1{
2 "cells": [
3  {
4   "cell_type": "markdown",
5   "id": "2387498c",
6   "metadata": {},
7   "source": [
8    "# Brouwer's law in the outer Solar System\n",
9    "\n",
10    "In this tutorial we will show how heyoka.py can be used for long-term integrations of the outer Solar System accurate to machine precision.\n",
11    "\n",
12    "Long-term integrations of the Solar System are often undertaken with [symplectic integrators](https://en.wikipedia.org/wiki/Symplectic_integrator),\n",
13    "which guarantee (from the point of view of the integration scheme) the conservation of dynamical invariants such\n",
14    "as the total energy of the system. Because energy conservation is enforced by the integration scheme, in symplectic integrators the only\n",
15    "source of error for the conservation of the total energy of the system derives from the use of approximate floating-point arithmetics.\n",
16    "A result known as *Brouwer's law* establishes that the energy error deriving from the use of floating-point arithmetics cannot grow slower\n",
17    "than $\\sim \\sqrt{t}$ (i.e., as a one-dimensional random walk). In other words, for any numerical integrator implemented on a real computer, the optimal behaviour (with respect\n",
18    "to energy conservation in long-term integrations) is an error that grows with the square root of time.\n",
19    "\n",
20    "Although heyoka.py is *not* a symplectic integrator, it is nevertheless able to achieve Brouwer's law, if properly configured. Specifically, in order to achieve Brouwer's law\n",
21    "with heyoka.py we will need to:\n",
22    "\n",
23    "- lower the integration tolerance *below* machine precision, and\n",
24    "- adopt techniques to reduce the numerical errors arising from the use of floating-point arithmetics.\n",
25    "\n",
26    "## The dynamical system\n",
27    "\n",
28    "In this example we will study the dynamics the outer Solar System, that is, a 6-body problem consisting of the Sun, Jupiter, Saturn, Uranus, Neptune and Pluto,\n",
29    "all considered as mutually-interacting point masses. We will adopt the Solar mass $M_\\odot$ as unit of mass, the astronomical unit as unit of distance and the\n",
30    "calendar year (365 days) as unit of time.\n",
31    "\n",
32    "Let us begin with the definition of the numerical constants:"
33   ]
34  },
35  {
36   "cell_type": "code",
37   "execution_count": 1,
38   "id": "95116f6c",
39   "metadata": {},
40   "outputs": [],
41   "source": [
42    "# Masses, from Sun to Pluto.\n",
43    "import numpy as np\n",
44    "masses = np.array([1.00000597682, 1 / 1047.355, 1 / 3501.6, 1 / 22869., 1 / 19314., 7.4074074e-09])\n",
45    "\n",
46    "# The gravitational constant.\n",
47    "G = 0.01720209895 * 0.01720209895 * 365 * 365"
48   ]
49  },
50  {
51   "cell_type": "markdown",
52   "id": "809c3046",
53   "metadata": {},
54   "source": [
55    "Note how the Sun's mass is not exactly 1 because we included in it the mass of the terrestrial planets.\n",
56    "\n",
57    "Next, we define a vector of cartesian initial conditions for the system. The numerical values are taken from [this paper](https://ui.adsabs.harvard.edu/abs/1986AJ.....92..176A/abstract)."
58   ]
59  },
60  {
61   "cell_type": "code",
62   "execution_count": 2,
63   "id": "2795c18e",
64   "metadata": {},
65   "outputs": [],
66   "source": [
67    "ic = [# Sun.\n",
68    "      -4.06428567034226e-3, -6.08813756435987e-3, -1.66162304225834e-6, +6.69048890636161e-6 * 365,\n",
69    "      -6.33922479583593e-6 * 365, -3.13202145590767e-9 * 365,\n",
70    "      # Jupiter.\n",
71    "      +3.40546614227466e+0, +3.62978190075864e+0, +3.42386261766577e-2, -5.59797969310664e-3 * 365,\n",
72    "      +5.51815399480116e-3 * 365, -2.66711392865591e-6 * 365,\n",
73    "      # Saturn.\n",
74    "      +6.60801554403466e+0, +6.38084674585064e+0, -1.36145963724542e-1, -4.17354020307064e-3 * 365,\n",
75    "      +3.99723751748116e-3 * 365, +1.67206320571441e-5 * 365,\n",
76    "      # Uranus.\n",
77    "      +1.11636331405597e+1, +1.60373479057256e+1, +3.61783279369958e-1, -3.25884806151064e-3 * 365,\n",
78    "      +2.06438412905916e-3 * 365, -2.17699042180559e-5 * 365,\n",
79    "      # Neptune.\n",
80    "      -3.01777243405203e+1, +1.91155314998064e+0, -1.53887595621042e-1, -2.17471785045538e-4 * 365,\n",
81    "      -3.11361111025884e-3 * 365, +3.58344705491441e-5 * 365,\n",
82    "      # Pluto.\n",
83    "      -2.13858977531573e+1, +3.20719104739886e+1, +2.49245689556096e+0, -1.76936577252484e-3 * 365,\n",
84    "      -2.06720938381724e-3 * 365, +6.58091931493844e-4 * 365]"
85   ]
86  },
87  {
88   "cell_type": "markdown",
89   "id": "bca6d501",
90   "metadata": {},
91   "source": [
92    "We can now proceed to the definition of the dynamical equations. We will be using the ``make_nbody_sys()`` function, which sets up an ODE system corresponding to an N-body problem in cartesian coordinates:"
93   ]
94  },
95  {
96   "cell_type": "code",
97   "execution_count": 3,
98   "id": "d2ee9785",
99   "metadata": {},
100   "outputs": [],
101   "source": [
102    "import heyoka as hy\n",
103    "sys = hy.make_nbody_sys(6, masses = masses, Gconst = G)"
104   ]
105  },
106  {
107   "cell_type": "markdown",
108   "id": "212917f5",
109   "metadata": {},
110   "source": [
111    "The next step is the creation of the numerical integrator. We will be using a [batch integrator](<./Batch mode overview.ipynb>), which will allow us to substantially increase the floating-point throughput by integrating multiple sets of initial conditions at once. When creating the integrator, we will specify a tolerance of $10^{-18}$ (below machine precision) and we will activate high-accuracy mode. In high-accuracy mode, the integrator internally uses techniques (based on [compensated summation](https://en.wikipedia.org/wiki/Kahan_summation_algorithm) and similar algorithms) to reduce the numerical errors arising from the use of floating-point arithmetics, at the price of a slight performance penalty."
112   ]
113  },
114  {
115   "cell_type": "code",
116   "execution_count": 4,
117   "id": "f0f99f81",
118   "metadata": {},
119   "outputs": [],
120   "source": [
121    "# Multiplex the initial conditions to batches of 4 elements.\n",
122    "ic_batch = np.repeat(ic, 4).reshape(-1, 4)\n",
123    "\n",
124    "# Create the integrator object, specifying a tolerance\n",
125    "# below machine precision and activating high-accuracy mode.\n",
126    "ta = hy.taylor_adaptive_batch(sys, ic_batch, high_accuracy = True, tol = 1e-18)"
127   ]
128  },
129  {
130   "cell_type": "markdown",
131   "id": "be15432c",
132   "metadata": {},
133   "source": [
134    "## Integrating in parallel\n",
135    "\n",
136    "In order to add statistical weight to our experiment, we will be integrating multiple sets of initial conditions at the same time. Each set of initial conditions will be slightly and randomly altered with respect to the numerical values introduced earlier, which will allow us to study the energy-conservation behaviour of the integrator using an ensemble of different but related problems.\n",
137    "\n",
138    "As explained earlier, the use of a batch integrator already allows us to integrate multiple sets of initial conditions (4, in this case) at the same time. Additionally, we will concurrently run multiple batch integrators in different threads, in order to take full advantage of modern multi-core processors. The total integration time will be limited to 1 million years.\n",
139    "\n",
140    "Let us take a look at the code:"
141   ]
142  },
143  {
144   "cell_type": "code",
145   "execution_count": 5,
146   "id": "408a8de8",
147   "metadata": {},
148   "outputs": [],
149   "source": [
150    "# Define a logarithmic time grid over which\n",
151    "# the integrations will be performed.\n",
152    "t_grid = np.repeat(np.logspace(0, 6, 1000), 4).reshape(-1, 4)\n",
153    "\n",
154    "# Multiplex the masses to batches of 4 elements.\n",
155    "masses_batch = np.repeat(masses, 4).reshape(-1, 4)\n",
156    "\n",
157    "# A function for the computation of the total energy\n",
158    "# of the system from the state vector.\n",
159    "def energy(st):\n",
160    "        # Kinetic energy.\n",
161    "        vx = st[3::6]\n",
162    "        vy = st[4::6]\n",
163    "        vz = st[5::6]\n",
164    "        \n",
165    "        kin = np.sum(masses_batch * (vx**2 + vy**2 + vz**2) / 2, axis = 0)\n",
166    "        \n",
167    "        # Potential energy.\n",
168    "        pot = 0.\n",
169    "        for i in range(6):\n",
170    "            xi = st[i*6 + 0, :]\n",
171    "            yi = st[i*6 + 1, :]\n",
172    "            zi = st[i*6 + 2, :]\n",
173    "            \n",
174    "            for j in range(i+1, 6):\n",
175    "                xj = st[j*6 + 0, :]\n",
176    "                yj = st[j*6 + 1, :]\n",
177    "                zj = st[j*6 + 2, :]\n",
178    "\n",
179    "                pot += -G * masses_batch[i] * masses_batch[j] / np.sqrt((xi - xj) * (xi - xj) + (yi - yj) * (yi - yj) + (zi - zj) * (zi - zj))\n",
180    "\n",
181    "        return kin + pot\n",
182    "\n",
183    "# The worker function that will be run in each thread.\n",
184    "def worker():\n",
185    "    from copy import deepcopy\n",
186    "    \n",
187    "    # Make a deep copy of the original integrator.\n",
188    "    ta_local = deepcopy(ta)\n",
189    "    \n",
190    "    # Randomly alter the initial conditions.\n",
191    "    new_state = ta_local.state + abs(ta_local.state) * np.random.uniform(-1e-12, 1e-12, ta_local.state.shape)\n",
192    "    \n",
193    "    # Determine the new centre of mass and its velocity.\n",
194    "    com_x = np.sum(new_state[0::6] * masses_batch, axis=0) / np.sum(masses_batch, axis=0)\n",
195    "    com_y = np.sum(new_state[1::6] * masses_batch, axis=0) / np.sum(masses_batch, axis=0)\n",
196    "    com_z = np.sum(new_state[2::6] * masses_batch, axis=0) / np.sum(masses_batch, axis=0)\n",
197    "\n",
198    "    com_vx = np.sum(new_state[3::6] * masses_batch, axis=0) / np.sum(masses_batch, axis=0)\n",
199    "    com_vy = np.sum(new_state[4::6] * masses_batch, axis=0) / np.sum(masses_batch, axis=0)\n",
200    "    com_vz = np.sum(new_state[5::6] * masses_batch, axis=0) / np.sum(masses_batch, axis=0)\n",
201    "   \n",
202    "    # Recentre.\n",
203    "    new_state[0::6] -= com_x\n",
204    "    new_state[1::6] -= com_y\n",
205    "    new_state[2::6] -= com_z\n",
206    "    \n",
207    "    new_state[3::6] -= com_vx\n",
208    "    new_state[4::6] -= com_vy\n",
209    "    new_state[5::6] -= com_vz\n",
210    "   \n",
211    "    # Assign the new state.\n",
212    "    ta_local.state[:] = new_state\n",
213    "    \n",
214    "    # Compute the initial energy.\n",
215    "    E0 = energy(ta_local.state)\n",
216    "\n",
217    "    # Integrate over the time grid.\n",
218    "    res = ta_local.propagate_grid(t_grid)\n",
219    "    \n",
220    "    # Check if any batch element produced an error.\n",
221    "    if any(oc[0] != hy.taylor_outcome.time_limit for oc in ta_local.propagate_res):\n",
222    "        raise RuntimeError(\"Integration failed: {}\".format(ta_local.propagate_res))\n",
223    "    \n",
224    "    # Compute and return the relative energy error.\n",
225    "    return np.array([abs((E0 - energy(st)) / E0) for st in res])"
226   ]
227  },
228  {
229   "cell_type": "markdown",
230   "id": "8eb8bf84",
231   "metadata": {},
232   "source": [
233    "The ``worker()`` function will be invoked concurrently from multiple threads of execution. It will first create a local copy of the integrator object, add some noise to the initial conditions, reset the centre of mass and then integrate the system for 1 million years.\n",
234    "\n",
235    "Let us now run 16 batch integrations concurrently, for a total of $16\\times 4 = 64$ sets of initial conditions.\n",
236    "\n",
237    "> **NOTE**: the following code will take a while to run (from a few seconds to a few minutes, depending\n",
238    "> on the CPU). In order to shorten the runtime, you can reduce the number of threads and/or the total integration time."
239   ]
240  },
241  {
242   "cell_type": "code",
243   "execution_count": 6,
244   "id": "79968137",
245   "metadata": {},
246   "outputs": [],
247   "source": [
248    "import concurrent.futures\n",
249    "\n",
250    "# Run the integrations concurrently.\n",
251    "with concurrent.futures.ThreadPoolExecutor() as executor:\n",
252    "    futures = []\n",
253    "    for _ in range(16):\n",
254    "        futures.append(executor.submit(worker))\n",
255    "\n",
256    "    # Gather the results.\n",
257    "    res = np.array([future.result() for future in concurrent.futures.as_completed(futures)])"
258   ]
259  },
260  {
261   "cell_type": "markdown",
262   "id": "4762e39e",
263   "metadata": {},
264   "source": [
265    "Let us take a look at the shape of the result array:"
266   ]
267  },
268  {
269   "cell_type": "code",
270   "execution_count": 7,
271   "id": "15033eb9",
272   "metadata": {},
273   "outputs": [
274    {
275     "data": {
276      "text/plain": [
277       "(16, 1000, 4)"
278      ]
279     },
280     "execution_count": 7,
281     "metadata": {},
282     "output_type": "execute_result"
283    }
284   ],
285   "source": [
286    "res.shape"
287   ]
288  },
289  {
290   "cell_type": "markdown",
291   "id": "fde7b4d5",
292   "metadata": {},
293   "source": [
294    "The first dimension refers to the 16 separate integrations we ran in parallel, the second dimension to the 1000 points in the time grid and the last dimension to the 4 elements in each batch.\n",
295    "Let us re-arrange the array in order to facilitate further analysis:"
296   ]
297  },
298  {
299   "cell_type": "code",
300   "execution_count": 8,
301   "id": "55200ae1",
302   "metadata": {},
303   "outputs": [
304    {
305     "data": {
306      "text/plain": [
307       "(1000, 64)"
308      ]
309     },
310     "execution_count": 8,
311     "metadata": {},
312     "output_type": "execute_result"
313    }
314   ],
315   "source": [
316    "res = res.transpose((1, 0, 2)).reshape((1000, -1))\n",
317    "res.shape"
318   ]
319  },
320  {
321   "cell_type": "markdown",
322   "id": "9f4b5bfd",
323   "metadata": {},
324   "source": [
325    "Now the first dimension refers to the time grid points, and we have squashed into the second dimension the results of all integrations for each time point.\n",
326    "\n",
327    "## Results\n",
328    "\n",
329    "We are now ready to plot the results of the integrations. For each time point, we will be plotting:\n",
330    "\n",
331    "- the relative energy error for all batch elements and parallel integrations,\n",
332    "- the root mean square of the relative energy error across all batch elements and parallel integrations.\n",
333    "\n",
334    "We will also add a dashed line representing Brouwer's law (i.e., $\\sqrt{t}$) for comparison:"
335   ]
336  },
337  {
338   "cell_type": "code",
339   "execution_count": 9,
340   "id": "119364b2",
341   "metadata": {},
342   "outputs": [
343    {
344     "data": {
345      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt4AAAIaCAYAAAAX7Ur9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9eXRc933e/bmz7xswwJAAhIULQEkQJFoUaG02ZEa27MiWl9hp6qaOk9d5T9o4Sbc0p2n6/tEcnzSOT+pTp66bzXHSOk6c2JIVaoetlRBFUUNSIkCQA4DYBpjB7Pty7/sH8vtpBgRlyZFEiPp9ztGRMNu9M4CPn/ud5/s8mmEYKBQKhUKhUCgUircW05U+AYVCoVAoFAqF4t2AEt4KhUKhUCgUCsXbgBLeCoVCoVAoFArF24AS3gqFQqFQKBQKxduAEt4KhUKhUCgUCsXbgBLeCoVCoVAoFArF24DlSp/A20FnZ6cxMDBwpU9DoVAoFAqFQnGVc+LEiaRhGOHt7ntXCO+BgQFeeOGFK30aCoVCoVAoFIqrHE3TFi5331VtNdE07V5N076RzWav9KkoFAqFQqFQKN7lXNXC2zCMBwzD+ILf77/Sp6JQKBQKhUKheJdzVQtvhUKhUCgUCoVip/Cu8HhvR71eZ2lpiUqlcqVPRXEFcTgc9Pb2YrVar/SpKBQKhUKhuMp51wrvpaUlvF4vAwMDaJp2pU9HcQUwDIONjQ2WlpYYHBy80qejUCgUCoXiKuddazWpVCp0dHQo0f0uRtM0Ojo61LceCoVCoVAo3hbetcIbUKJbof4GFAqFQqFQvG28q4X3lcZsNnPjjTdy/fXXc++995LJZACYn59H0zT+83/+z/KxyWQSq9XKv/7X/xqAmZkZ3v/+93PjjTdy4MABvvCFL1yJt6BQKBQKhUKheJ0o4X0FcTqdvPTSS5w5c4ZQKMTXvvY1ed/Q0BA/+MEP5M9/8zd/w3XXXSd//uIXv8hv/MZv8NJLL3H27Fl+9Vd/9W09d4VCoVAoFArFG0MJ7x3Ce9/7XpaXl+XPTqeTAwcOyMbNv/7rv+bTn/60vH91dZXe3l758+jo6Nt3sgqFQqFQKBSKN8xVnWqiadq9wL179+59zcf9+q//Oi+99NKbeuwbb7yRP/zDP3xdj202mzz++OP84i/+YtvtP/uzP8u3v/1tIpEIZrOZ3bt3s7KyAsBv/MZvcNddd3Hrrbdy99138wu/8AsEAoE39T0oFAqFQqFQKN48ruqJ905vriyXy9x44410dHSQSqX4qZ/6qbb7P/ShD/Hoo4/yf//v/+Uzn/lM232/8Au/wNmzZ/mZn/kZfvjDH3L48GGq1erbefoKhUKhUCgUijfAVT3xfr283sn0m43weGezWX76p3+ar33ta3zxi1+U99tsNt7znvfwB3/wB7z88ss88MADbc/fvXs3n//85/n85z/P9ddfz5kzZ3jPe97zdr8NhUKhUCgUCsXr4KqeeL9T8Pv9fPWrX+XLX/4y9Xq97b5/+2//Lb/3e79HR0dH2+0PPfSQfGw8HmdjY4Oenp637ZwVCoVCoVAoFG8MNfHeIdx0002MjY3x7W9/mzvuuEPeft1117WlmQgeeeQRfu3Xfg2HwwHA7//+7xOJRN6281UoFAqFQqFQvDE0wzCu9Dm85dx8882GSAcRnD17lgMHDlyhM1LsJNTfgkKhUCgUijcLTdNOGIZx83b3KauJQqFQKBQKhULxNqCEt0KhUCgUCoVC8TaghLdCoVAoFAqFQvE2oIS3QqFQKBQKheIdTSKRYGpqikQicaVP5TVRwluhUCgUCoVC8Y7m9OnTTE9Pc/r0aWDnCnElvBUKhUKhUCgU72h0XadWq7G0tEQikSAWi5HNZonFYlf61Nq4qoW3pmn3apr2jWw2e6VPRaFQKBQKhULxFjE2Nobf78dqtXL06FHW19exWCwMDQ1d6VNr46oW3oZhPGAYxhf8fv+VPhWFQqFQKBQKxVtEOBxmYmKCer3OxsYG8Xgct9tNOBy+0qfWhmqu3IFomvaa978bSo8UCoVCoVAo3gjhcJje3l6q1SpOp3PHTbtBCe8dx4ULF3jppZcYGxu70qeiUCgUCoVC8Y5idHQUt9vN0NDQjpt2gxLeO46XXnqJT37yk1f6NBQKhUKhUCjeEYhlSiG2d6LgFlzVHu93IspGolAoFAqFQvH62akJJtuhhPcOIp1O09HRIX9eWlrir//6ry/7+HK5zPve9z6azSYAZrOZG2+8kbGxMQ4ePMizzz77lp/zT8LAwMDrfqzH4/knHatWq3HnnXfSaDT+Sa+jUCgUCoViZzI0NITf79+Rnu6tKOG9g3jqqae47bbb5M+PP/44L7744mUf/6d/+qd84hOfwGw2A+B0OnnppZeIRqN86Utf4rd+67cueY5hGOi6/uaf/OvgShzbZrPxgQ984DUvYBQKhUKhULxzCYfDjI+P72iLiUAJ7ytIoVDgd37nd+TP9Xodm80GwNNPP82/+Tf/hr/927/lxhtvZG5u7pLn/9Vf/RUf+9jHtn3tXC5HMBgEYH5+ngMHDvArv/IrHDx4kMXFRb7yla9w/fXXc/311/OHf/iH8nHXX3+9fI0vf/nL/H//3/8HwH/7b/+Nr371qwD8xm/8BnfddReweXHw2c9+FoC//Mu/5JZbbuHGG2/kl3/5l2k2m9seW/wPo1gs8pGPfISxsTGuv/76HyuO77vvPt7znvdw3XXX8Y1vfON1n9d9993HX/3VX73maysUCoVCoVC81ajlyn/k/e9//yW3ffrTn+ZXfuVXKJVKfPjDH77k/s997nN87nOfI5lM8