1 //
2 // Copyright (C) 2009 Alan W. Irwin
3 //
4 // This file is part of PLplot.
5 //
6 // PLplot is free software; you can redistribute it and/or modify
7 // it under the terms of the GNU Library General Public License as published
8 // by the Free Software Foundation; either version 2 of the License, or
9 // (at your option) any later version.
10 //
11 // PLplot is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU Library General Public License for more details.
15 //
16 // You should have received a copy of the GNU Library General Public License
17 // along with PLplot; if not, write to the Free Software
18 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 //
20 // Provenance: This code was originally developed under the GPL as part of
21 // the FreeEOS project (revision 121).  This code has been converted from
22 // Fortran to C with the aid of f2c and relicensed for PLplot under the LGPL
23 // with the permission of the FreeEOS copyright holder (Alan W. Irwin).
24 //
25 
26 #include "dspline.h"
27 
dspline(double * x,double * y,int n,int if1,double cond1,int ifn,double condn,double * y2)28 int dspline( double *x, double *y, int n,
29              int if1, double cond1, int ifn, double condn, double *y2 )
30 {
31     int    i__1, i__, k;
32     double p, u[2000], qn, un, sig;
33 
34 //      input parameters:
35 //      x(n) are the spline knot points
36 //      y(n) are the function values at the knot points
37 //      if1 = 1 specifies cond1 is the first derivative at the
38 //        first knot point.
39 //      if1 = 2 specifies cond1 is the second derivative at the
40 //        first knot point.
41 //      ifn = 1 specifies condn is the first derivative at the
42 //        nth knot point.
43 //      ifn = 2 specifies condn is the second derivative at the
44 //        nth knot point.
45 //      output values:
46 //      y2(n) is the second derivative of the spline evaluated at
47 //        the knot points.
48     // Parameter adjustments
49     --y2;
50     --y;
51     --x;
52 
53     // Function Body
54     if ( n > 2000 )
55     {
56         return 1;
57     }
58 //      y2(i) = u(i) + d(i)*y2(i+1), where
59 //      d(i) is temporarily stored in y2(i) (see below).
60     if ( if1 == 2 )
61     {
62 //        cond1 is second derivative at first point.
63 //        these two values assure that for above equation with d(i) temporarily
64 //        stored in y2(i)
65         y2[1] = 0.;
66         u[0]  = cond1;
67     }
68     else if ( if1 == 1 )
69     {
70 //        cond1 is first derivative at first point.
71 //        special case (Press et al 3.3.5 with A = 1, and B=0)
72 //        of equations below where
73 //        a_j = 0
74 //        b_j = -(x_j+1 - x_j)/3
75 //        c_j = -(x_j+1 - x_j)/6
76 //        r_j = cond1 - (y_j+1 - y_j)/(x_j+1 - x_j)
77 //        u(i) = r(i)/b(i)
78 //        d(i) = -c(i)/b(i)
79 //        N.B. d(i) is temporarily stored in y2.
80         y2[1] = -.5;
81         u[0]  = 3. / ( x[2] - x[1] ) * ( ( y[2] - y[1] ) / ( x[2] - x[1] ) - cond1 );
82     }
83     else
84     {
85         return 2;
86     }
87 //      if original tri-diagonal system is characterized as
88 //      a_j y2_j-1 + b_j y2_j + c_j y2_j+1 = r_j
89 //      Then from Press et al. 3.3.7, we have the unscaled result:
90 //      a_j = (x_j - x_j-1)/6
91 //      b_j = (x_j+1 - x_j-1)/3
92 //      c_j = (x_j+1 - x_j)/6
93 //      r_j = (y_j+1 - y_j)/(x_j+1 - x_j) - (y_j - y_j-1)/(x_j - x_j-1)
94 //      In practice, all these values are divided through by b_j/2 to scale
95 //      them, and from now on we will use these scaled values.
96 
97 //      forward elimination step: assume y2(i-1) = u(i-1) + d(i-1)*y2(i).
98 //      When this is substituted into above tridiagonal equation ==>
99 //      y2(i) = u(i) + d(i)*y2(i+1), where
100 //      u(i) = [r(i) - a(i) u(i-1)]/[b(i) + a(i) d(i-1)]
101 //      d(i) = -c(i)/[b(i) + a(i) d(i-1)]
102 //      N.B. d(i) is temporarily stored in y2.
103     i__1 = n - 1;
104     for ( i__ = 2; i__ <= i__1; ++i__ )
105     {
106 //        sig is scaled a(i)
107         sig = ( x[i__] - x[i__ - 1] ) / ( x[i__ + 1] - x[i__ - 1] );
108 //        p is denominator = scaled a(i) d(i-1) + scaled  b(i), where scaled
109 //        b(i) is 2.
110         p = sig * y2[i__ - 1] + 2.;
111 //        propagate d(i) equation above.  Note sig-1 = -c(i)
112         y2[i__] = ( sig - 1. ) / p;
113 //        propagate scaled u(i) equation above
114         u[i__ - 1] = ( ( ( y[i__ + 1] - y[i__] ) / ( x[i__ + 1] - x[i__] ) - ( y[i__]
115                                                                                - y[i__ - 1] ) / ( x[i__] - x[i__ - 1] ) ) * 6. / ( x[i__ + 1] -
116                                                                                                                                    x[i__ - 1] ) - sig * u[i__ - 2] ) / p;
117     }
118     if ( ifn == 2 )
119     {
120 //        condn is second derivative at nth point.
121 //        These two values assure that in the equation below.
122         qn = 0.;
123         un = condn;
124     }
125     else if ( ifn == 1 )
126     {
127 //        specify condn is first derivative at nth point.
128 //        special case (Press et al 3.3.5 with A = 0, and B=1)
129 //        implies a_n y2(n-1) + b_n y2(n) = r_n, where
130 //        a_n = (x_n - x_n-1)/6
131 //        b_n = (x_n - x_n-1)/3
132 //        r_n = cond1 - (y_n - y_n-1)/(x_n - x_n-1)
133 //        use same propagation equation as above, only with c_n = 0
134 //        ==> d_n = 0 ==> y2(n) = u(n) =>
135 //        y(n) = [r(n) - a(n) u(n-1)]/[b(n) + a(n) d(n-1)]
136 //        qn is scaled a_n
137         qn = .5;
138 //        un is scaled r_n (N.B. un is not u(n))!  Sorry for the mixed notation.
139         un = 3. / ( x[n] - x[n - 1] ) * ( condn - ( y[n] - y[n - 1] ) / ( x[n]
140                                                                           - x[n - 1] ) );
141     }
142     else
143     {
144         return 3;
145     }
146 //      N.B. d(i) is temporarily stored in y2, and everything is
147 //      scaled by b_n.
148 //     qn is scaled a_n, 1.d0 is scaled b_n, and un is scaled r_n.
149     y2[n] = ( un - qn * u[n - 2] ) / ( qn * y2[n - 1] + 1. );
150 //      back substitution.
151     for ( k = n - 1; k >= 1; --k )
152     {
153         y2[k] = y2[k] * y2[k + 1] + u[k - 1];
154     }
155     return 0;
156 }
157 
158