF( LSAME( JOB, 'S' ) ) THEN
370         ILSCHR = .TRUE.
371         ISCHUR = 2
372      ELSE
373         ISCHUR = 0
374      END IF
375*
376      IF( LSAME( COMPQ, 'N' ) ) THEN
377         ILQ = .FALSE.
378         ICOMPQ = 1
379      ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
380         ILQ = .TRUE.
381         ICOMPQ = 2
382      ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
383         ILQ = .TRUE.
384         ICOMPQ = 3
385      ELSE
386         ICOMPQ = 0
387      END IF
388*
389      IF( LSAME( COMPZ, 'N' ) ) THEN
390         ILZ = .FALSE.
391         ICOMPZ = 1
392      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
393         ILZ = .TRUE.
394         ICOMPZ = 2
395      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
396         ILZ = .TRUE.
397         ICOMPZ = 3
398      ELSE
399         ICOMPZ = 0
400      END IF
401*
402*     Check Argument Values
403*
404      INFO = 0
405      WORK( 1 ) = MAX( 1, N )
406      LQUERY = ( LWORK.EQ.-1 )
407      IF( ISCHUR.EQ.0 ) THEN
408         INFO = -1
409      ELSE IF( ICOMPQ.EQ.0 ) THEN
410         INFO = -2
411      ELSE IF( ICOMPZ.EQ.0 ) THEN
412         INFO = -3
413      ELSE IF( N.LT.0 ) THEN
414         INFO = -4
415      ELSE IF( ILO.LT.1 ) THEN
416         INFO = -5
417      ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
418         INFO = -6
419      ELSE IF( LDH.LT.N ) THEN
420         INFO = -8
421      ELSE IF( LDT.LT.N ) THEN
422         INFO = -10
423      ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
424         INFO = -15
425      ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
426         INFO = -17
427      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
428         INFO = -19
429      END IF
430      IF( INFO.NE.0 ) THEN
431         CALL XERBLA( 'DHGEQZ', -INFO )
432         RETURN
433      ELSE IF( LQUERY ) THEN
434         RETURN
435      END IF
436*
437*     Quick return if possible
438*
439      IF( N.LE.0 ) THEN
440         WORK( 1 ) = DBLE( 1 )
441         RETURN
442      END IF
443*
444*     Initialize Q and Z
445*
446      IF( ICOMPQ.EQ.3 )
447     $   CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
448      IF( ICOMPZ.EQ.3 )
449     $   CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
450*
451*     Machine Constants
452*
453      IN = IHI + 1 - ILO
454      SAFMIN = DLAMCH( 'S' )
455      SAFMAX = ONE / SAFMIN
456      ULP = DLAMCH( 'E' )*DLAMCH( 'B' )
457      ANORM = DLANHS( 'F', IN, H( ILO, ILO ), LDH, WORK )
458      BNORM = DLANHS( 'F', IN, T( ILO, ILO ), LDT, WORK )
459      ATOL = MAX( SAFMIN, ULP*ANORM )
460      BTOL = MAX( SAFMIN, ULP*BNORM )
461      ASCALE = ONE / MAX( SAFMIN, ANORM )
462      BSCALE = ONE / MAX( SAFMIN, BNORM )
463*
464*     Set Eigenvalues IHI+1:N
465*
466      DO 30 J = IHI + 1, N
467         IF( T( J, J ).LT.ZERO ) THEN
468            IF( ILSCHR ) THEN
469               DO 10 JR = 1, J
470                  H( JR, J ) = -H( JR, J )
471                  T( JR, J ) = -T( JR, J )
472   10          CONTINUE
473            ELSE
474               H( J, J ) = -H( J, J )
475               T( J, J ) = -T( J, J )
476            END IF
477            IF( ILZ ) THEN
478               DO 20 JR = 1, N
479                  Z( JR, J ) = -Z( JR, J )
480   20          CONTINUE
481            END IF
482         END IF
483         ALPHAR( J ) = H( J, J )
484         ALPHAI( J ) = ZERO
485         BETA( J ) = T( J, J )
486   30 CONTINUE
487*
488*     If IHI < ILO, skip QZ steps
489*
490      IF( IHI.LT.ILO )
491     $   GO TO 380
492*
493*     MAIN QZ ITERATION LOOP
494*
495*     Initialize dynamic indices
496*
497*     Eigenvalues ILAST+1:N have been found.
498*        Column operations modify rows IFRSTM:whatever.
499*        Row operations modify columns whatever:ILASTM.
500*
501*     If only eigenvalues are being computed, then
502*        IFRSTM is the row of the last splitting row above row ILAST;
503*        this is always at least ILO.
504*     IITER counts iterations since the last eigenvalue was found,
505*        to tell when to use an extraordinary shift.
506*     MAXIT is the maximum number of QZ sweeps allowed.
507*
508      ILAST = IHI
509      IF( ILSCHR ) THEN
510         IFRSTM = 1
511         ILASTM = N
512      ELSE
513         IFRSTM = ILO
514         ILASTM = IHI
515      END IF
516      IITER = 0
517      ESHIFT = ZERO
518      MAXIT = 30*( IHI-ILO+1 )
519*
520      DO 360 JITER = 1, MAXIT
521*
522*        Split the matrix if possible.
