1*> \brief <b> SSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SSYEVR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyevr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyevr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyevr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
22*                          ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
23*                          IWORK, LIWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          JOBZ, RANGE, UPLO
27*       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
28*       REAL               ABSTOL, VL, VU
29*       ..
30*       .. Array Arguments ..
31*       INTEGER            ISUPPZ( * ), IWORK( * )
32*       REAL               A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
33*       ..
34*
35*
36*> \par Purpose:
37*  =============
38*>
39*> \verbatim
40*>
41*> SSYEVR computes selected eigenvalues and, optionally, eigenvectors
42*> of a real symmetric matrix A.  Eigenvalues and eigenvectors can be
43*> selected by specifying either a range of values or a range of
44*> indices for the desired eigenvalues.
45*>
46*> SSYEVR first reduces the matrix A to tridiagonal form T with a call
47*> to SSYTRD.  Then, whenever possible, SSYEVR calls SSTEMR to compute
48*> the eigenspectrum using Relatively Robust Representations.  SSTEMR
49*> computes eigenvalues by the dqds algorithm, while orthogonal
50*> eigenvectors are computed from various "good" L D L^T representations
51*> (also known as Relatively Robust Representations). Gram-Schmidt
52*> orthogonalization is avoided as far as possible. More specifically,
53*> the various steps of the algorithm are as follows.
54*>
55*> For each unreduced block (submatrix) of T,
56*>    (a) Compute T - sigma I  = L D L^T, so that L and D
57*>        define all the wanted eigenvalues to high relative accuracy.
58*>        This means that small relative changes in the entries of D and L
59*>        cause only small relative changes in the eigenvalues and
60*>        eigenvectors. The standard (unfactored) representation of the
61*>        tridiagonal matrix T does not have this property in general.
62*>    (b) Compute the eigenvalues to suitable accuracy.
63*>        If the eigenvectors are desired, the algorithm attains full
64*>        accuracy of the computed eigenvalues only right before
65*>        the corresponding vectors have to be computed, see steps c) and d).
66*>    (c) For each cluster of close eigenvalues, select a new
67*>        shift close to the cluster, find a new factorization, and refine
68*>        the shifted eigenvalues to suitable accuracy.
69*>    (d) For each eigenvalue with a large enough relative separation compute
70*>        the corresponding eigenvector by forming a rank revealing twisted
71*>        factorization. Go back to (c) for any clusters that remain.
72*>
73*> The desired accuracy of the output can be specified by the input
74*> parameter ABSTOL.
75*>
76*> For more details, see SSTEMR's documentation and:
77*> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
78*>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
79*>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
80*> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
81*>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
82*>   2004.  Also LAPACK Working Note 154.
83*> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
84*>   tridiagonal eigenvalue/eigenvector problem",
85*>   Computer Science Division Technical Report No. UCB/CSD-97-971,
86*>   UC Berkeley, May 1997.
87*>
88*>
89*> Note 1 : SSYEVR calls SSTEMR when the full spectrum is requested
90*> on machines which conform to the ieee-754 floating point standard.
91*> SSYEVR calls SSTEBZ and SSTEIN on non-ieee machines and
92*> when partial spectrum requests are made.
93*>
94*> Normal execution of SSTEMR may create NaNs and infinities and
95*> hence may abort due to a floating point exception in environments
96*> which do not handle NaNs and infinities in the ieee standard default
97*> manner.
98*> \endverbatim
99*
100*  Arguments:
101*  ==========
102*
103*> \param[in] JOBZ
104*> \verbatim
105*>          JOBZ is CHARACTER*1
106*>          = 'N':  Compute eigenvalues only;
107*>          = 'V':  Compute eigenvalues and eigenvectors.
108*> \endverbatim
109*>
110*> \param[in] RANGE
111*> \verbatim
112*>          RANGE is CHARACTER*1
113*>          = 'A': all eigenvalues will be found.
114*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
115*>                 will be found.
116*>          = 'I': the IL-th through IU-th eigenvalues will be found.