qlPfartvh/+8Ic/9phOpxOn08m5c+cYHByUohvg9ttv59ChQ3z5y19uE8OCWq1GLBZrs22Uy2VuvPFGKpUKq6urPPHEE/K+mZkZ/uzP/ow/+qM/4sSJE/zZn/0ZU1NTGIbB+Pg473vf+6RQ344777yTP/iDP+CLX/wiL7zwAtVqlXq9ztNPP80dd9zB2bNn+eu//mueeeYZrFYrv/Irv8Jf/dVfceedd7YdG+D48eMAPPTQQ+zevZsHH3wQgB9XdPSnf/qnhEIhyuUyhw4d4pOf/OSPPS+A66+/Xh5ToVAoFAqF4kqhJt5XELPZzH333cf3v/99nn766TabCWyK5eHh4W2fm0wmCQQCbbcJq8n09DQPPfQQP//zPy+XNfv7+zl8+DCwOU3/+Mc/jtvtxuPx8IlPfIKnnnrqNc/1Pe95DydOnCCfz2O323nve9/LCy+8wFNPPcUdd9zB448/zokTJzh06BA33ngjjz/+uFxyaD12K6Ojozz22GP85m/+Jk899RQ/rujoq1/9KmNjYxw+fJjFxUVmZ2d/7HmJz9lms5HP51/z9RUKhUKhUOxsEokEU1NTJBIJEokEjz32GE888QSJROJKn9rrQk28/5HXmlC7XK7XvL+zs/N1Tbi348CBA/z+7/8+Q0NDhEIhefvGxoasPt0Op9NJpVK57Ou+973vJZlMyj9Et9st77tccorFYmnzYLe+vtVqZWBggD/7sz/j1ltv5YYbbmBycpILFy5w4MABHn/8cf7lv/yXfOlLX2p7zfn5+bZjt7J//35OnDjBP/zDP/Bbv/Vb3H333W3Wm1Z++MMf8thjj/Hcc8/hcrl4//vfT6VS+bHnJahWqzgcjst+XgqFQqFQKHY+WxNMlpeXqdVqJJNJJiYmdrzPW028dwDhcJhqtdp229zcHLt3777sc4LBIM1m87Lie3p6mmaz2ZaSIrjzzjv53ve+R6lUolgs8vd///fccccddHd3s76+zsbGBtVqlR/84AeXPO/LX/4yd955J3fccQdf//rXufHGG9E0jQ984AP87d/+Levr6wCkUikWFhZe832vrKzgcrn47Gc/y7/7d//uNRdJs9kswWAQl8vF9PQ0x44de13nBZsXMeFw+LIXMQqFQqFQKN4ZBAIBMpkMmqaRz+cJhUKYTCaSySRHjx5lZmZmR0/B1cR7B/AzP/MzbdNugJGREZLJJNdffz3f+MY3uPXWWy953t13383TTz/NkSNHgFc93rA51f7mN78pE09aOXjwIJ/73Oe45ZZbAPilX/olbrrpJgB+53d+h/HxcQYHBxkZGWl73h133MHv/u7v8t73vhe3243D4ZB2jmuvvZb/+l//K3fffTe6rmO1Wvna175GJBK57Ps+ffo0//7f/3tMJhNWq5X/+T//52Uf+6EPfYivf/3r3HDDDQwPD7dZV17rvAAmJye39egrFAqFQqHYOczMzDA1NUUwGJT/Px+NRimXy7jdbkZHR8lkMgQCAaanpzEMg76+PgYHBzlz5gy1Wo2nn36a9fV1rFYruq5LjbRT0N4NhS0333yz8cILL7Tddvbs2TYrwjuRkydP8pWvfIVvfetbV/pUdjSf+MQn+NKXvnRZv/zV8LegUCgUCsU7mUQiwXe/+12y2Sy6rtPV1YXdbqdcLlMul/H7/djtdhKJBH6/n2KxSKVSYWhoiFtvvZVnn32WfD5PLpcjk8lgMpm45ZZbZNrZ24mmaScMw7h5u/uU1eQdzE033cTExIQs0FFcSq1W47777rus6FYoFAqFQnHlicVi+P1++S14Op0mkUhgMpkYHBwkFAqxuLhIoVBgZWUFwzCwWCx4vV7C4TCRSASPx4OmaTidTnp6etB1fcfZTa5q4a1p2r2apn3jx8XUvZP5/Oc/v62dRLGJzWbj53/+56/0aSgUCoVCobgMiUSCfD5Pd3c3H/3oR7nxxhsJBoN4PB6ZjCam3pqm0dnZicfjobu7m6WlJWZmZggEAsTjcQzDIBQKYbfb0XV9x9XIX9XC2zCMBwzD+MKPi6lTKBQKhUKhUFwZotEoy8vL6LrO8PAwR44c4fbbb8fv9+Pz+ZicnKTZbBIIBDh06BDlchmAtbU1CoUCx48fJxqN4nA4KBaLpNNpOjo6dmSN/FUtvBUKhUKhUCgUO5dEIsHKygr1eh2TySRvi0aj2Gw25ufnsdls1Ot1nE4nr7zyCtVqlXg8jtlsptlsksvlSCaTpNNpqtUqhUKBmZmZK/zOtuddLbzfDYulitdG/Q0oFAqFQvH20Fp+I4jFYvh8Pnw+H6Ojo/I2m81GrVZjbGyMXbt20dvbSyqVwmw2YzabcTgc2O12BgYGsFqtVKtVdF2n2WzSbDZJp9OcOnWK06dPX6m3uy3v2jhBh8PBxsYGHR0dMu9Z8e7CMAw2NjZUsY5CoVAoFG8Dp0+fZnFxkWKxKNNGhBVkaGhIlt9sd1sikUDXdcrlMul0mkKhQKlUAiASiTA/Py+n5oZh0Gg0iMfjeL3et/ttvibvWuHd29vL0tLSjtt2Vby9OBwOent7r/RpKBQKhUJx1aPrOrVajQsXLgDg8Xh44YUXqNVqFAoFDMNoy+xubaEMh8OMjY0xOTmJ1Wql2WxSr9d5+eWXcblcGIZBtVrF7XZTKpXQdR1N02g0Glfq7W7Lu1Z4W61WBgcHr/RpKBQKhUKhUFzVJBIJYrEYfX19pFIpstksFy5cIJ/PUywWMQyD48eP4/P5yGazckmyq6urbeodjUbJZrOYTCauueYaXn75Zer1OtVqFU3TMJvNaJpGV1cXiUQCp9PJ/v37r/C7b+dd7fFWKBQKhUKhULy1RKNRpqenWVxcZGxsjHq9TjweJ5/Po2kahmHIJUnx3+l0mmw2K+MAxRKmpmlYrVacTmfbMQzDwDAMfD4fgUCAYDCIxWIhl8tdibd8WZTwVigUCoVCoVC8ZZhMJmq1GvF4nOXlZWkFAWg2m9hsNkwmEw6Hg0AggMPhYGRkRMYBJhIJaTHx+XyMj4+TSqUusZE0m01pSdF1HYvFIpNSdgrvWquJQqFQKBQKheKtRSxFOp1OPB4P+Xy+TTCbTCY0TcNkMjE0NMTKygrBYBDDMBgaGiIWi1EsFttSTjKZjCzL2crZs2flMQ3DoKen5+18uz8WJbwVCoVCoVAoFG8JsVgMXdeJRCIAxONxOjo6WF9fx+Vy4fP5sNvtmM1mFhYWMJvN1Ot1AoEAk5OT2Gw2NE2jVqvR0dHB5OQkDoeDer2O2WzGMAw5PQeoVCosLy9jNpvp6uoik8lcoXe+PUp4KxQKhUKhUCi2RZTZmEymS5JGXg9iai3+nUgkyGQyeDwebDabTDJJp9OYzWZMJhM+n49z586RTCZpNpt0d3dTLpd55ZVXqNfrJJNJIpEIjUYDh8PBxYsX26bfQozb7XYCgcCb/In801DCW6FQKBQKhUKxLbFYjOXlZQDcbvcbFt7hcFg+RySa2O12GfVXqVQoFouYzWZsNht2u514PM7q6ipWqxWbzcba2hpOp5Pu7m6WlpZwOp00Gg0mJiaIRqO43W4KhULbce12O5FIRE28FQqFQqFQKBTvDIaGhsjn89KD/UbYOi1fXl7GYrHIabTVaqVQKFCr1TCbzQwODpJMJkkkEhiGQTgcxmq1Ui6XyefzlEolvF4vlUqFgwcPMjw8DMDq6qpMRxF4PB4ymQz9/f1v6ufxT0UJb4VCoVAoFAqFRORuC6Ht9XoJBAIy2u/1TL1FEkkymaRSqTA3N0e1WqVWq+H1etF1nWw2i8vlktPvkZERotGoFNG5XE5meoufS6WSnHDPzMwwOTlJuVzGYrFIf7jJZKJQKLB792418VYoFAqFQqFQ7FxisVhbhnY2m2VhYaFNfAthvp0IF4LY6XTSbDbRdV02hZtMJtxuN7VaDYBqtUqhUMDj8TA9Pc3y8jImkwld19F1XWZ7a5qG2+2m0WhgNpspFotSdDcaDTRNo16v4/V6KZfLBAIBarXaG57Sv9XsrHBDhUKhUCgUCsUVJRAIEI/HmZmZ4cyZM1SrVcbGxmSu9lZhvpVoNEqz2SSfzxMOh7FYLLjdbiwWCzabDbfbzT333MMNN9xAX18fwWBQRg02m00Mw8DpdGKz2bBarWiaht/vx+PxYLFY0DSNxcVFstkstVqNrq4uWaCTy+Uwm81ks1kGBgbesCf9rUZNvBUKhUKhUCgUkkwmg2EYrK2tyUny4cOHGR4eJpFIsL6+Tjqdvqx/emxsjGg0it1uJ5PJ4Ha7sdvtVKtVAHRdlxNzIeQ1TeOFF17AZDLh9XqxWq1Uq1V0XafZbMpmy1qtRqlUkg2XZrMZXddxOBzShlIulzGZTJw7d45bbrnl7fzofixq4q1QKBQKhUKhIJFIMDU1RSAQoKenh4GBAZxO5yUWk3g8TiaTYXFxUT7vscce44knnmBmZoZMJsPExAS33norgUCARqPB+vo65XIZu92O1+tldXWVyclJAMbHx5mfn6dSqcjJtRDd5XKZZrNJpVIBoFar0Wg0aDabAHKybrPZ6OzsxOl0ylKecrksLS47BTXxVigUCoVCoVAQi8VYXV1lYWGBiYkJwuEwMzMzRKNRAoEAMzMzzMzM0Gw2sVgsxONxuYi5vLxMvV7n3LlzRCIRORWv1+sUCgUqlQqNRoPrr78ej8fDSy+9REdHhxT0uq5jMploNpvU6/VLUkrq9XpbUU4rhmEwODiI0+lkYWEBm82GruuEw2FisdiOspuoibdCoVAoFArFDkRMoN+OqW0ikSCfz7OxsUEul+P06dMyDtBms7G4uMgjjzzC+vq6FMkWi4VoNEo+nycUCmGz2fD7/dRqNdLpNMlkko2NDarVKhaLhXA4zOjoKPPz89jtdsrlsrSaVKtVgsEge/fuZdeuXdJS0sp2FfGapuFwOOjq6uLIkSMyMSUSibBr1y61XKlQKBQKhUKheG1EHN/q6upllxjfTES1u9VqxWq1Sh+2zWajVqthMpkwm800Gg1qtZoU2PF4nEKhQFdXF+Pj45jNZsbGxhgfH8fr9dJoNORzb7/9dsLhMGNjY3i9XkKhEKdPn5bWllAoRLVapVqtUq/XLznH7YS3YRiYTCbZUNnZ2Ul3dze9vb2Mj4/vqGk3KKuJQqFQKBQKxdtCaz72awnCRCLB0aNHKRQKWK1WfD4fiUTixz7n9bz25QgEAiwsLDAyMoJhGG2TYvHfxWKR+fl5vF4v9Xpd2kgymQxer5eTJ0/i9/vJZDKMj4+TyWQ4duwY2WwWt9tNJpMhkUhw7tw5UqkUjUaDtbU1zp07x8TEBJlMhqmpqUtaKAWGYWCz2TCbzdRqNZrNJiaTiY6ODpnX3dPTQzKZxOPxMDU19RN/Hm8VV/XEW9O0ezVN+0Y2m73Sp6JQKBQKheJdTjQaZXp6mmg0+pqPE9YLISwXFxdf8zk/bjr+eiwrmUyGQCCAYRiXTIpTqRSxWAy3201fXx8ul4ve3l4KhQLZbBZd15mdnZWlOENDQ9K64vF4CIfDBINBaSuZm5ujVCrRaDQol8sUi0UefPBBCoUCNpsNQMYItmK323E6nUQiEXw+H2azGYvFQiaTIR6P88QTT7C4uIjNZuPFF198274teCNc1cLbMIwHDMP4gt/vv9KnolAoFAqF4l2OyWSS9oyZmZlLxLBIB1lfXycSiXDdddfR1dUln3M54SwsIblcjmKxeMnjxNLk5OTkZV9jaGgIk8nU9nyR1x2NRqXA3rVrFxMTE4yOjmIymXA4HGiaxsGDB2XudiqV4vTp08zNzVGv13G73VLMDw0NMTg4SCAQwO/3E4lE0HUdi8XC7OwsZrMZm80m87wFmqZht9vZs2cPfr9fppoANBoNmbIiPuOdWqCjrCYKhUKhUCgUbxGtFpDR0VGSySTNZpPJyUkikQjwagW7SAcBGBkZYXx8XE6zbTbbZRM6hLj0+Xw0Go1LHjc0NCTTPi73GuFwGK/XK4txhEiOxWIEAgHm5+cZGxtjeHhYPmd8fJwXX3yRgwcPMjg4yIsvvoiu60SjUSqVCqurq1gsFgqFAo888gjZbBbDMDh8+DBdXV1MT09TrVZxu900m0327dvH6uoqhUIBTdO2TTaZm5vDarVSqVQwmUx4PB7Gx8fJ5XKYTCZGR0flZ7nTbCaghLdCoVAoFArFW8bp06e5cOECZ86cYXBwkLGxMaampqhWqywtLXHgwAH52EAggKZp0pYByGVEEem3HeFwuC36r7XYRiSTABQKhW1fQzymXC4DsL6+zmOPPcbY2BhDQ0NS+AsftUB4wQ3DIBaL4ff7yWazjI2N8cgjj2A2m2UGd7PZZGpqCrPZzHPPPSdfz2QyYTKZsFqtbGxskE6nKZfLhEIhmXwipu2NRkO2X4bDYWw2G/fccw+AvEAQgnt8fPwn/ZW9pSjhrVAoFAqFQvEWkEgkWFpaksuCi4uLuN1udu/eTSaTkc2OQvjG43GsVqsUwALhv15cXCSTybRNcsVzTaZN93AgEJACWUzLs9ks5XJZLj5uJRqN8sorr2CxWKhWq5TLZem1NplMZLNZGo2GnEQbhkEgEGB9fZ3FxUXsdjujo6OEw2G6u7tZWlqiUqlgtVrlawrrSC6Xo9lsIvbvNE3DZDLRaDS4cOECjUZDtlJ+9KMf5ejRo+RyOZm4YjKZGBgYYGNjg7GxMcLhMFNTU2SzWRYWFqT4TqVSRKPRS6b0VxolvBUKhUKhUCjeAmKxGD6fDwCHwyG9x2KaXS6XWV9f58yZM+RyOex2OyaTiUgk0mYJGRoaIhqNsrCwQLVaZWZmhnvuuUcWxAh7Sk9PD36/X76+8H7b7XYikQhut3tbz3O5XKZQKMjov2azKVsjnU4nNpuNYrFIoVBgeXmZUCiE0+mUNe6GYfDMM8/g8/moVqukUil0XZe+bLPZDGxO3MV0Wwhxm80my3FMJpNsrnQ4HHLSDpsXAPV6HYfDwezsLA6Hg0cffZRoNIqu6xSLRWw2G/F4nP7+fqLRKJlMhmg0qoS3QqFQKBQKxdWOELm33XabXFTMZDIMDw9z5MgRpqammJ6eJpfLAZse7UOHDsmptkD4r3Vdl9PzyclJJiYmGBoaIp/PS39z6yQ8n8/j8/m47bbbCIfD0m8uXlMgbBximi2E8traGnfccQder5eFhQXm5+eBzQl8oVCgs7MTTdOo1+vk83k5qReLj5qmUalU8Hq9JJNJDMNA0zRcLhderxe73S6n2WLybTab0TSNbDZLvV6XHu4TJ05gtVpJJpMA0i+eSqVwuVzYbDZKpRI+n49MJiPtOWNjY2/J7/YnRQlvhUKhUCgUijeZ7XK1xc+CoaEh4vE4jUaDrq4uDh8+fNllQPFY4ZnOZrN8+9vfZmBgoO15zz//PC+++CJms1kK79aFw2w2y+nTp9um39lsVk6e9+/fL6fWgMzkDgQCJJNJyuWynGQXi0UcDgeVSkUuQ7YW32iahtfrpVgsykm6YRhUq1VsNpucbospuNPppFgsyuc2Gg16e3sZHR1leXmZTCYjJ9ter5dCoYDFYsFsNhOJRMjn8/IbhXA4vKMm3QIlvBUKhUKhUCjeZITIFZYR8U8r4XCYSCSC0+nE7/e/ZgKHeGwmk5Giul6vc/bsWZxOJ0eOHAE2hXc2m5UZ4JVKhaNHj3LPPffIlJJ8Pi/PLZ/PU61WMZvN+Hw+NE3jnnvukcuW+XyeRCJBJpORVhSPx4Pf72dgYICpqSmcTqfM3RbTc9icfHs8HprNpjyfZrOJpmnS+221WjGbzdjtdmq1mrSf9PX1EQqF6OnpkWVC1WoVp9OJpml84AMfAJBT7eXlZcrlMiaTadup/k7hqs7xVigUCoVCobgSDA0Ntfmt/6mPg83FSbPZTFdXF7fffru0bIjFypmZGXK5nBS+FotFClpxATA+Ps7Y2JjM7E6lUhQKBRwOBx6PRy4sjo2NkU6nmZ+fl7XuFosFTdMYGxtjYmICwzDo7++Xk22bzYbF0j7TzWazdHZ24na7cTqdmM1muUDabDbx+/14vV7K5bK8TdM0+vv7OXLkCJlMRi5n9vf309fXx0c+8hFCoRCZTIaJiQmGh4fRdR2AdDotLyp2ImrirVAoFAqFQnGF2G4S3mpTgVctKplMhq6uLvx+P7fccgt+v59oNEpPT49MMBEC1DAMarUaTqeT7u7ubT3j2WyWSqWCxWLB4XAwPDws7RmiPbNcLqPrOplMBrfbjdvtZm1tTWZ2p1IpLBYLiURCLke24vf7pUWlWq2i67q0o1gsFprNJhaLRS5civufffZZNE0jEAjI5dD9+/eTyWQIhUKXfKPg8/k4e/YsDodDLljuRJTwVigUCoVCoXiT2SoMX4utfvDW5wLyv0W6yfr6Ok888QTFYpFsNsuTTz4pE1FaMQxD1qmL2ncRNxgIBMjn8zgcDur1Ol1dXZf4z1uXNlOplMwYT6fTNJtNUqmUFPh2u12W2ggcDge7d++mUChQq9XkRUHr+e3btw/DMFhZWSGdTpPL5ajVajSbTV588UVuuukmIpEIfr+f5eVlZmZmeP755xkfH5dT+8cff5znnnuOZrMpLTOLi4vK461QKBQKhUJxtSMSRSwWy+uykESjUebm5piZmWF8fPyS57aWw5TLZebm5nA6nbJgpl6vYzabMQyDUCgEbC5FislyNptlampKimQAu93O7t27KZfLWCwWurq62hJRYrGYtJ2IcxACeP/+/USjUWw2G+l0Go/HI5cihbgWKSVzc3OkUik50RaYTCacTielUgm32y0vAMTzdV1n3759be2Zp06dknX2p06dYnR0lNXVVU6fPi2fJ15360XITkEJb4VCoVAoFIo3kdOnT7O8vExfX9/rWvATk9tCocDx48fp6uoCXrWYjI+Py5KYdDothWUwGCQYDHL+/HlyuRxms5l6vS5TP9LpNLA5WS6VSui6Tq1Wo16vo2kaa2trVKtVvF4vs7OzBAIBhoeHt53WCwHcmhgiBHogEODpp59G0zQAbDabrIJfX1+XMYU+n498Po9hGDIa8cKFC3g8HkqlEoB8bDAYxOPxSCvO1NRU2+clUlTOnTvXNkm//vrrL7HW7CSU8FYoFAqFQqH4CRE17a0Nia1T29fD6OgoS0tLUgT7/X4WFhZ45ZVXmJubY3BwUFa99/f3y1i9XC5HMpmUOeCNRoNGo0GtVsNkMmG322UudzqdxmQy4XA4KJVKUuDC5kTc6XRy/PhxpqenSSaT0nrSaoPZWsPe6k/PZrM888wzNBoNdF1neHiYTCaD1WqlUqnQ39/PhQsXsFqt1Ot1eWwhwG02m4wYBOTCaau47+rqolKp0Gg0GBgY4MUXX5TLmOJ5Fy5c4L3vfe+OTDQBJbwVCoVCoVAofiJaFxpbGxLHxsbwer2vOXXd6utujfCLx+OsrKxQLpeJxWJUKhVcLhcTExPAZvV8uVxmY2NDWi8EooDG4/FgMpkwmUyySdJiscgc7tYlSLfbjaZpJJNJmRWezWZxuVzMzs7i9/uB9ng+UVVfLpdxu90sLS1RLBalz/rMmTMEAgF6enowmUxMT09TrVaBTZsLIO0ltVoNTdNkJKHL5WJkZIRYLEaxWJQpLV6vl1qtRrVa5fTp07hcLgzDwGKxyMfU63Ueeughdu3a1WaV2SloW7dPr0Zuvvlm44UXXrjSp6FQKBQKheIqYmpqStoyDh48iGEYbYU5r8UTTzzB4uIiTqeTSqVCMBikXC4zPz8vC2Valx+tVisulwufzycbIiuViqx2bzabuFwuenp6cDqdsowmk8mwvLxMvV6XdfRiUVKIVbfbLSP7hA/b5XLJ3G6Hw8FnPvMZ4FW/eTQaJZvNUi6X8fv9OJ1Ozp49K9+f2WyWYl94zTVNw2az4XQ60XWdoaEhkskkGxsb1Ot1GX1oNpulXaa7uxtd18nn8+i6zsWLF2k2m/I1xMWFyCw/duwYTz31FB/72Md4//vfz0c+8pG3XXxrmnbCMIybt7tPTbwVCoVCoVAofgLERFukjSwvLxOPx4lEIj9WgAu/9erqqqw+N5vNsja9o6MDv99PpVIBNpcl8/k88GoluxCj11xzTdvi5OHDh0mlUhw/fpxAIECpVCKZTKJpGqVSCavVisViIZfLySZJkSQiKBaLWK1WGo0GVquVY8eOEY/Hgc2Jtc/nk49NJBLY7XYptu12O9VqFcMw2posLRYLd911l4wiTCQSMmawo6MD2LyYqNfrNBoN2WxZrVZl+Y7I/HY6nWQyGQzDwOVyUSqV+JM/+RNZa//Nb34Tv9/PgQMHdtTUWwlvhUKhUCgUip8A4XFOJBKsrKxQLBZJp9MkEgmKxSJ33XVX2+Nb/cpA22TaMAyuvfZaYrEYJpOJ/fv3ywl6KpViamoKh8NBrVbD4/EwNzcnRe38/DyBQIBGo0G9Xuf06dMkk0m5sLh7924phPP5fNu022w24/F4KBQKVCqVS3K4NU2jUqkwMzNDo9GQmdpOp5NCoSALbmq1Gg6Hg2azic/nI5VKyWNomobZbKavr09GCM7OzlIul0mn0xiGwcbGBv39/W0LoX6/X0YXut1uxsfHmZ+fx2azUSgUKJVKVKtVXnrpJb7zne9Qr9fxeDx84QtfoF6vs2fPnh23ZKmEt0KhUCgUCsUbRHicRWydz+ejVCphs9lkgshWYrEYq6urPP/88+i6LuP/xIRbVLFnMhnm5+f59Kc/Leva77nnHgDpqzabzW2vnc/nMZvNNBoN8vk8Y2NjRKNRuWApxKrZbJaTcWFf6ezspLOzk2QySbFYpF6v43A46O3tZWNjg3w+T6VSwWq14vP5ZJyg2WyW/mqRptL6+uIYbrdbTuRXV1eJx+P4/X7i8XjbkuXc3Jx8nsvlkhGEYgKez+dlZvihQ4fQdZ1iscjf/d3fUa/X6enp4atf/SrXXXcdU1NTBIPBN/eX/iaghLdCoVAoFArFG0AsVWazWWw2Gz09PXg8Hnp6etp8x4lEos3mMDQ0xMLCArquk81mZcJIb28vtVqNQCBAPB7H5XIxNjYGbIr1WCzGyZMn2bVrF4ZhSMFqt9txuVzouo6maTLP22QyMTw8TCgUIhqNsrCwQD6fp9lsyim08JGHQiGWl5fRdR2fz0d/fz/ZbFYW4nR0dEivtxD7x48fp9FoUCgU2LVrF4uLi+i6TqlUwul0yqQR2Fx2zGQy2Gw2QqEQ8Xgci8XC0tISVqt1289X0zSazab0c8Nmaspzzz1HMBjEZDLx/e9/n8OHD2O322X84mc+8xkuXryI2WwmGAySSqWIRqMcOXLkrflD+AlQwluhUCgUCoXiNdiuWdJms2G322VFuc1mI5lMous6fX19NBqNbVsrxQTa6/WiaRqhUAifz8fo6CixWAyn00kkEpEJKUNDQxw/fpxKpcLq6iqAtHmISfbExASLi4ssLCxgGAZutxvYFO26rsuLga0xfvV6nXg8Lu/b2NiQtpd4PI7ZbCYQCBAMBuVku1wuS192vV5nfX1dnpPX68VkMmGxWLh48WLb+xb54ZFIhHg8jtvtJpvNynhBi8Uiz62jo4NsNtvmORecP3+eBx98kNnZWX77t3+b3/7t3+bYsWPs378fn89HoVCQjZ/i891JKOGtUCgUCoVCcRlmZmaYnJyUvuxwOCzr1Gu1GgsLC9JeUavVMAyDRqPB7t276e/vb3utWCwmp78mk4menh7sdjtut7utIbLVlxwOh+ns7OTixYvous7u3bup1Wr4/X7W1tZYW1vj8ccfx+Px4HK5MJvNjI6OAhAIBFhYWJCLj263W2Z+w+Y0urOzU3rHa7UajUaDUqkkp9vCU75r1y65RJpKpVhYWJATdK/XC2zaXTo6OqQdZOvCZrVaxePxMDExwbFjx9jY2JCtmRaLRS6Svuc97yGfz3Ps2DE5oa/VakxOTnLs2DE6Ojr47ne/y/DwMPfccw/5fJ6PfexjANL6I2IVxUXITkEJb4VCoVAoFIptEJaSarVKIpHA7XbzwAMPAJvWh0QiISP4RFsjQC6Xw2Qysba2BtA2vc7n88TjcTwej5wSC6HdWkjTeg4iYcRms8nlwt7eXvn62WwWeDWJ5LnnnqNSqeB0OrHZbKytrcliHbfbLZcuvV4vgUCAsbExaTdZWFigXC5jMpnw+/3UajUWFxc5cOAAqVSKlZUV4vG4jDT0+/3Y7XZZUS+OazKZ6O7upl6vk0gkZNukyWRicXGR1dVVmewi0lUMw0DTNKanpxkZGcHv95PL5ajX60xNTfHcc89xxx138F/+y39B0zQ+//nP8/zzz9PZ2cnQ0JD0hIsWz2uuuYaenp638k/kDaOEt0KhUCgUCsU2xGIx/H4/2WyWnp4eUqkUqVRKLhq6XC7C4TD79+9nenpaxvXZ7XZyuRw2m42pqSkymYwU116vl76+Pnnbj4u6O336NLlcjkajQSKRkIuLGxsbsnDGbrdL0VmpVHjppZfweDxYrVb8fj+dnZ1cuHBB3v+hD32IXC4nxfPU1BRWq1VO7iuVCiaTiUajQbVaxeFw8PTTT7OxsSHj/eDVevdQKESxWJQZ3KK6XhTvwOa022azsbS0RKFQkK8ByEm38J07HA6ef/55VldXSaVSRCIRDh8+zP79+zl48CDHjx+nVqtx/PhxrrvuOu655x4sFos8LmxGLkYiETKZzJvzx/AmoYS3QqFQKBQKxT/SmlbS09PD0NCQFM3RaFROjhuNBn19fdx7770kEglyuRy9vb309PRIsd1sNikWi5w4cYITJ07QbDYJh8MMDg5eUr9+OXRdx+PxyHxrIbx1XadarWK1WvF4PDILW0zBi8Ui11xzDbt378ZkMjE3NydbJQ3D4MiRI0xNTTE9PU2xWKRQKMhsbPH6tVoNi8WCruvSomIymfB6vRSLRekNn56exul04vF46OjoYH19HV3XqVQq2Gw2arUanZ2dVCoV0um0tLJs9XDb7XaCwSC5XI6nn36a+++/H5fLxb/6V/8Ks9mMw+Hg0UcfJRAI8I1vfAOA9773vfh8Pnw+H4ZhSBEP8PLLL3Pbbbf95H8MbwFKeCsUCoVCoVD8I7FYjOXlZQCZHQ2bgtzr9TI6OsrU1BRmsxmn0ymfI+IDFxcXCQaDUvBeuHCBjY0N6f8ulUrcdNNNP/Y8xEJnX1+fXMR85plnpPda13XMZjN2u51CoYDD4cDv99PV1cXMzAx2ux1N0yiXy6yvr0uf9+DgYFvxTz6fl6knopBG0zSCwaCMNoxEIlQqFeLxOMPDwzKz3Gw2y6l5uVwmEomQy+VkBODWBUsRaShaMcWEWohls9lMMpnkq1/9KvF4nGuuuYZ7771Xfo7f+ta32l4vGAxKn7zL5SISiZBOp2UaSj6fZ3p6mltuueUn+lt4K1DCW6FQKBQKheIfCQQCUni2LjmKavhMJkNfXx+1Wo2xsTESiQT5fB6LxUKxWGRubg6n08mePXsA6OrqwmQysbq6KifOl7M/zMzMEI1GGRsbI5PJsLq6yokTJ2TUn2EYOBwOXC4XJpNJLisODAywsbHB2NgY2WyWixcv4vf7MZlMxONxCoUCmqaxa9cuJiYmSKVSTE5OMjAwALwq4sU/IkPb4XDgdDrJZrNUKhXMZjOvvPKK9LWL2EDDMLBarWQyGTmJb0V4u202myzZERNseNVqMj8/z9e//nW5UPm5z31OTtxFUsnHP/5x5ufnuf7669m7d698nUKhIKf9IsrQMIwdl+WthLdCoVAoFIp3PWLCXCwW8fl8cpIrGBoaIhaL0d/fTyaTIRAIEI1G5aLkrl27gPY2ylQqRV9fH7feeivPPvssyWSSrq6uNkHfam1ZWVkhm80yOTnJxMQECwsLcvGwVCoRDAblFBs2rRl9fX14PB4+8IEPAPCd73wHu91ONpulXq9TKpUIhUJUq1UKhQLHjh1jfn6eWq3GysoKJpOJSqVCuVyWYjuVSgHIennhzxbeb2EREaIbNhNSRJa4iAYU03mLxUIkEiGbzcrHG4YhWyorlQoOh4OOjg5cLpe0tXzzm9/kvvvuo6enh3PnznHjjTdy+PBhbrrpJllnr2ka1WqVUqnUltgijrl///438a/kn44S3gqFQqFQKN71iFZJkUji8XiIRqMydaS1Hj6TybC8vMzc3Bz5fB5d16WX2O12y9g9QFpQ3G63tKrA5kKjeNzJkyep1+u43W5pYREV8aIgZ3R0FMMwmJ2dpVgs4nA4uPXWWzEMg0AgwNTUFIFAQNouHA4H8/PzUuAGg0GazSbr6+uyndJsNmO1WqWQF2U3gnw+j91uR9d1mVsOyKjARqMhRbhhGNTrdXRdx2634/F45HE9Hg/5fJ5UKiUXMOv1OtVqlcnJSaLRKL/6q7+Kz+cjl8vx0z/902SzWZ566in++I//WF4MfOITn6BSqeByuWQTpshF34phGBSLRc6dOydTZXYCSngrFAqFQqF41yNaJX0+Hx6PRy4QZrNZWYQj4gWFh9lkMuFwOGR2dKs4N5lMBAIByuUyR48epVAoUKlUWFpaore3l1wux8LCArCZ+CHi9EZGRkilUqyurlIoFAgGg4yMjOB2uykWi9KW0dnZyS233NJ2TslkEofDweDgICaTieXlZWq1mrSlCAFbrVbRNA2LxSIbKreruBfnZjabKZVKuFwuqtWqFOpbnyN+rlarVCoVDMNgY2MDk8kk7Sqwmcn97LPP8tRTT8kUkr/5m79h3759ANx00034fD727NnDX/zFX3DgwAF+7ud+jo6ODimoAbnceblzr9Vqcqq+U1DCW6FQKBQKhQIIhUKYTCY5lY5Go1gsFoaGhqTAFXXvkUgEj8dDKpXCZrO1tVTGYjEZxZfNZmUbpMlkolarySxvp9NJLpfD6/Wi6zp79uxhbGyMVCrF/Py8fLyoV6/X6+zatYtGo8H+/fuZmpoin89js9lk02QqlSKTyXDw4EG6urrkYmexWKRYLEqRahgGTqcTv98vowAFwiIiptni368lYlttJ61C2DAM6b2GzRjEP/7jP77EyjM3N8fc3By7d+9m7969zM3NMTAwwH/8j/8Rt9sti4lajyfiFLcKb5GwUqlUGBkZeT2/+rcNJbwVCoVCoVC8q2ltpxwcHCQcDjM1NYWu63i9XvmzmCr7/X4KhQIHDhxgbGyMWCwm7R5DQ0OyMXJgYIBoNIphGPT09EhhD5v+6dXVVbxeL5VKhaGhIfbv38/k5KSM/hMJIysrK5jNZrq6ukgkEgwMDFAoFMjlcuRyOYLBILt27cJkMjE9PS0tKT09PSQSCXRdv8SOIZYofT4fmUzmEuEdDAYpFApyurxdfbvL5aJcLsvzFMdorX9vFcW6rvOtb32LcrnMNddcw4c+9CFZY6/rOoVCgZGREUZGRlhaWqJer2Oz2eRUfCt+v596vd52f2uL6NDQ0LY2lCuJEt4KhUKhUCje1USjUZrNpiy1EW2RJpNJLkIGAgGy2Sy6rhOPxwkGg2QyGekfPnr0KNVqlXw+LxshDcNgz549LC4u0tnZyV133QVsLlQmk0l27dpFNpuVFpBoNMqFCxekCBYWDZPJhK7rsoHy7NmzHDhwQBbRpNNpIpEIJpOJvr4+kskk+/btkzGHIhlkq3guFArSnuJwOOTypNlslue1dfoNm9PmkZERKpUKc3NzwOZk22KxYLFYcLlc1Go1yuUyDoeDeDzOAw88wNDQEJlMhrvuuos777wTp9Mpj1uv12k2m1itVqanp9m7d6+8iNgOwzBYX18HXq2HNwxDnmcul5PieyehhLdCoVAoFIp3LYlEArvdjt/v59ChQ3K6LabJwnqyvLwsy2dE3bsQdbFYTPqahViPRqMUi0V6enrkwqU4XiwWkzXtIhpQ4PF4pMDXNA2HwyE94GIp0Ww2ty1MOhwOuRRZrVa59tpr5QTZZrPhdrspl8sUCgUpZMWFBmymioTDYVwuFxaLhXQ6Laf9fX19xOPxNuHtdDqpVCptOd2taSd+v5+lpSXZLnn06FE0TWNubo7u7m7uuOMOmUoi4gfF+2s0GjLBJRgMUiqV2kpxtkPEEzabTXmRYhgG8/Pz/6S/jbeCHS+8NU0bAv4T4DcM41P/eNsB4NeATuBxwzD+5xU8RYVCoVAoFO8ghPgVEYGGYWCz2QiFQsDmdPvkyZNUq1WZTV0sFmVJjCihEZ5uUUQjRHo4HMbr9crc79YSHrEIaTabCYVC0mcNrwp4kXft9/sxm80yiaRYLGK326nX61itVpxOJyMjIxSLRRqNBvF4HNhsrVxbW5Oe7lZRup1lBDbFq0gVEW2TtVoNTdMu8VY3m00WFxeliHe5XJjNZvL5PI1Gg/n5eZaWlrj//vtZW1vj2muvJRgM8swzz/BzP/dz2Gy2tsm0eB0RDyiWIru7u5mdnX1dv1Mh3MXEXthPTp8+Lb9p2AmYfvxDfnI0TftTTdPWNU07s+X2D2maNqNp2nlN0/7ja72GYRgxwzB+ccttZw3D+H+BTwM3v/lnrlAoFAqF4mpFlOEIb/bi4iLxeJyHH35YxgUK64bFYmF2dpa5uTmsVitdXV2Mj49L0Q2baSZHjhzhrrvukrcHAgGZ9y149tlnWVhYYGFhAV3XMZlM+P1+WUufzWal4IVXlwRLpZKc4lYqFbm0KabrPT09ZDIZenp60DSNxcVF0um09ImLNkmbzYbX6932MxGi12KxyHKcfD4vxTRsWjpsNhsWi0VO/8PhMCMjI1gsr85yDcOQVfQdHR0Ui0WeffZZ9u/fT2dnp5xKi5hCUXijaRqBQEBOwUXl/Ha02mAA+Q2BiG3s6uoiGAxeNvHkSvFWT7z/HPgfwF+IGzRNMwNfA34KWAKOa5p2P2AGvrTl+Z83DGN9uxfWNO2jwH/8x9dXKBQKhUKhuCwzMzNMTU0RDAbp7u5uK8Exm80UCgXK5bLM3/b5fNx9991MTU2xsrIibR8i8UTQOj0XojuRSPD000+Ty+VwOp3SB55MJuVEuzU9RTz/4MGD/PCHP5SFMIuLi7JFcuuCZLlcZnFxUVpCbDYbp06dksuOW9F1nXq93ja9biWXy1GpVGRutxCsrekjQpDXajV5jEKhIG0lsVgMk8nEwMAAd955Jy6Xi4cffphUKkVnZyf33XffJYuSDoeDa6+9lvPnz7N37148Hg8zMzOk02lMJhORSISVlZU2u4nP58NisZDJZDCbzdLHrmkaHo+Hjo4OarUaqVQKn8/3Ov463j7eUuFtGMaTmqYNbLn5FuC8YRgxAE3Tvg18zDCMLwE//QZe+37gfk3THgT+z5t0ygqFQqFQKK4yhMWjUCiQSqVYXl4mEokwPT1NtVrFarVy4MABAOLxOBaLRQrjYDDI2toaVquViYmJtkk3bFoZFhcXKRaL0tJw7NgxlpeXMQyD8+fPk0gk5OPtdjter5dQKCQXKkulEidPnsRsNkuhW61WpQB3OBxy0iwaIkWmtZh6LywsUCwWt7WSCHG61TayFeG5fq3HAJdcAGxsbPDII4/w0ksvsW/fPvbu3Uu1WuXkyZP09PTwz/7ZP8Nms207vXa73aysrLBr1y5cLhfJZFJGB4q2zFbsdjs+n4+NjQ1pLwmFQhQKBex2O9VqlZdffhlN0/D7/czPz3PLLbe85vt5O7kSHu8eYLHl5yVg/HIP1jStA/hd4CZN037LMIwvaZr2fuATgB34h8s87wvAFwCuueaaN+XEFQqFQqFQ7Gy2m0DHYjH8fr9Mz9B1ndnZWdkSOTw8zF133cXU1BSFQoGLFy/i8Xg4duwY6XSaQCBAJBIhk8lIES2OkUwmWVtbw+l0ynMQaRuwKWa/9a1v0dvbS0dHB3a7nXK5zNzcHCsrK/h8PpaWlnA4HGxsbFzyfoTtwmKxEAwGZeZ3o9HA7/eTz+eZnJwklUpd1r9ts9nk6wDSQtMaIQivLk22ItJCRI54K4ZhEI1Gefjhh6nVarzvfe/jjjvuoFar8fu///s0Gg0++tGPEgwGLxsJuL6+TrPZZG1tjYWFBTRNo1KpYLVagc3Fz9ZzGhwcZGNjQxb0iPZM8R5bP4d6vc7Y2Ni2x71SXAnhrW1z22VDFg3D2AD+3y23/RD44WsdxDCMbwDfALj55pt3VoijQqFQKBSKt4RoNMry8jL5fJ4jR44AyESRcDjM3NycTO2ATWEpLB9DQ0OcOXOGRqNBPp9nfn4er9crhZzwhbf+txCJlUpFin6v14vL5ZIlOrquc+HCBcbHx/F4PMzNzVEoFDCZTPh8Pm6//Xbm5+dxu90yicPpdEoftVjG7Ozs5NZbb+Xhhx+mXC5Lr3epVGpLRmlFTJmF6AawWq10dHQAmxN+UfN+5513Eo1GWVlZkY9tXXwUS5riczt//jzf+9736Ovr495776WrqwvDMPj7v/97Go0GBw4c4Oabb77sBYF4XUHrOYoLpNaLA5PJxMrKCuVyWV4QGIZBPp/HbDbj9Xqx2+3y4igUCu2ouni4MsJ7Cehr+bkXWLnMYxUKhUKhUCheF4lEgpWVFVnnvpW+vj6Zz22xWCiVSlitVubm5ohGo5hMprZYO7vdTiqVYteuXei6Lj3FwsscCARkiYvD4eDhhx/G4/HIdJRkMkkqlZIFM8lkkkqlIlNMhJd6cHCQtbW1tvi7Wq3GrbfeKmMBRbThsWPH5OReiHqTyYTJZMJqtcqFSsMwsNvtQLs1xGq1cvDgQTKZDEtLS/JzstlsPPPMM9IrvV3hjkgcSSQS9PT0MDQ0xM/8zM9w4MABeezZ2VlOnTrFXXfdxQc+8AE0TZO/D/H5tor31uN4PB7Z8gmvesoFuq6Ty+Uu+b02m035OTidTpLJJLDpH08kEpfYg64kV0J4Hwf2aZo2CCwDPwv83BU4D4VCoVAoFO9QLmcpEZF4xWKRBx54ALfbTbFYZHFxkWazSXd3NxaLRRbNZDIZXnzxRWkV6e7uptFo4HQ6KZfLdHR0kM1m8Xg82Gw2jh8/Tq1Ww2KxUCwWqVQqMjqwUCgAcNtttwFw//33y8m6ruvEYjHpSbbb7bJkZnJyksXFxbZFRsMw2uIAxRIj0JbfbbPZsNvt5HI5SqWSTCcRjZiAPC+TyYTdbufkyZOEQiGsViulUglN08jn8zJdZKvo1jQNu93OxsYGf/EXf0EqleLXf/3XcTgcXHfddcCrIvmJJ57A7/dz2223SXuJzWYjEAjQ29vL+fPnpXjWNA2bzUa1WpXRidVqVWaVv9akvBVxoSF+H0LQi28l3jXCW9O0/wu8H+jUNG0J+C+GYfyJpmn/GniYzSSTPzUM4+W38jwUCoVCoVBcPYhlSWGjaI3wW1hYIBgMEo/H2djYkIuS5XIZq9XK2toaDoeDpaUlRkZGmJ+fZ2BgoK0sBzYtK+VymXQ6jd/vJ51Oy3ZFwzCo1+uk02ksFgvVahW32y3tEeKcOjs7pViGzUXCUqlELpfD7XZTKBTw+Xzb1qKbTCbm5uawWCwUCgVqtZoUomKRsFAoEAgEOHTokExRaTQamEwmWY6z9XXL5TLNZlPaSUSmtoj4245qtcojjzzCs88+i8/n47777pPTdEGz2eTP//zPicfjfOpTn2qL+hMe8cOHD8siH13X8Xg8suI9m83Kx4tzEgJ6u3MTi5Ti9TVNa7OqOByOtpKjncJbnWryzy5z+z9wmaVIhUKhUCgUitciFovJkpdWYSUiAsVkFzaFprBhOJ1OxsfHmZ+fx2azYRgGExMTPPvsszIysFgscvjwYbnE2Nvby9LSkhR1ollSTIetViu33norg4OD8mJA+MCF5QE2J97d3d3SE766uorZbGZtbY3rrruOcDjM+vo69XqdQCBAIBCQ4l4sEgqazSb1ep1arUapVCIajdLV1SWXCwG5pNiKyM1unSRvXbAUWK1W3G43q6ur/K//9b/IZDLcfvvtfPjDH5bWDpH5res6J0+eZHFxkQ996EPceOON0q4jqNfr8nMRr9/R0YHJZCKdTrcdW9h8yuUyFosFm81Go9HA4/FQqVTQdR2HwyGXTE0mk7S0tL6vfD5PKpV690y8rzSapt0L3Lt3794rfSoKhUKhUCjeBBKJBPl8Hp/PJ1siW2+3WCyMjo4yNjbG0aNHZcJIV1cX99xzD+FwmMHBwbbmylgsRi6XQ9M0SqUSXV1dBAIBzpw5Q6FQoNlsYrFYcLvddHR0EAgEWFtbw+Px0NfXJ0XxxMSErIp//PHHSSQSUqA3m03Onz/P+Pi49JGvra3R2dlJPp+Xtel+v5/+/n6Z9y3i9VoFs2EYWCwWaa8ol8vSO57JZDCZTITDYUqlEvl8XopVeHXZ8nKCW1Cr1ajX6zidTm644QZuuOEGdu3aJRdPvV4v8/Pz7Nq1C5PJRDQaJRKJ8L73vY/du3dTKBTI5/NyQTKfzzMzM8PKyor0e4tM9fn5+Uu83MJ202g0sFgs9PT0MDIywo9+9CNqtZq0lIjinq2T/WazycbGBtFodEctWF7VwtswjAeAB26++eb/50qfi0KhUCgUin86sVhMishYLEYqlSKTyVAsFqUlQ9w2Pj7O8vIyuq4zNjZGOBze1ht+6tQpisUisCngXnzxRWw2G6lUSk7M7XY7TqcTr9dLJBLh8OHD8ritLZjnz58nEAjItBBRYS6E7AsvvMC1115LMpmUaSVzc3Oy+KZcLjM7O4vVaqVcLrcJ5H379rG8vMzY2Bjz8/PyQqNcLhMIBJifn6daraJpGoVCgZGREXRd59ixY8DmFFykrTidTmnh2Ootj0ajPProo/yLf/EviEQi3HXXXXi9XkqlEplMhq985Svy8SL1pVQq8YEPfEBW14vUlFQqJZcyL168KC86wuEwzWaT6elpHA6H/Py3IrLH19bWAOQkXJyr8INvR7PZlOexU7iqhbdCoVAoFIp3Hq3iGGgTysLH7XQ6KRQKnDx5UiaLwGarYTQaxWazsbCwcEnpTWtdPCAntV6vl2QySbFYJJlMyomymGZHIhEqlQr5fJ6RkRG5DCnEsdls5plnnqFarZJMJtvKalqnuZVKhenpaWkfKRaLcppts9lkOki1WpUpIIBMMdm1axezs7Pouk6z2aRcLtNoNGR6iljGzOVynDlzhsHBQXw+H5lMRto7DMOgWq0SCoXkEun09DQvvvgi58+fJxaLEYlE2mrge3t7qVQqPPLII22/q3w+z7XXXks4HOamm26SzZaJRILdu3dL//bWRclqtSqLh+x2Ox6Ph1qt1nahIVon8/m8/BxsNhvDw8NcuHABwzBwOp3out4m3IUlxev1bpuNfiVRwluhUCgUCsWOQAju9fV1UqkUxWJR+oyFiG71ca+srKDrOhcvXgQ2c5trtRoDAwPSx7011ULYS4aGhjh27Bhnz57F6/XS0dFBb28vc3NzctlwqwgU09YHH3wQh8MhhbXf7+fkyZOXTG0vt7AopuDCn9xoNHA4HFitVux2u7SStDZewqb4zmazUli33m42mzGbzfj9fux2O8VikXq9ztraGv39/TQaDWq1GslkklqtRqPRkIuja2tr/OVf/mXbImg+n6ejo4Nms8nc3By7d++mXq9z7Ngx9u7dy/j4ONdeey2ZTIZdu3a1tWaKSX6pVNrW0iIWIUWiSrlcxul00tvbKy9+/H4/1113HblcjtnZWRqNBsvLy1itVqxWK5/85Cfl38LU1BRzc3PAZuzh2NgYPp+P+fl5VaCjUCgUCoVCsR2xWIzV1VUWFxcxm80sLS0xPj7OzMwM1WqVo0ePks1m6e7uZmJiApPJxOLiIrlcDl3XSafThMNhaV/Y2NjAbDZfkuWcz+c5ffo06+vrcjI9NjZGJpNh9+7dTE9Py4SS9fV1fD4fXq+XW2+9le9+97sy6m5wcFD6q7fLvQ6FQjL/W9d1ma29f/9+0um0TFgRtpJ6vU65XMbhcJDP59uWE4VNxGq1kkwm8fl8bcJc0zQ6OzuJRCLAZjFOoVCQsXqlUglApoeIOMJcLkc8HmdpaQm73c5HPvIRHnroIYrFoswWf+ihh7h48aJMbrnnnnvo6OigXq/j8/kwm82YTCYpvG02m7y4aF3wbC29ERcy4rMpFAoUi0U5Zc/n8ywtLVEqlaT/Xdd1mSxz/PhxIpEIQ0NDOBwOzGYzuq5zww034PV6pVdeZKrvFJTwVigUCoVCccVJJBJSAIosbmFHCAaDnD9/nrW1Nem9DofDjI6Oous6mqaxsbFBR0cHGxsbchpsNptJpVJy6i1iCLPZLPV6nWKxiNVqZXx8nOHhYRKJBEePHqVQKGC1WtmzZ4/0U3s8HmKxGAcPHpST1FAoxOTkJFarFZvNJhskLRaLTFU5cOAAy8vLAPJ4+/fv58knn5RCuzV1pVKpyDzuVjHfWkRjt9vRdR2XyyUFdaPRYGNjg0KhgKZpdHd3y9dNJpNS+It/12o1Hn30UQYGBjh27BiapvHFL36RX/zFX+Szn/0sn/jEJ/j6178u7R5PPvkksGm5afVNi1ST66+/npmZGelVF15v8R6sVqu8kLBYLLI8KBAIyAVQ4QUXJTsLCwsyOUX8PjVNo9lsEo/HWVhYYGVlhY2NDZmysra2RjqdplarYbPZ2hpMdwJKeCsUCoVCobiizMzMMDk5KavLnU4noVBILjfG43Ep6Gq1Gm63W06xxbKjw+GQS40ej0emYYRCoTavuCicEUuIopZd3F+tVikUCgSDQdxuN4ZhyMVF0VT56U9/GoDHHnuMbDZLpVKR/mwx/S0Wi5RKJV555RUcDgd2ux23202lUpEtmUJci/IZr9eLxWLBbDbjdDrbRLWI0Ovo6JAXJ6IsR5x/tVptiz0Mh8OybVNMpE0mEzMzM/zgBz8gk8lIQX3gwAG8Xi+PPPIIZrOZQ4cOcfz4cXK5HLfddhvRaJRCocDtt9/e9rsTVpHz58/LyfTWhBG73U4gEJAXAGL50263Y7Va6ezslNaaVruOsM8Ir7uw7og4RU3TmJ+fl78nMTmHzcVLr9e7bYPpleSqFt4qTlChUCgUip1PNBqVk9ORkRFZYhOLxaQQEy2HNptNtkCGw2Hp2e7v7yeTych/F4tFGo0Gfr+fcDjMzMwMs7OzeL1e7rnnHlKpFFNTUwSDQSnMh4aGyOfz2O12mdUtogf7+/tZXl4mn89L0S/yo4WfGTZFZmuZi9PpJJVKyejBcrnMwMAAq6ur5PP5tuKYWq2Gz+eTpTpra2s0Gg1yuRyGYZDL5ahUKlgsFnK5nLxo2Cp0LRYLDocDk8lEKpXC6XTS3d3N4uIi/+f//B9eeukl/H6//IYA4LrrrpO52Llcjo985COMjIxw/vx5PvjBD3L77beTTqfZvXv3Jb8/kSm+HVarlaGhIfmZigsewzAoFApEIhEMw6Cvr4++vj6OHTuGruv4fD4ikQi6rstFVlFeJAp5xIVHayqLuOBqNps4nU75t7RTuKqFt4oTVCgUCoViZ5NIJLDb7fj9fg4dOiQtHyKeLx6PYzKZ2LNnj0zgyOfzrK+vSwG8XUHKzMwMU1NTVKtVZmZmePTRR+Wy5qlTp5idneXgwYPccsst8jnhcJgjR47wne98h0qlwvz8PLfccou0qYgLhPvvvx+r1crIyAg2m022WsKri4UALpcLwzAIBoPAZplPMpnk4sWLuFwuIpFIW2Sg8Hn39vYSi8XkJN3pdGIYBt3d3QBSLFssFjRNkxYN2BT+FouFSqXCxYsXqdfr5PN5zGYz09PTnD59mttvv53nn3+eWq3G3r17OXLkiHztWq0mS4OuvfZarrvuOqrVKk6nE6fT2TZhB9q83cLXLT4LkbMtUk1ElKB4rwBzc3NomkYymWT//v3s3buXXC6Hz+cjFArJiERAliZZLBYCgQCdnZ2cP3++7bOvVqsyJSUSieyo8hy4yoW3QqFQKBSKnU0sFsPpdBKJRGTRiYj8W1hYkO2F/f39jI+PMzU1xfT0dJt3uxUh2kUpzfz8vBR+QkBGo1F0XefFF1/klltuuSTbe2xsjGg0KhMxhBVGCH8hGk+fPk0qlZLTbrPZLCezooynt7eX/v5+1tfXefnll6WHWSxlulwuKZpF1vepU6ekwBXpJ729vezfv5/FxUU8Hg+lUklG8VmtVlmRLvzPjUaDer1OKpVifX2do0ePcuzYMUwmkxTdH/nIR+SFR6tdZWNjg2AwKM+1tYpd0FoMJBD+cafTSb1el15vUZoj2iYdDods3RTHFpYigEKhQCaTIZlMkkqlZB76rl27qFarpNNpPB6PjFJspdlskk6nCQQCOy7RBJTwVigUCoVCcQVpjfdrvS0ajcqM5kajQSAQkPfl83nK5TLFYvGSxBIh2lsXHIVv2u/343a7sVqtZLNZDh482PYcIeSHh4fb2g6j0aiMv7v99ttZW1tjbW1NWj9gU4gKwQlIP7WoqX/sscewWCzSry2ypx0Oh7xdYDKZ5OuUSiXp915cXGR5eVl6nYXNwu/3U6vV+NKXvoTX6+Xll1+WXvlsNitFtdvtplgsUqvVOHDgAHfeeSe1Wq1NPBuGIT/fYDAo/eqtrZnidUS6SyvCi93qXQdkIonwtrdOxUWTZblcbmsKbTabuN1u8vk8NpuN3bt3s7KygtVqZW1tTfr+xeuI4wOsra3tuGk3KOGtUCgUCoXiCnI5q8jKyooUYX19fWQyGfn4I0eOMDU11SaWBa1CfnR0lFgsxsLCgoy+6+rqIpVKceDAATnt3U78tzI2NsbKygrNZpO1tTXuvfdepqamiMVinD9/Xloq+vr65MVCMpmkUChw/vx5HnjgAbq7u/H7/QSDQcLhsJy6iym8EIyVSkV6x8VtzWaT3bt3Mzc3Ry6Xw+Vy4XA4ZPrJo48+ysMPP9zms242m/IzA9i7dy+f/exnAchkMrhcrktEcyuNRoPOzk7ZNtmK8N2LyT5sWlyazSZWq1UuQLZiMpnkpL5Wq8nPTFxUiOm48Po7HA4cDof0y4tvG8QSq8VikRNzp9MpfxYtoXa7nampqbaG0p2AEt4KhUKhUCh2DCLyr1AoUCgU8Hq91Go1hoaG2iwhgUCAU6dOYTKZCAQCbRNqgRD1MzMzciHP7XaTSqXa0i4uJ/4Fw8PDTE1NsbGxQTweZ2pqSsbaXXPNNeTzeTo7O+ns7MTtdjM0NEQqleLBBx+k0WjISniAXC5HOp2WxTrNZpNCoYDFYpFtmbqu09nZKXO6zWYz58+fl1Ngi8Uip8qzs7M88MADaJrGL/7iL3L69GmOHz+Oy+Xitttu46abbmJ6epo9e/YAm5Nh8e1BrVYjEAi0CfRW1tbWpCgW59YqqFsLgoSVRKSKbEXE/fn9fincXS4XmUxGvqZYlhTfVOTzeZn2InK6FxcXL6mCFxYdkXojll1XV1fl73enoIS3QqFQKBSKHYOI/BMpIG63m9HRUcLhsJwynzx5kl27dkk/dTQavcQfLibhMzMz1Ot1vF4v4+PjhEIhKY4FYnHSZDLJY21lfHxc2l+y2SyZTEb6vfv7+4lEIjKl5NixY8zPzwObqR6RSASn0ylLbbZrs2w0GjQaDcxmMxaLhZGREblc2Jpt7fF4MJlMuN1uvF4vjz/+OB0dHfzmb/6m9ML39PQwPDwsJ+k33nijPGbr9NrlcpHP5y/bsJnP5+XkPRgMyqVOs9mM3W6nVqtJ/3UwGCQej8sLEkHr5F5YTYSvfWsBkCgtAujs7GRtbY1ms0mpVCISiXDx4kXZdplKpaRFx+v1Uq1WqdVqOBwO6vW6XMS83LcYV4qrWnirOEGFQqFQKN5ZCKF02223XSKAA4EAq6urWCwWksmkLGIZGBhoe36rbURkUQvvtiAWiwGb09BYLCZLbtxu97YLm5lMhomJCebm5nj22WcxmUwyccTr9UpfuljoFJPi3t5eOjs7yeVylxXdAuEJt9ls9PT0UCwWcblcsl1T+MKr1SrBYJCvfOUrrK2tsX//fn7rt36LX/u1X8Pv98ulwtZJtUgTEaJYJK6ICft2OBwOeUFQLpfl1NliseB2u+V0OhgMygKger2O1WqlVqtJQZ5Op2Xyis1mI5fLXbIUKb6BECJd1NBns1lqtRobGxtyUi7Ou/X9BYNBIpEI6XSaQqGAx+NhYmJiR0274SoX3ipOUKFQKBSKdxbb2T7ERHplZQWPxyMtKEIAtk5xxfMTiQRTU1NysdLr9crHiGr6hYUFJiYm5MKmyWS6ZEIqrC+iBfH8+fPSW+z1etm1axeALJiJx+Oy7dHlcuHxeNB1nY2NDblQKATsVu+0YRgUi0XK5TKPP/649IyLBspCoSDjCB999FEuXryIzWbjwoUL3HnnnXR2dspSHk3TpBfa7XbT2dlJtVqVFxy1Wo2uri5px9iKsI5ks1kpksX5i2XInp4ems0mkUhEprgcPHiQU6dOsby8TLPZlL5sMQkX9pHtjicm7yaTCZ/PR09Pj0y1EUub8Gqmu0hbEXnt3d3drK2tYbfbGR8f33GiG65y4a1QKBQKheKdw9ZYP4GYSNfrdarVKg6Hg42NDWw2G16v9zXTTbq6uhgcHLwkNWVhYQGbzUYsFmN8fJyxsTEpSlsR1hcxsRZtihaLBZ/Px+rqKoZh4PP5pNUhlUrh8/kYHR3FMAyGhoZYWVnBZrNJG4QokmmdNotFxUajwfr6OplMBo/HA2yK3u9+97ucP3++zaLR3d3Nxz72McLhsEw68Xg8BAIBisUiFosFj8dDrVbD6/USDodJp9N4vV6ZvCKyuMX52O12vF4vmUxGiu3Wkh6z2UwoFJLFNuVyGafTidls5vTp022e8WKx2JY4snW6rmkaPp8PTdPI5/Pouk6tVmN6eppIJMLevXtZXl7G7/ezvr6+bcRho9FgYmKCyclJKewnJycBtvX+X0mU8FYoFAqFQnHFaBXb0WhUtkMeOXJEPmZoaIj19XXi8TgWi0W2UnZ2dgKbC4uTk5OMjY1JMQi0+cNbCYfDTExMEI1GWV9f54knngA2BdzWlJRAIMDCwgJ+v1+2LV5zzTUUi0W5pClq1QEmJydJp9NsbGzw9NNPc/vttxOLxRgZGZHRgGtra7JsRiR5wKagrVarfPvb3yYej9PR0cHc3FzbuWuaxrXXXku9XmdwcJDbb79dLl22xvDdfvvtTE9Ps7i4SKFQoF6vs76+Li0sjUZDTu4tFgt79uzh3LlzUtSKyfl2VCoVLly4IFNUVldX5UWF3W5vE9diut864ReTa13XCQaD3H333USjUenZbzab0iPf29tLJBKR1hVB64WAyWQiFovR0dHBxYsXKRaL1Ot1Hn30UUKh0I6afCvhrVAoFAqF4orRugwphFWrwIJNodzV1UU8HpdeY6vVSj6fx+fzSU/v1NSUTMkQS4hLS0uMjIzIybOwoYjjpVIpUqkUPT09+P1+AoFAWwxdJpMhEAhQrVYpl8scPHiQ5557jmw2K33eopny2WefJZVKtaVrvPjiiwwNDVGtVmUM4MDAgJyANxoN0uk0AOvr69x///3Mzc3J5JLW1BG3281HP/pROcUVEX1CvNtsNkwmE9dccw3Dw8PS/uJ2u6VdpfWbA7/fj9VqZd++fTz//PNtC5iiaVJgtVql2N3qzxaRf7DZSGm1WtusI1utJbquy28NGo0Gy8vLTExMkM1mWVlZkeeQTCa55557OH36NPl8vi0usfXc6vU6q6urMkZQRBY2m81tS5auJEp4KxQKhUKheEt4PWkhW5chtyaOiNcRHmyfz0d3dzflcplsNku5XKanp0fGDpZKJXRdx+l0UigUMAyDqakpfD6fnKQLsZ9Kpcjlcvj9funv3pqKIibeYulxenqaXC4nxalYWozFYszOzlIqlaR1o1gs0tnZSSaTYXV1lXK5jN1uZ3BwEI/HIy0YAM899xwPP/wwAB/84Ae58847ufbaa0mn0/zlX/4lk5OTsh4eNv3jgUCAcrlMtVrFYrHQ2dmJx+MhHo/zv//3/5b+bbPZTH9/P2tra+zdu5dYLCan2oD0Y7eyddpttVrbqulbb3c6neTzefkcMS0X/whaC3fEhYLwwIfDYe68806OHj0qX2vv3r2Ew2GSySSzs7Myw7t12g2bFyC1Wk02jpZKJSwWCx0dHSrVRKFQKBQKxTufrX7sRCLBs88+Sz6f59ChQ4RCISYnJ0kmk9KasGfPHinAt4pyYFt/98zMDI888ghms5menh4ikYjMyZ6amiIYDMqCnUqlIj3AuVxOTmJDoRDw6iRdCOz19XU5IRU2k60XAplMBpvNRjqdplqtkslk2qwU5XKZpaUl9u/fL4Vma8tjPB4nFApJ77Gu68zOzsr0j0qlwqlTp6Tovueeezh8+DCBQIATJ07wp3/6p6ysrDAxMcH73/9+NE3DbDYTCAQwmUxSYBYKBWw2m4wfzGaz8hyr1Srnz5+nXq9TLpfp7u6W0YeGYVAqlQiFQqTTaSliRYmPeC/CliIQMYFCBIvkFiHMRZGOsKC0/lwul+Xz7XY7fX198rMeGBggHo8TiUTo7u5mZmaGc+fOyYuc1lhDq9WKYRh0dnbKBBPxjUc2m+XQoUM7atoNSngrFAqFQqG4DJdbdpyZmWFycpJAIEA+n8fr9bK+vs7MzAyw6XPu6ekhm81SrVZl7fji4qKM62uN8NN1nVQqhc1mA2izg5w5c0aKyL6+PsbHx4FNke7z+SiXyywvL5PL5VhZWZETVpExLZoMAU6dOkWhUKBSqTA2NsahQ4eIRqMMDAy0WVHEe00kEnJxs16vU6vVLrFZNJtNNjY2mJ6exuv1UqlUMJvNMrPa4XC0lcQIC4eI6UulUnzve9+jv7+fT33qU/IiwWq1kslkMAyD3/3d36W3t5eNjQ0p4LPZLHa7XeZWC3vF1imzOKY4frlcZnFxkVAohMVioVqtynbQ3t5ezpw5Iy9QbrjhBtbW1qT9oxXROAlI64rT6QSgo6ODSqVCNpvFarUyMDCA0+mkWCySTqcxDINKpUK9XieTybC4uCi9/WazmV27dsmIxqNHj8pj9vT0SNuPzWajr69PpqBMTk5Sq9Xw+XwsLi7idDpZXl5Wy5UKhUKhUCjeGWy1XcCm6H7wwQeBTcHVaDQoFApsbGzIVAyn08n8/DxOp5O9e/fKuu9WG0lrhB9wSeGJOLbIahatk4LWZBKRhOFyueRU1Ww2k8vl5JQ5mUwCcObMGTo7O4lGo3z605/eVpgJ0V8sFllbW5MCWNO0tjp38e9ms8nFixdpNBo4HA48Hg9WqxWfz0cul2tL+RCTX4BCocB3vvMdLBYLn/rUp/B4PLzwwgtomsb4+Djvec97OHDgAJ2dnYyNjfHEE09Im4u4oAHksmRrXncrVqtVfg6CUqmE3+8nnU5jtVpJp9Py89Z1HbfbzcLCAtlsVnqxBeIYrbaPXC6Hw+HA7XYTiURYXl7GZrNRKpVYXl5u85S3noeIT5yfn5eLmCJVRfyNicl+tVolnU5TKpXI5XLkcjncbrdMuRGIvPPXyky/UlzVwlsV6CgUCoVC8cYRwlNUi7f6ZKPRqPTqDgwMUCgUWFxclPaHrq4uOZE0m80cPny4bYLditfrJRAIcO7cOXK5nMxenpmZYXZ2Vkb2aZpGV1eXtKTAq8kk4jzL5TIul4vBwUEOHz7Mww8/TKVSkYJTXBTYbDa54Ni6RNmKSFcJBAJyibJSqchFRsMw6OjowOFwMDc3h2EY5PN5gsEgbreb3bt3y0zvTCYjPy9N02TqyJ/8yZ/Iz+Oee+6hXq/zrW99i1gsxt69e7njjjvI5/N0d3dLG8WTTz4pxb44pmiB1DQNv98vJ/Pwat71ddddRzweZ2NjQ4pzYUcRJUClUkn608XrpFIp+Zm0WkOEh32rsDUMg4GBAdxuN36/n2w2i9lsplgsYhgGGxsbOByONj+5y+ViZmaGSqWC3W7H7XZTKBS4cOECc3NzpNNpGXuYTCbbYgSFT71SqeB2u+W3CdVqFbvdzsrKCjMzMztq6n1VC29VoKNQKBQKxRsjkUhw9OhROX0eHR1tE8x2u52Ojg4OHToEbNpKzGYzNpsNn8/HrbfeSiqVIhqNMjY2JkXt1un5sWPHmJubw+12o+u6tEAMDw9z/PhxufAXCARwu910dXVt69ctFovMzMxQKBSkoIvFYuzfv59MJkO1WsVsNuP3+ykUCmiaRjAYlGJ/dnaWQ4cOsby8jK7r9PX1sbCwICerHR0d1Ot1uZwpjlEsFuX0GTYns2I6PD8/L4WwuM9ut/N3f/d3JJNJTpw4Ic//wx/+MLVajT/6oz/CZDJx77338t73vrfNAy688A6HQ4r4rd5ri8VCOBzGZDIxPT0tC2c6OztJp9PSLiJyyMW3FUIIC9Hd0dFBsVhs83RbLBZZYuP3+6WQFhcRgJxKA4yOjuJ2u3G5XKyvr5PP56lUKlitVvmthPB5i+xucZxarSabKnVdb8sR326CLS4ABgYGKJfLVCoVNjY2KJfLrK+vMzU1pYS3QqFQKBSKN5/WSXUmk9l2mvvjnn/06FGWlpZoNpvU63WZVz03Nyej9fbt28fw8DBTU1NEIhFyuRy9vb1ycbL1HAStS4uJRIL5+XmKxSLFYpFgMCjtKFNTU9J2IpYjR0ZGtk2niMViLC4uyug4h8NBOp3Gbrfj9/v5zGc+w+TkJLquy4SPRqPB+fPnZQRfvV7n+9//PpqmEQgESKVSVKtVOVm1WCwEg0EqlYr0KZtMJjlpbaVarbK6uorVasXhcNDZ2cn8/DwjIyN4vV65QGm32/H5fHzwgx/E4XDwx3/8xwwPD/PhD3+YcDiM2+2m0WiQz+cplUpcvHgRr9eLy+W6xPYhcLlcJBIJurq65MVAs9kkk8nIXHNxm5iIi6ZMgdlsplAoUCgU5G2hUAjDMKTdJpFI4Pf7sdvt8rkibaXRaMgpdTAYZNeuXVy8eFEua4ppdqPRwGq10mg0sNls8nMUfm2B3W6XFxoej0dah1oRU30h5kWGt67rsmxpJ6GEt0KhUCgUVwmnT5+Wto+urq43nGEsYuaENaNSqZBOp6nVaqyurqLrOplMBrfbTSKRYGhoiGKxiMfjaYsL3JoMIsjn80xOTrKwsCDFkcPhIJ/P09/fz/r6OouLi8Dm8p6u67IBcrv3EQgE0DRNJmDMz88zMDBALpeTonBsbIyjR49SLBax2Wy4XC7p0xbtjkKYNhoNmXJitVoxm81sbGzIvO5arUYkEqFarUobxXYxfI1Gg2Qyyde+9jUuXLjQdv/HP/5xhoeHuXjxIgcOHADgl37pl+jp6ZE17yJNpNFoyAsAsajYarVoRZz7+fPn225vFdaC1nNuFbu1Wk2+vtlspqOjA7fbLT+DVitHKBSi0WjIyby4SKpWq1QqFSn4Re08QDKZlJ+rsCJZrVZ5W2sRkMvlotls0tvbSzqd5uDBg8zPz3P27Fng1USTZrPJ7t27yWazrK+vUyqVsNlsMnpQLHzuFJTwVigUCoXiKkEsGcLm9FW0Ml5OuLZOyEXjo9/vp9FoUKvV8Hg8jIyMSOuCsCakUilZte52u1ldXeXo0aP09vbS09Oz7bQ9Go1y8uRJKXKFrUEU4qRSKXRdJ51O43A48Pv9NJtNOjo6tr2ASCQSTE1NyQuF+fl5bDYbhmHg9XrJZrOcPn2aZDIpE050Xeeaa67hwoULOJ1O7rzzTs6dO8eLL74IbArPlZUVaWkQwhI22xpFOovX66VQKEhrRb1eb6t/f/LJJ3nppZdIp9N88pOfxGQyEY1G2bdvH4FAgK9//evkcjl+4zd+g0AgQG9vr/xMDMOgv7+fCxcutE3UhS1juzZJcaElxG+hULikil4IZ7HAKF7HMAyCwSCaprGxsSEfE4lEGB0dZWpqimKxiN1up1wuYxgG5XKZjY0NbDabjEpsPV69XmdgYICxsTHOnTtHqVSSz63VavJzE1aarq4uKpUKkUiExcVFTCYTmUwGTdPIZrO4XC6efvppaV2qVCpUq1X5u7l48SL79u3j4sWL8vidnZ3Sv76TUMJboVAoFIp3OEJA9/X1sbKyQq1WY319XX41v7Kywgc/+MHLLhEKwVYulwkEAuzZs0dG4D3zzDPSL+xyuWTxS+vi5cLCAtVqlQsXLnDu3DkcDgcnT55kYmKirWVRLBiKBT+3283+/fuZnZ1l3759Ujy73W4GBwdlPrewp7TmhAv/dqVSIZ/P4/F45EJjtVqVYlAkjIi0lVOnTtFsNsnlcjz11FMMDAwQDAZle6Qoo9na3Cj+W0xvnU4n1Wq1zbYBm6kvjz32GLBZhHPkyBHq9Tr79+/n6NGjPPjgg3R1dfFLv/RLeL1eOX0Wi5ew+c2D2WyWtzUaDXRdx+v1ygugra2QZrNZWkd0XZdJJpqmyXKha665Rv59iJQQkY0tLk5ETnkmk2Fqaop8Pg+8OhkXxxMXBblcDnjVBy4m74uLi6ytrclzNZvN0tct3k+1WpUNpOPj40xPT0srjHhvorTH6XRy+vRpufwpUmpg84KpUqlwww03cObMGSwWC0NDQ3g8HlWgo1AoFAqF4s1FLC4C7N69m+XlZZnp3Gg0KJfL206NhcVACE9N02TutEj9KBQKsjHyuuuuk5Nj4d8W6SLRaJR4PI7ZbGZ1dRWHw0E0GpXCe3R0lPX1deLxuBRe8Xgck8lEJBJhdXW1zVfdupgJMDU1xcLCAs1mUxbniOKbXC4nJ+VLS0sYhoHVagU2BeLu3buZm5ujVCq12SxWVlawWq1EIhEKhcJlK9Fbq9mr1SqpVAqLxXKJx1vXdRkH+PM///MMDw/LBcH/8T/+B4VCgZ/6qZ/i4x//OOl0Wh7PZDLhdDrbqtp1XZdCXFyo+Hw+PvCBDzA5OSkvLkSTpVhibD2XQCCA3W5nfX0dk8nE8vIyvb29LCws0Gg05GKrqJG32+309PTI+nURG7jdewXaWiwbjUab+BcIW4n4NqJer2OxWOR7F9aSWCxGJpOhXq/LpBZxEXTzzTezsbFBMpkkl8tJC4vFYpFLofPz83z84x8nl8uRSCRYXV3ls5/97CXnfKVRwluhUCgUincorVaRfD5PsVikr69PxvQJ+0i5XObMmTMsLCzQ2dnJ6OgoqVSKpaUlQqEQhw8fZm5uTlouAoGAjIabnp7GarVy9913Mzw83FaqIwiHwxw5coSZmRmZZrK8vIzT6SSRSMhSmsHBQarVKsVikUKhgMfjwev1ks/n24R3rVZru1AQlfGRSIRarYbf7ycej8tK+NZlQIHIgzYMg3Pnzknfemv2tGEYLCws4PF4cLvdbcugW19LpKGIC4dWcW4YBg8++CAvvPACsBkPODw8TLFYxO/3o2ka9913H6Ojo/h8PpmXDa+mjAC43W650CpePxgMks1mpZd6eHiYbDbL5ORkW2V9q+iGTUFrsVikhUf8vLCwIBNLhLgXxUDNZpOenh55HpVKRZYatXrLxUKj0+mUn9l2fnfYFO0ej4fOzk5WV1cxDAOn04nJZJI+f7FAarVa8Xq97N27F03TiEajhEIhPB4Pvb29PP3002iahtPplJnuYqlSXOh5vV5SqZTMAd9pKOGtUCgUCsU7FLFMKcR2Npslk8nIdkcxbf7Od75DNpuVMWuiHEUsT8ZiMWZnZ2k2m6ytrdHZ2cnQ0BBDQ0N0dXW1+bW3Nju2NluK1BOPxyMFoogijMViFAoFcrkcfr+fvr4+3G43o6OjRKNR2Q4pEj9ahX0sFkPXdfr7+xkaGpLxel6vl2KxuK3gs1qt1Gq1tlg8TdPo7u6ms7OTWCwm4wBbJ8eXQzRettotXC4XpVKpTXTv3buX97///TzzzDM89NBD/PIv/zJDQ0N88pOfJJ1Os76+Lr+NMJlMMu3DarVSLpfbpvImk6ktwnBubo6ZmRmefvppOYHe7r0L1tfX5RQakOkvAuFhb01BuXjxIpqmyQXTRqMhPeLCx61pGp2dnW0WJWELERc24jXtdjuZTIZUKiU/41qtJr+REF7tRqNBMBhkcHCQI0eO8MQTT+B0Osnn8wQCAaLRKM1mU+a6e71e4vE4zWYTt9uN2+1mbGxMvuauXbsum9N+JVHCW6FQKBSKdyCJRIKlpSWKxSJLS0tSbG/naR0bGyObzUoRNTs7y65du+T9p06dktNHEWfXKrS3O3artWRhYYGJiYm2NJNUKsXCwgL9/f3EYjFWV1eJxWI4HA5KpRKRSEQeRwgmcVEginKmpqbkNF/4doUI7+zsbFuwEwgPeaVSaZsqi8i5UqnEwsLCJVPy7ZYWWxGWCOG7NgyD7u5ufu/3fo9XXnkFgP/0n/4TiUSC//7f/zsrKyvceeedDA0NYbPZZAPm1pQRMTkWC4NC3ApftNPplO9R13UeeeSRttZMweViBls94A6HQ5YKtS6Dis9NWI/EIqSYqIuEGWEt6ejowGq1EgqFpDdeIMp5xH/b7XbpAxeTcrfbTTqdvmTJE5B/C/l8XibHTE9PY7fbcblceL1enE4nqVRKesHFUur09LT8tmd+fp5AIPCGk33eaq5q4a2aKxUKhUJxtRKLxfD5fHIyGY1GZcPhVoaHh8lkMnICbTKZ2NjY4NOf/jRPPPGEXLDcs2ePnHC/FtFolFdeeQWLxSI92iLlpLUwpzVPfGFhgVAoRKVS4eDBgxiGQSAQkFPJI0eOAO2i3uPxsLCwQCAQwOv1Eg6HpaB3Op1tBTZC5InUlFZRKqwNlUpF2jh+0jpx4ZtvNpt8/etf55VXXqG7u5s777yTZ599lh/+8Ie43W7+w3/4Dxw8eFBmiItjb0W0Lwpx3VqbLi6GhKgW9g/xzUC1WpV+9q2Tb3GRApuC1+PxyNg9MX1uzfe2Wq14PB66u7tl9raI+ysWi21+bvGZdnd3y7hEIdxFioiwBLVaYFwuF36/n7W1NXm+IiFGWIZisRipVErGJ4qpf1dXF263WybLCGuSYRiUSiUZC3nDDTfg9/vp7++Xf3s7CdOPf8g7F8MwHjAM4wuiOUqhUCgUiquFQCBArVbj4MGDcqK7tZK9laGhIfx+PwcPHiQQCMjJ4ujoqMxrdjqdbeL5coiWwlqtRigUusQa0no88VX/xMQEvb297N+/n8HBQcbHx8lkMjKK8IknnpCi+9SpUywtLTE/Py+Fp3h9YWdxOp04nU5Z3uL1eqnX69Lz3EqpVJIJJKLcRlgdtmK329ve53YYhsEDDzzAc889x4033sgXvvAFrr/+enw+HzfddBO/+Zu/SWdnJ4uLi5w7d07670V++NZjVyoVvF4ve/bswe12Y7fbZYGQWCAVlMtlnE6ntKsA8puM1vMWF1OAnNC3VsmL54hJuKZpuFwuQqEQfr8fp9OJ2Wwmn8+3iW6LxYLdbpdT5UgkIh8Pm5PqYDCI2+2mUqlgsVjwer0cOHCAvXv3ks/n235Hvb29uFwueSGwurrK5OSknMz39PRw6NAh/H6/LC4SE3mx0ClyxCuVCj6fT1pTAoHAjpp2w1U+8VYoFAqF4mpECFSRFDExMbFtYU0rrd7sW265Rb5OLBZjZGSE+fl5+vr6XtfxR0dHSSaTJJNJ4vE4oVDoEoHTejzxs/Chi6//h4aGmJmZYX19XS4BCi+xmCqLZcyjR48SDAZxuVzEYjH27duHx+OR02Hx/O0sI6L0BTa92mLxrtW3LNiuoKbV42wYBi+99BIvvfQSt956K4VCgZMnT3L48GEOHjzIe97zHikiW89FLGgC7Nmzh5WVFSlMLRYLhUIBv9+P2+3GMAzsdrv0nrfaSoTgbBXaLpeLarVKOBwmkUjIqD6RUuPz+ahUKpTLZZmPLRYZnU4nNptNVrSXy2XZyrnVxmM2m9m3bx9jY2NkMhn6+/tlgo44rtlsplKpUKlUqNVquFwunE4nc3NzsixHFAG5XC46Ozspl8ssLS0RCASIx+M4nU42NjbweDzUajV5sSUsRwMDA8zPz8uLKI/HQyKRAJBecJE+s93f5pVECW+FQqFQKN4BtOZY+/1+2aQoJspvtBo+FotJ28X6+jrlcpnjx4+/LqEiJtgPP/ww5XL5spPhrQkoQjgFAgEee+wxmcm