523*
524*        Two tests:
525*           1: H(j,j-1)=0  or  j=ILO
526*           2: T(j,j)=0
527*
528         IF( ILAST.EQ.ILO ) THEN
529*
530*           Special case: j=ILAST
531*
532            GO TO 80
533         ELSE
534            IF( ABS( H( ILAST, ILAST-1 ) ).LE.ATOL ) THEN
535               H( ILAST, ILAST-1 ) = ZERO
536               GO TO 80
537            END IF
538         END IF
539*
540         IF( ABS( T( ILAST, ILAST ) ).LE.BTOL ) THEN
541            T( ILAST, ILAST ) = ZERO
542            GO TO 70
543         END IF
544*
545*        General case: j<ILAST
546*
547         DO 60 J = ILAST - 1, ILO, -1
548*
549*           Test 1: for H(j,j-1)=0 or j=ILO
550*
551            IF( J.EQ.ILO ) THEN
552               ILAZRO = .TRUE.
553            ELSE
554               IF( ABS( H( J, J-1 ) ).LE.ATOL ) THEN
555                  H( J, J-1 ) = ZERO
556                  ILAZRO = .TRUE.
557               ELSE
558                  ILAZRO = .FALSE.
559               END IF
560            END IF
561*
562*           Test 2: for T(j,j)=0
563*
564            IF( ABS( T( J, J ) ).LT.BTOL ) THEN
565               T( J, J ) = ZERO
566*
567*              Test 1a: Check for 2 consecutive small subdiagonals in A
568*
569               ILAZR2 = .FALSE.
570               IF( .NOT.ILAZRO ) THEN
571                  TEMP = ABS( H( J, J-1 ) )
572                  TEMP2 = ABS( H( J, J ) )
573                  TEMPR = MAX( TEMP, TEMP2 )
574                  IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
575                     TEMP = TEMP / TEMPR
576                     TEMP2 = TEMP2 / TEMPR
577                  END IF
578                  IF( TEMP*( ASCALE*ABS( H( J+1, J ) ) ).LE.TEMP2*
579     $                ( ASCALE*ATOL ) )ILAZR2 = .TRUE.
580               END IF
581*
582*              If both tests pass (1 & 2), i.e., the leading diagonal
583*              element of B in the block is zero, split a 1x1 block off
584*              at the top. (I.e., at the J-th row/column) The leading
585*              diagonal element of the remainder can also be zero, so
586*              this may have to be done repeatedly.
587*
588               IF( ILAZRO .OR. ILAZR2 ) THEN
589                  DO 40 JCH = J, ILAST - 1
590                     TEMP = H( JCH, JCH )
591                     CALL DLARTG( TEMP, H( JCH+1, JCH ), C, S,
592     $                            H( JCH, JCH ) )
593                     H( JCH+1, JCH ) = ZERO
594                     CALL DROT( ILASTM-JCH, H( JCH, JCH+1 ), LDH,
595     $                          H( JCH+1, JCH+1 ), LDH, C, S )
596                     CALL DROT( ILASTM-JCH, T( JCH, JCH+1 ), LDT,
597     $                          T( JCH+1, JCH+1 ), LDT, C, S )
598                     IF( ILQ )
599     $                  CALL DROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
600     $                             C, S )
601                     IF( ILAZR2 )
602     $                  H( JCH, JCH-1 ) = H( JCH, JCH-1 )*C
603                     ILAZR2 = .FALSE.
604                     IF( ABS( T( JCH+1, JCH+1 ) ).GE.BTOL ) THEN
605                        IF( JCH+1.GE.ILAST ) THEN
606                           GO TO 80
607                        ELSE
608                           IFIRST = JCH + 1
609                           GO TO 110
610                        END IF
611                     END IF
612                     T( JCH+1, JCH+1 ) = ZERO
613   40             CONTINUE
614                  GO TO 70
615               ELSE
616*
617*                 Only test 2 passed -- chase the zero to T(ILAST,ILAST)
618*                 Then process as in the case T(ILAST,ILAST)=0
619*
620                  DO 50 JCH = J, ILAST - 1
621                     TEMP = T( JCH, JCH+1 )
622                     CALL DLARTG( TEMP, T( JCH+1, JCH+1 ), C, S,
623     $                            T( JCH, JCH+1 ) )
624                     T( JCH+1, JCH+1 ) = ZERO
625                     IF( JCH.LT.ILASTM-1 )
626     $                  CALL DROT( ILASTM-JCH-1, T( JCH, JCH+2 ), LDT,
627     $                             T( JCH+1, JCH+2 ), LDT, C, S )
628                     CALL DROT( ILASTM-JCH+2, H( JCH, JCH-1 ), LDH,
629     $                          H( JCH+1, JCH-1 ), LDH, C, S )
630                     IF( ILQ )
631     $                  CALL DROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
632     $                             C, S )
633                     TEMP = H( JCH+1, JCH )
634                     CALL DLARTG( TEMP, H( JCH+1, JCH-1 ), C, S,
635     $                            H( JCH+1, JCH ) )
636                     H( JCH+1, JCH-1 ) = ZERO
637                     CALL DROT( JCH+1-IFRSTM, H( IFRSTM, JCH ), 1,
638     $                          H( IFRSTM, JCH-1 ), 1, C, S )
639                     CALL DROT( JCH-IFRSTM, T( IFRSTM, JCH ), 1,
640     $                          T( IFRSTM, JCH-1 ), 1, C, S )
641                     IF( ILZ )
642     $                  CALL DROT( N, Z( 1, JCH ), 1, Z( 1, JCH-1 ), 1,
643     $                             C, S )
644   50             CONTINUE
645                  GO TO 70
646               END IF
647            ELSE IF( ILAZRO ) THEN
648*
649*              Only test 1 passed -- work on J:ILAST
650*
651               IFIRST = J
652               GO TO 110
653            END IF
654*
655*           Neither test passed -- try next J
656*
657   60    CONTINUE
658*
659*        (Drop-through is "impossible")
660*
661         INFO = N + 1
662         GO TO 420
663*
664*        T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a
665*        1x1 block.
