1 #include "relapack.h"
2 #if XSYTRF_ALLOW_MALLOC
3 #include <stdlib.h>
4 #endif
5 
6 static void RELAPACK_dsytrf_rook_rec(const char *, const blasint *, const blasint *, blasint *,
7     double *, const blasint *, blasint *, double *, const blasint *, blasint *);
8 
9 
10 /** DSYTRF_ROOK computes the factorization of a real symmetric matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
11  *
12  * This routine is functionally equivalent to LAPACK's dsytrf_rook.
13  * For details on its interface, see
14  * http://www.netlib.org/lapack/explore-html/db/df4/dsytrf__rook_8f.html
15  * */
RELAPACK_dsytrf_rook(const char * uplo,const blasint * n,double * A,const blasint * ldA,blasint * ipiv,double * Work,const blasint * lWork,blasint * info)16 void RELAPACK_dsytrf_rook(
17     const char *uplo, const blasint *n,
18     double *A, const blasint *ldA, blasint *ipiv,
19     double *Work, const blasint *lWork, blasint *info
20 ) {
21 
22     // Required work size
23     const blasint cleanlWork = *n * (*n / 2);
24     blasint minlWork = cleanlWork;
25 #if XSYTRF_ALLOW_MALLOC
26     minlWork = 1;
27 #endif
28 
29     // Check arguments
30     const blasint lower = LAPACK(lsame)(uplo, "L");
31     const blasint upper = LAPACK(lsame)(uplo, "U");
32     *info = 0;
33     if (!lower && !upper)
34         *info = -1;
35     else if (*n < 0)
36         *info = -2;
37     else if (*ldA < MAX(1, *n))
38         *info = -4;
39     else if ((*lWork <1 || *lWork < minlWork) && *lWork != -1)
40         *info = -7;
41     else if (*lWork == -1) {
42         // Work size query
43         *Work = cleanlWork;
44         return;
45     }
46 
47     // Ensure Work size
48     double *cleanWork = Work;
49 #if XSYTRF_ALLOW_MALLOC
50     if (!*info && *lWork < cleanlWork) {
51         cleanWork = malloc(cleanlWork * sizeof(double));
52         if (!cleanWork)
53             *info = -7;
54     }
55 #endif
56 
57     if (*info) {
58         const blasint minfo = -*info;
59         LAPACK(xerbla)("DSYTRF_ROOK", &minfo, strlen("DSYTRF_ROOK"));
60         return;
61     }
62 
63     // Clean char * arguments
64     const char cleanuplo = lower ? 'L' : 'U';
65 
66     // Dummy argument
67     blasint nout;
68 
69     // Recursive kernel
70     RELAPACK_dsytrf_rook_rec(&cleanuplo, n, n, &nout, A, ldA, ipiv, cleanWork, n, info);
71 
72 #if XSYTRF_ALLOW_MALLOC
73     if (cleanWork != Work)
74         free(cleanWork);
75 #endif
76 }
77 
78 
79 /** dsytrf_rook's recursive compute kernel */
RELAPACK_dsytrf_rook_rec(const char * uplo,const blasint * n_full,const blasint * n,blasint * n_out,double * A,const blasint * ldA,blasint * ipiv,double * Work,const blasint * ldWork,blasint * info)80 static void RELAPACK_dsytrf_rook_rec(
81     const char *uplo, const blasint *n_full, const blasint *n, blasint *n_out,
82     double *A, const blasint *ldA, blasint *ipiv,
83     double *Work, const blasint *ldWork, blasint *info
84 ) {
85 
86     // top recursion level?