117*>          For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
118*>          SSTEIN are called
119*> \endverbatim
120*>
121*> \param[in] UPLO
122*> \verbatim
123*>          UPLO is CHARACTER*1
124*>          = 'U':  Upper triangle of A is stored;
125*>          = 'L':  Lower triangle of A is stored.
126*> \endverbatim
127*>
128*> \param[in] N
129*> \verbatim
130*>          N is INTEGER
131*>          The order of the matrix A.  N >= 0.
132*> \endverbatim
133*>
134*> \param[in,out] A
135*> \verbatim
136*>          A is REAL array, dimension (LDA, N)
137*>          On entry, the symmetric matrix A.  If UPLO = 'U', the
138*>          leading N-by-N upper triangular part of A contains the
139*>          upper triangular part of the matrix A.  If UPLO = 'L',
140*>          the leading N-by-N lower triangular part of A contains
141*>          the lower triangular part of the matrix A.
142*>          On exit, the lower triangle (if UPLO='L') or the upper
143*>          triangle (if UPLO='U') of A, including the diagonal, is
144*>          destroyed.
145*> \endverbatim
146*>
147*> \param[in] LDA
148*> \verbatim
149*>          LDA is INTEGER
150*>          The leading dimension of the array A.  LDA >= max(1,N).
151*> \endverbatim
152*>
153*> \param[in] VL
154*> \verbatim
155*>          VL is REAL
156*>          If RANGE='V', the lower bound of the interval to
157*>          be searched for eigenvalues. VL < VU.
158*>          Not referenced if RANGE = 'A' or 'I'.
159*> \endverbatim
160*>
161*> \param[in] VU
162*> \verbatim
163*>          VU is REAL
164*>          If RANGE='V', the upper bound of the interval to
165*>          be searched for eigenvalues. VL < VU.
166*>          Not referenced if RANGE = 'A' or 'I'.
167*> \endverbatim
168*>
169*> \param[in] IL
170*> \verbatim
171*>          IL is INTEGER
172*>          If RANGE='I', the index of the
173*>          smallest eigenvalue to be returned.
174*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
175*>          Not referenced if RANGE = 'A' or 'V'.
176*> \endverbatim
177*>
178*> \param[in] IU
179*> \verbatim
180*>          IU is INTEGER
181*>          If RANGE='I', the index of the
182*>          largest eigenvalue to be returned.
183*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
184*>          Not referenced if RANGE = 'A' or 'V'.
185*> \endverbatim
186*>
187*> \param[in] ABSTOL
188*> \verbatim
189*>          ABSTOL is REAL
190*>          The absolute error tolerance for the eigenvalues.
191*>          An approximate eigenvalue is accepted as converged
192*>          when it is determined to lie in an interval [a,b]
193*>          of width less than or equal to
194*>
195*>                  ABSTOL + EPS *   max( |a|,|b| ) ,
196*>
197*>          where EPS is the machine precision.  If ABSTOL is less than
198*>          or equal to zero, then  EPS*|T|  will be used in its place,
199*>          where |T| is the 1-norm of the tridiagonal matrix obtained
200*>          by reducing A to tridiagonal form.
201*>
202*>          See "Computing Small Singular Values of Bidiagonal Matrices
203*>          with Guaranteed High Relative Accuracy," by Demmel and
204*>          Kahan, LAPACK Working Note #3.
205*>
206*>          If high relative accuracy is important, set ABSTOL to
207*>          SLAMCH( 'Safe minimum' ).  Doing so will guarantee that
208*>          eigenvalues are computed to high relative accuracy when
209*>          possible in future releases.  The current code does not
210*>          make any guarantees about high relative accuracy, but
211*>          future releases will. See J. Barlow and J. Demmel,
212*>          "Computing Accurate Eigensystems of Scaled Diagonally
213*>          Dominant Matrices", LAPACK Working Note #7, for a discussion
214*>          of which matrices define their eigenvalues to high relative
215*>          accuracy.
216*> \endverbatim
217*>
218*> \param[out] M
219*> \verbatim
220*>          M is INTEGER
221*>          The total number of eigenvalues found.  0 <= M <= N.