666*
667   70    CONTINUE
668         TEMP = H( ILAST, ILAST )
669         CALL DLARTG( TEMP, H( ILAST, ILAST-1 ), C, S,
670     $                H( ILAST, ILAST ) )
671         H( ILAST, ILAST-1 ) = ZERO
672         CALL DROT( ILAST-IFRSTM, H( IFRSTM, ILAST ), 1,
673     $              H( IFRSTM, ILAST-1 ), 1, C, S )
674         CALL DROT( ILAST-IFRSTM, T( IFRSTM, ILAST ), 1,
675     $              T( IFRSTM, ILAST-1 ), 1, C, S )
676         IF( ILZ )
677     $      CALL DROT( N, Z( 1, ILAST ), 1, Z( 1, ILAST-1 ), 1, C, S )
678*
679*        H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHAR, ALPHAI,
680*                              and BETA
681*
682   80    CONTINUE
683         IF( T( ILAST, ILAST ).LT.ZERO ) THEN
684            IF( ILSCHR ) THEN
685               DO 90 J = IFRSTM, ILAST
686                  H( J, ILAST ) = -H( J, ILAST )
687                  T( J, ILAST ) = -T( J, ILAST )
688   90          CONTINUE
689            ELSE
690               H( ILAST, ILAST ) = -H( ILAST, ILAST )
691               T( ILAST, ILAST ) = -T( ILAST, ILAST )
692            END IF
693            IF( ILZ ) THEN
694               DO 100 J = 1, N
695                  Z( J, ILAST ) = -Z( J, ILAST )
696  100          CONTINUE
697            END IF
698         END IF
699         ALPHAR( ILAST ) = H( ILAST, ILAST )
700         ALPHAI( ILAST ) = ZERO
701         BETA( ILAST ) = T( ILAST, ILAST )
702*
703*        Go to next block -- exit if finished.
704*
705         ILAST = ILAST - 1
706         IF( ILAST.LT.ILO )
707     $      GO TO 380
708*
709*        Reset counters
710*
711         IITER = 0
712         ESHIFT = ZERO
713         IF( .NOT.ILSCHR ) THEN
714            ILASTM = ILAST
715            IF( IFRSTM.GT.ILAST )
716     $         IFRSTM = ILO
717         END IF
718         GO TO 350
719*
720*        QZ step
721*
722*        This iteration only involves rows/columns IFIRST:ILAST. We
723*        assume IFIRST < ILAST, and that the diagonal of B is non-zero.
724*
725  110    CONTINUE
726         IITER = IITER + 1
727         IF( .NOT.ILSCHR ) THEN
728            IFRSTM = IFIRST
729         END IF
730*
731*        Compute single shifts.
732*
733*        At this point, IFIRST < ILAST, and the diagonal elements of
734*        T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in
735*        magnitude)
736*
737         IF( ( IITER / 10 )*10.EQ.IITER ) THEN
738*
739*           Exceptional shift.  Chosen for no particularly good reason.
740*           (Single shift only.)
741*
742            IF( ( DBLE( MAXIT )*SAFMIN )*ABS( H( ILAST, ILAST-1 ) ).LT.
743     $          ABS( T( ILAST-1, ILAST-1 ) ) ) THEN
744               ESHIFT = H( ILAST, ILAST-1 ) /
745     $                  T( ILAST-1, ILAST-1 )
746            ELSE
747               ESHIFT = ESHIFT + ONE / ( SAFMIN*DBLE( MAXIT ) )
748            END IF
749            S1 = ONE
750            WR = ESHIFT
751*
752         ELSE
753*
754*           Shifts based on the generalized eigenvalues of the
755*           bottom-right 2x2 block of A and B. The first eigenvalue
756*           returned by DLAG2 is the Wilkinson shift (AEP p.512),
757*
758            CALL DLAG2( H( ILAST-1, ILAST-1 ), LDH,
759     $                  T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1,
760     $                  S2, WR, WR2, WI )
761*
762            IF ( ABS( (WR/S1)*T( ILAST, ILAST ) - H( ILAST, ILAST ) )
763     $         .GT. ABS( (WR2/S2)*T( ILAST, ILAST )
764     $         - H( ILAST, ILAST ) ) ) THEN
765               TEMP = WR
766               WR = WR2
767               WR2 = TEMP
768               TEMP = S1
769               S1 = S2
770               S2 = TEMP
771            END IF
772            TEMP = MAX( S1, SAFMIN*MAX( ONE, ABS( WR ), ABS( WI ) ) )
773            IF( WI.NE.ZERO )
774     $         GO TO 200
775         END IF
776*
777*        Fiddle with shift to avoid overflow
778*
779         TEMP = MIN( ASCALE, ONE )*( HALF*SAFMAX )
780         IF( S1.GT.TEMP ) THEN
781            SCALE = TEMP / S1
782         ELSE
783            SCALE = ONE
784         END IF
785*
786         TEMP = MIN( BSCALE, ONE )*( HALF*SAFMAX )
787         IF( ABS( WR ).GT.TEMP )
788     $      SCALE = MIN( SCALE, TEMP / ABS( WR ) )
789         S1 = SCALE*S1
790         WR = SCALE*WR
791*
792*        Now check for two consecutive small subdiagonals.