8vr5OpVKRqRdutxuXy4XNZsNut3P27FkMw2BjYwPDMHA4HMzOzspEkNYq8a3eZ7jUv10sFjEM48f6uoUoF1F/lUqF2dlZ/uEf/oFgMMhLL71EpVJh165dMvJPZJwLIbjdeUxPTwObQjYQCJDNZmk2m8zPz3PNNdfg9/vlxFp4ylsvCLxeL/39/bKlslar4XA4pJe6FSFyhZXDZrNRLpfp7++XS5Aimk9YW8T0e2vKi8lkIpVKcfz4cbxeL0NDQ5w7d06W6YjJuihZgs1pvlhwrVareL1e+Tdgs9kYHR2lWCzK36E4187OTrLZLBaLhWw222Y5Wltbk+fkdDpl86VYVvV4PKyuriqPt0KhUCgUijdOIpFgcnKS5eVlGo0G6XSa66677rKNlD8OkfsthG+5XJZC6fUKlXA4zKFDh4hGo/T09Fz2OLFYjJMnT+J0Oslms/j9fl5++WU58fT5fAhLaCaTwW6343a7GR4eJhAIMDk5KZMyzGYz2WyWQqFAZ2cnuVyOSCSCxWKRQvfHiWmBw+GQk+FWtgp3h8OB1+uVU9m/+Zu/wTAM0uk0g4OD/OzP/iwej0fG/e3du5dKpbKt8N5Ks9kkn8/LCxe3283KygpjY2NsbGxQqVSk7zoej8sYwtZzrtfr0sIiXqe1jEcsaYq6+1KpRCAQwGw24/F4SKVSVCoVuXjp9XoZGRlhamqKXC4nLz7EdFn8rdTrdV5++WU54TaZTHR2dkqBL0qIhGcdNi8YhCVIWGmi0Si6ruPz+UilUjQaDfL5vGzgbDQaFAoFfD4f1WqVeDxOLBaTAl343kUR0O23304mk+HgwYM70uOthLdCoVAoFDuYRCLB0aNHKRQK2O126csVCSQ/Ca3pI+FwmJmZGRKJRFsj5etBtFs+8sgjnDt3jsOHD7ed09DQEM8995xsU7RYLLIiXkxXPR4PkUgEr9eLpmnMz88zNjbG8PAwU1NTcpIbiURIJpNSxCUSCaxWK7lcTvqRXytarxVhqRBWBiG0fT4fdrtdima73S4jFqvVKn/+538uxe2HP/xhbrvtNtxutywvqtfrLC8v09nZeckxha97q31DLDF6PB6y2Sy6rnP8+HF8Pp9MO1leXmZsbIxiscjZs2dpNBqy9AY2xfXY2BjPPfcc8Orio0gOEaK5t7eXnp4eotEoAwMD5HI5+vr68Hg8TE9Py5p4ePXCRLBnzx7pkxeT9Xq93pa4IhJOPB4PLpcL2Ly4EN9c3H333USjUVk5D3Du3DlqtRput5s9e/Zw/vx5vF4viURCNow2m035+Ym/H/ENg/g9lUol8vk8oVBIxmjuRJTwVigUCoViByOme81mk+uuuw6AxcXFy9o7Xg8iHUT4pkWONHDZEpnWcpxQKEQsFkPTNBYXF6nX61y4cAGn0ynj3IQvt7WNUYhMESnX0dGBz+eTYi8WizExMQHAY489JvOhdV1nfn7+kml2vV6nXC7LNs03iii4EVXmN9xwA3Nzc/J+l8tFOp3m7/7u7zh16hQAX/jCFwiHw9hsNjRNw263t2V7F4tFfD4fbrdbppiIC6Vms9nmK7dYLDJvvFgsthX7CI+28HKLeD2PxyOPXalU0HVd+t39fr+8SDEMQ1o17HY7oVCInp4e+XsRcXuihl4sSYbDYaamprDZbG3nur6+jsPhYH19XX4+YjFT/F59Ph+GYeDxeHA4HMTjcTo6OoBNIT81NSXzykOhkMxGF5YXu92O1+vFZDLR19fHwsKCXOTt6enB5/MxPT2NxWLB7/djGIbMjxef1eTk5GXTfXYCSngrFAqFQrGDEbXfrdNIt9v9T/oKXVhXCoUC2WyWAwcO0NfXh67rDA0NXVKMIx6v67psE5ybm6NSqUjhKIRaNpuVZTyi7bG15Eb4eEXNN2wK7nw+j67rMplleXkZeHVSvJ13G5CReKLsRXiUX6/lpNlsEggEqFar0vbQet8PfvADKbpvvfVWdu/e3bbwWCwWpbe5tR1TeI4tFkvb0mfr6zscDrq7u8nlclJoi8p0j8eDx+OhVCpRKBRkRrXJZOKOO+4gFApx9OhRqtUqoVCIoaEh+c0CwIkTJ6QVo9FokM1mmZqaYnx8nHw+j9PppFwuy2bJeDxOtVqV33zE43FsNpss6unu7m4r8/H5fIyNjZHP5/F6vbINtbW5tFwu09vbi9vtZnp6Wia0iNdyOByYTCaq1aoU6+JbDZfLJdN2RkZGpIUlEomwuLgo7TbCliLiJEW6jxLeCoVCoVAo3jCZTKZtGgnbl9q8XoSIdjgc1Ot1BgYGGBsbkwI7Go2ysLCAruvk83mOHDlCLBbD7/eTzWYZGxvj3LlzpNNpKRSFL9jj8TA1NYVhGHLSKirCS6WSFKY+n4+NjQ1MJhMLCwuyEl20HDqdTjmN9Xg8pNNpGo3GtiUxQlzqui7fk0j+eD00m00ymYwUxpqm0Ww2efLJJzl58iS5XA5N0/jn//yfs2fPHnlM2Jy4N5tN7HY7TqeTarWKxWJhY2NDnlOtVsNisWzbjFmv19m/fz+FQkFOtC9evEihUKBUKkk7jZjIJxIJzGYzTz75JDfccAPj4+MsLi7Kby/Gx8cJhUIcO3ZMHkMcO51O4/V6OXfuHK+88gq1Wg2fz0d/fz/nzp3DMAwymQxut5sLFy6QyWTa4gdFaVGhUKBcLtPR0SEzvEURkshuX15eRtd1+vr66OnpYXFxUeaui2VYYRkRQl588yAWMZvNJl6vV1qNhD1ILGjm83kajYYsz2k0GmQyGXp6enacr7sVJbwVCoVCodihJBKJttbGN4NYLIbNZgPgve99b5u1JBaLsby8TC6Xk+U48GobZiAQYHFxkfX1dTweD4VCQeZO9/T0MDk5KaePNpuNjo4OcrkcPp9Perx37dolF+hgc+GuUqnICLuNjQ2CwSA33HADQ0NDfO9735Oxeq0tjGLCLLKdDcOQYu712k7MZjOlUklOqcXr/OhHP+LJJ5+U5/e5z31OWiYErRNsTdNwu93y4sJsNreV0wiBuJVqtcrp06e5/vrraTQaXLx4se2bgWazeYknvNlssrKygsfjYWhoCK/Xy+nTp6lWqzzxxBMyyk+kwjSbTSqVimyNTKfTcjGxUqmwsrIiF2tDoZD8TOHVbxkMw+D8+fOEQiE6Ojrw+/2kUik2NjZktKFoGS0Wi0SjUYrFItdccw1ut5tCocDa2prM3BZWo2w2K5coz549K48nUlVqtRrJZBKn00lXV5f8ZiGXy+HxeCgWi5RKJWlbAchmszt22g1KeCsUCoVCsWMR9eiitfEnoTWG8NChQ1JEDw0NEY1GWV5elpPtoaEhuaDmdrvp6emRzZLj4+NMTU0xNzdHPp+ns7OTm2++WS5DLi4uSkuFz+djYGCAjY0NaRNobbEUC3Z2u53x8XHOnTtHPB6Xfm6n0ykfJyIEhTAGpIgXIhd4w5NuoO2xFouFubk5uru7OXPmjLz9Qx/60CWiWyAaI+v1uhR+wnu9ddnzchcDhUKBQCDAwsKC/FZBeMGFuBeLjq2LoGtra4TDYfr6+vD5fORyOdmOKZ7v9XpJJpPSTtLZ2YnJZJLLogcOHGBhYUGK61qtRrlcZnR0lPn5ecrlsry/2WySTCbl9NlsNktrj2gZFT+L5culpSXGx8c5efIkzWaTUqlER0eHzI3ft28fc3Nz8rNrtQeVSiWZxjI/P8/+/fsJBAK88sor0gMuMsSz2SwdHR0ylQW4xC61U1DCW6FQKBSKHUpr+sgboVV0xGIxFhYWaDabTE1NsXv3bpnHHI/HqdVqcsIZDodldTvAAw88wPnz5zlz5gwf/ehHGRoa4syZM1KkDQ4OMjg4yOnTp5mdnaVYLGK1WnG5XMzOzsoq+UQiQXd3N2NjY0SjUVmhLtozL1y4QL1ep7+/n/7+fimWTCYTPp+PWq3G7t27yeVyxONxudCnaRpdXV34fD55kbJ1QvxaiMzneDzO/fffz4kTJxgdHSWdTvOlL31JimjYTM5o9ZAPDAwQCAQ4ffq0tEEIASuWEkXM4GtFFppMJqampqhWq3R1dXH48GEpuqPRaFs+t81mk0uawnpy9uxZWU60sbEh/fOiil1cmIgLi2AwiMPhwO12k0gk8Pv9cgnUMAwZWxiJROjr62NtbU1O78XS5/z8vPxGREzmL168KL3v4v01Gg0mJydlnbvYBxBpNZVKhc7OTlKplLxfvL9qtSq/mTGZTESjUfr7+7Hb7bK9c9++fTz33HOYTCZ6e3ux2WwkEglmZmZYXFxsu6jcKVzVwlvTtHuBe/fu3XulT0WhUCgUijfMGy3GEYj87Oeff57u7m4ikQi1Wk0Ws8DmNFKINF3XSSQSbT7vVCrF+fPnpdiMxWKMj4/T399PLpcjl8vJybWIuBOWimw2i9PpJB6Py0msKEERItRisXD69Gk5LdZ1nWw2y/j4OIBsQuzs7GR5eZnFxUWsVqusqhcCN5VKycVO4UUWr/96hPiPfvQjfvCDHwDwyU9+koceeohbbrmFu+66i6NHj8rH7d69m2AwyMzMDOVymeXlZex2O7t372Z9fV0KTSFEgUvKhUTTaDgcJp1OywmzWFL1er3cddddAHznO9+R4lR46T0eD16vl3Q6LQuFarUaS0tLNBoNnE4n4XAYq9UqWz5nZ2dxu90sLS3JiwAhylsXM9fW1nA4HLLMplwuy8STrQhfvfh9wKvfQtRqNQKBAJVKRfrGRRygsL6IzyYSibC+vk6z2ZSlSclkUmaS2+12Ojs7qVQq5PN5GakZiUQYGxvjb//2b+Xnvbq6KoV6NBqVnvJQKPRG/qfzlnNVC2/DMB4AHrj55pv/nyt9LgqFQqFQvB08//zzPP/88zKCcH5+noMHD8pps9PplCkkwk8rhHU4HCYajXL69Om2dsdyuSztAGNjY8TjcSkqhQhsNBrYbDZsNhsHDx5kampK1pQD0mrQysrKipziwqYYe+KJJ2TWtM1mY21tTQpz0UzYbDalKK1WqywsLMjWSHi1NKZ18roVwzD45je/KRcEAR588EEqlQq33norP/rRj9oeXygU2L17t/Qx12o1Ll68SFdXFwcOHMDlcvHss89Kod0qwMXFjYjdaxXkYoFRWHu+//3vy2SPWq0mhbaITMxkMpRKJaxWK4FAgEAgQCqVkqkfItlEpK1YrVYplMW/ASKRCNlsltXVVWDzQqVYLOJ0OqXoHRoaYmZmhosXL7Z9/uKzdzqd0usvBHI6naZcLrNr1y5g0yYDyJKeZDJJqVTC7XZTLpdJJpPU63U0TZN/l2azma6uLjnBt9vtFAoFTpw4gcPhIJvNsn///ramznq9jtPpxOl0ApuRm+KicSdxVQtvhUKhUCjebbz44osyXcNut0tLwLFjx5ibm5P52aI8RWQ7CzuLEIQiEk9MXI8fP05vby/Dw8N88IMflAkWxWKRbDYrp6giHs8wjEuEtkB4o3Vdl9Ne2PT1XrhwgaWlJQqFAs1mE7/fLxdAW0W0sMgIcbs1BrB10q3rOg8//DDd3d2MjIzIye7BgwdZX1+nu7ubYDDI8ePH5VS5dTlS0zTK5TInT54kEAi0LWKurq6yvr5OMBiUxxYXIGK6v/Xc8vm8zP/WdV1efCwvL7OwsCB92mKabLVa5THFZ1qv17FYLFx//fUsLCwwPz+P1WqVtpFEIiGn/g6HQ3qyhY1DWDzEOVarVWnhcTqd9PT08Oyzz1Kv1xkbG6O7u5sTJ05QLBZxuVzygmB9fR2v14uu60QiEXmxlc1m+dmf/VlZ0BSNRoFXF03L5TIXLlyQFx4Wi4Xu7m6y2SwTExMsLy/LYqJgMEipVMJisZDL5bBarTz11FPSctN6ARmJRJifn5dLs/+UvPu3AiW8FQqFQqHYgfwky2GJRIJQKES9Xmd8fJzBwUH5GkePHpWiKx6PEwgEZDV7KyIrXPiWz507R6FQwGazyQxvIbqF1aTRaFCr1ajVapw9exabzSYFFSAr3wEpJlvj+8Q0VcTeWSwW6a22WCz4fL62DGnYtG28Xj/3j370I6ampgC4//77iUQixONxenp6yOfzfOYznyEQCHDx4kXe//73S491awSgmPiLyapYJBXvXfiTYVNcignzdgjbhdlsZs+ePbIoRuRriwZI8Tgh0Ftfz2KxEIlEGBoaku2PQqA3m03Z9Gmz2fB4PFgsFgqFgnxPAwMDJJNJ+XpCwArxferUKXkBUK1WOXz4MC+++CL8/+z9e3Bc930lDp7b79vvNxpoNNEASQCkBLZFiwSj2IohyVJsR3Km7Cie2DUPp5LJTGpm/kjVzNZu1WxlqmZ++89OZauS36RqM5uNXTXrSFYiWbZp0RQhyTRNkCbpJvjAs9HNRr/fffv93D/gz0e3QVCSnchi7HuqWCSBRvft27fR53u+53MO9hZIFosFnU6HhykpbeT48eO4c+cO1Go1Ll++DFEUceXKFbamLCwsYDAYIJ/Po1wus2eeoiSHwyE2NjYwOzuLwWCAZDKJra0tmM1mJtKtVgv5fJ7VdLfbzbnjNKSrVqv5Gn+YoBBvBQoUKFCg4CFEJBJBpVL5mcpAiBBPTU3h9OnTAMC+bYfDwZ5uo9EIlUr1wKFNKuhZXV1lv7BOp0MoFMLq6iq2t7e59CSdTnPUHxFjOekG3q1JNxqNTJaIrJGFgmwM8nzn4XCIUql0X305sEcUJycnsbu7y5GCdBsaKszn8/jmN7+JSqXCqSpqtRrpdBrAXknP2NgY/H4/RFHEv/23/3bkMQ4izpQtXalUOKNcrVZzAQ79jPxnKUaPVH5KCXE6nVwcU6/XmVQSOSZleXd3l5NKyEJDCyMA/P1+v88+b8p973Q6CAaDPKhJA5Jvv/02R0HSzojH4xlJZ6HXs1qtYnV1lXdAbDYbfD4ftFot0uk0nE4nisUi+v0+VldXcfjwYRSLRZRKJaTTaX79e70eTCYTv95utxvtdpt3OMi3v7W1hVKphMnJSVQqFfadyxdb3W4XdrsdS0tLcDqdCIfDUKlUqNfrKBaLsNvtvDB5mKAQbwUKFChQoOAhxM+TaEKxdHa7nWMAqdhEr9fDZrOxGv2gWm054Sd1UqVSYWFhAR6PBzdu3OBMZqoalySJSfL7od1uw2g0MumWp3uQykwkk6wE3W53xFYC7KmuiUQC/X5/xMPd6/XwZ3/2ZxAEAX6/H5VKBVqtFtVqFU8++STm5+exurqKhYUFRCIRHDt2bKSa/UEgz3MoFMLa2hor80SC5VF/+7PEBUGA0+lEuVxGt9uFWq2G2WyGKIq4du0aOp0O9Ho9Hz/FJxoMBsTj8RFl32AwMOHe2tqCKIowGo0j56zb7cJgMGBrawuhUAjVapUJtdVqZQ95o9GAKIoQBAEejwe9Xg8nTpxAJpPB1tYWTCYTOp0OxsfHIUkSZ8oDgCiKcLlc6Pf7cLvd6Pf7nOstiiICgQDq9Tri8Tgfu81mw2Aw4NbTRx55BD6fD4lE4j41v91uIx6P84IJAD9HijOUk25KOpmdneUCn4ctShBQiLcCBQoUKFDwUOJnSTQhW0q9XodOp8P169fh8/n4fmZmZnD58mVUq1WMjY0dSLrJhxsMBqHRaLjghqLYrly5gldeeYVJLvmvDQYDjh8/jrW1NR6gpKrx/So1+ZOpiVEevUckXKPRQKPR8G21Wi08Hg+r1HLyDYwqy4Ig4Ny5c3yMlP/caDTw/PPPY2xsjKPn1Go1JicnmeTKo/AoOpAIr0qlgk6nw9TUFObm5hCPx3mokOL+5MdFtgr6eSoJosUGPd69e/c4hlCj0XBzIxX60H0RyLdPXm69Xo9SqcS2kXw+zwkiyWQSvV4P169fh9PpRKvVQr/fZ9sJDXpS8sv29jYcDgeq1SoSiQRUKhVEUcTJkycRjUZ5h4I801tbW6jVauh0OigWi5ibm+M6+FAohEgkwoOxdrsdRqMRhw8f5vNGXveFhQVks1mUSiU0Gg00m00YjUa43W6uoz906BBSqRQv9tRqNc8mlMtlJBIJFItFjk5UqVT8HCgl5mGBQrwVKFCgQIGChwz7/d3v5/eORCJIpVKc8mCz2TjWjZTvZrPJ9oT990E18kSUp6amUKlUePt+MBhgbW2Ni2FsNhs0Gg1HAW5vbzMh/PSnP421tTVkMpkHDlfKCTn9m5Rg4F2riiAI3IJJTYbNZpM9vPtV0mg0iitXruDQoUMYGxvD1NQUq/akaNOQIan1NpuNow/p+/SYg8FgpNzFbrcjl8txGsuxY8dQKpXYJkHPRa1Wc1IH+bSPHj2Ku3fvQq/Xo9PpoN1ujwxwEjmn4zSZTGwtoUFLrVbL/uqZmRl0Oh0e6qxWq/y8SD0vFAowGo38/AeDAUqlEl8fJpMJZrMZ9+7d4/NO14larcbJkydx8+ZNVKtVdDodXtAIgoBarTbiY9/a2sLExARarRZX1ufzebbYeL1e9Ho9RKNRJt+SJOHmzZtIJBI4efIkUqkUNjc3Ua1WYbFYWOEmdZ3SXWhRlE6noVKpYLfb2WsfjUb5uT5siSaAQrwVKFCgQIGChw5EpGOxGJaWlg70e8vJ+MzMDGKxGNtIxsbGYDabsby8DJVKhRs3bmBiYgKDwQDBYPDAx6PWxFAoBKfTiUuXLnEbZbvdRrfbxWAwYE/w5OQkBoMB1tfXOZ3EYDBgbW0NDocDu7u77/kcSfHWaDQjKrocOp0ODocD8XicY/jkler78Y1vfANqtRr37t2DyWTCE088wVYVeRoIsGfpyOfzePLJJ7GxscFNiWq1+r5BTioMunjxIgCw0tvr9eB0OnHkyBEkk0lWzOUpLN1uF5VKBY1GA7/7u7+LN954475FCRF0sq84HA58/OMf5+QOsqaQOt5oNGC1WmEwGLjMRl61To9tsVjQbrdhs9nQ7XaZnJPXnQZxx8fHUS6XMTU1BVEUYTKZ4HQ6sbq6yh5+URRHFjy0GKDHHg6HPCRaLBbhcDgQDAaRSCRgMBggSRKazSanrnS7XfR6PVy7do3Lnb70pS8hHo+jVqshEonA5XKhXq+j1+vBYrFAr9cjGo1iOBwiHo9Do9HAYrHg5MmTEAQBN2/ehF6vh91uh81m44KmhwkK8VagQIECBQoeMtjtdo6ukzdQyhVsORlfXFxEKBTC8vIy+2ivX7/OjYGiKGJrawszMzMHDgzOzMxwTFwikYDT6eRhwWazyaSbSB/9ef755wGA0zMKhQJSqRRSqdQHShwhj/RBoNbKQqEwogwfhO3tbfz93/89arUaRFHE888/j1OnTkGv13NJTLfbve+YOp0Ozp07B7VazcOSD0Kn00Eul2PiORwOkcvlkM1m4fF48MQTT2BjYwPNZnPE6z4cDtFqtRCJRNBsNlm5NhqNaLVavOjI5XIAwOSdFGUAbE8hJZp2AkjdtdvtOHHiBIrFIiRJ4hp1sv3k83nO5lar1SiVSuh2u4jH45icnIRer4dOp8P4+DhsNhuKxSIA8MCkWq3GkSNHkMlkoFKp0Ol0OCf8xIkTyOfziEQiHBVoMBggCALGxsb42qNFE/nQ9Xo9stksxyRqtVoUi0W+f51OB71ej3q9zgsSt9sNs9mMVqvFA7XtdhszMzP44Q9/CGCP0B8+fJhnEh42KMRbgQIFChQo+IhAqjUNkAmCgLW1NXS7XdhsNk4eIQJx9uxZJj0LCwsIh8PIZrO4cOECAHBDJVkUyAdMA2+1Wo2HNeWebiKc5JkF9oYJiUB1u13+OqHVaiEcDiMUCiEej+Pu3bucu7wfZJeQ//8gOwBVuFPBTKFQeF+7wO3bt/Hyyy8DAPx+P77yla9AFEXo9XpO+qBFBD2G/D4bjQYPdhLk2dDy4U+6ncVigclkws7ODgAgm81ibW0N7Xb7vnNAP9dqtVjNBQCv1wudTsfqOWVuazQaGAwGRCIR3g1Qq9XQ6/UwGo1Ip9Os6lNW+MzMDCYnJ3Hr1i1IksTWEjrv5H+m+yL0ej2+PuRJJwB4oaLRaNgj7vF4UK1WOR2HdjYoRYYyw202G7RaLS5evAin08klS/Q8rFYrf81gMEAURfh8Ps76pvNM0YadTgetVosJ+cLCAreHWiwWAHvFTteuXYPP53toSTegEG8FChQoUKDgIwOp1jdv3mRvLZEmrVaLsbExAO96sGu1GlqtFnZ3d7GwsACLxcJ16v1+H8FgEEtLSwCAjY0NJm5msxkAOGIO2KvVTqVS2NraYtI3MTHBFhJRFGGxWLhsZ78i3O/3kclk8J3vfAcGg+E+Yi6HwWBAt9tl7zYNHu5XmKllkVTXB5Hu4XCI27dvQ5IkXL16FT6fD7/zO78Dv9/P+d/kA242m9wAWa1WuXWRlGYq8CFCTio8kXfyN+v1el6EtNttjjKkxBWDwcCNngRRFDkCj6LuCMViEYFAgIl6s9mEwWCA1+tFo9Fgzzv5sL1eL6d10GAkZYpvbm4iEonwACSdI/KN0/0D4JQaIskqlQqnTp3Cd77zHQwGA06oIZKu1Wrhcrmg1+uRTCZRrVZhNBoxOTmJYrHIux0+nw8OhwOiKMJqteLixYsYDodIJpM8kDk+Ps7RkDSPYDKZsLi4iI2NDUiSxOdKq9Wi1WrBbDajWCzy4oDOyZkzZ7C8vAydTodIJIKnn34aZrMZqVQKy8vLD0zt+ajxcNX5KFCgQIECBb8iyOVyHM9G2+vtdptJr8PhQK/XQyQSQSQS4SIUm82GdruNcDgMu92OTqeDarWKZrOJbDaLSCQCADh58iSXz9CwnZzIBoNB9gwT6W80GnjqqacQCARQLpeZTBJB2w+yIvT7fVit1gc+1/0JJ0S69xPvTqfDXuQH4Qc/+AH+9E//FN/85jfxxhtvoFgs4syZM3C5XCPDiaSSAnuLBKPRCKfTCQCsvsqPh46P8sMpXQPAiJcZ2PN4r66usoqv1Wq5VIdAFeikuLfb7ftUdfIry48jmUxy5TsV3hw+fBhnzpzByZMneViTYhdJbSaySou2Y8eOYXp6mmMLnU4nP2da3FHpDQB87nOfw/j4OKanp7mdk7LSgb1FBFlJAGBpaYntR4IgYHFxEaIootlsYm1tDU6nE4IgwGAw8Dkl60uv14PBYOCF1tWrV5HNZvl2dP3Pz8+jXC5jbGwMFouFF2ySJMHj8WBpaQnj4+Ow2+04f/48stks533T++Bhg6J4K1CgQIECBR8BIpEIBoMBLBYLFhYW8Pbbb7M9gHy4k5OTIznev/7rv84FNrFYDLFYbCR1o1Qq4dq1a9jc3ITP58Ps7Cyq1So3EMrJc61Wg9Vq5XSLer0Op9OJXC6HeDyOZrPJnt5EIgGz2YxGowG9Xs+PCeyRxd/4jd/A9evXRwYl5SCfMPmU99tO5ISVVPGD1O4f//jHePPNN/n/VqsVwWAQjz76KH9N3ohJVoWxsTF+bJVKxYksB4HUYFEUOVKRntOhQ4eQy+VQq9VGCntIWZeTeRpAJGIsPy96vf6Bi4/hcDhisZEkCdvb25ykQpaTYrHIz6Fer2N6ehqSJEGr1cLn8yEUCuHcuXMYDAZwOBzw+/2cd0019S6XC4PBAO+88w5sNhsWFxcxNzeH1157je0+ZIHS6/WYmprC+vo67HY7ACAQCKDdbsNqtSIcDiMajQLYG4qlJBpqoySSX61W4XA4+BgymQwTeK/XC5/Px778aDQKm82GWq3GCwHK+KZZh8XFRaysrHDDajAYxPj4+ENXnENQiLcCBQoUKFDwEUBekEM+byLDer0eZrMZJpOJt8vp74WFBeTzeVQqFVZE7XY7WzmKxSJbUmZmZmC1Wtk3Tsjlcpw64nQ68ZnPfGZkWJMUeK1Wy8OVVPdtMpkQDodZKRUEAZcuXYLJZGJVeH/iCPmcvV4vms0mD+8BgNlsZuJKxP2gIcednR18+9vfBrCXLf7EE08cqMITORNFEQBw7NgxiKKIXC6HSqUCv9/P5w/YU3LJ2gGAy2goNpESQCwWC6anpzEzM4N33nnnvtQTysk+6Hh0Oh1EUeS8b5fLhWaziXK5PFIMREOU8uevUql48JIWD41GA9PT09je3uYc7kajMZI+84Mf/IBjDrVaLe7evYvx8XGuVLfZbJiensbdu3fRarXQ7XYRDofhdDp5wUFxkTSkSreLx+P41re+BYvFAo1GA6PRiEwmA0EQuJ2y1Wqh3W4D2LMaka+/1+uhWCxCp9PBarXC6XQiHo9Dr9fDYrEgGAzi+vXrSKfTnEtPsY6kuCcSCVQqFUiShFAohFgsxoOZmUzmobWZAArxVqBAgQIFCj4SUEEOWU58Ph9MJhMWFhZQLBaxsrICtVqN9fV1lMtlHrKkLfZLly6h1+tBp9PB7XZzxBr5c4fDIVe/E8lOp9O4cOECJElCrVZDrVaD0+m8bwEgSRJEUYTZbEa1WuVilmg0ikAgwAOApNo2Gg0uVzmINKvVang8Hq4rl4PI3INId6FQgNfrxTvvvAO9Xo8//dM/ZQuJ/P7ljZfy+97a2sKRI0egVqsRCARgtVpZyZfX3BNIyW40GqhWq2ztsNlsqNfrGAwGnI1NhFulUsHv96NWq903EEoKtN/vx+bmJls2BEG4b9BTHglIfnD6GpHyer3OlguHw8FtkbFYjGcEisUi9Ho9Z4tXKhVoNBqkUimEQiEkEgm0223edSGPezAYxPLyMluU8vn8SFKJvEUzmUzyQosaLyk6kNJHVldX0W634Xa7+Rq9c+cOP6ZWq8XMzAwkSYJKpYLL5cLFixehVqt5gLPT6cDpdLK3XKfTQaVSoVarcY73vXv3+LXsdDo4e/YsPvOZzzyU5Fsh3goUKFCgQME/EO9XcPNeP5PNZlEsFuH3+7nGvF6vYzgcolgs4p133mH/NsX3AXvV6+Q9ppSNY8eOsU1EFEWOI1xcXEQ4HGZFm8iuXq9nKwGR7gsXLqBSqWBiYgLj4+OYmJjA6uoql5okk0mOuqOhTCrmeZB9Q24v0Wq1IyknRMT3W0s6nQ7eeustXL58GY8++ih2dnbw1a9+lbPK5beXk2ciYMVikdVmGsaLRCLchkj+drltBsB90YWUXZ7P55HJZBAMBkcUYHrMq1evwm63jywCADA5DYfDqNfrXB9PqR7AuykqBz1+v9/noU8apqQFFx07pZPQ7UhVpyZRyhPX6XRIpVIA9tJcWq0WdDodNBoNjh49iuvXr/Nr4/f7ebAU2EuPkdtlKNtcrVaj0+lwLnmlUuGZguFwyK9XtVpFOp3mxQ8NZV6/fp2z4n/84x/zfR4+fBiJRAI2mw29Xo/LeU6ePIlqtYpkMgmz2XzgdVOv13H27FlMTk4+dAknv9TEWxCE5wE8f+TIkY/6UBQoUKBAwS8pKHFEp9MBwAdqmgTeTTShzGeVSsVfU6lUCAQCGAwGiMVi6Pf7SKfTIxne/X4frVbrwPi0cDiMsbExrKysoNPpYGZmBktLSwiHw0gmkzCZTEzotFotV8zHYjFUKhX0ej1UKhXY7XZutKQSlEajwWSMEiiA+4mzXM2ltIzJyUmuNCf7xEHY3t7G66+/jnK5jIWFBdy8eRPHjx/HzMwMD6B+EJC3mG5vt9uxvr7O/mUix3Liux+U7iJJEkffUfKIXF1vt9sol8v3HRstRhqNBn+PyDDhvTznAEYSTERRhM1m48QPjUbD3nKfz8cWJPJkb21tQRAEOBwOSJLEJTrVapXPwczMDDY3N1npn5mZgSiKOHLkCNbW1rgVko6FBknJimM2m1EqldBut1Gr1VitrlQqMBgM8Hg8aLfbPAy8sLAAYO89YLFYEA6HuVCH/PXtdhvj4+PI5/MYGxvja50WgPPz87wD02w2cfv2bVbNtVotarUabt++DQAPVW38LzXxHg6HrwN4/fHHH/+Dj/pYFChQoEDBP30cVOW+vLyMfr+ParUKtVqN8+fPc7nHg5omPR4PE+ipqSmUy2XY7XYkEgkm3WQvCQQCCIfDEEWRa9yBPSU0EAjA6/WOPAYdD2U3S5KE3d1d+P3+EcJy+PBhZDIZRKNRWK1WJJNJbgkkhfrb3/42NzSKonhfOsn+fG4qf5EPTJKNgXy+J0+exBtvvDFyHzQwBwBvvvkmfvCDH8DlcuFf/+t/jXA4DK1Wi8997nMP9H+/H2q1GsLhMFZXVzk+EHh3caDVakdq6ukxtFotDAYDdnd3MTY2hn6/D0EQUCqVmIDSAobuy+l0olwu83kxmUxoNpsIBALcBCo/h+SH3g95dTz57TUaDS+g6HXx+/1MhFUqFSRJgtlshkqlQqlU4ihCk8mEZDKJUqnEdhWyvKRSKfbah0IhNBoNJJNJLC4uYjAYIBKJsHdfEAT4/X6+T3kG/eXLlzk7XqvVwmazsXebEkro+l9fX0csFoMoipiZmUEul0Or1YIkSVCr1SgUCjzMu7u7C5vNxs+rUqmMvGdEUcQjjzyCZrOJVqsFv9+PO3fu3De4+zDgl5p4K1CgQIECBf+Y2F/dTsozDe3R0KDf74fNZhtJVpD/LP1froivrKyg1+vBZrMhHo9jZ2cH6+vrWFxchNvt5uhBYM9a4PP5YLFY+DFyuRwX7AiCgFOnTvH2vtls5vhBIiwbGxvI5XJMpij2jv5PNgb6vzyDmiBvnSQlm/KzCb1eD263m+0H586dG4kLFAQBVqsVlUoFWq0WR48ehSAI+OQnPwmNRoNvfvObOHr0KBe7HDTAKAc1NPb7ffR6PWg0GlSrVeRyOU536ff7XA5EsX8Eq9WKfr+PZrPJSvdwOEQqlYLL5cLNmzf5vo1GIw9zkg2Dau5zuRwXGbXbbTQaDYyNjaFQKPBOgVqthtfr5TQQAsUFUnunz+dDs9lEKBSC0+mE0+nE3bt3MRgMsLOzw4OKtIAh0k3HMDMzg7t376LdbvPwo9lsRrvdZgWc0leGwyEqlQoKhQKuXr2KiYkJOJ1OZLNZHtxMpVL8eszMzGBubg7nz5/n4dF2u43Z2Vn4fD5ezJXLZSwuLvK1SjspRMyffPJJhMNhqFQqtsEAGGmp1Gq1WFxc5Hr7crnMhUFerxexWAytVgubm5sIBALodDoPXW28QrwVKFCgQIGCDwh5Ekkul0M6nUYmk2FS6XQ6kU6nsbOzw22JRKz3p5jISTjFvNEw5OrqKiRJQqlUwiuvvAJBEGCz2fDxj38cdrsdV69eZfKXzWYxOzuLcDiMcrmMVquFY8eO4fTp0wD2GipXVlbQbrc5FpA80kRuiDyS9YAUX6vVymkZB4HUYuBdO8RBqNfrcLvdSCQS99k8crkc/vqv/xo+nw+/+Zu/CavVilgsBrfbjWazCUmScPTo0QPvl8pU5ESe/OYTExPsY3c4HNz4SMSbfNHkTZb/fLfbhdvtxsTEBG7fvj2iipMfmYZKiUDLBxvpHNKwJ/nJk8kkALA9RK1Wc9wegc4NkU2VSgWj0Yhms4nd3V18//vfR7/f5zzsfr/PKrPX60W1WoXJZEI6neYSnjt37rAabLfb4fP5sLS0hNXVVaytrXHbaafTwebmJnq9Hp97v9/Pqjudq3a7jdu3b8Nms3Hyjkql4iZNp9PJCrfZbEY0GsXU1BTv+kiSBJvNhkqlArfbDVEUEY/H2dZjNpuRTCbZXkOtlbVabYTA0/VD7yu73T7SxvqzzFz8oqAQbwUKFChQoOADgj7EaSgyFouNtBLmcjkmqoIg4OLFi5ienuY0EjkJkJPwnZ0dtFotPPLIIwDA/tlcLsdktlgsYmdnB16vl1sjyZPbbDZZJaWM5JWVFSYitVoNpVIJgiCg1WrBZDJxbN1gMEA8HodOp+MEj263y8Un+0k3KZ00mBcMBhEKhbC2toZUKoVyucx2FSKHnU4HOzs7bBUhC8cbb7yB5eVlCIKA6elp/P3f/z02NzchSRJisRgA4OjRoyM53QSn0wmbzcZkdj9qtRrX2QPA9PQ06vU6J7FotVoYjcaRGEC1Wo1Wq8U7C8lkkst2zGYzF8vE43EurBkMBpwnvrq6ilqtNqLKl0oleL1eZDIZAHuLHIvFgsFgwEqzHHIF3Wg0QqPRcLPp2toa38bn82Fubg47OzvIZrOoVCocgyhJErxeL7LZLMxmM3Q6HarVKhfpUNweRVPSoGapVBpZjFHNfSgUwpUrV9hOQ0RdkiQIgoCVlRX4/X6+dgOBAK5evcpDvl6vF+VyGeVyGZVKhXdW7HY7VCoV2u02KpUKzGYz5ubmUK/XWYkHMFIylc1meT6AFHKacfB4PCMpPQ8b6QYU4q1AgQIFChR8IJCyRqQgHo9Do9HAZDJhenoaGxsbqFQq7LUFAIvFMlJfLVfn5KrdtWvX0Gg0kM/nOeJtamoKXq8X8XicCU4qleJ4Nb1ej1KpxEUohUIBU1NTiMViSKVSaDQaqFQqsNls6Pf7nAAhCALbJ0itplg8YE/lNhqNaDQaI/YSin+bnJxEvV5HJpPBcDiEwWBAOBzGYDBgq4LBYOBdgF6vxykq9PipVAovv/wykskkZmdn8bnPfQ7f/va3sb29jSNHjuC3f/u3IUkSer0eHnvssZFiGmCvgMZmswEYHeqU+7Pb7TbW1tZ44UDWDSpi8Xg8vHihn6NIRJ1Oh5MnT0KSJFy7dg1OpxPBYJC994cPH8a1a9dQqVQ4v7xQKLDtAQAvXLRaLcfeabVaeDwehEIhToqRH79Op4PBYECz2YTT6US73UaxWOTXi56HwWDA4cOHmezmcjnOcHc4HJiamoLFYkG320WpVIJGo4Fer4der8dzzz3H1yLNDphMJqhUKiSTSTgcDvh8PsTjcb7P5eVltgORlUcURajValy4cAEulwuiKMLn8/FMQqFQYOJN1zORYkmSkE6nmUCLoojx8XEUCgVUq1XMz8/jkUceQTabRb1eh8ViQafT4Qx4uo87d+7w8RPJpoKpW7duYWpqCqFQ6KEi4ArxVqBAgQIFCj4A5IkjnU4HbrcbarUaoVCI7QKU7Wy1WuH1epHP55HP57G6uoqnnnqK7yMcDrM/2+PxwGw2o9VqIZVKIZPJwGazYXJyEmfOnMHs7CzeeOMN1Go19vCKoojnn38eKysrbFmRJIn93VRSAuzFuz3++OMwm82YmZnBq6++imq1OlJ0Iyes5IMmpZduMxwOMTs7O1Jzr1KpcPPmTVgsFraaEIkn0u5wOLC4uIhbt27xeep2u6jX6/id3/kdHD9+HOVyGZubm/jUpz6Fp5566sCBuP2kmhYhdFuKDqRECwCsvtOxqFQqWCwWuN1u7O7usgWEvOpyG0kmk4Eoitz+2Ww2kUgk4Pf7ceHCBeRyOajVajSbTdTrdXQ6HT4+vV4Pq9WKVquFRqPBOdwmkwlerxepVAqVSgWdTgc6nQ6tVgtqtRo6nY7Pb6vVgsFgQD6f5/sl8j4/P89NlOTBp9x2r9cLSZJQLpeRSqX4seWNl3S9JBIJft43b97keMUzZ86gVCqhVqshkUhwodPY2Bir6FarFffu3cNgMEA2m4XX60UikeByHLVazVni7XYb4XCY/daBQADpdBrA3sKs0Wggl8vxDkQ0GsWLL76IlZUVpFIpvvZpnuLmzZuw2Wyc8mK32znxJ5vNIpvN8jCqxWJRiLcCBQoUKFDwTwnk55YkCbOzs2g2myiVSjh8+DDC4TB0Oh0mJiY4g5myoykzeTAY8H3k83m2o9y6dQsLCwts7SBiSpFs29vbPABHBNhgMCCZTGJ9fR2SJKHdbqNer7NFgsg/bdN3u11cu3YNoiiyRaFSqYxE2sk9xvJBQ61Wy4/b6/WQSqVgt9tRKpVgNBo5CrFSqeBjH/sYcrkctyfK729hYQHf+973sLKygueeew5erxf/4T/8B7Z2/O3f/i20Wi0+/vGPH3j+5YOG9Jj7k0CI4JHCLbfIkAVDr9djbGwMmUyGCfb+ZBY65o2NDTz22GPodDpot9vY2dmBzWZDPp/nDG7yWMvPHw1sFgoFfmydTsee8Dt37sBut/PP6/V6bsaUL0wmJyd5kUW+aavVCp1Oh2KxiIsXL3J833A45F0A+WtAOy+nTp1CoVBAv9/H8vIy74LY7XbOZifFnxosyd9Pg6qTk5PY3d2FKIocK0m54aR4U3rJxsYGVCoVRFGE0WhEpVLh2EC73Y56vQ6fzwedTodkMolerweDwQCTyYRyuYxgMIj19XXcunULxWKRzxV56em8nThxgu1aqVQKsViM2y61Wi38fv9DVx2vEG8FChQoUPArC7J+UCzZYDC4b2uaEhgqlQp0Oh3W1taQzWY5vcPlcqFarcLhcMDtdqNSqeDo0aMcDUjxgJFIBOVyGfV6HY1Gg7OUr1+/zrczmUyo1WowGAzIZrNsVSA7BABu8CMS02w2mUySp5oqvwk0WPfGG2/AbDZjOBzC7XYzwZcrzPKEDjmBpng4ajhMp9NMgofDIfvb9Xr9iPo7GAxYnfd4PPjUpz4FlUqFbDaL8+fPo9FoIJvN4p//83/O3uf9udrD4ZDLgg4CNWaSek2EmmC1Wtl+QSkbVBzT7XYPTEohNdzpdEIURTSbTXQ6HQSDQRQKBeRyOVaTAbAPnIgqWSMmJiag1+shCAKSySQnxNC5pWFTea62IAicPkOWE7PZjOeeew6XLl1COp3mhQaRWyKkZNGhXQm73Y4TJ06gWCzi3LlznDCiVqths9nw1FNP4cqVKxx1aDab+bkePXoU0WiUF3cURVmpVJDNZmE0GuH1etFut/m5Op1OJBIJvhYoSpIsI/fu3cNwOITZbIZarcZnPvMZbGxsoFQqwWQywWAwcOIOxVfSn36/PxJPSNfIzMwMYrEYdDodvF4vV8//PNGTHzYU4q1AgQIFCn7lsL81Uq560ta03NOt0+mg1+sxOTmJfD6PVqsFQRDQbrfR6XRgs9lQLBbZU10oFGC1WlEoFNBut/H666/j0KFD3DpIqp9Wq4XX60UymcTRo0dRq9XYahCNRllNtdlsTDwGgwESiQQCgQBUKhVCoRA2NjaQz+fR7XbRbDYhCAJEUWT1Wm6DoQQQQRDw+OOPo16vY319Ha1Wi33f+1XciYkJPPnkk1hZWUG320WhUGB7BJ23fD7P0Xyk0t66dQuvv/46ms0mXC4XJicn8d//+3+HTqfjhAytVovPf/7zI8klBxEmUpepCVEOijGUZ2fTcVgsFnzyk5/E3NwcAOCll15Cq9WCKIqs8MphMBj4/m/evIlHHnmEBxUp93xubg4ulwv5fH4kxaTZbKJWq8HpdMJisWBycpJ3JWw2G9xuN9t8ut0uBEEY2VUg0k5JKET4a7Ua58JTY6bRaITD4YAoinjuuecQiUT49aFzSNcoDSF2u12+Zsl7fuHCBezu7iIYDKLf73MEIFlrBoMB17N7vV68+OKLeP3113megWxF1Fy6u7vLj0UFPwB4l6dWq8FsNqNSqcDn82FjY4PjFLvdLrRaLQ9fyhdTarUaWq0WDocDJ06c4NhDsm2R5YsiM+XnTLGaKFCgQIECBR8h9rdGkkXD4XDw1jTdhtQ/UtgkSYLT6eQCG71ez0OWFH1Gw46iKKJerzNZ9vv9/D1qiMxkMjh8+DDMZjOr0alUismYSqVCrVZj9ZKU1lQqhcnJSVYYSWElBVZeNrNfhQb2rBoXL14cIdvA/ZXlwF66xxtvvMGRcqQo03mj6DtSysn28vrrrzPJLhaLbL8wm804evQoHnvsMczOzt5HpA8ClQI96Hty2wydB1KzV1ZW+PzTUKgkSSOxhgS5b7zX6+HWrVsIhULY3d3lVshYLAatVovp6WloNBqk02lO+wD2FiHkeaaa+GKxyK8JqdGCIMBsNrPKbTQa+ecpuYauT2p+XF9f52HJw4cPc4QhXWdkx6BzQos4Ohf02mm1Wh6irNfrUKlUWFpawtzcHHvYm80mGo0GdDodF90QaGeiVCqxj512Wvr9Pg9fer1evm4ajQZEUYTVasWpU6dQLpdx+fJlLuAxGAwjli3aHWg2m7DZbHC5XByJSIOa2WwW0WgUgiBgamqKdzRUKtV9WfoPAxTirUCBAgUKfuUwMzODy5cvo1arQRAEJpOdTgeXLl3ieDOfz8fq49raGqxWK2q1GmZnZ3lQTB5dRsNgm5ubsNlsPKgIgAcxw+EwisXiiAd5a2sLRqMRZrMZuVwOpVKJWwXlhJm8xXSs9Xody8vLMBgMaDQa92VaE4gcy0mm/N/vVVdOoDhCOpZ+v89qJt1Xv99n37rJZMJ//s//Gf/1v/5XzM/P41/9q3+FUqmEaDSK+fl5Jp7yEp6fF0T45c+XQDGPu7u7UKvVcLlcqFQqXBokV77l9fI0yNjpdHD9+nX+GlmMOp0OJEliYr3fGkOxgvQcyVMO7BFpIpoGg4FJsc1mw87OzkiLpk6nAwAm8mT3IeJaqVSwsrKC4XCIiYkJVqCz2SwA8OPSsKZarUan0xmJNKSYwIsXL3ISDOV40y7Dc889BwC4cOECstksLBYLtFotMpkMW31oQUBpPNQiWa/XkU6nOflkaWkJwN7wK70PhsMhfD4fQqEQIpEIL2ipNXNychJer5dbK2kHg2Yder0eV9SbzWYsLi7ybR4mKMRbgQIFChT8ysHj8bCa1263YTAYuNUvm81yKQpt6VOuNm2jT0xMABgl3blcDpIkoVarQRRFTt0g6HQ6VCoVZDIZVjzlJG9rawszMzMjZJ1+jnLB5SA7CdlTJicnUSwWDyTejz76KCKRyH0Z0wSKD/xZQedpOBwinU7j7/7u75BKpaDX63H8+HH8r//1v2Cz2fAnf/InKJVKsFqtOHHiBLxeLxqNxgjx+lmxn+zKQdYTUnebzSb6/T663S6y2Syfd4rYq9frTErJjmEwGLCwsIBwOAy1Ws12B6vVinK5DI1Gg1OnTuHNN988sNWTKt0tFgssFgsqlQory3JLCRFlq9U6siBTq9UwGo2ciU5/E3mdm5vj2vV6vY5CoQCbzYZnn30WiUQC5XIZnU6HK+Mp0aVQKPBzyWazbBmq1WoclUnDvrRgs1qtvLAkL7jL5cLS0hJu3ryJa9euQavVwmw2c4QfZcuXy2WIogiHwwG9Xs/RmpTIY7Va0ev1+DjlWfkzMzPczlkqlTA7O4t6vQ5JknDlyhVcv36dX5tut8uxlTSk+TBCId4KFChQoOBXEsFgELFYDKIosupIKRBms5kHIIvFIkRRBABWJnd3dwGAPaQAsLy8DJ1OB5/Ph2KxiPHxcZTLZWSzWVYZz549C2DPR/zrv/7r2N3dRa1WQ7VaxZEjR7iUhqwAwWAQpVIJhULhwGbIra0tJr7RaJRj3gBwhbjT6QQAHuCUE2+qI+92u0in06yOPojQ0jAiAD5Gs9mM73znO/je974HURTxxS9+EZOTk/gf/+N/oFwu48tf/jIvcgBwcQ8tJig722q1sjIMvDvc+CCQj5wIrDxWUBAEHnSlwTw6Zvnf1DRKtwkEAmzdEUURhUIBoVAId+/eRb/fZ/8/EUKn08mPQ75mun/6d7fbxSc/+UksLy/z9UNNpN1ulwkiLRbIvnPkyBGoVCokEgm0221otVqEQiFcunQJ2WwWgiAgGo1y+Q2p7NRqSkOSfr8fPp+PF0d2u52fSzKZZOJNg6FUytRqteDz+dBqteB2u5HL5XhhWK/X+T3x9NNPw2w2c+wfgXZ37HY77HY7isXiyOAypZEsLS0hHA4jmUxiZ2dnpPgmEokgEAhwRCGdq0QigbW1NfT7fbah0PWk1+tht9t5eFfJ8VagQIECBQo+YuRyOUSjUQQCAW7hMxqNkCQJwWCQs4nlbYCtVovztq1WK6uB9Xodq6ur3ABJTY7kW7127RpKpdKIAtftdpHP51GpVCBJEkcJzs/Po1KpsIWDKuApaURORPv9PkqlEgKBwIitYWFhAc1mkwcBY7EY1Go12zF0Oh3bF+iYzWYzx7XJbRvyhBPyDvv9fl6QCIKA//k//ydu3bqFT3ziE3j22Weh0+nw3e9+F9VqFc888wxOnDgxEv3X7XbZZ02eZLVazckdVCojzwrf7zsnkitfRMjPEdlI6NjlxTjBYBCSJMHtdvMgK+Wfl0olHDt2DGfOnOGF1N27d3kQUqfTwWKxIJvN4t69e5zeQTYVOr+0EKD0jnA4jKNHj+LatWucn07KOtk0aKiRFno0OCuKIkqlEhcupVIpbiZVq9VoNBpcQa/T6dBsNtFsNqHRaOBwONgTHYvFYLPZ+HxHIhG2C5HyTxnhNNjb7XY5CpEUaJPJxAOXy8vLCIVCqNfrPKMwGAx4MUqDjvv/DYCbJnO5HA+oZrNZHoakGQsAWFpa4scPh8MAALfbjXK5zNYb8n8vLi6iXC5zy6eS461AgQIFChR8hKB4QFL1/H4/x7997nOfg8fjYR8rACbBlCBhtVqZtMsrsCmirVgsIh6Pw2KxYGNjA7VabUSppoG6zc1NJmuNRgOFQgHhcJhTSYhYG41GHm6jwTFSbAVBwPj4OFspaLCwVCrxYJ4805v+r9FoRkhQp9O5z4JCMXhkWSD7QafT4WIWAPjkJz+JX/u1X4Pf70cymcTZs2cRi8XwzDPP4Atf+AL6/T5H5ZHyfJDdpdPpjJTFyNNl9hNvKouh57D/ORqNRo5JJF83tTrK0y9WVlZ40dVsNlGtVnH+/HksLCxw3Tz5uk0mE/x+PxYWFvC3f/u36Ha7SCQSvOMAvKt0GwwGXgDQub1x4wYr2v1+H4VCgQmvxWKByWQCsLcbQkRyZWWFBw6dTic3hPb7fYyNjY2o4fICJJPJhH6/j3a7zdch+brn5+dx9uxZXvB5vV7O6G61WpyA0m63odfrYTKZkM/nUavVkM1modfr0W63EY/HuWgoEAhgfHycVWz5gLLdbueWV3nRjVzVttlsnDRjt9sBgEk22Xjo/7Tge+yxx3jAkkg93e/6+joEQRgZln5YoBBvBQoUKFDwK4NcLoezZ8+iXq+j3W6zekekAdgbHpMkCaIootvtMunq9/tIJpNIJpPQarUIh8MIBoMol8vQ6/Xw+Xzsn02lUrhx4wYGgwG0Wu2Ih1qj0bCSp9FoWG2mzGOqwCYvK+Uj0zY+5SKTLebWrVusEGu1WkSjUfbnHgR5kyPhICJcq9VgsVhgt9u58nxiYgLnz5/H//7f/xuPPfYYPvvZz2JsbAzA3uLh61//OgDg8ccfxxe/+EU4HA7k83loNJqRwUU5aAhVbnGhjOl79+4dmLJC90eQ53cDYOsHsGfhoHPWbDZx8eJFVKtVbviUD1YCe4r89evXcePGDeh0OhiNRia/ADjTvdfrcdMiPQ4NxNIxy++T/tCwIvm25+bmmHTL89qvX7/O1h+tVotYLAaLxcKk2+l0olAooNPpMLmnqnmKIVSr1VCpVCiVSmxjoutVp9PB5XKxQuz3+3Hnzh0+zl6vB4fDAa1Wi2azyQOX1BipVqtRKpVgMBiQTqdx7NgxVrHX19f5/XHx4kUUCgVotVrU63Xo9Xqsrq7CZDLBbrdDkiSYzWa+vuPxOA9FFotFNJtNbGxswO/38wwD+eydTifHYZLFyuPxoFwuw2q1HnjtfNRQiLcCBQoUKPiVAJFuGm7U6/VcXrK4uMhKOOV0W61WOJ1O9Ho9zM7OcpFIo9FArVaD1WpFp9OBWq3GvXv3EAwG4fV6USwWR4bkqJSEykD2l9LMzMwgHo/zIBwALC4u4uLFiyiXy0z4SeWmWEHyB5Oq2+/3WeWk1I6DcFB2tRx0XzRkR8pxtVrF1772Ndy5cweBQAAf//jH2RtuNBrx7W9/G41GA3/4h3/IHmjyTxPJ3Q+yd8j/r9VqYTAY2OZzECivfH+lvfw5yqMNDQYDgD0lvFqtolqtcpMlNUfWajVWk+k+aOCWWiOBPYVWnjgjH7pUqVS80KAhSp/PB6/XC4PBgM3NTRiNRratkKVkbW0NtVoNbrebrR10PHQNVatVaLVarqKv1WpsQyIrDPnORVHkeMwzZ85w0yVdF3Nzc1wWRa2P6XSaB0zJI67X6wHszQLQrgUdN8UgNpvN+2wk4XAY+XweOzs7vDBptVoolUqYm5uDJEnY2dlBMpnE+Pg4X9uUF04Z+jqdjtNootEoDh06xM+P1HV673Q6HczMzCCXy/GQqNVqVXK8FShQoECBgo8Cy8vLiEajUKlUcDqdTJJJbaQPevoQp2FLs9nMflEaYgPAKR21Wo2TM5xOJ5MxsmWoVComyHKQt3dnZ4ebDBuNBit2JpOJVVsigXq9HqIoYmFhAdeuXQOw552lJBNSjgnvlfxxEKjgZ3+m9+3bt/Hqq69CEAR88YtfRLvdxvnz5zE5OYlz587xz3/+85/H5OQkq/qkTO+vdyfIj42aJMlPTwuJB4H8x/LbCILAjykn+pIkQafTjSir/X6fM6pnZmZgt9thMBjQarUQjUZZRadUGRq+pP8TCSWrx9TUFCvDoijC7/fz4xPJBYB79+5Br9fzLAEldgB7+d3j4+Ps4wbAXm3yXw+HQ9jtdly8ePG+BByVSoVUKgWr1QqXywVg77oPBoOstkejUfZMA3sWjvX1dX4tAoEABoMBt3xSigkV7HQ6HYRCIYRCISwvL/NwK5HeSCSCYDCITCYzklij0WgwPz+ParWKZrOJXC4HtVqNSqWCpaUlrK2tcQziN77xDSwuLmJ8fBwWiwXXrl3jRQCwlytvtVpRr9eZiNMQ5crKCqv1tCh4mKAQbwUKFChQ8EsNIgPJZJK/Nj09zVFxdBuymqjVaqTTaej1ek5maLfbKJVK0Gq1vN1PUXUnT57E9evX4XK5OFWBSPuhQ4fQarVQqVRGBjV/7dd+DalUCrlcjofwyIpBqQyktKpUKkiSxAOIw+EQly5d4uG3RqMBl8uFbDbLdgoCeY0fRHz3gywGBCKfqVSKn9M3v/lN/v6dO3f431/5ylcwOzvL/yfvOUW8HaR4E+x2OxNNakAEwFnf9LrQAocyton4EmgYU6/XcyoNAD7vyWQSoVAIFy9eHHnOsVgMs7Oz7EX2er0wGo2Yn5/HxsYGPyb5iNPpNDQaDSRJ4nO0s7MDURThdDrRaDRw9+5d9l5PTEywbYIsJtRMSbsm5P0nD7NWqwWwZ52w2Wyw2+2o1WowmUxwOp3QarWsFJNKTueLFPJCocBFPLSgI5W7UqkgEolgcXERNpsN+XweVquV1XKTyQRJknh3QG7JIgWZEklogUj3a7PZcOzYMfzkJz/h4c+FhQVUq1XcuXMHGo0GRqMRWq2W87YpAYjeE9FoFC+++CJWVlZ4wZTP5yFJElqtFqrVKiYnJ9HpdHDmzJn70lIkSeIZhYcJCvFWoECBAgW/1CAy4HA40O124XA4uO2PYsrkA2FjY2Pc5re7u4vBYIBKpcLb/J/4xCcA7G2n0wCeWq3GzZs3YbFY2PPcbrfZorCyssIDZMPhEKurq3A6nfB4PBgfH8fq6ipbJ7rdLg+RNZtNGI1GaDQaJtSUWkFkiMp/yLdLzYsUHUglMXJCTqRNpVKN5HcTUe10Onjrrbc4w5oUdfLw1ut1PPfcc/j+97+PxcVFBINB9i0De1FyZrMZMzMz+NGPfoTV1VU+hv2K/Mc+9jFW/imikCwfZHcoFouscDscDgiCgLGxMeTzeX6+RM7IHkPElZ6vXq+Hy+WC2WzmoU0AnDxSrVZZaaf4x1QqxSVKCwsLAMCFOSqVCh6PByqVCplMZiQqkHzSZHOJx+McVUhkkNpJB4MBDAYD21Mo+93pdPLcQLVaZVtKKpVCLBaD3+9HOp1Gv9+H0+mETqfj6ErK7c5ms2xhomZVavAEwNe8xWKBIAioVCrsJSfrCUUMVioVPPHEEyO2DY/HA4vFglQqxQknANi7LS+wEUURyWSSifjExATGx8cxNzeHXC6HbDaLbrfLMYXBYJCP8ebNmzzwSdeZ2+1mb/vy8jLng8vTUuTv64cFCvFWoECBAgW/1CAFTKPRYHx8HLFYDDdv3sStW7dY1bNYLBwfV61WUSqVMBgMcPXqVeh0OvR6Peh0Ojz66KNMJujvcDjMucrD4RA6nY4j2QKBAL7//e/zMCV5ZUk9pog4IvudTgfpdBrJZHIkAYQq6amSm0CP2Wg0oNVqWf2lnGhS2eWkmxJTaGhuP7a3t/Hqq6/yY01OTqLVauHf/bt/h+PHj6NWqzE5/I//8T9CrVYjn89zaonNZuPmQABcoNLv91mRJ1IsiiJyudzIQB8NvJLST4kt9FzJU72+vs47BH6/H4VCYSTpRO5jp9eECCbZgeQtnNVqle8f2LMVra+vc0ye3+9HuVzG7u4udnd3odFoMDc3hzNnzgAA3njjDc6ylttUBEGAyWRCu93G9PQ0FhcX8bWvfQ35fJ4zx2mnhGwj8nKkTCaDwWCAer2OmZkZ7OzsQK/Xo1qtstecrlciohaLBcDegoN2HKj1lGxMi4uLWF9fx/LyMlwuF9fS06KUVOxQKITd3V1YrVaEw2EeuCX1XxAERCIRmM1mfO9730On02F7h16vx2c+8xmEw2Hs7OygUCjwgjAajbIvOxKJoFgscmKPzWYbWaDRuaD3kN/vh8Vigd/vRzgcRqPRwCuvvMKV97lcbkSJf5jwS028BUF4HsDzR44c+agPRYECBQoUfETYn7TQarXY20uDiUQoKN/ZbDajXq/D7XajXq+zAktb4XJFjTKpKUdZp9MhGo0yOaG2QGoppOIXAIjFYgCATCYz4q2WQ6vVMon0er0oFApMuOTkhJJRiLATidoPsmOQNYEe886dOwiHw1hfX+fbHjlyBP/+3/97WK1WJqfAHqmVJ3BQRJ7BYGBF+mtf+xocDgc6nQ5bXeSlMiqVCrVajeMTDQYDBEFgiwip7/Qzw+EQnU4HWq12xDPf7XZ514GaNPefx1arhdu3b8PhcCCVSo1YbyiFxGQy8QJL7nFvNpuo1Wq4ePEiNBoN4vE423zW1tbYK03+eiqjoXOk0WjYix2LxXhBQ5YYuh7kliPKJKdZA2BvAfOTn/yE4w07nQ5EUeQdD3kLKhXckCWn0WjAYDDA5/Oh2WxifX0ddrsdV69eZbU5EAiwfWM4HGJzcxPz8/OYnp5GvV5HqVTiXZZYLAa73Y5IJIJYLAaDwYBarYZGo4HBYMBKv0ajYQJcq9XYBjMYDNBsNpFOpzkOUK7Ut1otCIKAlZUVjtCkmEaz2cyWq3w+z8kp9Fhzc3OIRCJIJBIAAJPJpAxX/qIwHA5fB/D6448//gcf9bEoUKBAgYKPDqSAUTxcr9eDwWCAyWRCOp2Gw+HgXGOVSoUzZ84wcV5fX+e0EPLxPvPMM2xh6fV6I42XuVwONpsN6XQaU1NTCAQC3PbncDhQrVY55SSZTDKRokUAYTgcjlSGdzodGAwGTE9PIxqNciY0kS6yj5CiS0RuP0iZdjqdyGaz6Pf7qNVqeOmll/g2Ho8HX/3qV3H48GFUKhU0Gg00m00ml3J/MamqWq0WExMTeO6557C8vIxCocAlQgaD4T61noii0WiE2+2GKIoIBoNYWVnh7+9fOFAUotVqRaVS4edOijr54Aly+0u1WuWfATBSOkOEjgge3R8tuGjgVr7YAPYWN/IiH5VKBa/XO5JKIrcQkbdbEAT4/X74/X4EAgGEw2FIkoR8Po92uw2NRsMFP/KFFz2XTqfDvm9KC2m1WnC5XAgEAqwQG41GiKLIdppSqcRRi7TYzGazPET867/+6zygODMzw8U5ZPUplUqYnJxEMBhENBrF1NQUE3hq8KTrv9Vqod1uc2PlnTt3oNfrIQgCarUaVCoVfD4fstksxwFarVb2mtPitdlsolgsMpHvdDr8+LTIHR8f51x0mteQJImHPh8m/FITbwUKFChQoAAALl26hHv37kGtVuPEiROsehIBKJVKTLrcbjd/WJONhFr9iDgB7xZ6kDqu1WqZvBcKBQyHQ7zzzjvw+XycRnHt2jX2D5O9gMpLAIyo3haLhb3K3W6XWwrr9TrUajU0Gg3H9NFtiaDLFVBSguVqM7CnsufzeVy5coWj8gDgsccew6c//Wk88cQTiEQinHlORF5uixgbG2PbBbVhEtFqtVpwOBwYDodYX18fUaKJvOp0Ong8HjgcDtTrdWxsbGBxcRHVahVbW1v82JS3TQTR5/NhfHycfeFjY2PI5XKcIkNWGo/Hw4o1nV9SxUVRxMTEBLLZLCwWC+dct9ttbmKkvGj5IsZgMPDrTa8lYTAYIJ/PM3EfDodwu91ot9u8UKlWq5iamuLIyrW1NXQ6HXg8HmQyGfajz8/PIx6Po9ls8i6ARqPhRQ4ljVy7dg31ep2Lnihzna6d6elpBAIBnDt3bsQjLYoixsbGkEqlYLfb2Z5y4cIFxONxSJKE06dPc7V9oVAAAI7SJIV5aWkJR48eRaVSgdPpxOHDhzmthQYh4/E4RzfabDa2H2UyGbRaLbbO0HWqUqlw/PhxJBIJvt7JPkWvJw0+B4NBDIdDeDwebs1cXFzEM88884/xq+MfHQrxVqBAgQIFHxnkA1Af1nZwLpfD9vY2k5NEIsFb+qSSUtpEt9vFvXv3WA2MRqNMBI4ePYp0Os2qHg0ZZrNZJrxTU1PQ6/UcD1gsFkeIUrfb5RQLiryjTGTK7CZyKh/oNBgM7D0nH6zH4+GkllarNVLSsx+Li4u4fv06f7/f7+PSpUtYXl4GsEdIjxw5gq9+9atMGKklkb5PZJnIt1ar5QZLUsHT6TTOnTuHZ599Fg6HA+l0+r5yHAIp/el0GtlsFr1ej73fR48ehd1uR6fT4QURoV6vY2dnh73vNpsNxWJxJOqRjjmTyXBMId2eSDRV05N1QqvVcpxit9vldA4qUqIIQfJQyz31er2erTDtdhvtdpu96G63m0miJEmo1+u4efMmNBoNkskkK+FqtRoTExOQJAnBYBAbGxsoFouw2Wyw2WwIhUJIJBJM1I1GI9566y1W5smm02g0RjLKm80mLx5arRZMJhOOHj3KySE+n4992ZRjXyqVoNfrWdWWZ7/TzkWtVoPZbOYh40gkgmw2y+d8bGwMkiTB7/ez331ychILCwuIRCJYX18f2TGg3ZvhcMjlQJRJr1arMT4+Dr1ej0qlwkPPdrsdw+EQMzMzWF1dRT6fRzabhd1uHxnsfJjw8LnOFShQoEDBrwzksWYf5mOQKkneXKfTyYNuVquVM7MpVSKdTsNutyMYDHIjJGU0V6tVrK6uAgBbASjlgqwjwWAQoigyYW6320y4yV9NA3OJRAL5fJ4HCPcTXLJPUOoF8C6plIN+nkDPB9jzb8/NzXE04F/91V/h3LlzCAaDGBsbg9FoxH/5L/+F2zMPsnmIosjHQ02PdFt5jB155qPRKAqFAvuk5fdHix6ycbTbbT7+ZrOJVCrF9gm5H5sWOK1Wi1VwUt8PGqSjyDoaTjUajZxuA2BkcJPOmd1uh16vh8Fg4EUPRUiSdcZqtWJ+fp7Vc4PBMJKiolarYTQaufXyO9/5DhqNBtxuNx83LSpo54LOvcPhQL/f50VepVJh2xPF/DmdTh4ipYHW8fFxOBwOXhzo9XpYrVa+zig9xWQyIRQKMZkfHx/nhQHtqJCtg17zdrsNo9EIk8mE6elpHjhtt9tIp9MA9hZ35Dlvt9tIJpMwm80oFApYWFjA/Pw8FhYW4PF4sLi4CL/fz3nhpKA7HA72obtcLoiiyBGHZrMZFosFNpuNy4psNhsPZ/Z6PZTLZTQaDY4JfRihKN4KFChQoOAXjlwuh0uXLiGfz8Pr9X4oPsxcLofLly9zJvdgMOCabHrM5eVlDAYDuFwuuN1uZDKZEQXa5XJhY2MDkiTx8GKr1cLu7i7W19c58o/ymuv1Ora2thAKhfDss89iZWWFCeHx48f5vohgttttRKNRtrIYjUYMBgMmVeQtp7xoitcjVVUOueoKvJt4QiRudXUVExMT+OY3v8l2mc3NTQB7GdzlcplJZiqVui/2b2xsDI1GA5Ikwefz8WMlk0kMh0NIksR+bSJyiUTivgQROeQqp8VigcPh4EZQWpxQqc3+Jk61Ws3KMxFfq9WKRCIBrVaLsbEx1Go1rimnYyNbjyAIOHHiBARBQDQaRblchlarhc1m4xKgXq+HQCCAWq3GJTeUIiO33ExMTHDxjkqlQiAQgCAIcDgciMVi6PV6KBaL+LVf+zWoVCpsbW3xNUUWpna7DYPBgH6/j93dXahUKhiNRlitVqTTabTbbYyNjaFYLCIYDCKVSkGSJPY3h0IhVCoVXpDR4oCGE6lyfX5+ngeOCRcuXEClUuFdoW63C7/fD71ej7W1NX7/0KLSZrPxtV0sFvGNb3wDzz77LAKBAJLJ5MgOzeHDhwHs7VRcvnyZy24KhQLnt3e7XUxMTGBpaQlnz55Fr9dDJBLB4cOH4fP5EAgEUC6XUavVEIvFMBwO4fP5YLPZUK/XOR7x5MmTiEajHGv4MEIh3goUKFCg4BcOSkMgLy4p3kQGPqgF5b1ut7q6itXVVfaz+v1+brkjEkCDZpTZTH7qarWKiYkJXL58mZVZu90Os9kMnU6HSqWCV199dSStQ6fTodvtolarIZvNAgB7e81mM+c708CenIj2+3323hLJJCtKsVjk29ZqNWi1WlZ45ekdlChBoNhAAHj55ZeZZMtJsF6vx+/93u9hamqKi1uodEcOshqIosi2GafTyY2HRJIrlQqazSZnME9PTyOfz4+UFxFEUYTD4UChUECn00G9XofRaEQ8Hsfx48fZJ0/q8X7yTecqnU7D5/ONLN5I0aZUkMFgAKPRiFwux15lKjLyeDz4y7/8Sx7cs1gsnIgxMzMDn88Hu93OfmMabL18+TJfO1tbWyM7H81mE5IkoVAowOl0cm718vIybDYb7170ej22vHQ6HWQyGRiNRva1m0wmzisnS04gEMBwOMQTTzzBixutVotwOAy3283nqtfrQZIktjsZDAaIoohqtYpcLsfvjVAoxItSAJyak06n4Xa7YTAYUC6XeUj0+vXrOHLkCNrtNvvPBUHAO++8w2p0p9Ph2xcKBUQiER7SdDgcsFgsCIVCWFlZ4aFIAuWWA3s7OxSLeePGjZF5g3g8zueX4hEB4PTp0/ddaw8TFOKtQIECBQp+4aD2P0mSMBgMsLKygmw2izNnznDrHA1KvRfxlltV5LfL5XLY3d0dSbAQRRGzs7Mol8uoVCoolUrQ6XTw+/24efMmp4HQgF00GuWYNJ1Oh0AggDNnziAcDuP69esjTYxkESEbCaVTAOBIt93dXfh8PlQqFZTL5ZGfN5lMnCFOyiKR2f0EW+53lkN+G7KurK+v4yc/+QkXBYmiCJPJhGQyiUcffRQvvPACE66D7oeg1Wo5i5qGD/V6/chgIWEwGOD69evsHf7kJz+J7373u0ym6P60Wi18Ph8rssPhEJlMBmq1Gnfv3mUbCy1IiKzKS38oNk+tVjM5ttvtqFQqsFqtqNVqTDqpIEatVnOqDV03R48eRTgcxpEjR9hrT4q63W7nIT4iwuStlkcekmWFFiC0qAwEAnjqqafw0ksvcUIH2VK0Wi1cLhdKpRJUKhXcbjfPFNBrXyqV2F9OX6MkEHmmOhXkOJ1OpNNpaLVaJBIJVKtVWK1WXiSqVCpEIhHE4/GR1y0QCMBsNuOHP/whW3iazSYymQw0Gg1bQE6ePIlMJoNSqcQLsU6ng0qlgmKxCAB4/PHHIYoiSqUSQqEQL9Jox4YWSQaDAU6nE81mk33i9FwBsJXklVde4XNKuwIGgwFGoxGBQOChSy55LyjEW4ECBQoU/MLh8Xjw+c9/HgDwta99Df1+H6VSiYk0JTTU63UeZNyPXC4HSZKg0WhGPnhzuRzOnj2LUqkEjUYDjUbDrY5U+kHZwVRyIwgCD1Q2m00UCgUYDAYcOXIEkiTBbDbD6/XC4/HAarWyz5nI0HA4hMFggMvl4pZDUr5zuRxisRjGx8cxNTXFBSpE7Ok8XL16lZ/z3NwczGYzstksdnd3WTmnZJP9oJQO8iz/+Z//+cj3vV4vvvKVr8BqtcLtdmNzc5OfhxyUDqHT6RCPx1lhttvtvBMA7BHGfD4/EnUH7HmqySKRy+WQz+extbXFtyGPOLCn0EciETidTn4OkiSxP1le/uN2uwGA68ypdr3X6zGxpmFQyuKmunTy1VMkHh2H3NtNvm3KpB4Ohxz3d+7cOTSbTWxtbTH5p6p3WqSo1Wo4nU7UajVoNBoYDAYAeyR3bW0N9XodwWAQu7u7nO5is9nwyCOP4KmnnuLrlq7LRCKBbDbL55hsIqFQCMPhkNX3Wq3GdhsaDm02m/x6DYdDtFotSJIEj8eDw4cPjzRwUllOOp3G9PQ0TCYTfD4f8vk8JicnuflSp9Phs5/9LOfXr66uQhAE9rBLkjTi079z5w6OHTvG5ULhcBgOhwMTExMIhUIcWajT6dBqtXDkyBE4nU44nU7EYjF+Hex2OzweD06ePImLFy9yQtDMzAwuXbrEw5sAsLKyMlLs8zBld8uhEG8FChQoUPCRgLK1DQYDPB4PTp06BafTydaRB6nZhEgkwsNZ8u+vrq6iUCig1Wrx8BvFvtEHssfjwfnz59FsNhGPxxEKhSAIAnu0h8MhCoUCZmdnOVaPyD35eOWRfcBeNJ7X64UkSbDZbDh9+jReeuklTvWoVqu8kAD2Mr+JUJ47d26EkLVaLbzwwgvI5XL4xje+wRnSRCTlqjT5mRuNBqrVKv7iL/6Cv+dwOPCFL3wBk5OTAMAZyoFAgEn6flSrVZw4cQIGgwGJRIKVW1LxKcpQXu4iCAIsFgunh7TbbbaQyEELFLJSlMtldLtdTg+hunCqWyeLC1k/Go0GjEYjDxLevXsXALgQhsgf7VKQh7xWq92XzNJsNnHp0iVMT09jMBhwlbkkSdDpdMhkMrh69SpbfsjaAoymvJD/ne5HpVLBYrGgXq8jHA6jXq+j0WggnU6zh9/tdsPtdmNhYWHELkXpHGSP0uv13OpZrVaxtrYGm83G8wYOhwNqtRqhUIgJZ7FYxMrKyojdZjAYIJvNYnp6GgBw+fJllEolLC4uIplMotPpIBqNYnZ2Fmq1GoFAAF6vlwczDx06xKR7eXmZ/ejT09PcHulyuTh+ktKDKKKQXj/ylwPgrO1arYZarcYxgC+++CJeeukllMtlLsQ5ffo0pqenR2xl7XabBymnpqa47p6KfRTirUCBAgUKFPwU9AFeqVS4zpviv+gDs1gsIhaLYWpq6sD7IHK+X+3e3d1lzyj9TQNd8g9j2vanbG5SoKnWnHzd+xEKhSBJEiueFJXWbrfxk5/8hFNIaDgzkUhAo9HAaDSiWq0ywXjnnXfQ7XZx4cIFHrj0+/1oNBoIBoN8joi8GAwGdLtdlMvlkVxuo9GIYDCIRCKB1157DYVCAVqtFr/xG7+BJ554ghcfRAYpwk3u45Yr181mEzdu3OCYuuFwyLsQ9DV5mQwVn2i1Wia4FI+3H6Q+E6EkUPwiEb7V1VXodDpWW2kYdH9RjdFoxObmJhN2r9eLnZ0dJuwmkwl+vx+JRIIz1klZB/ZiGCORCEKhENsqzGYzKpUKBoMBcrkc54aTfYfysVUqFarVKltmrFYrVlZWMDY2xsN9Ozs7vBggm4vf78eLL77IC890Og2z2cznIh6Pc9IL5byHw+GRQVaNRgO/3z9ShkTvn2KxiEajwYkkgUCAs9abzSYikQjHMYbDYSwuLrL3PB6Pw+12YzAY8EJA7p+PRCI88xAMBkfiBOfm5vD000/zUHOpVIIgCKhWq+zDnpmZGVloWCwWtsvQY+RyOYiiiFarNTIkuX8glAZ4ycoSiUQwNTWFeDz+njtlHzUU4q1AgQIFCn5hoA/der0OnU7H1gO73c6V7vQhXi6Xeev4vVAsFkdUcoqAC4VCiMfjTGzK5fLIhz61CtKAmCRJI8kV3W4X586dw7FjxzhNYWlpacQaQeUipKoC4FSKer0Ou92ORx55hH3Du7u7HFdIWc+k7Pb7feTzeYyPj3OOdqVSgV6vx7PPPotEIoHd3V3odDpWEOlYv/vd7+Kll15COp3G7Owsfu/3fm/kHBkMBs4Xp8cC9hYkOp0OExMT7K+V17UD4ApvGgaUg5JEPvGJTwDY2+53u93Y3t4+0P89HA7hcrlQqVT4a+SJpuNbX1+HTqdjW0GtVsP29jbvFNCCiUjg+Pg42z8ajQbfN53bTqfDaTQ0mEcwmUwjjZr5fB6CIDD5FAQBMzMzMJlMsNvtPDgZjUa5dIhI/8rKCsf/kf0lGAxy+VGtVuPbvvbaa+y/pteA1Goqi3G73XwOXS4XWq0WNBoN0uk0BoMBJEmCXq+Hx+MZUXjD4TD6/T6q1SqCwSCr1vV6Hel0GmNjYzCZTDxYOTc3h0qlguvXr3OTJ5XZkI0DAFfL5/N5bhpdWVnhrG25xcPr9XIiCl3nNHAr38kisi23hkQiEej1ekxMTPB7lr4uXwDMzMxgaWmJ7Uo0XEkzHA+r6v2exFsQBDWAN4bD4cNZ/6NAgQIFCv5JgT50m80mqtUqBEGA2WxGPB7H1tYWGo0GotEo52CTSvZe97W5uYl+v89FNrVaDadOncLc3Bw3/1EiBlVTA3vNkKQYkuK6H/LUk0ajgVdeeQVGo5GJL8UIdrvd++LuqtUqpqenYbPZMDU1hXA4DL1ez7nHwLtJJJRy0mw2UalU2HJApSPlchnVahXdbhepVIp/vtfr4ZVXXsGlS5eg0+nQ6/XwsY99bOQ4yEJTr9cPPI80XLk/npBARPUgW0qv10M+n8fGxga8Xi98Ph/S6fSBpJuOpVqtsoINgP9N/mzyNZ8+fRqnT5/G+vo6NjY2eBFGOxSkIFPJzPz8PK5fv873S69LLpeDWq1m9V6u9JNn/NKlS1hfX+eFRbvdhtlsxuTkJPx+P+LxODQaDZf3UEspZXjT/dAOCOXAF4tF2O12JJNJjI+PQ61Wo1KpcHIILTzlBTTUCCqKImKxGLa3t2Gz2bjdk1JaKP6x3+/j2LFj/JxICW6327h169ZI42i328XGxgYPT9IikuxTZKVpt9uIx+PI5/Ns3QD2WjEpC58WrZ1Oh3cJiOza7XZsbm6iXq/ze4+sJ/KdKlKxc7kc19Tb7XbEYjE+p/TYlUoF4XAYxWIR/X4fsVgMTqfzviHsg3bCHia8J/EeDod9QRAagiDYhsNh5b1uq0CBAgUKFLwfqGY9n8+jWq1yVTSpgWT92NjYYN+sPGqQFGsi0Q6HAxqNBqlUimPViKDlcjns7OxwAge1EwJ7anW9XmfF80Gk02q1IpvNol6vo1QqodvtjhTX6HQ6HnY0GAwjLYsU27e5uQmLxQKXy4V79+5hOBxibGyMfbtyQisIAhM2InZms5nPUbvdZuKYSqXw0ksvoVQq4cSJE9ja2oLf78f8/DzfH0X/7fejy4+vWq0in89/oNdPpVLxQBwAHt5bX1/H2NgYF8w8CP1+H4VCYcSGQhaWw4cPw2g0otlswmazQZIkXLlyBcvLy+h2u5xMQoT65MmTqNVqkCSJCd36+jqi0ShbYPr9PsxmM7rdLoxGIzQaDVsb6L7K5TJfd/v97BMTE4jH49jZ2Rk5Z71eDx6PB5IkceEP7eIYDAZMTEwgkUjA7/cjm81y0s3i4iI2NjbYciOKIj796U+PJO10Oh2USiVWpSkP2+v1cplTo9HgIVCqYAcwsmu0srLCixlqsqQSGoqovHz5MprNJvvuaRFBi16z2cyq9ezsLFu3JiYmOK2HrEzyIedyuczlR/S60TmXk2Ii25FIBKlUCrFYDG63G3a7nRs3yWpGZFyn0/HChqIk7XY735fH48HOzg5eeeUVnDx58qGLF/wgVpMWgFVBEL4PgJfLw+HwP3xoR6VAgQIFCv7JgryrlO6xP5sbeFdFtVqtmJiYQCaT4aG/RCLBpESlUo0oafJtatr293q9iEajrDaKogi73Y6zZ8+yKkrtheSZ3d7eRqlUYsWa4svsdjuq1SqTlVarxZ5hirwjkM+aasYpX5vq4GmrXavVcpwfeaPJoyxXr4mw3rt3jwf8Op0OVlZWYDAY4PV6USqV+BgsFgtMJhNeeOEFJBIJ3Lx5E1/+8pehUqmg0WhY5aUoPjnxJrJLkXgHldscBCpS2Y9Op4NwOMzHTJ5xsk3Q4oIeZ/9i48SJE6hWqygUChgMBtDr9ajVarh58+YIyXc4HMjn80w6KRGEsLi4yIkizWYTTqcTXq8X2WyW1WeTyYTV1VX0ej0ewpQvTEj1JkU3m82yb95ms7GtSJIkOBwODIdD5HI5/rnp6WneyaFkHbKUDIdDPPfccyPvj2KxiFu3bmE4HGJ6ehqbm5u8YJqensbdu3fR7XY51WRzcxMej4dtIVT3vrKygvX1dbRaLYTDYczPz3MRj8ViwcLCAieaWCwWDAYDJJNJtFotLipKp9NcF7+0tIRyuYzhcIhisYhyucy7ClarFdPT05xrTosVAi2CKD6QXvdoNDqioNN72W6348aNGxzxSDa0fD4PSZIwPT0Nu93ODaTHjh1DOBzmhcR+e8n169dRq9Vw/fr1f5LE+zs//aNAgQIFCn5F8LMU2Own2ZFIhK0YJpNpxLtJQ3rT09MjxOP27dtQq9WwWq3s2SWSQMkQuVyOY8SILAeDQWQyGVZ1TSYTnnvuOayuriKTyXCrpMvl4igzejx5zXe9Xuc2yf3kcL9FgRS+wWAAq9U6oqg2Gg1otVq2hlitVjidTlgsFoyPj+Ptt99Gt9tlIkxDhpS+QWo5+WvT6TQPVLZaLVy+fBnXrl3D7/7u78JsNuPf/Jt/g36/jwsXLmBiYgLBYJDJNOVVH6RAE/mnSER6bvIEGALZcejrdFsaKqXbVioVXsj4/X6O9aNSmkqlglwud5+lh0qHADBRpYWHy+Xi9BS9Xg+/389ka/+gnsfjQblchk6nQy6X4+O22+3IZrOcsz4YDOD3+5HJZNDr9VAqlWA2m/k1pdfG6/Wy3YHq16enp7G9vc02KSp4oYQWlUqFdDqNJ554Amtra9zg6HA4oNVqkc1mkc1mIYoiv1+Wl5dRrVa5bMbn87HHemFhAYFAgFNv7ty5g06ng0KhgEAgwLnd4XAYmUwGBoMBg8EAwWAQw+EQoiii3W7D4XDgqaeeGnm/hkIhBAIBzihfXV3lBtJ+v49z584hGAyyHUWSJCSTSahUKkSjUZw+fRper5ebUeVpIh6PB5/5zGdG4hEHgwE3UMq92pSTTkU59F6oVCpot9ucez45OTmykJcnINF90TXhdDp5V+Rhw/sS7+Fw+DeCIOgAzP70S+vD4fDg9H4FChQoUPBPAu9HrPdH+T3o9pSQUC6Xce3aNZjNZrhcLuj1evR6vZFUkJmZGa5wX1xc5BSGSCSC4XDIJSJf+MIXUCwWsby8jGAwyGoxWUzu3r0LvV4Pk8mEaDTKCRTAnjf1b/7mb9BoNJggdjod3Lt3D+l0mi0qcpJYr9eZZO/3MVN8Xr/fZ5UYAKvE9XodTz/9NJxOJy5duoRGowGbzYZUKsXZ5FqtFhaLBTabDePj4+yLpTjEQ4cOwWAwIBaLcfJIoVCAxWLBqVOnsLGxgYsXL+K1117D+vo6/H4/CoUCXC4XZmdn8f3vfx+7u7t4/vnnYbfbWXkkQkzRdBqNhhcXchV6MBjAZDKh0+lwiQulZ9D3Dzo3tAtAmeZ0TkwmE3K5HC9i3G73CLGnmnW5z/vevXv881SaEwqFOK+a7ECDwQCnTp1iewip7ADYW3zlyhVIkoRut4vd3V1sbm7CZDKhVCohGo1Cr9djenoaBoOBCXmtVuPFCFkoaMFC6rtWq2WfPFkrjh8/DkEQMDExgZ2dHSSTSU4OoQxsGsoE9qIu+/0+rFYrisUilpaWEAwGkUwmodFomDBbrVZUq1UsLy9jaWkJY2NjiEajTChVKhXi8Tja7TampqaQSCTQbrfRarXg9XpRrVYRCARgsVhgtVqxuLiI9fV1LC8v8+u5sbGBo0ePotVqIZPJwGQycYtkp9Nh/zxZlyqVCgwGA6fuAGA/9smTJ1GtVpHNZnH+/Hkm2GT7khPm/b9/IpEIZ+dTrOdgMMCxY8ewtraGbrcLq9XKi3jKEafypGKxyMSefp/Y7XZMTU09dGo38AGItyAInwLwNwCiAAQAAUEQ/uVwOHznQz0yBQoUKFDwoeGgjGz5hyGljLTbbf76QUkBdrud66lp6K1UKmFsbIw/fAkej4cHHcPhMCtWdrudmx+JtGxubrLnk6wClUoFiUQC3W4XnU4HbrcbOp1upMTmoHIZAEz0Ll26NEIkqXGQQARJbo0ghZasBHJbRq/Xw8rKCj7zmc8glUqhVquNEHk6r5SoQZXzpLYC4MFNWqyoVCq0221eIJw/fx5///d/D0EQ8Pzzz+PEiRP4+te/jnv37uErX/kKvv/972N8fByf/vSn2VNLSRJkfRkMBjCbzWzb2E+i7XY7e9cLhcJIrTyBBgHlySbynQDahej1eiPWllwux2SbXudDhw4hEonwuaXXjx6HBulIbaWFD2U7E+EjRZ1Uz0QiMZIvDoDJMn2NvMek9NO5IKLd7/dH6tvpmkqn0zwYbDQaWX2vVCqw2WzQ6/W8SEun02g2mzwE6Xa7USqVeIi23W5Dp9PxsKC8uRTYs7nUajWYzWZEIhFONBkOhzh8+DDW1tb49aXYSlL7u90ukskkAODQoUOw2WyYm5vD1772NdRqNbZeAXu7SYIgoFwuw+l0wuFwoN1uc6LK5OQkp62Qx3pmZobtNZSgEo1G4Xa7ubmShjAp/3x9fR2Li4sjBVbyZJMbN25Ar9ejUChwUgkNJq+srECtVo8o2/F4nM97sVjkRdz+4c2HER/EavL/BPDscDhcBwBBEGYB/P8AfPzDPDAFChQoUPDh4aAPJ/mHIQD2dtLt5JYPIt/lchmBQIAtBDS01W63YbPZYLfbcf78ed42DwaDWFlZAQBuGqSCjnw+D6/Xy3XyyWSSa6tVKhV2d3eZuFkslhFl0GAwcHrCQR5kIp/7QQ2EBoMBZrOZEyEosk1OPg8ioyqVCg6HA5FIhC0HXq8XW1tbI7cjNTMajSIUCqFSqfAioFKpsPd7YWEBrVYLGxsbXHry5ptvotvtYmJiAvfu3cPrr7/O9/vtb38b5XIZv/mbv4lWq8UE3mKxsEIsb7UkuwUtVsjbK0kSp3KQP1weH0g+YTpXZA3R6XRwOp08wNpqtZjgE+E1GAywWCxsezEYDEw0B4MBbDYbNBoNSqUSBoMBJ3pQfjcNSFImt9Vq5eSb4XA4MqhHliG9Xs8Ds1qtFmazmXdB1Go1FhcXkUgkmEhTNjZlrZOan06n4ff7eYBTFEVOiKGcbBoAXFxc5JkCt9vNar3f74coijh8+DDW19fRaDTg9Xo5XYcWj7TwTKfTaLVaGBsb44FEGlCkXYH5+Xm0220u2aHnSu8Dq9XKrxmdH4fDgXK5jOnpaczOznLpTSKRgMPhwOzs7IhKvT/ij5R7ObmlQUefz8d54rTAINsIve60YJIr3fQYS0tLPBQq/z0Ui8VQq9VQqVT49ZckiVsuRVFEIBDAxsYGSqUSN13SMQN4T6vcR4EPQry1RLoBYDgcbgiCoP0Qj0mBAgUKFDwAH9R7/X7YX0YBgFVu8hUT0aBUDyJicvtJOp1mX+qZM2dw+fJl7OzscCPj2toaK2UmkwnAHjmQJ4PQ8JXFYsHY2BjOnj0LYC+7mEpSrl69yhXV4+PjnBhB2cRkCQFwIMEeDAbQarUj3mUqU6HMZL1ej5WVFRw/fhwAkMlkRtTQgwYQ2+02tre3YTQaMTMzg2eeeQaRSISbCskWQMOA5Hc1mUz48pe/jLNnzyIej7NlY2dnB7VaDcvLyzhz5gxEUUQwGEShUEAymWQl89SpU3C5XPje976HQ4cO4bHHHuM8cBqWo+fa6XRYidRoNHC73ajX60zE5ao/EU4iWOT3pUxsAHyspAwnk0kYDAYcPnyY1U2VSgWTycSKZ6lUgsPhQKfTQbVa5QIinU4Hm83G5TQ6nQ6SJGFmZgZmsxnZbJaTNshiUqvVYLfbUavVYDKZRiwnZrMZJ06cgEqlQj6fRzKZhNlsxtjYGGq1GhfL/O3f/u3IYK1Wq+W6ewKp+TqdDhaLhdsh7XY7Ll68iLt372J1dRV2ux1ra2swmUwYGxvj4hdKPMnlcvjYxz6GEydOjKSE7O7uwmazwWq1otVqIZVK8QLWaDRyudSPf/xjjlEcDAZIp9OcJy9vuSwWi3weHQ7HfYPNZCkiTE1NwW63w2w28+8TuQd8/++GWCw2UlZjt9uZBFerVUxMTCCZTHJJE9XP05C02WxGNBrF1NTUfeTY6XRyegldmxqNBi6XC7u7uwCA27dvI5lMwuv18gKdMryBvZ2aCxcu8HyJ/HfVw4QPQryvCYLwvwB8/af//zKAax/eISlQoECBggfh/WrUf1bIiTwlGGQyGfYlm0wm3Lp1i9sRbTbbyJYvDRGSAnjmzBm2hqytrbFiqVKp+OfW1/e0nFarBZ/PB41Gg3w+D51Oh+vXr6PZbKLb7cLhcHBeM3l/SVHT6/UjiiUAHow7CEQk5ASaLCuDwYCzmfv9Pu7cucNDm4QHpX5QwsWdO3fwpS99iQnJ5OQkarUaqtUqR7pRtOFgMIDH42GCIvdSr66u4u/+7u9QKpXgdDpht9tx7dreR+7v/d7vwWw2Y2JigpsyT548yR5ng8HAKvODcrSJvMnr4uUWD/o/WRiAvd0Ck8nE50ueAEJ/t1otbG1twWq18q4ENWTKrzWtVjuSotLv95FMJlmxpV2Lzc1N/NEf/RHOnz/Pj5NIJNjORK2O1WoVN27cgM1mQ6fT4abDcDjMA5o6nQ6zs7O4e/cu+7npHBHp9nq9nJLjdDqRz+f5edICYWVlhRcmmUyGnxslnNB7YTAY4Fvf+hZbLQBwUg9dw5lMBsViEe12Gz6fj1X04XAIrVaLVqvFdpBarTZid7LZbAiHw0y2A4EAFhYWoFKpcPPmTfR6PVQqFXg8Ho4XpN0T2tEg9XlzcxPNZhObm5t47rnnRgaj6byTfcxqtaJcLnOCCL2vEokEBEHA6uoqKpUKRz/2+33Mzs5ibm6OW1ipLZMKe+QzIPLKd1LzSXmPx+O8c0K/g+S/C0ulEtrtNtrtNivxZJN52PBBiPcfAfhjAP8Bex7vdwD8nx/mQSlQoECBgoPxj+1f3O+1lCSJ7RfU/EgxaESe5UUVkiSNkDm6n3q9zqkiw+EQ2WwWr732GtfDy9VfatArl8uYmJjgNAhJklj1I7J27949OJ1OtNttjkST40EZ0nIFj9Ta/VYSeo42m43JvdwzTcqvSqUaUcJVKhXGxsb4XAJ7XlOLxcIpJ9RoSI/f7XaxubnJ9o5Go4E33niDt///5b/8l5iensby8jIA4I//+I8xOzs70qxpMplGPO30b/Iua7VamEwmtNvtkdtptVqOqyOQ6nqQR56iASlKUE7q6VwC4EUMgPu88wTaeaDzPxgMRjLULRYLtFotnE4ncrkcp9A0Gg3cvn0bwWCQd2JowWaz2e4roaEISFJ/y+UygsEgn3MC7XYAwOzsLA9Z6nQ6ZLNZjI2NseeYGkflz91gMODo0aOYn5/H2toaer0eE1y6HxpWzOfzaDabCAQCnAEO7L2PstksJEliHz0Nb5J9iXYb6JoaDodsSaE2TFKYqfiGSHc+n+fMehoaJZsOtYAC76aCpNNpSJKEfD6PRCKBZrPJdpj9CSLhcJhf18FgAIvFwvMUw+EQiUQCc3Nz99lSrl+/zk2tbrcbgUAAwJ6yLrcRTU1NoVwu49ixY/fZX3Z2dhCJRHDy5EksLi5y7CZZbeSJSg8T3q+5UgXg2nA4fBTA//jFHJICBQoU/GqDVOiDvJb7t2jp3z+P9SSXy3FaBNlJQqHQyP1QFF69Xr9v69bj8SAUCrGS12w2sba2hnq9joWFBeTzeZhMJsRiMQwGA6RSKd5ufvHFFwG8W+9cLpe58pmSCC5cuIB4PA61Wg2Xy4V8Ps/V22RbIHWVmvn2D0rKlVlS3gVB4OE/OfE2m82w2+2YmJhArVZDPp/nZjxqLdRqtVCr1WxtoYi7paUlHkCbmpqC0+nkwVAqzQH2bDX02KR2q1QqfOtb38LGxgaWlpbwzDPP4NKlS5icnMSdO3cwPT2Nj33sY0in03z8pHJT0grZIqiAx+12w2w2I5PJ3Kd+12o16PV69mrrdDpoNJqRlBHy5hoMBlaGSYU1Go0YDofw+Xy8Q0KvRalUQqvV4gG+4XDIudrkD9fr9Th69CjvbpAvX6/Xw+12c4V5OByGxWJBMBjExYsXoVareeFRKpU4bYMWblTCEo/HmdxTRB3lu4+NjcFqtSIWi7EfHwCSySS63S5+//d/HwBw/vx5aLVa6PV6LC8vIxQKIZvNAgA/J6vVis9//vMj8w6iKMJisSASifCCFMBI6RARVKfTySR8dnYWzWYTwWCQVWej0cgKPlWzezwe9qDTQqdarWJ1dRXxeJwjIvv9Pq5evYrx8XFEIhG2e/j9fh6GXFpawszMDEwm08iimuwh8kUGWY/odw29V0OhEOr1OvL5PD+ner2O7e1ttjwBYMI+MTGBaDSKo0ePcoIKDaAuLi7i/Pnz3GpLr+mDfrdR2ybNTRgMhhErzMOodgPv31w5EAQhLAjCoeFweO8XdVAKFChQ8KsMUk7X19c5sm5hYWEk87bf77OX1mw2A/jZh4gikQhqtRrS6TSXcexXieSVzvT48oY4IhgajQbpdBrlcpntDqRie71e3LlzhwfmQqEQq3H77Sty+P1+5PN5tn1Q+x21Q5rNZh68lEfjEeQDlfK/SXUldbHf78NoNLK6Lf/gTyQSKBQKrPoRySci73a72WNaLpfRaDTw2muvIRgMIhgM4q233rpvQFOj0cBisWBnZ4eLcV544QV0u1243W5cv34d3/nOd/Cd7+xVaDz77LPs3QXADYzUskhtj+QNDgaDaDabiMfjKBaLHJNHBJeGUWkhQgo4LVT0ej20Wi3fhvzd5IfX6/UIBAIwm8348Y9/zIo1kW1q8DSZTEyGaFFAaiZVmu9PiLHb7TxPQOVJtBNSLpfhcDgQj8e5xXNqago2mw3AXs50rVaD2+1mBZwsFaurq5ztTQuXfr8Pk8nE1pNarYavfe1rcDgcGBsbQzKZZItIsViE3++HzWbjcz02NgYAPDzs9/sBAI899hicTidu3rzJaTJOp5MTfQKBAJxOJ0wm00jTI6m92WyW4xk3NjbQbDaZ6FIxDv1ekFtiACCfz/O1abFYUCgUYLVaUa/XYTQaAex5oSuVCi5fvoznn38ezzzzzMj7bmZmBqurq1xTD4CJOyUNLS0t8e8Gn8+HcrmMZrMJi8XCJJ1sROvr65ibm4PH48HKygr7yp9++ukRqxvw7s6USqV6X1sdvb70NyXevPjiiw+l0k34IFaTcQC3BUG4gtHmyhc+tKNSoECBgl9hUElMsVhksklDYrFYDP1+H6lUaiRX+udRd2ZmZhCLxWCz2dDtdt/TE0kfZMvLy2g0Grh06RKsVisWFha43hsAK3HxeJyJRSQSwZe+9KWRQa9XXnmFyzG+8IUvHPhBSWSEbBVEMFutFjqdDntv5d5kgkqlGkmooK8RQaFmSfLc0vDa9vY27HY7jEYjzGYz5ubm8Pbbb/PAIaWs0P1QlFmz2cTs7Cwrp2tra8hms2xXIeJJ5PTll1/GuXPnsLCwgD/6oz+C2WzmYcU7d+7w8zhy5AjOnDnDfmm9Xo+pqSleJFDBC1WcU045EWZ53J9Wqx3xUtPXLBbLyLVEjZaU+02+boqMHB8f54FNuU3E5XLBYDCgXC5Dq9XyealWq7BYLJiensb09DTOnj2LXC434jGncxOLxWC1WrlhUqPR8AKILAmxWIwXW5QoQpnoPp9vxEtNpIwSXijbm557r9fDiRMnEI1GIUkSCoUCk8hOp8MkWxRFvv5I8RdF8b6yKLkSDOzFAhJpJUtHuVxmIip/L9LCNp/PQ6PRYGxsjHcQwuEwD0PSUCllbZdKJTz55JOwWCyIxWKsfM/Pz6NSqXBjJ123tOik3YOD3uukQvv9fibm6+vruHPnDlQqFVZXV7k1lKxlg8GAf3+YTCasr6/zoLD8/Uw/Q48lPw+02Pb7/e+rXM/NzXEXAAAm4Q87Pgjx/tMP/SgUKFCg4FcYcjWZPjQlSWKiRM2FWq0WExMT6Pf7GB8fRz6f5xa/nyU6S/54TqeT1Tp55vZBoOEpSl6oVqtoNBr40pe+BABsRyG1ThAELC8vQ6fT8QdzsVhkD6wkSVzfDbxrGaDnQEkKdrsd29vbnEohz6YuFosP9BI3Gg1oNBp0u90RAgqASSQRSyLSnU6HCQkV7pAFgywbpOiSR5aGz3Z2dngIjhYgpCrTMW9vb+Nb3/oWkskkjh49iieffBLJZBJ/9Vd/heFwiEKhgFarhaeffhqPPfYYjEYjyuUyTCYTLBYLJiYmeAs/kUjw4ofsAtvb20yw5IOkFPG4P52FIvPk2dz0HKhFcv/5jUajI95u4N1inHK5zCo+LQY2Nzeh0Wiws7PDxTqCILDPnK5zivqrVqt8fjudDhYWFhCPx5FIJPj1Jg91Op3moV55TB1ZVah8ye12o9Fo3Odh7/f7WFlZQTAYhMFg4GKiUCiElZUVPi+UOkLqslarxY9+9CO43W44HA5O11lfX0e5XIYgCCgWi9Dr9djd3UUul4PP58P4+DhmZmZw5coVXLx4Ef1+HydPnuRriQqXSMWfn5/nXYK1tTWk02mYzWbeUeh0OtDr9VhbW4PP5+Mynm63y8+frh+NRoN4PI5jx47xTsR+xTkcDqPZbCKbzfL766WXXuLdq/0LT/r5/b8/stksarUaOp0OxsbGeOcBeFdR3/9+z+VyuHr1KprNJhKJBO8kyR9HbjvZf+z/VPBBPN5/8VOPtwIFChQo+BBARCEWi6FSqXCGr8fj4Q9cIibNZhN+vx8WiwUnT55EuVzmBJF6vc4qFHBwnTuw9+FKSQQ+nw8Wi4W91u+VlkLDYlTSQVhdXWViSDFoGo0G0WiUC06IKKZSKfZWi6LIiSikBlosFn78RCKBarWKH/7wh0zy1Go1K6REwh+E/dXkB4HuSw61Wo1Wq4VYLMZEjbzTRPpoiIvug5o35SBlkW4XDofxzW9+E0ajEV/84hfxyCOPQBAE1Ot1VmHHx8dx+vRpLC4u8oKh3++jWq1y2oVOp0M0GkW/30e73cbKygoPwMoV6IOSWA4qxSGf+UExjHJCLk8k2U+6qRKePPg+nw9utxuRSIS98bQw6/f7nIHd7XY5iYYKkMhznk6nYbPZEIlEkEwmEY/HeUGh0WjYu01e5Hq9jnA4zIN6sVgMiUQCZrMZ09PTSCQSI89/MBhwOsnt27fZYgPsqalOpxMvv/wyCoUCe/t7vR70ej3H89FQJJ0/KsaJRCK8Y9BoNNDr9VAoFDA+Po7V1VXcvHmTd4muXbvGHnpS++n+yIsdiUS4lIYGf1UqFY4dO4ZischD0bRz0263sbOzw9crLXwFQUAqlcJXvvIVThqheQFg7z1XKpUwHA7h8XjQarVYtV5aWuLIyEAggJWVFc5/pwUyCQD02C6Xiwu5KAry61//OrRaLaxWKywWCwDwdULFQfR+6PV6vIDo9/scaUiWNpo7icViyOfzWF5ehtPp/KdrNVE83goUKFDw4UO+zUwtbU6nk7d4p6enWYkymUz31S+fP38e9Xodt2/fht/vH6lip21wGuiamZlhH6XD4bgvHvC91KNAIIBisYjHHnsMq6uraLfbMBqNXAJDyjn5V0kFk98nxf85nU70+31WwbrdLpNbUrKoKrzZbEKr1UIURbjdbmSzWSZ4clCax0GEkz74CRaLBS6XC51OB+VyGSqVCvV6nX3MRKCIjJrNZjz33HN45513mHQBo0SWimra7TYcDgcTSFKag8EgTp06hU996lN83rLZLB/XM888gy9+8YtMkux2OzQaDSuttJDI5XK8oDEYDLDZbNjd3X3gQsNgMMDn86FQKMBgMIzsEmg0Gtjtdi5SoVQPgsPhQK1WgyiKcLlc3Ioovw3tXoyNjTFJLRaL6PV6vDiiRRu9Fi6XC9vb20xk5bYTGuIkSwspxPLXmY6nXC7D5/NxmyEAjmmkxRyVrPzkJz8ZUfxp4UKvuTyJheYYnn76aVy9ehUWiwXj4+M8yHf58mVEo1EA4B0Rh8PB1han04lisYjx8XGUSiX2/29sbPDuBCXi+Hw+zmcXBIHLfXZ3d2G1Wvl9GYvFkMlkMDU1hWQyCZvNBlEUMT8/z9f31NQUJElCLpeDRqPhRBr5jINGo8HKygq3wapUKqjVaiayNADs8/kQCASwvLwMm82G8k+r3+n3SrVaRbVaxeTkJJNheq/TosdgMIz42O/cuYNut8sFW/JdMbPZjMOHD/PzptmEdDrNCy2fz8eZ7fTYROzpOB/G7G45FI+3AgUKFHzEIJ/jysoKAoHASB4xfX//AJQcoVAIW1tb6Ha7rPgAYBVMkiTEYjG4XC4AYGvC/rSA9/uwKv+0krpQKGB6epo9m0SQT506NeK5zOVyTCo9Hg8CgQDu3r0Lq9WKw4cP84c42WqAPcWNPljldgRqA/R6vXC5XDxgJ8eDSLdWq8XCwgJ2d3eZLPV6PTgcDiSTSTgcDhSLRY6lkxMwUjlVKhU35ZHNQj7UCeyR2MOHD6PT6UCSJKRSKZw9exalUgn/6T/9J3Q6HXz2s59l68P3v/99vPzyy+xvfvLJJ7nFkhRPamys1WpcCtNqtaDX62G329nnLlemCaTkU3rGsWPHcOnSpZFjNhqNEAQBoVAIhUKBs6/p9Wi1Wqy4EyF+UKY5DcD2ej32cMsfS+7N12q1TOo1Gg3bJ8ieA+yp/zRMTAksdN0+8cQTKBaLWFlZYWsEJdCQXYsWa7TzQ8+JFlSDwQAul4uHa6lqnoY65SosADzxxBOYnp7mr8sbIwHA6/WiXC5zDKfL5YIoijh58iSWl5dRq9VQ/ml9vN1uh81mg9/vRygUwvLyMjKZDNeq93o9TE5OjrxPX3zxRV6U+nw+RKNRBAKB+95zXq+XSavL5eKCqU6ng9nZWd6dKJVK/D4rFotcwe52u9Fut/m+qahHkiSsrq7y+6HT6XBsH2V1k4WEhkkpYhTYW3SPjY2hWCxyRr18V4xsJ3ILCQ2AdzodLC0tIR6Po9lscsZ+vV7n237hC1/g45S36z5sUDzeChQoUPARQv4hQ8rQzxoNSJXLy8vLEEURy8vLcLvdrHJpNBomPKQw7Y8N/CDHSakR5Cun4g9SGuWK8vr6OpaXl1nR9ng8bHsRBAELCwt8W6vVyu2Hu7u7Iw2TpIQPh0NIkoTp6Wlu/6PIO3k5Dil6oihCq9WiXC5jMBhge3ubPctUwnLjxg1uu6Q0hqmpKR4ItFqtnCZCxR+nTp1CqVRi0i1PlOj1eojH47BYLHjrrbfw6quvotls4rd+67c4ClGtVnPZy9tvvw1gb8Hw6KOPciQjsKfGdrtdbvCjIUryptOgIKnJNMQJjCr/arUahUIBHo+HC3zkoAi8q1ev8hAoDVbSsCdhfzY3FZpQuyVZUYDRTG8i8vTYNLMwOTkJp9PJqTVk1SkWi9BqtUy8EokEJEliHzmR3fJPC5/IkiKKInZ3d6FWq9HpdDA5OclEMJFIsAIM7C1GyJtNu0GSJEGj0bDKfPToUUQiEU4GkXvG6byQ9UkURR62zOfzvDtDEXukgNPr5Ha7YTKZ+H1Ig5PD4fC+OnV6P4XDYW55TafTvEOWSCR4FywSifAxkiWNIvxCoRAT5EgkgqmpKSaywN5OBEWHks+ahkBNJhMqlQrvJoRCoZG4P7KtUO5+IBCA3++/L/v7scceGyHXlNO9PzKVyn/W19fhcDg4RYXsKs1mEwaDgW03kUgEi4uLfJwPs+r9vsR7OBy+LQjCFICjw+HwvCAIRgDqD//QFChQoOCXG/s9louLiz/3hwUpU9QOt7u7y1vApAAuLCxgeXmZY7fkStn7YX9qBPlT/X4/q2v0ARyJRLC+vo52u83pJlSGQskDpPBTXJzP52NlDtizXZw9e5aHNYkwzczMYHl5mck4xeCRUi2KIux2O7xeL+deD4dDJJNJqNVqTiYhYkjpH1qtFjqdDrdv34bRaIRWq+VaerPZjHq9jmQyyce+vb0Ns9kMl8vFNgHyDP/5n/85NjY2MDU1hf/23/4bSqUSqtUqk+6TJ0/iT/7kT5DNZvHoo4/C7/fj0UcfPEplsVhGqtXb7TZUKhX7pavVKjQaDUfwEfmlXHO1Wo1UKoVSqXSgj5tsGfIcb1KYSfEH9nYOJicnkUql0O/34fP54HQ6kU6n+TUSRRH9fh/FYpGJ9nA4hNFovI/0l0oltkGoVKoR+0y1WsWbb77JJUHkC2+1WkgkErh8+TJmZ2d5TsHtduP27dtcdHTkyBF+zfv9/oiyTDMFpNxXq1VUKhVOYikUCtDpdPjRj34E4N00nFQqhXw+z959lUrFkYkTExMIBALY2trittVisYiJiQmsrq4ik8mwD5+GczUaDRNlIv0zMzMoFotYX19HNpvFmTNneNFaLpfRarV4V4JsIbTwNZlMPDBdKpU4tjASiTBxBUaTRNbW1jh7/vOf/zwA4LXXXkOhUEC32+UFMkU8UnlRPB7nHS8qLZLbzfbb4ehx5f9+v9914XAYrVYLpVKJVXOy3Hg8HqhUqhGLSy6X4+N8mAcu35d4Ml+iIQABAABJREFUC4LwBwD+EIATwGEAfgB/CeDpD/fQFChQoOCXG9TmRurqP3R7lAptSGmmLWA5wZaT358FlDBCH3T0wSv3jsvJNGVA6/V6pNNpvPrqqxBFke0opKBTXFy5XEa73WayTP5cGiolUg0AwWAQiUSCWwFp6BQAZ0xTDBwVwBBJtdlsCAQCqFarKBQKqFarAPaIRblcZv8pEStJkvDCCy/wAikcDiOdTrOv3WQyjZwnIqy/9Vu/hS996Uus5pOS3Gq1cOXKFfzoRz9CIBDA5z73OY4SlIO8uZQ5TckX3W6XlXCqiCfV3WAwjKR2ELGk1kQi3WTfkWefU1kOAC6VqdfrPCBIZGZpaQnf+MY3IEkS4vE4Z2M3Gg2oVCrY7XbMz8/jzJkzOHv2LCRJQrfbRa1WG/FXm81mtFot9Ho95PN5TE5OcqthpVJBv99HPB6H2WzmIUpahPX7faTTaXi9Xvh8PthsNiwuLsJsNuPixYu8e3H06FH2dQN7Vgej0cjZ5o1Gg3Oq6bWRN2/KffwWi4VTbqg5khYM1NJYLpextLSEs2fP8gKSrE10HsguRIjH4yNDzh6PB2+88QaSySRSqRQSiQSWlpb4fUuLPLKNkF88n89zs6fX6+UdGrfbjV6vxwPQ+3fTaLcin8/jwoUL/JxUKhVKpRLeeOMN2Gy2kWp6strIK97JthIIBEYGvD8IDkpWIZsMRarKh8dp2HR/wRil0NhstvssKw+T+v1BrCZ/DOA0gBUAGA6Hm4IgeD/Uo1KgQIGCX3IQ8bRarbBarfe1Qv68IPW40+mMlN0A736gkfr1s3wwkbpFH3SU5ABgZGuXaqRbrdbIYBkN1129epUTCYi0z83N8bYyqdfnzp1jskYEsVAosBeW7BBkxZATho2NDajVajQaDc6+pixq8ovbbDakUikAYEIrTzehpA+3281WHiIc5A8G9iIHi8UiLly4gH/xL/4F2u02/uiP/gg+nw+NRgPxeJw9zWq1GpcuXcLLL78MAPhn/+yfsQoqB3m+KdVEkiREo1EUi0UmihTXR5DbVA6CXOnu9Xpwu91cvgKA87fpnFLaCNlXqMyFFkZyew1Zcfr9Pmq1GnZ2dnDz5s2R2DkakKXXqNlswmw2Q5IkHDp0CLlcjp871X8PBgO0Wi0ediVbTb/fRyaTQa1WGxkOPn36NKanp3H58mWUSqURn3k6nca9e/fYTqPVamEymWAymVhBpkQNjUYDnU43kmgjSRI8Hg8Pn9Kijuw29Lwp5q9Wq6HX63EqEb1XKKLPZDLxLoHD4eDh3lwuB4vFwpaawWDApTBzc3N48803ce3aNfh8PjzxxBMA9hbw29vb6Ha7KJVKOHPmDGdoV6tVjI2NIZ1Ow2q1AhhVnk+dOoVwOIzBYIBbt26xHYfSfprNJtrtNur1Oltp5NYRsorILSM/C2jXjxJL3G43NjY2+DWZnp7mxTFdS/KZmP2/e+RD6pS48rDZTj4I8W4Ph8MO/UISBEED4ODJCgUKFChQ8IFA1g1Si8PhMH/w/kM+JOSkOJFIMKEH9gYXu90u8vk8E8kP6ockxXtqaoqHPWlojZIxiORbLBZYrVbOGG40GlCr1fB4PLBYLEilUqyUttttXLlyBW+//TaGwyFcLhf7ZofDIXQ6HQ9y0XmjfGfg3eFHKnjJ5XI8iKnX69nPTWg0Gqyo7h+MJBWWLBGUGCHPPacPc2BPFX3zzTfxwx/+ECaTCdFoFFeuXIHL5cLm5ibMZjPGx8dx6NAhSJLEsXgA8Bu/8RvweDxMJuVkltJmotEoLwp2dna4KEev16Ner7MaTPGM+7E/s5ugUqlgtVoxOTmJGzduAACT8G63y8OdRAzp/inKjjzb5CHX6/WQJIl3HihJZzgcsqcewIiqLkkSqtUq+3MbjQYEQYDRaMQTTzyBmzdvolarwe/3o9VqcTa1PJHk7t27OHXq1Mhz83g8KJVKyOfzUKlUvANBHnPK4J6ZmeFadGp/pdvpdDoYjUYm5bQAm56e5sG9SqWCpaUlVCoVTiIilZsWLbQb4/f7OW+82+3y4mlsbAxer/e+7HGLxYKFhQVYrVbO8Kb3ltlsxuzsLBcY0SAyKf9UOe9wODhPPJFI8CDufmJMO2IvvfQS756Q11un02FycpJ3pqrV6ojyfFCe9v6WW/mCfb9CTe9nnU7Hux20sKLdjXg8jsXFRV7wyH8/2u12trTJv067UxRX+LDZTj4I8X5bEIT/KwBREIRPA/h3AF7/cA9LgQIFCn65sX+AipIG/qHqjPy+VCrViCIoSRKSySTnDMuP4f1AQ1hra2v84SlfPMhzwOVDopcuXUK1WoXZbMapU6c4Jg0Ax5HduXOHBz/dbjeeeOIJvPHGGxBFEYcPH4bf78d3v/tdSJLE5IbsDyQKyUk0kdmxsTFsbGywj5u+R5XtzWaTCacgCKwIkgWiXq/jBz/4AW/HU3lIq9VCNBrF66+/jkKhAI1Gg+PHj+P69ev48Y9/zMdhs9lw8+bN+87lyZMn8bnPfQ4Gg4GJPBFCWoxks1ke4CR7CaHRaMBgMOD48eMAgM3NTfbcy0ELGFL5yf+tUqlw7949mM1maLVaPl8EGgSkwVNKqKDoPbpfUvJFUeQFzkFFRWSbIfIuJ9Bk65E//vLyMjqdDtrtNpezUMQdDZcSGd5fYZ7L5VCr1dDtdjE+Ps6vuTwtxWg0jsw+UMOp2WzGYDCA1WrlBR9FaHq9XrY86PV6mM1mAHtWEjom8m4fPnwY5Z/W28/MzODs2bPsCzebzeh0OnC73ZxlfvbsWRgMBi6zoojJpaUlvPjii3j99dcRjUaxsbHBKjT5vskXv7S0xOeu3+/zbk+1WmVFXe7z3g/aCaB/12o1fPzjH8dTTz3Fg52CIIy0TxJo0UB2FoolJBtKLBaDTqfDjRs34PP5ALyrutPvimPHjvF9N5tNjpokvz8NjNKunSRJ/PugWCzy700i8lS89DAp3YQPQrz/LwB+H8AqgH8D4LsA/urDPCgFChQo+GWFXB2iemkAPxMJfj8clIpAW/kOh2PE6/lBmy6TySTHBtIHtHxrNx6P85a0/HtUW91ut/GDH/wAWq2WY/lisRgP2AF7qvP4+DiKxSI3OI6NjaH80+pqOYnWarXwer3wer33EU+r1cpDeKQkk8WBfs5kMnFmtLzMhzK4qV0zmUwyMaRoveFwyOTQ7/cjkUhgZWUFgiDg6NGjcDgceOyxx+D3+1EsFrGxsYFmswmr1Yr19XV86lOfYk80KcoajQZGoxGSJLH6e9AgJKHdbmN3dxcTExMjg4kE8oZrNBoYDAYeAqUFBYADK8PNZjPcbjdcLhd2dnYwPT3NFeJWqxUbGxvQ6XSIx+Po9XpotVo8UCkn3HK1nV5fsg3pdDpeQNHiSa/Xc5a21WrlBYhKpUIymYTb7YZWq+Xz7XA4MDs7i3feeQf1eh2XL1/G888/j0gkwosBnU7HyjfFLpKKv7y8DJ/Ph6mpKbaKbG5uYm5uDo1GA9FolJOBRFGE2WzGW2+9xYsGk8mEd955Bz6fD1arFW63G8CeJctoNOKFF95NXCb1WavVsoJONe7Xr19Ho9GAVqvF1NQUZmZm8Morr7BHe25ujt8jlN5iNBoxPj4OQRA4rYSsF1SuRHYhssk888wzD7SX5XI5OBwOznmnY9zc3MTk5CSnJVE8KZXeEOi9LknSyIJfbkOh5sr9qvv+30ErKyvQ6/U4ceIEAIzsBqXTaTidTmQyGfR6PZjNZuj1es7ypmOhvx9G0g18sFSTAYD/90///MIhCMIMgP8bANtwOPyi7OsmAO8A+L8Ph8NvfxTHpkCBAgU/K+T2Dvr/z0KCPwjk9yUvoyELgNfr/cCEOxwOIxaLscfW7XbzMCiAET9us9lk6wCw5/3OZrPcDmgwGKDRaLgcaH19Hd/97nc5V1mlUuGdd97hBkMAuH37NsfBabVaHvaz2Wz4xCc+gbm5OVy5cgWXLl2CTqfD448/jtXVVZRKJS7xabVarJzpdDpOalhfX+fiDofDgfX1dU6KIMjj6zY2NuD1ejEcDvHCCy/gr//6r0d81l/5yldw+PBhCIIAURTRaDRgt9tx+vRpAHsK9GOPPca3pxxyIslU610sFh9YhkNKf7/f5yQJmhHQaDRMtuQRiy6Xi9Xh/ZXpcpAq7na7sbOzwxX01WqVVWMq0yH1uN/vo1Ao8GMR2dbr9TygKK+tp9xoal6k29Aio91u86AxPU+r1QqNRoNGo4FEIoFEIoFsNotms8k+brq2BUHgY6zX62wpmpubQywWg8/nQ7vdZv/9s88+i7m5ObZyFAoFNJtNVmz9fj/GxsYQjUahVqu57r7ZbKLT6cBisWB6eprbG+k6pvdPJBLB7OwsvF4vZ5JnMhkcPXoUw+EQTqeTF4P0e2BpaQnhcJgtJn6/H41GA6IoIpvNQq/Xjyx6KcaTbGYARnYVqGhInqIkSRLbMCKRCN8n2UpqtRqcTidWVlbQbrdRLpcxPj4OURRHokCBd3/fvNfMCKWr7Lej7L/tg0QDWihVq1W2K1EXwEFdBPQ76GEk3x9E8f65IQjC/wfAbwHIymvnBUH4TQD/L+zFEv7VcDj8fzzoPobDYQTA7wuC8M193/rPAF76xz9qBQoUKPjwIP9g+Vk81j8v6DEo5utnidqSN9RpNBpOTJBXNcuHmvYPWFGsoDwyjvKWgT110Gw284AkFWVQhTgAVivJavDII48gn8+PRCKePn2ayS0tAvR6Pebm5jhh4aAP+snJScTjcUxOTmJhYQGxWAzNZpOHDIE9wnDv3j288soruHv37ohnGQA++9nPcr07Pa8jR44gn89zIQwATq4olUpsyaCvA3tEaXJyEn6/n0lXOBzmmDsqd5mcnITD4UA4HGaLzPz8PO7cuYNWqwWj0cgZ1ZlMBpIkIZPJjAw6EmjIlBI3AHCRDXnmBUHgHGu6D9p1oD9kNREEgYcxBUHA7OwsEokED7ZSBB7NBLRaLVgsFl7UkRptMpn4XNHwLe12pNNpPrZMJjOSVw5gxBfv9/vR7Xb5sebm5mCz2VCv13Hr1i2uWAcwcg0TsVepVCiXy5idncXU1BRbkGg3ggZS3W43EokEBoMBbDYbE1N67wHg3S2yU5BVZTAYYGpqamT3i3zX8rhNOj5qcDzIKkY2M5/Pxwswo9HIdjO5DUNeEiS/byrJ8vv9sNvtvEix2+0QRfE97SrvJR7s/96DfvcddB/y4WaypLyXov2L+L36D8GHSrwB/H8B/DmAr9EXBEFQA/gLAJ8GsAvgqiAI38IeCf8/9v38V