222*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
223*> \endverbatim
224*>
225*> \param[out] W
226*> \verbatim
227*>          W is REAL array, dimension (N)
228*>          The first M elements contain the selected eigenvalues in
229*>          ascending order.
230*> \endverbatim
231*>
232*> \param[out] Z
233*> \verbatim
234*>          Z is REAL array, dimension (LDZ, max(1,M))
235*>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
236*>          contain the orthonormal eigenvectors of the matrix A
237*>          corresponding to the selected eigenvalues, with the i-th
238*>          column of Z holding the eigenvector associated with W(i).
239*>          If JOBZ = 'N', then Z is not referenced.
240*>          Note: the user must ensure that at least max(1,M) columns are
241*>          supplied in the array Z; if RANGE = 'V', the exact value of M
242*>          is not known in advance and an upper bound must be used.
243*>          Supplying N columns is always safe.
244*> \endverbatim
245*>
246*> \param[in] LDZ
247*> \verbatim
248*>          LDZ is INTEGER
249*>          The leading dimension of the array Z.  LDZ >= 1, and if
250*>          JOBZ = 'V', LDZ >= max(1,N).
251*> \endverbatim
252*>
253*> \param[out] ISUPPZ
254*> \verbatim
255*>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
256*>          The support of the eigenvectors in Z, i.e., the indices
257*>          indicating the nonzero elements in Z. The i-th eigenvector
258*>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
259*>          ISUPPZ( 2*i ). This is an output of SSTEMR (tridiagonal
260*>          matrix). The support of the eigenvectors of A is typically
261*>          1:N because of the orthogonal transformations applied by SORMTR.
262*>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
263*> \endverbatim
264*>
265*> \param[out] WORK
266*> \verbatim
267*>          WORK is REAL array, dimension (MAX(1,LWORK))
268*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
269*> \endverbatim
270*>
271*> \param[in] LWORK
272*> \verbatim
273*>          LWORK is INTEGER
274*>          The dimension of the array WORK.  LWORK >= max(1,26*N).
275*>          For optimal efficiency, LWORK >= (NB+6)*N,
276*>          where NB is the max of the blocksize for SSYTRD and SORMTR
277*>          returned by ILAENV.
278*>
279*>          If LWORK = -1, then a workspace query is assumed; the routine
280*>          only calculates the optimal sizes of the WORK and IWORK
281*>          arrays, returns these values as the first entries of the WORK
282*>          and IWORK arrays, and no error message related to LWORK or
283*>          LIWORK is issued by XERBLA.
284*> \endverbatim
285*>
286*> \param[out] IWORK
287*> \verbatim
288*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
289*>          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
290*> \endverbatim
291*>
292*> \param[in] LIWORK
293*> \verbatim
294*>          LIWORK is INTEGER
295*>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
296*>
297*>          If LIWORK = -1, then a workspace query is assumed; the
298*>          routine only calculates the optimal sizes of the WORK and
299*>          IWORK arrays, returns these values as the first entries of
300*>          the WORK and IWORK arrays, and no error message related to
301*>          LWORK or LIWORK is issued by XERBLA.
302*> \endverbatim
303*>
304*> \param[out] INFO
305*> \verbatim
306*>          INFO is INTEGER
307*>          = 0:  successful exit
308*>          < 0:  if INFO = -i, the i-th argument had an illegal value
309*>          > 0:  Internal error
310*> \endverbatim
311*
312*  Authors:
313*  ========
314*
315*> \author Univ. of Tennessee
316*> \author Univ. of California Berkeley
317*> \author Univ. of Colorado Denver
318*> \author NAG Ltd.
319*
320*> \date June 2016
321*
322*> \ingroup realSYeigen
323*
324*> \par Contributors:
325*  ==================
326*>
327*>     Inderjit Dhillon, IBM Almaden, USA \n
328*>     Osni Marques, LBNL/NERSC, USA \n
329*>     Ken Stanley, Computer Science Division, University of
330*>       California at Berkeley, USA \n
331*>     Jason Riedy, Computer Science Division, University of
332*>       California at Berkeley, USA \n
333*>
334*  =====================================================================
335      SUBROUTINE SSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
336     $                   ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
337     $                   IWORK, LIWORK, INFO )
338*
339*  -- LAPACK driver routine (version 3.7.0) --
340*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
341*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
342*     June 2016
343*
344*     .. Scalar Arguments ..