793*
794         DO 120 J = ILAST - 1, IFIRST + 1, -1
795            ISTART = J
796            TEMP = ABS( S1*H( J, J-1 ) )
797            TEMP2 = ABS( S1*H( J, J )-WR*T( J, J ) )
798            TEMPR = MAX( TEMP, TEMP2 )
799            IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
800               TEMP = TEMP / TEMPR
801               TEMP2 = TEMP2 / TEMPR
802            END IF
803            IF( ABS( ( ASCALE*H( J+1, J ) )*TEMP ).LE.( ASCALE*ATOL )*
804     $          TEMP2 )GO TO 130
805  120    CONTINUE
806*
807         ISTART = IFIRST
808  130    CONTINUE
809*
810*        Do an implicit single-shift QZ sweep.
811*
812*        Initial Q
813*
814         TEMP = S1*H( ISTART, ISTART ) - WR*T( ISTART, ISTART )
815         TEMP2 = S1*H( ISTART+1, ISTART )
816         CALL DLARTG( TEMP, TEMP2, C, S, TEMPR )
817*
818*        Sweep
819*
820         DO 190 J = ISTART, ILAST - 1
821            IF( J.GT.ISTART ) THEN
822               TEMP = H( J, J-1 )
823               CALL DLARTG( TEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
824               H( J+1, J-1 ) = ZERO
825            END IF
826*
827            DO 140 JC = J, ILASTM
828               TEMP = C*H( J, JC ) + S*H( J+1, JC )
829               H( J+1, JC ) = -S*H( J, JC ) + C*H( J+1, JC )
830               H( J, JC ) = TEMP
831               TEMP2 = C*T( J, JC ) + S*T( J+1, JC )
832               T( J+1, JC ) = -S*T( J, JC ) + C*T( J+1, JC )
833               T( J, JC ) = TEMP2
834  140       CONTINUE
835            IF( ILQ ) THEN
836               DO 150 JR = 1, N
837                  TEMP = C*Q( JR, J ) + S*Q( JR, J+1 )
838                  Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
839                  Q( JR, J ) = TEMP
840  150          CONTINUE
841            END IF
842*
843            TEMP = T( J+1, J+1 )
844            CALL DLARTG( TEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
845            T( J+1, J ) = ZERO
846*
847            DO 160 JR = IFRSTM, MIN( J+2, ILAST )
848               TEMP = C*H( JR, J+1 ) + S*H( JR, J )
849               H( JR, J ) = -S*H( JR, J+1 ) + C*H( JR, J )
850               H( JR, J+1 ) = TEMP
851  160       CONTINUE
852            DO 170 JR = IFRSTM, J
853               TEMP = C*T( JR, J+1 ) + S*T( JR, J )
854               T( JR, J ) = -S*T( JR, J+1 ) + C*T( JR, J )
855               T( JR, J+1 ) = TEMP
856  170       CONTINUE
857            IF( ILZ ) THEN
858               DO 180 JR = 1, N
859                  TEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
860                  Z( JR, J ) = -S*Z( JR, J+1 ) + C*Z( JR, J )
861                  Z( JR, J+1 ) = TEMP
862  180          CONTINUE
863            END IF
864  190    CONTINUE
865*
866         GO TO 350
867*
868*        Use Francis double-shift
869*
870*        Note: the Francis double-shift should work with real shifts,
871*              but only if the block is at least 3x3.
872*              This code may break if this point is reached with
873*              a 2x2 block with real eigenvalues.
874*
875  200    CONTINUE
876         IF( IFIRST+1.EQ.ILAST ) THEN
877*
878*           Special case -- 2x2 block with complex eigenvectors
879*
880*           Step 1: Standardize, that is, rotate so that
881*
882*                       ( B11  0  )
883*                   B = (         )  with B11 non-negative.