4fDYXb/nQqC8AyAOwAMH85hK1CgQMGHg4M+gH6eJADyOr6Xj1Ee2Se/XS6Xw8rKCltE6H7kx0OEOp1Oo9frwev1cqawnMTKj0Xu/aTnKQgCx+mZTCaIoohkMon19XVOqyAy3uv1UKlU0Ov1YLFYIAgC5y+vra1xgQ/dX61Ww5/92Z9hYWGBB/tokDIYDMLv93NEWiAQQDabxc2bN2Gz2VhxdTqd3Mh37NgxvP3220ziNBoNzp8/j1dffZWJ8smTJ+FyuXD27FkAwPz8PNxuNxqNBvR6PWw2G6rVKrRaLcxmM7xeLw9U0rFRagkNhppMJhw5cgQLCwsco2iz2fDbv/3bePPNN5HP5zE3N8cLIACYmppCoVBAv9/HpUuXIIoiDAYDjh07BrPZzHnQKysrAMBKN+0YyBtBFxcXOQWDFh6koqvVauh0OqRSKbhcLlaRDQYD7HY7q8ShUAg/+clPsLa2BmBP8c7n86jX69ycCeyV45RKJdhsNoRCIR4ejEajSCQSPDhqNBq5Ft7v96Ner6NUKmF+fp7JtdfrZd9zKBRCLpdDq9VCu92Gx+PBmTNnAACXL1/Gzs4OdnZ2YLVa8fGPfxzHjx/nmYUf/ehH8Pl8ePrpvZTkeDzOEXnHjx9nUlypVJDJZKBWq+H3+1EqlXD06FEIgsADifQ+k7/3aPBYEAQuhJEvTuWDyQepv7SgPXnyJDY2NmCxWDg/+6CfkSSJYy5pBoOywtVqNZxOJ/x+/wiBpWOmn6HBzlAohDNnzvBx/mMpyfJhbcJ7/V6TK9nvZyP5x7TtfRj4IDnejw6Hw1s/z50Ph8N3BEEI7vvyaQBbP1WyIQjCNwB8fjgc/h/YU8c/CJYAmAAcB9AUBOG7P7XEyI/7D7GXP45Dhw79PIevQIECBR8qfl57CSnRwLsfrAd9GMmHHwHwhzspQrFYDJVKhZVMGsq8dOkSt9OZTCZuN5TfB5ERas4D9pIx6MOZjmU4HDKZKhQKaLfb0Ol0WFlZYZ9zqVRCKpViZRTYG/DS6XTY2tpCJpPhchNK95Dj6tWrbAkxGAwwmUycrrG9vc3EmlItyLdts9lG/Lff+9738K1vfQuHDh3CV7/6Vbz00ku4efMmp1EAwFNPPYWxsTHMzc2h2WziD/7gD/DWW29BrVZz4x8pimazmYtzGo0Gk1Z63ah2nkji6uoqwuEwut0uMpkMvvSlLzGBW1tbYx8uKfrD4ZD92rVaDf1+Hzs7O6jValhdXcUnP/lJGAwGVCoVHtAkW0+/30e73Ua73cbdu3c5crHb7fLCh1Jdbty4wWqoIAj8PLxeL5PV9fV17OzssIJfr9c5t5oq7m02Gw9p0oCqTqdDJpPhxkmaB8hmsxgMBjyISGT/xIkTnOZCfuparYZoNIpoNMo+Zb1ez+2Hm5ubaDab6Pf7qFQqiEajePHFF7GyssKlO9VqFaIowufzIZFIoNlsYmxsjJVpYK9shoZzBUHAzMwMEokEzwjQoB8N+ckHj1OpFCKRCEcQysk5JeDI37cPsp/ZbDasrKzg4sWLMJlM2NzchM/nQyAQYCJtsVh4bmB3dxfZbBbb29v8vqLb0oJreXkZwWAQw+GQCS8tzMvlMrdXvvbaa4jFYkin01y2Q9ifxX3Qv+ULfxoMJQsMecTpd4nJZBq5/erqKnZ3d0ciER/0mP+Ytr0PAx9E8f5LQRB02FOv//dwOCz/Ax/TD+D/z96fRsl1neeh8HNqnsceqif0APQAEEATTRINDqYFUgMlmZblyNS1o9hxHF97fc5gO5+zch1nJbnLSVYcryT+fNcKY0V2IkuRBTuOJdpXojjApEmQDZANFRpqoAd0V6G6umue5+l8P5rvi31OVzUaJCiCUr1rcRFddYZ99jln17uf/bzPExL+3gIw32FbSJLkBfBvAJySJOn/kmX538my/M/f+e7vAkiok24AkGX5DwD8AQA8+OCDXfnDbnSjG/dEqKW23k0REKFaqVQK169f58Iu9XFEmcKlpSU0Gg34/X4AUNhuE2eVLKBjsRhKpRIbcAC7lI92S7gTExOIxWJIp9Pwer0Ih8MKea+JiQksLCywckahUGCOKfGpCflWByWVhAK3k8ejRI+0fq1WKxqNBv+Ak2a0SA8BdicEqVQK3/jGNzA4OIhvf/vbzFW+efMm3njjDVYkIaR6YmKCCyC9Xi+MRiO+/e1vswKH6PJI1Ak6vzipENtA5iykxUxJrSRJOH/+PJxOJ2tC53I51pBuxwEvl8vY3t7mScqlS5e4AM3n8yEajSIWi0Gr1TIlRJZlpNNpuFwuNj2iYkOHw8EybtTXovvk2NgYnnvuOWxubrKsIXDLoAfYnWAMDQ1Bp9Nhc3MT6XSaqTNkgkT8ba1Wi8OHD/MqC11Tq9Vis6M333wTZ86cwUsvvcROp1qtFtFoFCMjI3A4HJwIU1JJmuxarRYul4u50y6Xi/nkVIT4yCOPIJ/Pw+PxsBMkbUsygQ6HQ2H6tLW1ha2tLU6ep6en96CuKysrPDkzGo1YWVlBKBTC8vIyr2LQBDGXy2FlZYUpUGKSSY6WpE9Pk4bt7W1Uq1WsrKxgfn4exWIRW1tbPCEj51Dqe5fLhRdffBFXr15l2s7IyAgrxLRDjUndp52CjiiHSAokFOoxQ20cRtdcKBR45UA878bGBuvhFwoFlnQU1VQSiQSf815OuoGDFVc+JknSJIC/B+AtSZIuAvgjWZZfeJfnlNp81jExlmU5CeCXO3z3399lG7rRjW504/saYpFjLpdrK6110CAd7XPnzkGSJC5EW1tbw9TUFGRZ3iNTSPzqYrGIaDSKnZ0dmEwmNnYhhKm3txculwt/8zd/w8oiRPkAwLq5KysrCvkvh8OBZDLJCS390Pb29vKPPiWU6kSYEHkxsVYnygD2JK4UYhKq0+lY0iwajbJ5SLt4/vnnmYphNptx5swZfO9730M+n8fzzz/P201OTqKvrw8PP/wwWq0WLBYLW5vTBILOTck2WdW309kmG3Ngd6IwMDCAt99+m1VGyB2RbOlJ7YOOre4rMaiAtVQqYWdnBzqdDkNDQzhz5gwrsVCCk81mWW4QAO6//36Uy2XEYrsMz2q1Cr/fzxMK4jfTvfj2t7/d8b6IHPZ8Po9YLIZ8Pg+9Xo+BgQHs7Owo7pvI06bizWKxCK1Wi2vXrjF9J51Oo7e3F5lMBo1GAwaDAb29vZwQHz16FAsLC4hEIkin01zk2tPTg0KhAK1Wy0leMBjEgw8+yPSGhx56iN8tYPedff7553nC4/V6YbfbWbqPeN2ExjebTXaEVaOuw8PDqFarPEm7dOkSPzNGo5EnpSQ3WK1WEQqF+L2kJNPtdjPvnyYrdH7SCvf7/fB4PHA4HFysOjU1hVwuxzQOWjVrNBpotVpwuVysmiIm3PQuT0xMsNlOO9dbStSLxSIn1eL9JFoagQ70HoRCIXg8HqY5DQ4OcvuoHycmJni1CgCbCmk0GkQiEUQiEbhcLqY+3etxII73O26VvwXgLQD/P+yizxKA35Rl+c/v8JxbAEaEv4cBbN/hMbrRjW5040MVYpFjrVaD0+lsa2hxJ0E20gBYdaFQKPCPIACmP1AySLJ8RFMYHR1FT0/PHj50uVxGPp9HIpHgRJB4odVqFeVymZ0oqXDy9OnT2NnZQSKRQDAYZLoAKZp4vV5sbW0pkmri5FKQdJiYuLVL7CjhUOtGE7JMyUg0GoXdbmdlDopQKISFhQUcPXqUEcU333wTXq8XDocDuVwO/+gf/SPkcjkMDQ1Br9dz+6rVKiwWi0JekCzN6doIaSYzEOCW857YDtKGpkSStKDJyCadTnMST8eQJIndOsVjabValg+k5K3RaCAQCGBpaQljY2OIRqNsUU8TIgBM+zEajWyOQ0WVRBuhcxB9RLwGnU7HRY/1ep23M5lMiMfjeyzWXS4XZFnmRJIUTtbX1zlRy+fz2Nra4gJFnU6H+fl5xONx1t6empri+0AKM0Rl8fl8KJfLGBgYYNfKcrnM6hg0saBiwunpaQC3JsmxWAzxeJzlHc1mMx577DEsLS3hxo0bnCiPjIwwNYuOoQ5676xWKyqVCjweD0wmE6O0hFg/+uijAG65zNL4QJxor9fL1+5wOFAqldDb2wuz2Qy3241CoYBsNguz2YyBgQHWJqcVIQrqX0L2KfGnMYnGq7W1NZ4EPfHEE5ienuYaEXG1jv6/tLTEk8XNzU2YzWacPHlS4TQJ7BabvvjiiwB2E3Oz2cwTGfXKWm9v754iaSrwpnueyWRw5MiRtn1/r8VBON4nAfw8gE8DeAHA07IsL0qSNAjgDQB3mnhfAjApSdI4gDCA/wPAz9zhMbrRjW5040MV4tItOc6R/u67DVI/ePHFF5FIJNBsNjE3N8fucyQdVqvVUC6X2ar67NmzTGMgRYWFhQVezr127Rr/sAG7aGQ8Hmd9ZLPZzMv1pVKJl/YXFxeZVkCUE2BXV3toaAhnz57Fl770JcU1qCXo7HY7F3ntF2LCKYbRaEQ2m0WtVuNiRHJXLJVKzGP+y7/8SzgcDjzyyCP4kz/5E5TLZXzkIx/Bj/zIj0Cn02FnZwe9vb0YHh5WSPBptVpW/hD1qOnclKBWq1WMjIwwsqvValkDXavV8uSiXq8jk8lwQm0ymRgpp0mF+lqpOFJNz6EEiVBpAGxyQ1x30clT3K5SqWBpaQkTExNsn05ujCKn/tChQ0gkEgq0mlZOarWaYpJhMplYi7vVasHj8QAAJ6wf+chH8Nprr7HkH5n5lEolbG5uYnBwkJNLp9OJxx9/HADw9a9/HZVKhfn59HyPjIyg1WqxIgrJAIZCIb5eonXU63WWHQR2KS1iDcTOzg4CgQAb75hMJkZac7kcu5+Sqkwmk+HrUwdRXkwmEyqVCiYmJuBwOHgiQm6sxEsHwLQv4BYnutVq4a233mKuvtlshtVqRSwWw+joKE6ePIlgMMgqNiTl2d/fD6vViuvXr6NQKKBYLOLpp59mZJ/OISLdZE5Dz4r4DFD/qI2LaLwZGBiARqPhsYLQ7mKxqJhMzM7OKmgl4r/FtqgViUTqzezsLNbW1uDxeBRKS/tJG37QcRDE+//BrmHOb8qyzL67sixvv4OCdwxJkr4G4CMAeiRJ2sKu5vaXJEn6BwCex66SyR/Ksvy9d3sB3ehGN7rxYQhx6Vmtv/teQ/wBo3OQmUatVlO49NE2oq4uAF7O3dra4qTKbrfD6/UiEonAaDSip6cHPp+PkxNaXier9VarhXQ6jaGhITQaDaTTaciyDIfDwT/QVIQGgJNMi8WCZrOJI0eOIJvN8o8+Jcwkv6fVapl2AdxSBxER7qGhIbYiF81ZSDP7j/7oj7CzswMA+Jmf+RlMTExgamoKn/vc51juzuv1YmxsjBPEVCqFQqEASZLg8XiYauD3+zE+Po719XXYbDYuHCU1ENI1pwTN7XZDp9Px9ZGBD9FjNBoNrFYrazaLsoOkf000GkK21VQWkvijYklCy4nGIiLVZLxD2tSECFerVUbFh4eHsbm5yf07ODiIUqmEUqnE12U2m1lmkTTESYObJg9HjhzB+Pg4rl69imq1CrPZzKs0pVIJdrudTYTi8Tjq9ToqlQoeeOABxXN97tw5LpQ0Go1wu91IpVJ77NeNRiMCgQBbwsuyjJ6eHjgcDpjNZlZ0GRgYgM/nQ7FYVMjrkdsirU4RT54MgJxOJ4Bdnrvo2touyaOkuVKp4OzZswp5wGw2i/7+fuaNU6j1/slWnfpTr9fj7NmzuHTpEsrlMux2O+bn55HP59ldNRKJsA460aiomFkd4vgk6vL39vbyGEIh9k87x0gaU0SjroWFBTQaDTidTgVK3k65RP3vdrUl4r5PPvlk20LLe1VS8CAc78f3+e6Pb7PvT3f4/P/FrgPm+xqSJD0N4OkPy/JDN7rRjR/sUHMc342M4EGr+EkKMJlM4uWXX8bw8DDLAVIUi0X4/X6WDhsbG8Pw8DDy+TxGRkZgNpv5B1c874ULF5BIJOB0OtnSfXV1Fel0GvPz85iensbKygr+5m/+hvWcKYF46qmn8Oqrr3IiS1KAJDNHfFeLxcKJtc/nw87ODifpABhFNhqN7IhH/OeZmRlOhqlw8KGHHsLly5c56QZ2l7tdLhe+9rWvwePx4M033+Ttr127xsgioWkkWbi1tYVSqcRL+keOHMH6+jqOHDmCSqXCiWo+n4fD4eBrkGWZLceJekESi9lsFlarFSdOnEA0GmWUlnSobTYbhoaGGInv6+tDoVDA8vIyjEYjvF4v02xSqRSrthSLRZjNZhiNRuTzeVYIaTQaGBwcZGSYilG9Xi8KhQK7KRIdgopgg8EgJicnUa/Xkc/n0dvby5QOcgPd2triZ5zs1k+dOoXr168zgjo1NQUATAUiOhRd/8bGBuLxOEwmEyRJwje/+U20Wi1MTEywcc3MzAzLCfb39+9xVB0dHUWr1UIikcChQ4dQqVT4ed7c3ITVaoXNZmMKRygUYpvzs2fP4s0330QoFOIah/7+flaXmZqa4gQ6lUrxfmoKRjweh9FohMPhwEMPPQSPx7NHO7wdKkuF0cS3t9lsOHv2LMtqPvTQQ0xr8fv9XINB11culxlhp5W1j3/847zStt9YQrSWsbEx5oWrxx/S1VZTYcbGxhRjnPp6isUiF14fFJUWpQc77aMeA+9lSUGpU7EKbyBJS9hb/JjFLt/7t98pfryn48EHH5TfeuutD7oZ3ehGN37IgziOTqdTYZjxbvYHsOdYtCSdSqVQqVRQr9cRj8dZK5roHgDwrW99C9FolKXRiCYwMTGBvr4+5nf39fVhamqKEfNWq4UrV66gVqthcHAQn/zkJ3mJ2WazMfL+5ptvskydSPUQ+bqEuA4PD7Mlvdp63Gw2Q5Zl1Go1pmOof7cMBgPrYjscDuahN5tN1qH+6Z/+afzdv/t38fLLLwPYTWR+4zd+A2NjY/jkJz/JiYDf78fi4iIniACYAkAOnDQhIE42JbLtfk+dTidOnjyJJ554Ar//+7/PCi1kW08SdK1WiwsFgV06RqFQgN1uh9VqhdvtxtbWForFIqxWKwYHB7G6usoOhQ6HA4cOHcLm5iby+TwkScLAwABKpRLTP+r1OtxuN9N5RNlDQpG9Xi9MJhMn4rTSQKg46bGTQgYh/NRf1A/UR0RPouS+Wq3CaDRiaGgIHo8H4XAY0WiU20L27NFolOUWSWVFo9HgyJEjOHv2LC5cuIDNzU1GUZ1OJ1wu1553SzShoe/z+TyWl5dhNpsVpjiVSgWyLGNoaAg/+7M/i4WFBVy/fh2pVIrR+FwuB0mScPjwYUbYSSfcarXyBIhUT4iyRe2i9tAqRzsnRwB75PVmZmaY3y4mni+++CLC4TCGhoaYOiKOE52S+3ZjiViYTG0Wx5lOYw61tdVq4ebNm/z8jY2NYWBgQCE9Ku5/0PFQ7DNSLxGP2yk+SLqJJElvy7L8YLvvDkI1+RaAJoD/+c7f/8c7/89hV2Lw6ffawG50oxvd+GEINQpzux8G9fe0Pxnf6HS6PbJblMiQgQtxZM1mMy8NA2Durjrp2NjYwM2bN5kKsb29jRs3brDk39jYGMvMkYNiNpvlBHt1dRWXLl1i+gcpU2QyGQVXWeRCX79+HU6ns62SiZgAA2AKgxi1Wo2TQioopCS42WyiUqngiSeewPr6OrRaLT796U/j4YcfZnOfr371q/D5fFyQKHKf6fjxeJx5rqISSLVa5cJCdVBR6oULF7C4uMgFmgAQi8Wg0+kUxZkajQaJRILpOI1GA8lkErVaDYlEgvn0VMBIEyFgd/Xi2rVrAG7xcQuFAq8QULHs9va2QlWF6Dsej4cnRdlslnnb1FZR8pF428DuBILUMcQ+oHY2Gg3W3SYKSrFYRCQSQaVSYXSeKEP1ep2NgehaSApQr9cz9zkYDLKqB9FdiCbz8ssvswwfvTNarRaXL1/molKdTgez2Qyn04lIJAK9Xo96vc6UGpIQHBkZ4bqAXC7HzpukpkHGQ6VSCTqdjos2FxYW4PP5oNFomF60srLCpjr5fB43btzAysoKPvnJT2JpaQmhUIgnVpRojoyMsCrMiy++CI1Go+AyU1Hq9vY24vE4UqmUwqSnE+VCbWATDAbZxIoUkNQmP+FwWMHRFnndDoeDTa+IJka0k04rfe3GQ1p1opUzsa00hqmL0jtJtN6rdJODJN6PyrL8qPD3kiRJr8uy/KgkSV94vxrWjW50oxs/aHFQ2+RO39N/xMG02+1tXesIyZufn2f+KSGHYvGUz+fjH3jSRG42mwp0mRJdQh8rlQo+85nP8A/m0tISo9akjECJktVqhV6vZ/RdDDH5A3YpDmKBHqltiG0wmUzweDyIRCKcXOp0OhgMBp44UGJESXytVsOf/Mmf4MaNG/B6vfhX/+pfoa+vDwaDgXWOy+Uybt68CY/HA6PRyIkvXbNWq4XFYmHlD71eD7vdjnQ6zUoiVGhJExmj0YjR0VGEQiE2zzGbzZzgAeCkm/qKCu7MZjOGh4c5kSZUmpRMBgcHmTpSLpe5UJD43cQxt9lsOH78OCYmJvD8888zxUEslCOaBtFhIpEIDAYDDh8+zAV5LpcLuVyOkx5gN7F+4oknkMvlmBtOmtE0IaCkudlsMqUmnU6j0WigUqkoCkjpe9qXEG+9Xs/OjaQ8Eo/HEYlEeEWGONuZTEZRRCy+M+fOnVOo0BBdgt4z0cW11WrxJOSJJ57AiRMncP78edZmHx4eRrFYRCAQALC7ImKxWDAyMgKr1YpQKAS3261AnEnjmnSqgd1kV5IkNtuhe6NGqQl5B3bVUcSk+MSJE4wC04SE7ofa7VEMWgGgZ8LlcinGCDWNox1HW+R100SH6DZut5upbWo1E/G46vGQaFp+v58Tb2prp/aJhmCigde9Sjc5SOJtkyRpXpblBQCQJOk0ALJY2gtPdKMb3ejGD3HcyfLm7biLIsItckf3Q85FDeKNjQ1IkoRIJAKTycRKB1arlbmgJFt26tQprK6uIhQKMUWDONJkdENGMEtLS/xDOzQ0hM3NTdy4cQMTExNcLEeo4tTUFEqlEgKBACdaVCRIusaEzJMJj8PhQDabRSQSYSoFAHYLBMAopcvlglarZVUXamer1cKLL77Irn3j4+P4sR/7MRSLRea+9vb2Ip1OQ5IkWCwWJJNJ6HQ6TE5OAgDrkhPHur+/Hzdv3oTP58P09DSuXLmCdDrNdvEej4eTbEr++/r6OEEDwIomNLGhokk6Bmku7+zssBGO0+nE0NAQ1tbWMDc3h/HxcWxsbMBms+HKlSswmUyYmZlBMBhkpFGWZYyNjfGzMjU1hXw+ryg8JefKeDyO/v5+TgyJtx8KhWA2m1Gr1eD1ermvyKL99OnTWFlZQSqVwuOPP46trS28/fbb8Pl8cLlcuHr1KrRaLY4dOwabzQaXywW/349KpQK73Y7BwUGsrKyw5KTVasVjjz2G6elpvPTSS3wsUg2RJAlf/OIX0Ww2MTAwgB//8R9nd8qFhQWYTCaedEqSpHhnZmdnEYlEWMkkGo1ic3MT4+PjfG/K5TJz/IPBIPr7+xGNRnH16lUFnefEiRO8TyQSgd1ux/j4OH9OEw7ifxMCTUXOxWKR+4O04B0OB7a3t9sqHok61uQ6SfraLpcLPT09nLBTH4t64gAUutji2EJylmKi3G4sa5fEisi1uJ/JZEJ/fz+fkybohPrTvaS6EhoTVlZWGBUXeegiUk60nHbjIU3QxPHy3VD63u84CMf7QQB/hFvJdh7ALwBYBvBpWZbPva8tvAvR5Xh3oxvd+H5FO95iu6VQAAr5LQBsm3727FnFD7CIWgO36BdU/EiIj3jOhYUF7OzsIBKJsKEKhcVigcPhQE9PD5uJ2O12JBIJtFotOJ1O5n+TJjLRDLRaLfr7++F0OjE7O4tLly4hFApBlmUYDAaFs6HFYmmrvAHc4mWTdrSoMyxKvqn3I41tCjXnW5ZlXL16Fd/61rf4mj/96U/joYce4u3tdjuMRqNCtlCkbdjtdvT09CAYDLL6xezsLNbX11EoFCDLMlMVSCKQ+kZE8SnBJTS+3Ta3C0LYSRbQ6XSyPjY5GBKHnmg11A9WqxXDw8Mol8vweDzo6+vjiYgsy4q2k9ukJEk4fvw4K7SQVF8ul2M5QqvVilOnTqHVamF9fR2pVIqRf7o2Mm5yOp3chtnZWYTDYXzve9+DyWSC0+lEOBzm+2kymZiX7vF4kMvlUCqVMD4+jr6+PqysrGBrawvNZhNmsxmHDh3iZzAej8NmszHXOxKJMFd5fn6er7fVauHq1atotVqw2Ww4cuQIwuEwJElCMplkGo1Op4Ner0exWFQ8+w6HA06nkw19arUaKpUKjh49ijNnzig0pnU6HVZXV9FqtdDT04PZ2VmcP3+e0VsaDwwGA0KhECPyXq8XJ0+e3FO7Qe9/LBbD9vY2BgcHmV9vNpvxiU98Yk/i7Pf7eQzQaDSsLkRx7tw5TlafeeYZxbPXiY++X3z5y19GIpGAXq/H9PQ03w/1dRPKT/KKpD4jtuPll19GKBTCyMgIhoaG4Pf7MTY2hkAgwOOmekIg8s3fbS3N3Yh3zfGWJEkL4EdkWT4hSZITu4l6Rtjknk+6u9GNbnTjbsRBkex2yFC7pVAAe/iKokRXMBhEJpPh5HtlZYUTUSp0czgcAG4hdcTXXFlZwZUrV1AsFvnHjvigwK55DJlVkMoAucw1m03E43GFVJwYpNZRKpWwuroKrVbL1AmRTkJGQWLCL4bIy1ZrT7fjelOojUDEpDuTyeCv/uqvsLa2BqPRCAA4duwYHnjgAcX29Xp9D3dcpF+USiVsbW0xOi1JEhc20nadbNtJu5oKQkXzG0mSFOc5SBBvHdjts1Qqxcmt2Gf1eh2NRoO/I4rMzZs30Wq1kEqlsL6+zmi7uu/ob5pMkKsg0UNIXUTsr3A4jGQyyZxzvV7PyTepcVDiJssyOyqaTCYAuxNHk8nE97RSqSAcDjMdh/TMSR7Q7Xazm2qj0UCpVML58+fZSKhYLLIsodvtRiQSYeTb4XDw5IO0n+fm5lhmkopkKUk2GAxwu92QZRlXrlzhVSBZlnlViCZFrVYL165dQ7lcZnMgn8+HfD4Pp9PJvP1XX30V2WwW6XQaw8PDiEQimJmZwfXr11GtVtmSvlKpKFRBiIJB5j/b29uQZRmZTAZmsxmxWAx2u30PZW1jYwOrq6vM2aeVEkKNl5aW+Nr3c6PM5/NMlVFTPVZWVniMmp6eZkOk/v5+5rJfvXoV+Xwe9XodH//4x5HJZDA3N4fFxUUuRp2cnMTa2hrGxsYUzxj93+/3I5PJYHFxkesx1Bz2YrHITphU+Hovxr6JtyzLTUmSPgPgP8mynP0+temuRVdOsBvd6MbdioMW6nSS9hOXQtXLtbS9KNElLhlnMhnmwpKeMADmxJJSBvE1/X4/KwtYLJY9KNdXvvIVVjuhZInQvHw+rzANcblcbIVOqBQARpVoO3IkpGVjSvjT6bQC4aWCPaK+UGi1WoVyCG1DSay4L31PCd3169exsbGBSqWCQCCAxx9/HK+++ioef/xxPPXUU5wkEf+aLLJFxFu0QqdJB6GbVHBJbab2kCIM/W2xWFgujvjOYnIrSRJ6enq470QDnHZqLaQIUqlUFBMVcR+73c7PBR1Tq9VicHAQADhRJfqFTqfDwMAAWq0W4vE426hToa5Go2FHVJPJxIorpINdLpcxPj7OiVoikeDk1WAw4P7778fS0hLfc4fDwXKDs7Oz8Hg8sNvt3AfT09MoFotMzyH+9NzcHC5evMj3mHjNZ86c4WQ7k8nA6XSyljxRZ0iWEQBPGkjukBDQJ598EsDuhNpqtXJyWS6XMTY2pjCXIRlBei9arRby+TyMRiPGxsZ4khaNRrnIUFQg6e/v56JFMj/KZDJwOByQZZnt5CmRJ2UeiomJCaysrHAR9MDAALLZLOt4GwwGRdGjuN/Fixe5+JEQYmB3PCPJypmZmbaOm2qzGlHrnMYTSoiJk33mzBmFnjrRy0wmE8bGxhTnoYmACFaIz7foT0ArgERNEcdN2pdcfM1m8z1JMaE4CMf7dUmS/h8AXwfAa4iyLC++b626SyHL8nMAnnvwwQd/8YNuSze60Y0Pb8TjcVYjaKfVS9t0QsRFnV+Rt60OMWknkxu/389UAWA3kQgEApifn8f4+Dj8fj8nZyI/kpz92vE2qbiL6BeU4Hs8HiwtLbHNfKVSwdDQEJLJJM6cOcMcXrvdDrvdjlQqBZPJxHQHStDJsIUoEFSoSEoZVBhKRZc6nQ733Xcfzpw5gzfeeANLS0twu91chAeACzUp8afk+1/8i3/BqPqP/diPIZ/P49VXXwUAPPDAA1zYZzQaeYJCnGNyjQR2f6zJGpyKNLPZLNMzGo0GLBYL+vr6kM1mUa1W4XrH9pwcK6nIkyYrxGGnojyv14snnngCoVCIzV2I705cbzI3oeTf4/GgXq8jHA7zkj+12Wq14pOf/CT8fj/C4TB6enpgNBqRTCaRy+Vw8uRJ1rE+fPgwNjc3USqVGDl1Op3MvadnY35+HtlsFtvb23z+TCYDvV6P/v5+bG9vo1Qq4U/+5E/Q39+P+++/H2+++SYajQZarRYuX76McrnMBj/1eh3Xrl3DAw88wIWRAJir7HK52LhJp9Ph9OnTiuRscXERc3NzOH36NH9GrqlU6EeTAFGHvbe3F2fOnGF5Ta1Wy1rX7d45clakCeu5c+c4yXO5XPB4PGwOtbq6imaziUOHDuHs2bPY3Nzk9phMJmxtbWFlZUWhs63T6fDYY49hdXUVkUiE5flWVlYwMzODkydPwuVysR7+0aNHFWPKJz/5SUURaH9/P7LZLNvPP/bYY20BgbGxMaTTaczMzLDGuzimkLOkGrnu1Efq1byxsTEsLi4yUq02CQOAkydPIhAIYGpqqu0xgPYrherx8HaTA1oJHBkZ2bPdvRQHSbwfeef//7fwmQzgibvfnG50oxvduPeC+Ih2ux2ZTGaPXTJtI34O3CpcpGTF7/djdHS0Le1EraxAnMZsNguDwYChoSFEIhFsbm4CAF555RWWtSMOcSgUwvT0NDweDwYHBxkNpx9aSsLImRAAwuEwJ/UbGxtcNLmwsICNjQ0sLi6yUkMqlYLL5UKlUoHJZILFYkGtVlPwuikoeRWVO8iNEIBin0ajgaWlJWxsbMBqteK+++7D9va2wmGPpP7oOLVaDa+88oqCyvKXf/mX/G+dTsdoKPFxCbm9cuUKq61Q0HFExK3ZbGJtbY33I/lFmlyQTTlJO8bjcV5lGBsbw+bmJrxeL/dDq9ViAxSi8wBgxJh0zel+1mo13Lx5U4HGi6sEtVoNq6urCAaDkGUZiUQCkiQxiv3aa69x8kuJJUnPFQoFLmKl42o0GiwuLrLiCJ3D5XLBYDBge3sbGo0G6+vraDabyGazOHToELdPbBvRoogj7/f7cfLkSXzrW99CtVrlxDMWi7EOul6vZ93qS5cucXGuWAAJAIFAANVqlYuGn3/+eZ4MGo1GnpgQRSOdTrO9PLCXHkFB78Xly5dRqVRw8+ZNnDx5ktVjHA4HkskkT/poIpfL5VgGUafTwWg0Mq2G1FC0Wi1OnDiBvr4+GI1GOJ1OViAJBAJ45plnsLCwgK2tLeTzeUZvm80mgsEgTy5oIrSzs4OFhQXIssxJqXryTxSd6elppu0Eg0EkEgmeVFKB6vPPP8/a7u0S3E7AAqHPsiwrkHGii5FeN41tfr8fBoOB9ycEfX5+vqOkKo2jtIrRrh0bGxt7Vv7u1TiIc+XZ70dDutGNbnTjXg01GqO2S6ZtxM8BcBJBiQuhymraicgBp+SFJMKMRiOGh4cBKBMbWlre2NhgExZCg0nPm45DxXFEoyB0lhJyAJxUi1Jcly9fVkgEEgUB2HUc1Gq1iuRVHRaLhY9PCVinqNfrnAQ6HA6WrQPA+r0ajQbZbBY3btzAc889xz+0APBLv/RL+K//9b8CAD7ykY/gyJEjCmqGqJlNSfDtgjjulDgbDAbodDrUajUYjUb09/ejVqtBq9UyUkpJVjqd5nafPHkSi4uLaLVae/SIxb6hFQGLxaLgchPPXKfT4ejRo7hy5Qq7XgYCAVbRcDgc3CetVgter5f503T/qS/oM5L70+v1nBCKfVOpVGA2m+Hz+djhVJIkRKNR5kGTJJ46qHCWilM3Nja4WLNSqcBoNPIkjtRwiM9LtvFEHRGTrNnZWX7+otEoGo0GUqkUjh07ppDaIyTXbrczsgvspUcASmk8Mcj9k76bnZ1lu3un04mNjQ2mkJA0I7WRjhmJRODz+fbQKtQKJEQNof4dGRnhfUlxhvYNBoOs4S2+9yIVpF3h4ejoKL7zne9AlmXkcjnellawaDVMHZ2oduI5aBu1Djh9J/aj2Kb9uNjiWGa1WgGgYzuoBuNe5XZT3DbxliSpH8C/BTAoy/InJUk6BuBhWZa/9L63rhvd6EY3PuBoh/ScPXt2j/1xb28vc7RpybhWq8Hn87G9NLAXrRFpLCQ3Roh3JpPBo48+ilQqhZdeegmVSgU2m431pAn9npqaQjgcRj6fx8svv4yhoSEMDQ0hlUohl8txYVmr1UIsFuNl2fHxcezs7LDxhd/vZyk4UmMgA5arV6/i6tWrsFgssNvtbMpz4sQJXLt2jTmqlCwODg6ir6+PzXgIfaYiK0mSmKJCCToZrmSzWVa30Gq1GB0dZX3f1dVVfOUrX4HH48FP/dRP4U//9E/xcz/3cxgYGMDnP/95WCwWjI6Owm6348iRI0wL8Pl8MJlM2NnZYc48BXHcyT2S7hdZg/v9fubvJpNJeL1epFIpbG1t8SoIsLvsTYoX1WoVxWIRTqcT4+PjcDqduHTpEifms7Oz2NnZYac/o9GIxx57DE6nEwsLC7DZbDzhoeS/r68P/f39jEwSyg4AR48ehSzLjNz39/fDZDKxConVakUqlUI+n4fdbkc0GoXb7cbQ0BAqlQpmZmZQKBTQarVw+PBhXk3wer2slhGPx5nD/9Zbb7EBjtlsRm9vL5rNJnQ6HbxeL4DdBEl8/olqRRMJKoKNxWIwGo0KOpDD4YDVam1bJEerOhsbGygUClheXkZ/f79Cgo/ux8zMDBYWFhQoK00gKeGNx+OIxWLI5XKYmZlBpVLBzs4Oent7ubDW7XbzCpfH44HVauVagXw+jyNHjrA7bCaTgcfj4ZWko0eP8vWr339aATt37hxmZ2fZ1p1oLuK+ojnM2bNnUalUEIlEmOahTrTb0T48Hg8+/vGPs9Y2GdzY7XZ+b0jyr520qfpeiHQQotSpVxLo87GxsT1uncViERcuXIDdbufVNjHIm4BkGWdmZhRJvdiOJ574cBAxDkI1+e/YlRP85+/8vYpdvnc38e5GN7rxAx/tkB5CiNp9TjSNVCoFg8GAvr4+lgNUGzzQ8YnGMj093XaZ9/z584xcGgwG6PV6VKtVLC4u8g8Q0UEymQysVis++tGP4ty5c4xePv30rsnws88+C2AXPU8mk+jr64PT6cTly5dRr9exs7PDEmQk21ar1ZDL5dBqtVAqlZBIJCDLMiqVCvr7+1GpVLC1tcVqFFR8RslOb28vOwvmcjm2gSekc35+HsFgEOFwGKVSiQsTbTYbms0mLyPbbDYufDtz5gybivT19UGSJBw7dgw6nQ5DQ0OYmZkBsMuJJyR9dHQUzzzzDH77t3+bJwgkG9dqtaDT6dDb24tKpcIc6OnpaZw/fx7VahU7OzvweDys5FGtVtlqnSYdo6OjuH79OqLRKFqtFiKRCKPB9CwQN/wzn/kMzp07x4Y3pFRBtACn08lW4STtRnb2RHegdm9vb7MCjdFoZD4vuUU+/fTTfIyrV69ye0m6TTRIId66TqdDT0+P4lkl+/VGo4FarYZoNMr9aLFYMDExwddIbSG0FgAnR1QnQdJ+pBVO/Ofjx4/vWyAnvmskW9eOqhAIBNBoNPg+EC1DfM9EmkIgEIAsyzzhXFxc5MJhsR+orzKZDFqtFvr6+hT3qR19QvxO7ayo0Wjg9/vxzDPPtB0D2l0/FT8nk0lFn4jRTlFJdIWkdtHzbDabFei6emzbL9SmPBS0wkCUGrFtoVCIn3X1ygadl8YykZbzYY6DJN49siyfkyTp/wIAWZYbkiQdXIS0G93oRjc+xNEO6RFR6nbLmi6Xi6XkCoUCwuHwHgMNQspFcwlCL9WoGKl7AGA0kZDT1dVVnD59Gk6nk7m2b7/9NhYXF7nAjxCxeDwOs9nMCh2iQkA0GuXvRTUREbkrFovMx6UIBAKIRqPcHyJSSxSKUCgEq9XKPF6TycScUAB47bXXOJHUarUoFos80chms/j2t7+NnZ0d/ON//I9hMBhw3333IRgM4vnnn4fT6eSEU6vVct/TigOptmSzWSwtLTF9hHjVkiTBZrMxVYDoD8vLyzAYDNw2QjfJTIhoFHq9HvF4nK/3O9/5DjtNkgLKSy+9hHq9DpPJBIPBgHA4jEcffZSvX1SQyWazSCQSaDQaMJvNbCoyMTGBCxcusIY46TfTNU9OTiIcDsPlciGVSiGdTjOamcvlcPHiRcRiMS4QpGfyv/23/wZJknDixAm2cx8aGsLo6Cjy+bxCZk5U5yEZO7JJbzQacLvdWFlZYa3xsbExLC0toVAoIJ/Pw+Vy4bnnnuNiPyqGazQaGB8fR71eR19fH/r6+uByufDyyy8zQk9oqLo4LxKJIJ/Ps5SmGLSyU6vVFIoeANh0x+12s+pIq9XC0aNHsbOzg0ajAZfLheHhYZa5E02pMpmMQr6TjIhcKit2agftF4vFUC6XFdtOTk4imUwqEHhxDFhZWcGlS5dgt9vxyCOPcD/Qs7q9vY2LFy/i9OnTe/pHXE2jVTEae9rdV5IZjcVie/pUfWyxjeQmSvdC3FZcYRA9DYrFIjweD1zvuHnS89qOw61epfgwx0ES76IkSV7sFlRCkqQzAD4U0oJdOcFudKMbdzvi8Tief/55dgAEsCcpoMLBUqmE5eVldlMklRKRH97b2wur1crIVywWw9raGq5evcoqCMSrBnZ/SD/96U/jhRdeQCqVgtFoxOrqKkuGRSIRRiTJoObChQtwOp2MLpF5CVELlpaW2E0ul8vh8uXLnMQnk0loNBqUSiU0Go09kneEOgO7RZKEdpGuMgUl0sSDFjWwKQkGbnGxW60WLl68iJdeegmSJOGpp56C2+3GX/zFX+Cv//qvAexOQj73uc+xVrZYfEg60qQOQkor4XCYixjJ9KfVarF0XiaT2WN6Q5FIJBR8XrfbzXQYjUbDiTQh/nq9ntF2ACzrB4AT0nA4zLziV199lSXxGo0GdnZ2YLVa8dJLL7GNuVqiUJZlFAoFvP3222xAQlrv5GSZyWRw/vx5eDwetrb3er2IxWIs60c88Vwuh0QigdHRUTzyyK62wosvvsjFbRMTE3jzzTextbXFGuyFQgF6vZ6LHsvlMtxuN9bX17mgs9lsYnFxEZlMBrVaDeFwmBMro9HIsn+FQgGnTp1CJpPBjRs3kEwmWSpxdnaWizPz+TyKxSKuXbvGRjVqSgahvbTysrS0xMfx+/1cZEgqLNSf9LzTc6XVanH9+nUUCgV+xqlYcHt7mwuW6d0vl8tYXV3lJJae8UgkwkltNpuF2+1GuVxGqVTiJHdhYQHBYBCRSASxWAxPP/00c95TqRRLif7FX/wFCoUCKpUK9Ho9FhYWUCgUcOPGDR4n7HY7n//69eu4efMmc7lJppQSXBq/SIrUYDDsQa7FAnKirtFqzvnz57kglwpL6XsRYSfUnxB4WimgINOcYrGooI6IqxQH9VS4Exfh72ccJPH+dQDfBHBYkqTXAfQC+Nz72qq7FF05wW50oxvvNdRUk42NDZTLZRQKBVSrVUZzxaVjQkMBsHqDWGwlFhcBSlR9ZWWFqR1E+aAQCxwpgTMYDKzlXKvVMDc3h9dff51l7MhoxO/3o6enh7W/h4aG2AQF2OV+