87     const blasint top = *n_full == *n;
88 
89     if (*n <= MAX(CROSSOVER_DSYTRF_ROOK, 3)) {
90         // Unblocked
91         if (top) {
92             LAPACK(dsytf2)(uplo, n, A, ldA, ipiv, info);
93             *n_out = *n;
94         } else
95             RELAPACK_dsytrf_rook_rec2(uplo, n_full, n, n_out, A, ldA, ipiv, Work, ldWork, info);
96         return;
97     }
98 
99     blasint info1, info2;
100 
101     // Constants
102     const double ONE[]  = { 1. };
103     const double MONE[] = { -1. };
104     const blasint    iONE[] = { 1 };
105 
106     const blasint n_rest = *n_full - *n;
107 
108     if (*uplo == 'L') {
109         // Splitting (setup)
110         blasint n1 = DREC_SPLIT(*n);
111         blasint n2 = *n - n1;
112 
113         // Work_L *
114         double *const Work_L = Work;
115 
116         // recursion(A_L)
117         blasint n1_out;
118         RELAPACK_dsytrf_rook_rec(uplo, n_full, &n1, &n1_out, A, ldA, ipiv, Work_L, ldWork, &info1);
119         n1 = n1_out;
120 
121         // Splitting (continued)
122         n2 = *n - n1;
123         const blasint n_full2   = *n_full - n1;
124 
125         // *      *
126         // A_BL   A_BR
127         // A_BL_B A_BR_B
128         double *const A_BL   = A             + n1;
129         double *const A_BR   = A + *ldA * n1 + n1;
130         double *const A_BL_B = A             + *n;
131         double *const A_BR_B = A + *ldA * n1 + *n;
132 
133         // *        *
134         // Work_BL Work_BR
135         // *       *
136         // (top recursion level: use Work as Work_BR)
137         double *const Work_BL =              Work                + n1;
138         double *const Work_BR = top ? Work : Work + *ldWork * n1 + n1;
139         const blasint ldWork_BR = top ? n2 : *ldWork;
140 
141         // ipiv_T
142         // ipiv_B
143         blasint *const ipiv_B = ipiv + n1;
144 
145         // A_BR = A_BR - A_BL Work_BL'
146         RELAPACK_dgemmt(uplo, "N", "T", &n2, &n1, MONE, A_BL, ldA, Work_BL, ldWork, ONE, A_BR, ldA);
147         BLAS(dgemm)("N", "T", &n_rest, &n2, &n1, MONE, A_BL_B, ldA, Work_BL, ldWork, ONE, A_BR_B, ldA);
148 
149         // recursion(A_BR)
150         blasint n2_out;
151         RELAPACK_dsytrf_rook_rec(uplo, &n_full2, &n2, &n2_out, A_BR, ldA, ipiv_B, Work_BR, &ldWork_BR, &info2);
152 
153         if (n2_out != n2) {
154             // undo 1 column of updates
155             const blasint n_restp1 = n_rest + 1;
156 
157             // last column of A_BR
158             double *const A_BR_r = A_BR + *ldA * n2_out + n2_out;
159 
160             // last row of A_BL
161             double *const A_BL_b = A_BL + n2_out;
162 
163             // last row of Work_BL
164             double *const Work_BL_b = Work_BL + n2_out;
165 
166             // A_BR_r = A_BR_r + A_BL_b Work_BL_b'
167             BLAS(dgemv)("N", &n_restp1, &n1, ONE, A_BL_b, ldA, Work_BL_b, ldWork, ONE, A_BR_r, iONE);
168         }
169         n2 = n2_out;
170 
171         // shift pivots
172         blasint i;
173         for (i = 0; i < n2; i++)
174             if (ipiv_B[i] > 0)
175                 ipiv_B[i] += n1;
176             else
177                 ipiv_B[i] -= n1;
178 
179         *info  = info1 || info2;
180         *n_out = n1 + n2;
181     } else {
182         // Splitting (setup)
183         blasint n2 = DREC_SPLIT(*n);
184         blasint n1 = *n - n2;
185 
186         // * Work_R
187         // (top recursion level: use Work as Work_R)
188         double *const Work_R = top ? Work : Work + *ldWork * n1;
189 
190         // recursion(A_R)
191         blasint n2_out;
192         RELAPACK_dsytrf_rook_rec(uplo, n_full, &n2, &n2_out, A, ldA, ipiv, Work_R, ldWork, &info2);
193         const blasint n2_diff = n2 - n2_out;
194         n2 = n2_out;
195 
196         // Splitting (continued)
197         n1 = *n - n2;
198         const blasint n_full1 = *n_full - n2;
199 
200         // * A_TL_T A_TR_T
201         // * A_TL   A_TR
202         // * *      *
203         double *const A_TL_T = A + *ldA * n_rest;
204         double *const A_TR_T = A + *ldA * (n_rest + n1);
205         double *const A_TL   = A + *ldA * n_rest        + n_rest;
206         double *const A_TR   = A + *ldA * (n_rest + n1) + n_rest;
207 
208         // Work_L *
209         // *      Work_TR
210         // *      *
211         // (top recursion level: Work_R was Work)
212         double *const Work_L  = Work;
213         double *const Work_TR = Work + *ldWork * (top ? n2_diff : n1) + n_rest;
214         const blasint ldWork_L = top ? n1 : *ldWork;
215 
216         // A_TL = A_TL - A_TR Work_TR'
217         RELAPACK_dgemmt(uplo, "N", "T", &n1, &n2, MONE, A_TR, ldA, Work_TR, ldWork, ONE, A_TL, ldA);
218         BLAS(dgemm)("N", "T", &n_rest, &n1, &n2, MONE, A_TR_T, ldA, Work_TR, ldWork, ONE, A_TL_T, ldA);
219 
220         // recursion(A_TL)
221         blasint n1_out;
222         RELAPACK_dsytrf_rook_rec(uplo, &n_full1, &n1, &n1_out, A, ldA, ipiv, Work_L, &ldWork_L, &info1);
223 
224         if (n1_out != n1) {
225             // undo 1 column of updates
226             const blasint n_restp1 = n_rest + 1;
227 
228             // A_TL_T_l = A_TL_T_l + A_TR_T Work_TR_t'
229             BLAS(dgemv)("N", &n_restp1, &n2, ONE, A_TR_T, ldA, Work_TR, ldWork, ONE, A_TL_T, iONE);
230         }
231         n1 = n1_out;
232 
233         *info  = info2 || info1;
234         *n_out = n1 + n2;
235     }
236 }
237