884*                       (  0  B22 )
885*
886            CALL DLASV2( T( ILAST-1, ILAST-1 ), T( ILAST-1, ILAST ),
887     $                   T( ILAST, ILAST ), B22, B11, SR, CR, SL, CL )
888*
889            IF( B11.LT.ZERO ) THEN
890               CR = -CR
891               SR = -SR
892               B11 = -B11
893               B22 = -B22
894            END IF
895*
896            CALL DROT( ILASTM+1-IFIRST, H( ILAST-1, ILAST-1 ), LDH,
897     $                 H( ILAST, ILAST-1 ), LDH, CL, SL )
898            CALL DROT( ILAST+1-IFRSTM, H( IFRSTM, ILAST-1 ), 1,
899     $                 H( IFRSTM, ILAST ), 1, CR, SR )
900*
901            IF( ILAST.LT.ILASTM )
902     $         CALL DROT( ILASTM-ILAST, T( ILAST-1, ILAST+1 ), LDT,
903     $                    T( ILAST, ILAST+1 ), LDT, CL, SL )
904            IF( IFRSTM.LT.ILAST-1 )
905     $         CALL DROT( IFIRST-IFRSTM, T( IFRSTM, ILAST-1 ), 1,
906     $                    T( IFRSTM, ILAST ), 1, CR, SR )
907*
908            IF( ILQ )
909     $         CALL DROT( N, Q( 1, ILAST-1 ), 1, Q( 1, ILAST ), 1, CL,
910     $                    SL )
911            IF( ILZ )
912     $         CALL DROT( N, Z( 1, ILAST-1 ), 1, Z( 1, ILAST ), 1, CR,
913     $                    SR )
914*
915            T( ILAST-1, ILAST-1 ) = B11
916            T( ILAST-1, ILAST ) = ZERO
917            T( ILAST, ILAST-1 ) = ZERO
918            T( ILAST, ILAST ) = B22
919*
920*           If B22 is negative, negate column ILAST
921*
922            IF( B22.LT.ZERO ) THEN
923               DO 210 J = IFRSTM, ILAST
924                  H( J, ILAST ) = -H( J, ILAST )
925                  T( J, ILAST ) = -T( J, ILAST )
926  210          CONTINUE
927*
928               IF( ILZ ) THEN
929                  DO 220 J = 1, N
930                     Z( J, ILAST ) = -Z( J, ILAST )
931  220             CONTINUE
932               END IF
933               B22 = -B22
934            END IF
935*
936*           Step 2: Compute ALPHAR, ALPHAI, and BETA (see refs.)
937*
938*           Recompute shift
939*
940            CALL DLAG2( H( ILAST-1, ILAST-1 ), LDH,
941     $                  T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1,
942     $                  TEMP, WR, TEMP2, WI )
943*
944*           If standardization has perturbed the shift onto real line,
945*           do another (real single-shift) QR step.
946*
947            IF( WI.EQ.ZERO )
948     $         GO TO 350
949            S1INV = ONE / S1
950*
951*           Do EISPACK (QZVAL) computation of alpha and beta
952*
953            A11 = H( ILAST-1, ILAST-1 )
954            A21 = H( ILAST, ILAST-1 )
955            A12 = H( ILAST-1, ILAST )
956            A22 = H( ILAST, ILAST )
957*
958*           Compute complex Givens rotation on right
959*           (Assume some element of C = (sA - wB) > unfl )
960*                            __
961*           (sA - wB) ( CZ   -SZ )
962*                     ( SZ    CZ )
963*
964            C11R = S1*A11 - WR*B11
965            C11I = -WI*B11
966            C12 = S1*A12
967            C21 = S1*A21
968            C22R = S1*A22 - WR*B22
969            C22I = -WI*B22
970*
971            IF( ABS( C11R )+ABS( C11I )+ABS( C12 ).GT.ABS( C21 )+
972     $          ABS( C22R )+ABS( C22I ) ) THEN
973               T1 = DLAPY3( C12, C11R, C11I )
974               CZ = C12 / T1
975               SZR = -C11R / T1
976               SZI = -C11I / T1
977            ELSE
978               CZ = DLAPY2( C22R, C22I )
979               IF( CZ.LE.SAFMIN ) THEN
980                  CZ = ZERO
981                  SZR = ONE
982                  SZI = ZERO
983               ELSE
984                  TEMPR = C22R / CZ
985                  TEMPI = C22I / CZ
986                  T1 = DLAPY2( CZ, C21 )
987                  CZ = CZ / T1
988                  SZR = -C21*TEMPR / T1
989                  SZI = C21*TEMPI / T1
990               END IF
991            END IF
992*
993*           Compute Givens rotation on left
994*
995*           (  CQ   SQ )
996*           (  __      )  A or B
997*           ( -SQ   CQ )
998*
999            AN = ABS( A11 ) + ABS( A12 ) + ABS( A21 ) + ABS( A22 )
1000            BN = ABS( B11 ) + ABS( B22 )
1001            WABS = ABS( WR ) + ABS( WI )
1002            IF( S1*AN.GT.WABS*BN ) THEN
1003               CQ = CZ*B11
1004               SQR = SZR*B22
1005               SQI = -SZI*B22
1006            ELSE
1007               A1R = CZ*A11 + SZR*A12
1008               A1I = SZI*A12
1009               A2R = CZ*A21 + SZR*A22
1010               A2I = SZI*A22
1011               CQ = DLAPY2( A1R, A1I )
1012               IF( CQ.LE.SAFMIN ) THEN
1013                  CQ = ZERO
1014                  SQR = ONE
1015                  SQI = ZERO
1016               ELSE
1017                  TEMPR = A1R / CQ
1018                  TEMPI = A1I / CQ
1019                  SQR = TEMPR*A2R + TEMPI*A2I
1020                  SQI = TEMPI*A2R - TEMPR*A2I
1021               END IF
1022            END IF
1023            T1 = DLAPY3( CQ, SQR, SQI )
1024            CQ = CQ / T1
1025            SQR = SQR / T1
1026            SQI = SQI / T1
1027*
1028*           Compute diagonal elements of QBZ
1029*
1030            TEMPR = SQR*SZR - SQI*SZI
1031            TEMPI = SQR*SZI + SQI*SZR
1032            B1R = CQ*CZ*B11 + TEMPR*B22
1033            B1I = TEMPI*B22
1034            B1A = DLAPY2( B1R, B1I )
1035            B2R = CQ*CZ*B22 + TEMPR*B11
1036            B2I = -TEMPI*B11
1037            B2A = DLAPY2( B2R, B2I )
1038*
1039*           Normalize so beta > 0, and Im( alpha1 ) > 0
1040*
1041            BETA( ILAST-1 ) = B1A
1042            BETA( ILAST ) = B2A
1043            ALPHAR( ILAST-1 ) = ( WR*B1A )*S1INV
1044            ALPHAI( ILAST-1 ) = ( WI*B1A )*S1INV
1045            ALPHAR( ILAST ) = ( WR*B2A )*S1INV
1046            ALPHAI( ILAST ) = -( WI*B2A )*S1INV
1047*
1048*           Step 3: Go to next block -- exit if finished.