345      CHARACTER          JOBZ, RANGE, UPLO
346      INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
347      REAL               ABSTOL, VL, VU
348*     ..
349*     .. Array Arguments ..
350      INTEGER            ISUPPZ( * ), IWORK( * )
351      REAL               A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
352*     ..
353*
354* =====================================================================
355*
356*     .. Parameters ..
357      REAL               ZERO, ONE, TWO
358      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
359*     ..
360*     .. Local Scalars ..
361      LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
362     $                   WANTZ, TRYRAC
363      CHARACTER          ORDER
364      INTEGER            I, IEEEOK, IINFO, IMAX, INDD, INDDD, INDE,
365     $                   INDEE, INDIBL, INDIFL, INDISP, INDIWO, INDTAU,
366     $                   INDWK, INDWKN, ISCALE, J, JJ, LIWMIN,
367     $                   LLWORK, LLWRKN, LWKOPT, LWMIN, NB, NSPLIT
368      REAL               ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
369     $                   SIGMA, SMLNUM, TMP1, VLL, VUU
370*     ..
371*     .. External Functions ..
372      LOGICAL            LSAME
373      INTEGER            ILAENV
374      REAL               SLAMCH, SLANSY
375      EXTERNAL           LSAME, ILAENV, SLAMCH, SLANSY
376*     ..
377*     .. External Subroutines ..
378      EXTERNAL           SCOPY, SORMTR, SSCAL, SSTEBZ, SSTEMR, SSTEIN,
379     $                   SSTERF, SSWAP, SSYTRD, XERBLA
380*     ..
381*     .. Intrinsic Functions ..
382      INTRINSIC          MAX, MIN, SQRT
383*     ..
384*     .. Executable Statements ..
385*
386*     Test the input parameters.
387*
388      IEEEOK = ILAENV( 10, 'SSYEVR', 'N', 1, 2, 3, 4 )
389*
390      LOWER = LSAME( UPLO, 'L' )
391      WANTZ = LSAME( JOBZ, 'V' )
392      ALLEIG = LSAME( RANGE, 'A' )
393      VALEIG = LSAME( RANGE, 'V' )
394      INDEIG = LSAME( RANGE, 'I' )
395*
396      LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
397*
398      LWMIN = MAX( 1, 26*N )
399      LIWMIN = MAX( 1, 10*N )
400*
401      INFO = 0
402      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
403         INFO = -1
404      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
405         INFO = -2
406      ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
407         INFO = -3
408      ELSE IF( N.LT.0 ) THEN
409         INFO = -4
410      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
411         INFO = -6
412      ELSE
413         IF( VALEIG ) THEN
414            IF( N.GT.0 .AND. VU.LE.VL )
415     $         INFO = -8
416         ELSE IF( INDEIG ) THEN
417            IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
418               INFO = -9
419            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
420               INFO = -10
421            END IF
422         END IF
423      END IF
424      IF( INFO.EQ.0 ) THEN
425         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
426            INFO = -15
427         END IF
428      END IF
429*
430      IF( INFO.EQ.0 ) THEN
431         NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
432         NB = MAX( NB, ILAENV( 1, 'SORMTR', UPLO, N, -1, -1, -1 ) )
433         LWKOPT = MAX( ( NB+1 )*N, LWMIN )
434         WORK( 1 ) = LWKOPT
435         IWORK( 1 ) = LIWMIN
436*
437         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
438            INFO = -18
439         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
440            INFO = -20
441         END IF
442      END IF
443*
444      IF( INFO.NE.0 ) THEN
445         CALL XERBLA( 'SSYEVR', -INFO )
446         RETURN
447      ELSE IF( LQUERY ) THEN
448         RETURN
449      END IF
450*
451*     Quick return if possible
452*
453      M = 0
454      IF( N.EQ.0 ) THEN
455         WORK( 1 ) = 1
456         RETURN
457      END IF
458*
459      IF( N.EQ.1 ) THEN
460         WORK( 1 ) = 26
461         IF( ALLEIG .OR. INDEIG ) THEN
462            M = 1
463            W( 1 ) = A( 1, 1 )
464         ELSE
465            IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
466               M = 1
467               W( 1 ) = A( 1, 1 )
468            END IF
469         END IF
470         IF( WANTZ ) THEN
471            Z( 1, 1 ) = ONE
472            ISUPPZ( 1 ) = 1
473            ISUPPZ( 2 ) = 1
474         END IF
475         RETURN
476      END IF
477*
478*     Get machine constants.