1049*
1050            ILAST = IFIRST - 1
1051            IF( ILAST.LT.ILO )
1052     $         GO TO 380
1053*
1054*           Reset counters
1055*
1056            IITER = 0
1057            ESHIFT = ZERO
1058            IF( .NOT.ILSCHR ) THEN
1059               ILASTM = ILAST
1060               IF( IFRSTM.GT.ILAST )
1061     $            IFRSTM = ILO
1062            END IF
1063            GO TO 350
1064         ELSE
1065*
1066*           Usual case: 3x3 or larger block, using Francis implicit
1067*                       double-shift
1068*
1069*                                    2
1070*           Eigenvalue equation is  w  - c w + d = 0,
1071*
1072*                                         -1 2        -1
1073*           so compute 1st column of  (A B  )  - c A B   + d
1074*           using the formula in QZIT (from EISPACK)
1075*
1076*           We assume that the block is at least 3x3
1077*
1078            AD11 = ( ASCALE*H( ILAST-1, ILAST-1 ) ) /
1079     $             ( BSCALE*T( ILAST-1, ILAST-1 ) )
1080            AD21 = ( ASCALE*H( ILAST, ILAST-1 ) ) /
1081     $             ( BSCALE*T( ILAST-1, ILAST-1 ) )
1082            AD12 = ( ASCALE*H( ILAST-1, ILAST ) ) /
1083     $             ( BSCALE*T( ILAST, ILAST ) )
1084            AD22 = ( ASCALE*H( ILAST, ILAST ) ) /
1085     $             ( BSCALE*T( ILAST, ILAST ) )
1086            U12 = T( ILAST-1, ILAST ) / T( ILAST, ILAST )
1087            AD11L = ( ASCALE*H( IFIRST, IFIRST ) ) /
1088     $              ( BSCALE*T( IFIRST, IFIRST ) )
1089            AD21L = ( ASCALE*H( IFIRST+1, IFIRST ) ) /
1090     $              ( BSCALE*T( IFIRST, IFIRST ) )
1091            AD12L = ( ASCALE*H( IFIRST, IFIRST+1 ) ) /
1092     $              ( BSCALE*T( IFIRST+1, IFIRST+1 ) )
1093            AD22L = ( ASCALE*H( IFIRST+1, IFIRST+1 ) ) /
1094     $              ( BSCALE*T( IFIRST+1, IFIRST+1 ) )
1095            AD32L = ( ASCALE*H( IFIRST+2, IFIRST+1 ) ) /
1096     $              ( BSCALE*T( IFIRST+1, IFIRST+1 ) )
1097            U12L = T( IFIRST, IFIRST+1 ) / T( IFIRST+1, IFIRST+1 )
1098*
1099            V( 1 ) = ( AD11-AD11L )*( AD22-AD11L ) - AD12*AD21 +
1100     $               AD21*U12*AD11L + ( AD12L-AD11L*U12L )*AD21L
1101            V( 2 ) = ( ( AD22L-AD11L )-AD21L*U12L-( AD11-AD11L )-
1102     $               ( AD22-AD11L )+AD21*U12 )*AD21L
1103            V( 3 ) = AD32L*AD21L
1104*
1105            ISTART = IFIRST
1106*
1107            CALL DLARFG( 3, V( 1 ), V( 2 ), 1, TAU )
1108            V( 1 ) = ONE
1109*
1110*           Sweep
1111*
1112            DO 290 J = ISTART, ILAST - 2
1113*
1114*              All but last elements: use 3x3 Householder transforms.
1115*
1116*              Zero (j-1)st column of A
1117*
1118               IF( J.GT.ISTART ) THEN
1119                  V( 1 ) = H( J, J-1 )
1120                  V( 2 ) = H( J+1, J-1 )
1121                  V( 3 ) = H( J+2, J-1 )
1122*
1123                  CALL DLARFG( 3, H( J, J-1 ), V( 2 ), 1, TAU )
1124                  V( 1 ) = ONE
1125                  H( J+1, J-1 ) = ZERO
1126                  H( J+2, J-1 ) = ZERO
1127               END IF
1128*
1129               DO 230 JC = J, ILASTM
1130                  TEMP = TAU*( H( J, JC )+V( 2 )*H( J+1, JC )+V( 3 )*
1131     $                   H( J+2, JC ) )
1132                  H( J, JC ) = H( J, JC ) - TEMP
1133                  H( J+1, JC ) = H( J+1, JC ) - TEMP*V( 2 )
1134                  H( J+2, JC ) = H( J+2, JC ) - TEMP*V( 3 )
1135                  TEMP2 = TAU*( T( J, JC )+V( 2 )*T( J+1, JC )+V( 3 )*
1136     $                    T( J+2, JC ) )
1137                  T( J, JC ) = T( J, JC ) - TEMP2
1138                  T( J+1, JC ) = T( J+1, JC ) - TEMP2*V( 2 )
1139                  T( J+2, JC ) = T( J+2, JC ) - TEMP2*V( 3 )
1140  230          CONTINUE
1141               IF( ILQ ) THEN
1142                  DO 240 JR = 1, N
1143                     TEMP = TAU*( Q( JR, J )+V( 2 )*Q( JR, J+1 )+V( 3 )*
1144     $                      Q( JR, J+2 ) )
1145                     Q( JR, J ) = Q( JR, J ) - TEMP
1146                     Q( JR, J+1 ) = Q( JR, J+1 ) - TEMP*V( 2 )
1147                     Q( JR, J+2 ) = Q( JR, J+2 ) - TEMP*V( 3 )
1148  240             CONTINUE
1149               END IF
1150*
1151*              Zero j-th column of B (see DLAGBC for details)
1152*
1153*              Swap rows to pivot
1154*
1155               ILPIVT = .FALSE.
1156               TEMP = MAX( ABS( T( J+1, J+1 ) ), ABS( T( J+1, J+2 ) ) )
1157               TEMP2 = MAX( ABS( T( J+2, J+1 ) ), ABS( T( J+2, J+2 ) ) )
1158               IF( MAX( TEMP, TEMP2 ).LT.SAFMIN ) THEN
1159                  SCALE = ZERO
1160                  U1 = ONE
1161                  U2 = ZERO
1162                  GO TO 250
1163               ELSE IF( TEMP.GE.TEMP2 ) THEN
1164                  W11 = T( J+1, J+1 )
1165                  W21 = T( J+2, J+1 )
1166                  W12 = T( J+1, J+2 )
1167                  W22 = T( J+2, J+2 )
1168                  U1 = T( J+1, J )
1169                  U2 = T( J+2, J )
1170               ELSE
1171                  W21 = T( J+1, J+1 )
1172                  W11 = T( J+2, J+1 )
1173                  W22 = T( J+1, J+2 )
1174                  W12 = T( J+2, J+2 )
1175                  U2 = T( J+1, J )
1176                  U1 = T( J+2, J )
1177               END IF
1178*
1179*              Swap columns if nec.
1180*
1181               IF( ABS( W12 ).GT.ABS( W11 ) ) THEN
1182                  ILPIVT = .TRUE.
1183                  TEMP = W12
1184                  TEMP2 = W22
1185                  W12 = W11
1186                  W22 = W21
1187                  W11 = TEMP
1188                  W21 = TEMP2
1189               END IF
1190*
1191*              LU-factor
1192*
1193               TEMP = W21 / W11
1194               U2 = U2 - TEMP*U1
1195               W22 = W22 - TEMP*W12
1196               W21 = ZERO
1197*
1198*              Compute SCALE
1199*
1200               SCALE = ONE
1201               IF( ABS( W22 ).LT.SAFMIN ) THEN
1202                  SCALE = ZERO
1203                  U2 = ONE
1204                  U1 = -W12 / W11
1205                  GO TO 250
1206               END IF
1207               IF( ABS( W22 ).LT.ABS( U2 ) )
1208     $            SCALE = ABS( W22 / U2 )
1209               IF( ABS( W11 ).LT.ABS( U1 ) )
1210     $            SCALE = MIN( SCALE, ABS( W11 / U1 ) )
1211*
1212*              Solve
1213*
1214               U2 = ( SCALE*U2 ) / W22
1215               U1 = ( SCALE*U1-W12*U2 ) / W11
1216*
1217  250          CONTINUE
1218               IF( ILPIVT ) THEN
1219                  TEMP = U2
1220                  U2 = U1
1221                  U1 = TEMP
1222               END IF
1223*
1224*              Compute Householder Vector
1225*
1226               T1 = SQRT( SCALE**2+U1**2+U2**2 )
1227               TAU = ONE + SCALE / T1
1228               VS = -ONE / ( SCALE+T1 )
1229               V( 1 ) = ONE
1230               V( 2 ) = VS*U1
1231               V( 3 ) = VS*U2
1232*
1233*              Apply transformations from the right.