479*
480      SAFMIN = SLAMCH( 'Safe minimum' )
481      EPS = SLAMCH( 'Precision' )
482      SMLNUM = SAFMIN / EPS
483      BIGNUM = ONE / SMLNUM
484      RMIN = SQRT( SMLNUM )
485      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
486*
487*     Scale matrix to allowable range, if necessary.
488*
489      ISCALE = 0
490      ABSTLL = ABSTOL
491      IF (VALEIG) THEN
492         VLL = VL
493         VUU = VU
494      END IF
495      ANRM = SLANSY( 'M', UPLO, N, A, LDA, WORK )
496      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
497         ISCALE = 1
498         SIGMA = RMIN / ANRM
499      ELSE IF( ANRM.GT.RMAX ) THEN
500         ISCALE = 1
501         SIGMA = RMAX / ANRM
502      END IF
503      IF( ISCALE.EQ.1 ) THEN
504         IF( LOWER ) THEN
505            DO 10 J = 1, N
506               CALL SSCAL( N-J+1, SIGMA, A( J, J ), 1 )
507   10       CONTINUE
508         ELSE
509            DO 20 J = 1, N
510               CALL SSCAL( J, SIGMA, A( 1, J ), 1 )
511   20       CONTINUE
512         END IF
513         IF( ABSTOL.GT.0 )
514     $      ABSTLL = ABSTOL*SIGMA
515         IF( VALEIG ) THEN
516            VLL = VL*SIGMA
517            VUU = VU*SIGMA
518         END IF
519      END IF
520
521*     Initialize indices into workspaces.  Note: The IWORK indices are
522*     used only if SSTERF or SSTEMR fail.
523
524*     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
525*     elementary reflectors used in SSYTRD.
526      INDTAU = 1
527*     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
528      INDD = INDTAU + N
529*     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
530*     tridiagonal matrix from SSYTRD.
531      INDE = INDD + N
532*     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
533*     -written by SSTEMR (the SSTERF path copies the diagonal to W).
534      INDDD = INDE + N
535*     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
536*     -written while computing the eigenvalues in SSTERF and SSTEMR.
537      INDEE = INDDD + N
538*     INDWK is the starting offset of the left-over workspace, and
539*     LLWORK is the remaining workspace size.
540      INDWK = INDEE + N
541      LLWORK = LWORK - INDWK + 1
542
543*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and
544*     stores the block indices of each of the M<=N eigenvalues.
545      INDIBL = 1
546*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and
547*     stores the starting and finishing indices of each block.
548      INDISP = INDIBL + N
549*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
550*     that corresponding to eigenvectors that fail to converge in
551*     SSTEIN.  This information is discarded; if any fail, the driver
552*     returns INFO > 0.
553      INDIFL = INDISP + N
554*     INDIWO is the offset of the remaining integer workspace.
555      INDIWO = INDIFL + N
556
557*
558*     Call SSYTRD to reduce symmetric matrix to tridiagonal form.
559*
560      CALL SSYTRD( UPLO, N, A, LDA, WORK( INDD ), WORK( INDE ),
561     $             WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
562*
563*     If all eigenvalues are desired
564*     then call SSTERF or SSTEMR and SORMTR.