1234*
1235               DO 260 JR = IFRSTM, MIN( J+3, ILAST )
1236                  TEMP = TAU*( H( JR, J )+V( 2 )*H( JR, J+1 )+V( 3 )*
1237     $                   H( JR, J+2 ) )
1238                  H( JR, J ) = H( JR, J ) - TEMP
1239                  H( JR, J+1 ) = H( JR, J+1 ) - TEMP*V( 2 )
1240                  H( JR, J+2 ) = H( JR, J+2 ) - TEMP*V( 3 )
1241  260          CONTINUE
1242               DO 270 JR = IFRSTM, J + 2
1243                  TEMP = TAU*( T( JR, J )+V( 2 )*T( JR, J+1 )+V( 3 )*
1244     $                   T( JR, J+2 ) )
1245                  T( JR, J ) = T( JR, J ) - TEMP
1246                  T( JR, J+1 ) = T( JR, J+1 ) - TEMP*V( 2 )
1247                  T( JR, J+2 ) = T( JR, J+2 ) - TEMP*V( 3 )
1248  270          CONTINUE
1249               IF( ILZ ) THEN
1250                  DO 280 JR = 1, N
1251                     TEMP = TAU*( Z( JR, J )+V( 2 )*Z( JR, J+1 )+V( 3 )*
1252     $                      Z( JR, J+2 ) )
1253                     Z( JR, J ) = Z( JR, J ) - TEMP
1254                     Z( JR, J+1 ) = Z( JR, J+1 ) - TEMP*V( 2 )
1255                     Z( JR, J+2 ) = Z( JR, J+2 ) - TEMP*V( 3 )
1256  280             CONTINUE
1257               END IF
1258               T( J+1, J ) = ZERO
1259               T( J+2, J ) = ZERO
1260  290       CONTINUE
1261*
1262*           Last elements: Use Givens rotations
1263*
1264*           Rotations from the left
1265*
1266            J = ILAST - 1
1267            TEMP = H( J, J-1 )
1268            CALL DLARTG( TEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
1269            H( J+1, J-1 ) = ZERO
1270*
1271            DO 300 JC = J, ILASTM
1272               TEMP = C*H( J, JC ) + S*H( J+1, JC )
1273               H( J+1, JC ) = -S*H( J, JC ) + C*H( J+1, JC )
1274               H( J, JC ) = TEMP
1275               TEMP2 = C*T( J, JC ) + S*T( J+1, JC )
1276               T( J+1, JC ) = -S*T( J, JC ) + C*T( J+1, JC )
1277               T( J, JC ) = TEMP2
1278  300       CONTINUE
1279            IF( ILQ ) THEN
1280               DO 310 JR = 1, N
1281                  TEMP = C*Q( JR, J ) + S*Q( JR, J+1 )
1282                  Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
1283                  Q( JR, J ) = TEMP
1284  310          CONTINUE
1285            END IF
1286*
1287*           Rotations from the right.
1288*
1289            TEMP = T( J+1, J+1 )
1290            CALL DLARTG( TEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
1291            T( J+1, J ) = ZERO
1292*
1293            DO 320 JR = IFRSTM, ILAST
1294               TEMP = C*H( JR, J+1 ) + S*H( JR, J )
1295               H( JR, J ) = -S*H( JR, J+1 ) + C*H( JR, J )
1296               H( JR, J+1 ) = TEMP
1297  320       CONTINUE
1298            DO 330 JR = IFRSTM, ILAST - 1
1299               TEMP = C*T( JR, J+1 ) + S*T( JR, J )
1300               T( JR, J ) = -S*T( JR, J+1 ) + C*T( JR, J )
1301               T( JR, J+1 ) = TEMP
1302  330       CONTINUE
1303            IF( ILZ ) THEN
1304               DO 340 JR = 1, N
1305                  TEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
1306                  Z( JR, J ) = -S*Z( JR, J+1 ) + C*Z( JR, J )
1307                  Z( JR, J+1 ) = TEMP
1308  340          CONTINUE
1309            END IF
1310*
1311*           End of Double-Shift code
1312*
1313         END IF
1314*
1315         GO TO 350
1316*
1317*        End of iteration loop
1318*
1319  350    CONTINUE
1320  360 CONTINUE
1321*
1322*     Drop-through = non-convergence
1323*
1324      INFO = ILAST
1325      GO TO 420
1326*
1327*     Successful completion of all QZ steps
1328*
1329  380 CONTINUE
1330*
1331*     Set Eigenvalues 1:ILO-1
1332*
1333      DO 410 J = 1, ILO - 1
1334         IF( T( J, J ).LT.ZERO ) THEN
1335            IF( ILSCHR ) THEN
1336               DO 390 JR = 1, J
1337                  H( JR, J ) = -H( JR, J )
1338                  T( JR, J ) = -T( JR, J )
1339  390          CONTINUE
1340            ELSE
1341               H( J, J ) = -H( J, J )
1342               T( J, J ) = -T( J, J )
1343            END IF
1344            IF( ILZ ) THEN
1345               DO 400 JR = 1, N
1346                  Z( JR, J ) = -Z( JR, J )
1347  400          CONTINUE
1348            END IF
1349         END IF
1350         ALPHAR( J ) = H( J, J )
1351         ALPHAI( J ) = ZERO
1352         BETA( J ) = T( J, J )
1353  410 CONTINUE
1354*
1355*     Normal Termination
1356*
1357      INFO = 0
1358*
1359*     Exit (other than argument error) -- return optimal workspace size
1360*
1361  420 CONTINUE
1362      WORK( 1 ) = DBLE( N )
1363      RETURN
1364*
1365*     End of DHGEQZ
1366*
1367      END
1368