565*
566      TEST = .FALSE.
567      IF( INDEIG ) THEN
568         IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
569            TEST = .TRUE.
570         END IF
571      END IF
572      IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
573         IF( .NOT.WANTZ ) THEN
574            CALL SCOPY( N, WORK( INDD ), 1, W, 1 )
575            CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
576            CALL SSTERF( N, W, WORK( INDEE ), INFO )
577         ELSE
578            CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
579            CALL SCOPY( N, WORK( INDD ), 1, WORK( INDDD ), 1 )
580*
581            IF (ABSTOL .LE. TWO*N*EPS) THEN
582               TRYRAC = .TRUE.
583            ELSE
584               TRYRAC = .FALSE.
585            END IF
586            CALL SSTEMR( JOBZ, 'A', N, WORK( INDDD ), WORK( INDEE ),
587     $                   VL, VU, IL, IU, M, W, Z, LDZ, N, ISUPPZ,
588     $                   TRYRAC, WORK( INDWK ), LWORK, IWORK, LIWORK,
589     $                   INFO )
590*
591*
592*
593*        Apply orthogonal matrix used in reduction to tridiagonal
594*        form to eigenvectors returned by SSTEMR.
595*
596            IF( WANTZ .AND. INFO.EQ.0 ) THEN
597               INDWKN = INDE
598               LLWRKN = LWORK - INDWKN + 1
599               CALL SORMTR( 'L', UPLO, 'N', N, M, A, LDA,
600     $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
601     $                      LLWRKN, IINFO )
602            END IF
603         END IF
604*
605*
606         IF( INFO.EQ.0 ) THEN
607*           Everything worked.  Skip SSTEBZ/SSTEIN.  IWORK(:) are
608*           undefined.
609            M = N
610            GO TO 30
611         END IF
612         INFO = 0
613      END IF
614*
615*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
616*     Also call SSTEBZ and SSTEIN if SSTEMR fails.
617*
618      IF( WANTZ ) THEN
619         ORDER = 'B'
620      ELSE
621         ORDER = 'E'
622      END IF
623
624      CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
625     $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
626     $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWK ),
627     $             IWORK( INDIWO ), INFO )
628*
629      IF( WANTZ ) THEN
630         CALL SSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
631     $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
632     $                WORK( INDWK ), IWORK( INDIWO ), IWORK( INDIFL ),
633     $                INFO )
634*
635*        Apply orthogonal matrix used in reduction to tridiagonal
636*        form to eigenvectors returned by SSTEIN.
637*
638         INDWKN = INDE
639         LLWRKN = LWORK - INDWKN + 1
640         CALL SORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
641     $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
642      END IF
643*
644*     If matrix was scaled, then rescale eigenvalues appropriately.
645*
646*  Jump here if SSTEMR/SSTEIN succeeded.
647   30 CONTINUE
648      IF( ISCALE.EQ.1 ) THEN
649         IF( INFO.EQ.0 ) THEN
650            IMAX = M
651         ELSE
652            IMAX = INFO - 1
653         END IF
654         CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
655      END IF
656*
657*     If eigenvalues are not in order, then sort them, along with
658*     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK.
659*     It may not be initialized (if SSTEMR/SSTEIN succeeded), and we do
660*     not return this detailed information to the user.
661*
662      IF( WANTZ ) THEN
663         DO 50 J = 1, M - 1
664            I = 0
665            TMP1 = W( J )
666            DO 40 JJ = J + 1, M
667               IF( W( JJ ).LT.TMP1 ) THEN
668                  I = JJ
669                  TMP1 = W( JJ )
670               END IF
671   40       CONTINUE
672*
673            IF( I.NE.0 ) THEN
674               W( I ) = W( J )
675               W( J ) = TMP1
676               CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
677            END IF
678   50    CONTINUE
679      END IF
680*
681*     Set WORK(1) to optimal workspace size.
682*
683      WORK( 1 ) = LWKOPT
684      IWORK( 1 ) = LIWMIN
685*
686      RETURN
687*
688*     End of SSYEVR
689*
690      END
691