itbmlHCQ/nM7s5h2IRYxdoparda2uFGr1UKSJBSLRXz1q1/F9vY2jhw5gs985jPweDyoVqt4++23AQCnTp3Cxz72MVgsFk6sm80mOy6SFjIl5GIQx7inpwfNZhMulwvb29uoVCrsWthOV5uUTSg5SyaTkCSJk3GyoqdrIdRabSJEWuLUDmB30lIoFGA0GmGxWFAoFBQ8eOLAq4Ps5gFwOxwOByvAUF+TtCPpZKdSKfT396PZbDJVJpvNMn1EVNxRF7dtbm7uMTISC1ZbrRbrt2s0Gni9Xmg0Gp5gUj9KkoTe3l6Uy2XYbDbs7OzAZDLB7/fj7NmzWFtb42dCo9FwITHdJ5o0NBoNpNNpGI1GBaWCHBHJyIZ0q+12u0Jyc2pqimsr6B2s1+tIp9OwWq18T8kNkQqji8Ui66tT8SZNktPpNNNXRkZGWB2GlGdqtRqr9qjbHo1G0Ww2+fvZ2VnUajVGhYnbTioser0eHo8HoVAIhUKBXSrFosZgMIh6vc5F1O3oJDQ+0XPSTvKPCsg1Go2iPbQfTWrF79XH6ORpQH0s/r9ddCr0fLfbfb/jIKomi5Ik/SiAaQASgBVZlg82AnejG93oxoc42lFKqHo+n89zMuFyufDiiy+ySQfpBYtFksAuVcNms7UtAqO/Z2ZmkM1mWbavXq+z+UVPTw9OnDiBzc1NxGIx5k4nEgl25PP7/UxLITc+Ugwxm804fPgwt6lQKHBxXH9/PwYHBxkRBnaTx4mJCRQKBWSzWeTzeQDtzV4AsJ446Xmrw2q1olQqQa/XK5RAiE+r0+lQKBTg9XoxPj6OT3ziE5ienobJZIJOp8OLL76IfD6Pn/iJn8D999/PxyVjnWazieHhYczPz7MbYLFYhFarhdVqZdfKZrMJi8XChX+E8tExJicnmRvsdrtRLBY5udXpdNDpdCzPSNQa0u8eHx9HNpuFJElcNElFo9ROUn2gfiSJRL1ej5GREdYzv3LlCltj37hxg5NQQvEPHTqEcrmMTCYDrVYLvV4Pm82GWCyGoaEhyLKMnZ0dALuqMTdv3gSwK/G2urrKiDRRi3p6elCr1VCr1Vjxg2Qh7XY7S9FJksRccELojUYjTCYTG8Ok02nIsoxHH32U9ebJQfXKlSvQarXo6+vDmTNnWAeb1GyomO6hhx7CwsICTCYTm+yQQsnQ0BBsNhsymQx6enpw6tQphMNh1o2n1ZZHHnmEE9UbN26g2WzyatLP/uzPMioqvpMzMzN4/fXXud4A2J1Aq99bWuEgdBnYTbJTqRS8Xi9zt6nY2e/34+jRo0zzEYtOySVUp9Nhfn4egUCAaRWE9sbjcZw/fx7b29uw2Wzo7e3FQw89pND7J9oGrcIRVeXGjRswGAzweDyw2Wysoy4mvkR9UXPAxXFKNPkilDyfz8PhcODo0aM8gVEXSorocyfuvqjxTtKB7UL0QhA9FdTSg50KQj/oOAjiDQCnAYy9s/3cO4PFl9+3VnWjG93oxj0QYuGjWGSkrp5fWFhgVJAK6ETdb3FptVMRGIUsy5ienkYmk2GnyIGBAVY/IBSSfrSpCJLORcv9FCSBl06n9xR7bmxscDIaCASg1+vhdrsVTomSJOEXfuEXAICLEilZBG4l4SSzR8cjhz76N6GcRPGoVCp4/fXXkclk4PP5MDg4iOeeew4/8zM/A41Gg69+9avcrzdv3sQf/MEfcBI0OTkJrVbLBZIk7+dwODhJ8fv9TLehhGNmZgbBYBBbW1usyKFeVQDASSMh/mJ/6nQ6Lmgkigohk/l8HmfOnOG+JSURAFzkSEheuVzG2toa9xewm/T39fVxgSf1aTqd5kJTs9nMnHbx/2azGS6Xi4sVKfEkJJomSqT1Xi6Xkc/nmS6i1WrR09OD6elpvPLKK2g2m1hfX4fX62UaRjQaRbFYhNVqZUObhYUFntyRwQ9RmCwWC2RZVrxHAHDfffchk8nAaDRiY2MDwWCQV2YMBgOazSZr3vt8PmQyGe5Hs9nMzzC9B1QESxQr8dgAFM96pVLh1aTp6em2qCjd+3K5jPX1dda8b1f498QTTyiKJgFwwSNRXKit9LlYuEtBYwb1rWgYRLGxsYFAIMA1AV/4whf4HogFnuogPjol+VTI3W67dsWR6mtW62eLY516vBS3ux363G683a8N7YpVxdWZTtrgH3QcRE7wjwEcBvBdAFRUKQPoJt7d6EY3fqBDjZiQ8cbY2BhrINtsNpZF02g0WFtb42RgYmICm5ub2NjYwOTkJGRZRiwWwze+8Q1GlUUJsomJCdZEdrvdTBcwmUxYWVmB2+3mZWKSt6OlZZPJhMuXL3OSSDJ9Op0O+XweJpOJEWayap6bm8Mbb7yBUqkEk8kEAMwbp4RzZ2cHX/7ylzE/Pw+Px6MoCBRDTO4AcELpdDqZXqDX67kgMBaL4YUXXlAcw+PxIJfL4Q/+4A/wO7/zO/g7f+fv4NVXX0UymeSk++jRoyzlRoksaVwTYre2tqZAlxuNBorFIhYXF7ko1WKxwGw2o9VqMQJPtJPJyUlcvnyZ+1G81nK5DL1eD1mWmUZC9CGPx4O1tTWWJ0ylUjz5IPt3ktszm83MZSXTHI1Gg5WVFaysrDDSTM9Iq9VCLpdj9ROiFmWzWVitVgwPDzNVg7YjGgu1j45ZKBRYC5uKHvV6PRKJBDY3N1lthtwTw+EwDAYDyxNqtVpcuHABNpuNqR6E7BM3nlRPrly5wnzidDqNGzduQKfTYXR0lJ/BsbExhMNhnviFw2H4fD5ebRobG8P169fhdrthsViwtraGubk5heW4+L6KSWY4HOb6ClJ5IXWcl19+mTnZN2/eZO7yyMgIfD4fotEo+vr6sLOzg2azyW6UagMeEYEl50mxgFXUDyeqlxqFdblcLONXLBb31I2QbKHb7UY0GkUmk2EJQnFVTmwbSS5KksSTy0gk0rYQtd14B9yeJ63ep1OhuLhdp2N2KjRXSyl2OjdJD7br33sppP14eAAgSdI1AMfk2214D8eDDz4ov/XWWx90M7rRjW58SEK9ZEk/gF/96ldRLpeZv63RaJg7S3JpiUQCzWYT9913H2w2G86fP49arQaz2Qy32410Oo16vc4/wKRhrdPp2EadtK7JIEOn0zGHcmBgAH6/X5HkajQauN1u5PN5LtQzGo0YHBzE1tYWI6qU2ExPT6PVasHhcODll19WJLGU7InHJ43ru/EzQMng1772NZ6wEI1jbGwM0WhUYRQkxt//+3+fzYTIop4SSkmS4HK5uKiTNKXVvGjqq+HhYYRCITQaDdhsNlb0IFSSJiNi4acYdGxSgSH9bkqyie5A/GQyx2k2m3jssccQCARw7do1RR8Td5yUPqi/2xm7iPsR0kwFopVKhScXdE7RTdBkMuHv/b2/B+BWYuP3+7GyssITkUOHDrFk5vb2Nk9YxsbGEAqFWLFF3bc0EaLviJZCRZcUtELR09MDj8eD7373u/xeWCwWtFot+Hw+5pI7HA6WkyN3yPvuu48nrUTXILrXiRMn2A21UCjAYDBwIezExAR8Ph8XBos1G319fexWubm5yRNQkg+0Wq1cuNvX18dW7pQEUtEsXbtWq8Xp06chyzIXPg8NDeGjH/0o9wVRSKjQ0+l0su351tYWU3AoASWuu9FoZCMep9OJ+fl5nDt3jvuDVskymQxLedKzSu66atqIOtGlgspcLofh4eG26jLtJBOptiWbzfLzScclbj61WYx2+9P1tNtejHupmFKSpLdlWX6w3XcHoZpcBeADsHNXW9WNbnSjG/doqJcsaRmT+MGU1MmyrHCqA3ar+wFwEkAyZVQwSVxfq9UKn8+HdDrNvFYqitJqtfB6vawSYDAY+IefuMhiyLKMnp4etjMnmofb7WaTHQBsL09FZuvr64xCEzJMyZ947LuVdGu1WnzjG9+Aw+HA9evX4fP5eHKzsLCgKO4cHR2Fw+HAAw88gFdffRVPPfUU+vr6+HtyfxRt6QnZpD5qNBoKegcFcZnFAshKpYJms4lIJMKcbEqiaeJCCiikDEL9Q8YjiUQC0WgU/f39CIfDnIBSAkaThMXFRQUHXqTt0H/UNgD7FrYSWq/T6Zh6QpMbp9OJvr4+RCIRSJKkUFgRaRhUMGcwGLiYk1Q0xsfHUavVEI/HodfrmRoUDAYVz4XIVyd1FaofqFQqinsgSRK8Xi+azSbL3NE9pEns2NgY06aoGFHUj7dYLAiFQkgkErzSUS6XFZrQpDtfr9dRq9X4ecjn83jkkUfY6dDhcLDJDiWzS0tLvLpBRaKkSkPmRW63W0GhIMS51Wqh2WwyBYr09um5FN8vuhd0bp/Px20nxRtyzCTKSDKZRDqdZt65yNUWZfdEl9xQKASPx8OUMzUNRywOVxeoBoPBjoXkaupIO7fMfD6vOC6BDO1Q6U5um+0KMdVxrxZTquNAOt4AliVJugiAiW6yLP/4+9aqbnSjG934gIL0aKmgjDS3KSEymUw4deoUJ3rElSUJrbNnz+L69evY3t5Go9GAw+Fg/qzIyZ2dncXm5iYCgQBMJhO8Xi9TDnw+HyOmsizDZrPhzJkzkGWZiy63t7eZN0xKCI1GAz09PfwDb7FYGJ0CwHSBWCyGZrMJh8MBg8HANAXigxPiSkmtyHGWJAl2u32PqoUYWq2WE03xs0ajAVp91Gq1+Jmf+RnYbDY2LDl//jx+4id+AkeOHGG1C71ej+PHjytQRNJeJvMaSZJQrVbxwAMP8D0EdrmgVJRnsVhQLBZZW52SU1FjulqtstoImeoQZaXVaqGnpwc+nw+RSIT7n9z4ALBe+uzsLMbGxvD6669DkiRYrVb09/fje9/7HhqNBgYHBwHscmr1ej0eeughLph1uVwoFArcXlIkoWSOFFHo/o6MjPD5zWYzBgYGsLy8DNc7Jj3r6+uw2+2wWCzweDxs0U4ugIQeazQajI6O8sQwGAzC6/XizJkzAIA333wT6XQa8/Pz2Nraws7ODvPOSX5uamoKW1tbqNVqXJhJknxra2u84jM4OIhcLgedTodwOAybzcaTSq/Xy2gsmS0RHYtWeo4dO6Z4/yKRCFM7fD4fzGYz8vk8RkZGeCWj1WqhWq2iVqthamoKGxsbCvSWqGNDQ0NMdxgfH+dzh0IhhfNnPp9nHXJKiInKMjw8DLPZzNtPTk7CZrN1TCDp70cffVThaFsul5FOpzmJzrzjiPm5z32uLVINgLnblHwTQkxJuOhyOzIywoXi8Xi8reIIFVTSCqCa1rOfkyX9LSLpVDTaySSonVEPnft20ano8l6LgyTe/+r9bkQ3utGNbtwrsbGxgUwmwwVljUaDC8A0Gg0rR5BL3cLCAkqlEpLJJMrlMux2OyOCzWYTQ0NDHZ3W/tf/+l+oVquo1+s4fvw4qyCQ1buI9smyzD+imUwGhw4d4iVYQpWovcAuSrq2tqYodgOgoKMUCgX09/cjnU7DYrHA5XLhmWeewblz57CxsbFHt5sKFSnhaIeCU0JLBYiE+OZyOfz3//7feTviwdMxHn/8cUxOTmJgYABOpxPFYpFXAAjVBcAFa8RZdbvd7O4I7DpzGgwG2Gw2nDx5EhcvXmSnTKKHRKNRWCwWTrSB3SRPRKiJxkL3gApUqTiPrpU+A8AFjlScRsZDMzMzuHz5MifOtH1/fz9cLheefPJJbncqlYLJZOJVCEq8iYpC5yFOfrVaxfj4OAAw2vsP/+E/xMLCAl555RXUajWUSiXY7XYYDAacPHkSwWCQC3Ep2c5kMjzBKhQKcLlcMJlMXMRmNBq5cPX8+fM86XvggQeYstHf388TTr/fj+PHj8Nut2N+fh5PPvkkG9ZkMhk0m02kUil2SySH1HK5zEmk2hGS6BN0rxcWFvjcYtEi9UUmk2lrI96uKE8sEKQVIfG5osLB0dFRBINB5HI5du2kex4MBpnzLzqF0njRKdolm729vejr64PRaEQmk1EURKuLBtVILzlFUgGpuA0AlnXMvONy2+m4YltEakynNt/u+uge7le8qY52q48HOc+9jHwfRE7wFUmSRgFMyrL8oiRJFgDa979p7z26Bjrd6EY37jRI+zeRSAAAFy1JksQFYMTnpm1v3LjBS8L7Of+JEY/HodVqUa1WceTIETidTkxOTjIySD9OpBEci8Vw7tw5Tq48Hg8vxw8ODiIWi3HBX61Wg81mw9zcHDY2Nlj+jugVYnEeqV/QvvF4HGNjY9jY2OBEkYLoACTjpg5RT5u4ypVKBa+88gouXLjA6DEAHD9+nBNJonMMDg5ynxD3m6g6xDE2Go2o1+uQZRlWqxUejwfRaBT/8T/+R9YmJ6oGFZuWSiVOqClpJR7x9va2og3UdtJBB3aRZZPJpDg2rQa0Wi2kUileKVhZWUGj0eB22Ww2rKysYHBwkDXRATB3eGxsjIspSQO5VCqxHTkA5kYTX1zttEkylZFIBNVqFRcvXuTnKJVKMT2D2j82NoaFhQVUq1Vsbm6i0WhgYGCAJ36Dg4NYW1tDKpXC7/3e78FqtaJcLuPYsWN4+eWX+bkh3i7pUweDQVgsFtTrdRw7dgw2m42L6Ujuzmq1YnZ2Fqurq6jX6/B4PCzpmEgkmBcfjUaRTqe5ELBdcR6tVvT09PC7QCsGoiY3FUSTSysdS5IkfOlLX0K1WsXIyAgXY5JE5+XLlxGJRPDII4+wRjc5T2o0GpjNZpbpJK616K54EDm7eDyuWE0AbqHV7WgXkiThi1/8IjQaDR577DFFcSdtNzY2hsXFRV6BEdsiFoCOjo4yEn6QYsT3yqFWF0+2kxsU+eUAuO6iEzWlXZvuVRlBioOomvwigP8TgAe76iZDAJ4F8OT727T3Hl0DnW50oxt3Gr29vSxhRokCoWKEYFJC1Nvbi8985jN49tln2a2Q0MPPfOYz+55nY2PXiIcMYAjVox8NAMzVJnQwGo0yT3t0dJSpJ5l3dJzJsZAst0+fPo1AIACbzYZSqcQUEqPRyJb2uVyOXeZECTZCmkU5QNKQNhgM8Pl8jFhSW0XuMyG1Fy9exGuvvYb7778fdrsdf/M3f4NHH32UkTitVosjR47weQnRFvnZxDsmcx66DpKWe/3111mer6+vjxPFUqm0x8yHfsCdTicuX74Mq9XKpjl0rXSdFCaTiaktREmgSKVSXCAryzIrx4RCIVYY0el0qFQq+NVf/VVGaWkCJcsy/H4/F0Pmcjnm3atXFagYl5I++qzRaCAQCECWZaRSKdZip4K0cDjM+umEcosGQ06nUyF/R3x3cTJpMpmwtrbGNA7iShPnO5PJsNLO6dOnFQivWm6TpP+MRiPL6hGdgK6FJhviu0aJlYhoklkLvQuUfJNs5/nz55HJZJhnLSK7586dY1oS6aHTihHJG9ZqNfh8PszPz8NutyMcDitcJzUaDcrlMrdPpFAcBBUmicB6vc7mO4RWP/PMM3toG+fOnUMymQQARrTV56EJhvjsiGgwSTNmMhne/yDxXjnUapfedqi9yC8Hdu8D9f9B23QnaPwHEQehmvwKdnW8FwBAluU1SZL69t+lG93oRjfuzdgPtaHviN5BqO1zzz3H9s8jIyN7JLHm5uawuLjIXE7xe5fLhcuXLyORSLA+L0nGAbs/+IlEghHbVCqFbDbLS98mk4kTY1EB5eLFixgdHVXItwG3eM2FQgH/6T/9J+ZBU5GbzWaDVqtlKTydTscJ07Vr1xROicAtpQoxCaZldzE5pSRNr9ejVCqhWCxieHgYx48fx1tvvYVGo4HV1VX09PTgYx/7GO+n1WoRCoU4Yaf/E71ELMojKb5YLAabzYZyuYy3334bJpMJtVoNFouF+65Wq8FgMCgQe7JXJ1oF6XQTmk7XQwWuRMnJ5XKsEJHNZlnVRpIkjIyMMPc/m82ypjf1CaHBZClPBkxEIbhw4QLK5TJMJhMXGkYiEfT392Nra0sxASF+eqVSYa3vSCQCh8PBHGedTsd1BV6vlxF44qxTuyVJQn9/PyvZqCUyyRKejIZkWcbMzAzz45PJJIaGhiBJEt566y3k83mYzWZ4PJ49SKMkSSyteP36daytrWFgYAChUAjBYJBXIkjlZGBgAFeuXEG9XkcsFmsrTUc1FVR4SMgtIbrlchnxeJyLDUXEOx6Ps328zWZDvV7H2NgYnE4nc9vJan5gYIA5w4Swm81maLVaTE5OIplMYnZ2VvG+E4daNLLpNPZMTEwgFosxlxsAt5cm4uK1k/Si2WyG1+vFl7/8Zbjdbpw5c+ZAiC/RoyRJQiwWYwlD9Xj4fiHJnY7RydGSxmOSThQR+t7e3nse3W4XB0m8q7Is12jwkiRJh10d7250oxvd+NDFfqgNfZfJZBj9CwQCiEQiKJVKsFgsbHAiom7z8/N7DC/o+2AwiJs3b6LZbGJxcRGnT59my3figyYSCWi1WmxubjLqZzAY8MgjjwC4xVe12+2w2+1IJpNotVpYX1/H8ePHcfXqVeZAU9KYy+U4kaSCvJGREQUPuVwuMxJJxYtEFRHD4XAwJQUAJ6SEFLdaLTz77LNoNpsYHx/HtWvXYLVa8Vu/9Vu8jE4J6ac+9SkAu8izTqdTuAOKQdJyNKEg10OSW6Pkmu7LxMQEyuUyotEo87KJvkGJMulMk9oGuU8CUCTdZFoUjUZ5YrO9vc2rBtVqFXa7HXq9fg+/XAxCuoFdZJyeFTJduXjxooKbb7PZMD09zQiyw+FQKJqI1uW0ulKv15HP55kyUy6X4XA4MDk5yWoURCOigsRAILCHDy3LMvN4FxYWOIHfr0YBAM6dO8dqPbQCoX6vCI0vlUqMvBcKBdTrddTrdUajjx8/zis/NIGjfqN2Uh/a7XaWpCOUmd7LZrPJsnvtXBgXFhaYx02rQ7Isc81EMpnE6Ogoy9epEXYyOrLZbHjyySf5mPS+q9VVREv2dujs008/rWjf9PT0HlMe8d/33XcfTxISiQSy2ayi3/dDfAOBAE+2yECKEOb9eOO3O+5Bo9Mx9vucJBLJVEls172ObreLgyTer0iS9JsAzJIkfQzA/wfAc+9vs7rRjW50487ioPzDdlxR0gAOBAJIJBJwOBwwGo2sFkG8bpfLpTDAsVqtbdHtra0t6PV6DAwMsERYLpfD4OAgzp07B5PJhFKpxJQFp9OJSqUCj8eDer2OeDyOWq2GxcVFPPDAA3A6ndBqtbh27Rp6enowNDSE9fV1mEwmXL16FbVajaXdSJ5QDEq8CPW+dOkSU07IDKZdwg2A7czNZrMiOQfAtI/FxUVe/ibjmTNnzmB9fR2rq6uYmpriJJiURwqFAjsCqk1qKETdZ41Gg0AgwJrWpI1NnPXV1VWWPhSdMskNkDjQ5Oqo1+vR19fHCRdwyw7e5/PxPaB+KZfLjCrb7XbE43E0Gg1cv34dr7zyCjweD8xmM/R6PRelkrER9dv169dx+fJlzM3NweVy8XaSJMFiseD69eusplOpVFh7mwpaqa9ockCc9HK5zHQit9uNoaEhuFwubG5uMn2GJmOkVU2UEaKcaLVaRhVpxYf44PR+ER1E1M4m5Rfi3p8/fx7nz5+Hw+HAgw8+CFmWMTY2xmoqlPRNTU0xj5v6tVqtYmVlBbFYjLXY0+k0G8aIZjQTExP41re+hcXFRaysrGB+fh7hcBixWAyNRgN9fX2Kd1OSJFbUoFUHUjuhOg7glskNrSyJah9zc3NYXV1leotorLW2toZms8n3T81LJmt18VzteM2iDTttm0qlEAwG93CySeGIjLVIk19tbS/G7Owsstks1yH09/cz/UgMMvKanJx81woh74UTLu7bTiJRjXCL2wN41+f9fsRBEu9/BuAXACwB+CUA/y+A//Z+Nqob3ehGN+40Dso/bMcVJZQqGo1y8jo8PMz8TYvFgpmZGQBQ8HPV6Deh2+RCSJrAxFEk5Ib4zzqdjtFaUaGEONjZbBaBQICVRugHH9gt+KOiQeCWAUs7oxVCLwEoeKzVahVut1the05B7SOtbHJeJFk2ClmWOdkWOcl//dd/jb/+678GAMzNzeGRRx7h4xEfulQqoa+vjw1JKGiFVeSoUpvp+gjxJilEMXHXarXQ6/Wst2w2m1n/uF6vo1gsoqenB+Pj43yPKWGan59nC3NK4qmvJEnCr//6rzPPttVqIRQKQZZl7Ozs4NChQzhy5AgjntRuUsgh3vfi4iJOnTrFOuEmkwl2ux3RaJR59aQ7DdxCuoFdDrzD4eA2U5AaikajwUc/+lEunqT7T8eoVqtcEGg0GpkTvba2Bo1GwzxjtZKKqC4hamdXq1WWyiTdbWoPIdlOpxM/+7M/u+e5pFhYWGB+OhVhijrqZNtOXGpg9z1OJBKo1+vcryLS3G5liq7vmWeeUVi9i6g0IemZTAZms3mP2ocsy8hmswpbc7/fzys3NJlU13iIyilqBFzkNatVVuhvSs5FTrbIKRdR/P0s14lfL9YYtFMaCQQC7MRLE487TWLfCydc3Fe9atHuWOL2AN71eb8fcRBVkxaAL77zXze60Y1uvO9xp0hJPB5njebbcf3EY1OVPVERjEYjSwKWy2VGRkmNYnx8fE+VfTweRywWQyQSgclkUqhulEolTti+/OUvs46w3W5HKpVinvTy8jLcbjeCwSAX+RFlpNVq4etf/zrLplUqFVbQoCRclBwUDWPINpyUTpLJJKt20DbpdJpRbzGazSbrmBMiW61WFUl3tVrF1atXcfPmTfT29uKnf/qnodFo8N3vfhetVgtXrlxBtVrF0aNHuWBRRLFJrYU4x9R+k8nENAS6DkqsqU/0ej2cTmfb/UmDnK6jWCzi6tWrqNfrfN2RSIR56ISM63Q6xGIxhYQgtaFarWJrawv/4T/8Bxw6dIgVW6gvSZOaVh4omSYeOVFlkskkJicn4XK5uEiUtnO73exeSPeVrovuT61W42dHLH4dGRlBuVyG2+3Gs88+i8HBQdY8r1ar6O3tRSgUgkajgc/nw+zsLEKhECqVCr73ve9xYS71W7FYhMfjQbFYZBSaijHdbrfieScaktvtZjUYh8OBubk55HI5xGIxvPzyy7DZbGz93t/fj4WFBRSLRYyPjzNPHgAj1rVajdV6SqUS7r//fsU7fOTIETZiIn68Gml2uVy8KkSKKhTi6peofuJ0OhW28y+++CIXWg8NDQHYXbF59tlnMTk5yQk/PRfEz6aEllbKRJUW8fxqXrOoQELnJuWUdmOZ6x07eVp16aT+QZMa8h6oVquYmprifhI55UajERaLhVerxGN2Gp8vXryIhYUF9Pf34+zZs21XF8V99hvn9+Nuq8+j5nqLKwT3YhwE8e5GN7rRje9r3ClSQprTpGRw0GPPz8/DarWi0WigWq3CYDCwZB0lEFSQGAgEcPr06T26wKQSUC6XUalU4HK5uHCOdImJwtJoNNDf38+0DEKPm80mdnZ2+G+9Xs+IOTnGUeRyOVgsFgBgqgUlmqRMAoARalK/SCaTrFt96NAhmM1mtixXOyNSwkeqDQAUmt71eh0XLlzA4uIiW1v/wi/8AkZHR9nEpdVq4amnnmKKippKQhQWOubMzIzC4joajbLdtIjsGgwG9Pf3Y2ZmhvWUAcBms8Fms6FQKKBQKCgmEjQpI1oHAHYS3d7e5okM8b/JuAWAYiWAKCPhcJiPT31ONAMxQSbKAtGU6PpIjlGWZej1euTzeU6+SI2FVGXoewpyTiXKiV6vh06nY675s88+i0KhwPx/SvwymQy/G6Ojowrkk7TkqfCO7k+lUmFN7nK5zM/m9vY2X5vZbGa5SqfTybURMzMzOH36NCua0DtSKpWQzWYRDoeRTqchyzI2NzcxNzfH16/T6VibPJPJoFQqwWg0KtD3bDaL/v5+/PiP3/Lya2fKkslkmLZit9s7qo6Q+gmtMFFQ+0XOttjPfr+fKUqSJOGZZ55RrIDRyoBapUV9fjFEBRJaZZiZmelYk0LnIc3zdkErFrQSQwWvmUxmD48d2J0U+3y+PbUr4nnV4/Pi4iIbC6lXCtppa+83zu/H3V5cXEShUODzqLne4grBvRjdxLsb3ejGPRXtuJCdtiOEg/STyZCE7NqtVqtCVQC4pSUbiUTw8ssvM4JFqJEsyxgfH8fa2ho78mWzWfh8PgWHEgBrCZNkHKmJEJKp0+mYI7u9vc020FardQ+vmji7wG5yRWjm1taWwrTG4XCgVCrB4XAwKu5wOHDjxg1oNBp2laQfelG5gZLBWCzG9Id2QW0jdNtkMmFychIrKytYXl7Gc889h1QqhQceeABra2s4fvw489bT6TSj6mKRIiWawO6PPmlRE7pPSTRNIMxmM3OSxSiXywiFQpAkiYviKPkk/jGtDlC/EipNluaEcFerVcTjcUbBa7Ua8vk8F6qqQ6PRsMyeTqdTKLFQG8R7WCqVUKlU+N6trKwgl8vh9OnTcDqdsNlsjMS+8cYbAHYnED09PXA4HEgkEuyGSM8JFfcRFYhWJBYWFrC5uQmLxcK8X1KBWV5eZu13ERGlVQh6jgh9t9lsjHjTM3z9+nV4PB6Uy2UMDg4iHA6jUqng8OHDSCQSTANRn2NiYoLlB2VZxpUrV6DX69m9stFoYHx8HJlMBmNjY2z2RMil2WyGwWDA0NCQot3EuSaFkmKxCLPZjJGREUb2h4aGEIlEoNfrYbFYFGi3ml9NOuCEVhMnnCQhXS4XhoeHuQ1zc3NYWFhgioskSfB6vYx0A+DJ1OjoKCudxGIxvPjiix152OoVuWAwiGg0CkmS9iDE4opdu/FSfSxCxSmo0JranM/n2S2X+rdd0GRCjShTn/T393dULdmP896u3cR5F//e7zz7te9eiW7i3Y1udOOeinZcyE7bEVoSDAZRr9cRjUYZnWunKgDc0pINhULIvOPcRojPyMgIKz0QPaNSqShQPmCXQwnc4hEajUZGdSnxIs1lSjbdbjdLtJGUHSG5omQeBS39E42EZM2AXcSV9G0pcaAJRLlcZhMWOk+pVOIEl86lTmg7OVFSX5jNZvzP//k/8frrr8PtduOJJ56AyWTC22+/DZ/PBwAolUoK6UGDwcDGIC+99BIXChK6GYlEYLPZGHEljrPoWCmi3WLfkNKM1+tFoVCAyWRiHjtdi9Fo5MSfzIMMBgMj7WSAow7ROEgsZqRtRf439RmZ32g0GlSrVWg0GkYXW60WI8miljYZJ73++ut87nK5jH/yT/4JgF2VFKLOiJx7QvaJDtNsNpHL5VCpVNDf34/BwUG4XC5YrVZ+N7LZLKanpxWIaCAQYCMhmuh5PB6uZyD+syzLrLRCjqn0nJNTJclMqs/R29urUEuhxK9SqeD+++/fo6wirigRDYPURcR2U7GtLMsIhUL8vhOyDoAnBFSjIaLdarTY6XQq0GrihBNv22QyKdp2+vRpyLKM69ev80SHqFwA9iDPpFRCk8JO45t6RQ4Ac/GJXy6ivLRi187VUX0stfsk3RN6Tu12u+LaaZVPHeIqihgkl9ou1Aj2fuO8GglX/73fefZr370S7yrxliTp/5Rl+Q/udmPudnSdK7vRjQ9fHFSXVdxOrO6fmppCKBSCx+Nh1ZF2+xIKp+ZVio5pxHElFQYRjQPAqFAgEMDhw4cRCASY70oawOLxaHl3cHCQFUk0Gg28Xi/LwlUqFWi1WvT09MDtdiMcDrNeMiF24rWKiFqr1YLD4cDq6ipTH0gXeXFxEeVyGYcPH0Y0GuWkM5fLweFwMN2GqB0knWez2TA+Po7JyUlotVqMjIzgySefZPt3SZJw4sQJmEwmeL1eRswGBgaQTqcxNzeH8fFxrK6uIhKJYHp6mjm0RqORlTWCwSCcTidMJhMqlQpmZmYQCASwubmpKC4kes2hQ4cYpTx8+DDrKQNANBpFoVBg90Si/rRaLfT09DClRJIk1jKnAkRSgCENd51OxyojJpOJDXJsNhsbCOl0OjidTnb8pKSYuK21Wg1ut5sdMdXqDIVCAa+//jpkWcbk5CRfq4iqUoHr+Pg4kskkDh8+zEWlVKzqdrvR19fHqiPqd0P9LpBaxOHDhxEOh1kzXq0MQf8WEVyz2Yx0Oo2ZmRns7OwgkUiwksh+7ywpiYyMjOzRa74dSqpuN/UjvavtEG/690F1o0UFk3bPlvoYIrdafU37Xf9+24jXfDtFj/3Gy4OMpeptxGvv5Lr7fup5t/vuTs93r2t7S50Qjn13kqRfkmX5v74P7Xlf4sEHH5TfeuutD7oZ3ehGN+5y7CfHJVpUE92EPt/e3kY2m8WxY8cQj8fZ3MbpdGJhYYGLv1ZXV2G32zEwMMDL0IVCgSXLHnroIUxPTytsn8lkhIqXstksJElCPp9nG3QyqKnX67DZbCzLRseVJAk9PT2cHB45cgTpdBqZTIYpIn19fRgeHsbQ0BBWV1eZPkIGMo888gjy+TwWFxeZ0kBc14GBATgcDuTzeVZwkGUZ/f39MJvNnNDVajV87Wtfw/T0NL7xjW/sUUz57Gc/i4GBAdx///2cuMuyjJMnTyq0w/1+P6LRKEZHR7G1tcWJ6M7ODoxGI1qtFvOnT506hYcffpgNTkZGRnD58mWEw2Hmd5vNZkZil5eXYTabmcsrotAmk4mTZbPZzC6WRA8ghNxoNOLEiRN834husbq6yug7GefU63X09fXBYrFgeXmZnUR9Ph/OnDmDTCaDQqGAS5cuodlswuPxsMERPYs0gaNErVAoYHl5Gf39/Vz0SEY2169fZwrM0NAQvF4v1tbWeEJDz93Q0BCSyaTCKAbAHglAekdWVlY4qfd4PBgZGcGrr76KeDyOw4cPw2Kx8PMsHk9MaOgdo1UOqnMgFYr9CurI6CYSicDn8/EkkigedJ3lchmPPvqoAuFUSxvSpFNN3+hkQ77fZ0RTA8CIrCifSP+nthuNRmg0Gjz00EN7zF3ENkiSxOPJI488wuMRPefU9nZ9trKygkuXLvG+ABTvRygUQiqVQq1WUxRD3o7Kst/37frnTo9JBauzs7O82nAnhfMH3bbT78AHGZIkvS3L8oPtvntXiPeHKenuRje68YMb+8lxqQuixM+3trYgSRL8fj8ajQab23g8HiSTSWQyGYTDYZTLZaRSKezs7ECj0WBxcRFms5kpEWTZvLGxgc3NTT6O2WxGNptFpVJht0dJkpDL5fZQOshIhFRJgF2ONbn1AcDa2hqAXQoEKW6QjF0ikUA0GuWkmji7i4uLKJVKXNAmnndnZ4eVMcTzkv54qVTCwsIC00OuXLkCABgeHsanP/1pBAIBDA4OMoeS+oe4x36/H16vF8CurFwgEECj0cDy8jJTR3K5nIJHTkEJKBWUplIp3Lx5k2k35PJINueVSoXRbOo7ikqlwmi5aNJDn8XjcaZwiPfN6XSy+gNRKkiBRqvV8ipIpVLh77e2ttiM5OrVq3xdsViMeeWlUonPQ9dG2xMXHIDi/2Q6A+xSLLa2ttBqtbC4uMiFic1mE4lEAjabTWGNDmCPBCC9I36/n+UVxedclmWsra3B4XDw8yweTyzAC4fDfB/p3qjfi04FdcRdLhaLfO3UPo1Gg62tLZbLJOMp8b0Xr4v6S01baDc+0DV0+qxcLvM1Absa+6J8Iv1ffOcsFktbcxexDRsbG9zPPp+PxyO1BGC7PvP7/YjH47wvAMX7QVKoZEy0n/zf7QrX9+uzOz2m3+9H5h3jG0q876Rw/qDbdvoduFejY+ItSdKv77ejLMv/8e43pxvd6MYPW6hNbNqh1IQYEeqcy+WQSqWQSCRgNBqZcnDz5k0UCgW2VCY5MrfbjZdffhmxWIypBfV6na2hqWAsnU6zAgbRD2j5/Pr16zCZTDCbzSgWi0ilUgiFQvjd3/1d1ly22+1wu93Y3Nxk4xwytCHOs1pBBAAbwojKH2KiLJrX0HftEnnR2CYajUKn07GRC/G+AfBkgNRbKBqNBsLhML75zW+y/Tgd85d/+Zf5R39gYEDRfuJAU4Eo9TFxjokD3Nvbi1QqhWazuUethIIs4QmFJ51uolNQkkeFeQBgtVoVyh+3C+ozKkSsVqtIJpNcfGkwGNgMp9VqcUJKfG/aRyzWbDQaXFsg2tQDYKUPugc06QEAj8fDRY6NRgNra2tcDEtqNaQAA+yi+KlUCiMjI6zgotVq4fP5EIvFuH6BijLpeTabzUilUojFYnC5XGw9TkV7LpeLtc/NZjNfw+TkJEqlElZWVuByubC9vY25uTk4nU7U63XWom80GkwTGhsbUxTPUQEfFZi63W7Mzs4yamwymRCJRBAOh/k9PHLkCNN26P0lhDcSifD7Rn0v0lwIafV6vchkMvB6vdjY2OAkGUBbJH90dBR+vx+pVAperxdOpxN2ux2yLOOtt95i3fv5+XmYzWYF4k2rYURrUa+6zc3NYWlpCdVqFbFYDPF4nJ9jKhKkPqtWqygWi4jH4+jt7cXs7CyrEhGNiegtDoeDJRU1Gg0j3qI8oIi+RyIR5PN5RVGliGzTPZudnW27ItDOTEeUP3zuued4pcRoNHKhMhWU7icx2K54tNO2FKKUrLrN92rsh3jbv2+t6EY3uvFDGyJa0a4oUkQ91Khzq9WCxWJBMplk9Mnv93MxFBXJra+vc5IN7CZeVquVJdDIOZK+J/6z2WzG+Pg4F1JR28LhMLRa7R6rczLfocR2enoawWCQ1VLIDTOXy7HKBgUl02L7ADCXmLSsjUYjJ3JqZ0cqtKOElJI2vV6P0dFRrK2t8XekeU1Fg1Tsuby8zIY2jUYDTz31FI4dO8ZFccR9JkSX2irKGlKxn8lkYplESljpfHRvxD6gayTutF6vVxSsUZvo2kmxhdwsRfReHWT+Q/KIlDDSpEgsdCWnzuPHjyMYDLIde7PZZOoKTQBIZYYkISmxMxqNfEyHw8FJROYdAyNqZyqVgtVqVeiPU/JDEzIys9Hr9dyv6XQa6XRaIf1Iz2Sj0eBaA7pHhOCTiQy5IBLfn9pBzx2wOymw2Wy8skBGNlQcSnKHpI5B/G9SxSCqBskW0jtcLpcxPT3NKOi5c+d4UphOpzExMcHvZCaTQTqd5lUKQniJckUce9EynZDWVCqFiYkJJJNJXj2gRFeW5T1FoLSv1WqFyWRiE5xz587xRIvQcLXN+8LCgkLSVJQC7OvrUxRjplIpLgon+U/ah4qqjUYjI7fT09N8TWRoQ9KBCwsL8Pl8ewpQO8n3UcEhGSepkW26Z2ppRrUZkbpgnb4PBAKo1+u8UkKeCOT4up/EoBrhbmd2pj73xsYtKdl2cpL3YnRMvGVZ/tffz4Z0oxvd+OEMscipXVGkutiJEG+Sm+vv78fU1BQXexHXlayRFxcXMTk5yfJz9MNPfEiRb2s0GrG9vc10jZGRkbYFPiTfRoohxMuenZ2F3W5XSF25XC5OFk6ePIlCoYCdnR3+Ia9UKrBYLHC5XExPcbvdLKGWTCbh8/lw48YNyLLMRXxUDCe6SeZyORgMBk40iAc9ODiI2dlZVCoV3Lx5ExqNBi6XC9PT01hbW8Ply5fh8XjQ19eHEydO4JVXXsHx48cxOTmJBx98EAaDAb29vZAkCdlsFqOjo7hx4wYKhQKbhrjdblgsFiwuLkKj0WB4eBjpdBqDg4PY3t7m69/e3kYkEkFfXx/brpNDot1ux9zcHAqFAieus7OzLNOm0WgwODgIt9vNkzSfz4f+/n4sLS3xvSTKQ6PRQK1Wg81mw8jICBeSAuACzmvXriESiTAC7/F44PP5WBLP5XJha2sLhUIBvb29GB4eRiqVQjweh8lkwsjICE/ujhw5AlmWuWB0Y2ODVVxkWWbUs1AosE78+Pg4qtUqvF4v98fY2BjrIVOhLbVZRJ0B8LNGkn/iM0GTDACMjlLRnMfjYe479Quht+I+1AdUhEnvFhU1ilx1daHiQYv2Zmdnud5gdnaWkWg6rygzeJDiSSpIJL47FfImEgnY7XZFAak6xGJG8bNoNIp8Pq+QFGw3jonjRbsCbrG4kq6PztWp4LPdNd2u8LDd52KbiLe+3z273TW2+56MgmhFQSz8vl0b302h6L1eSNkubltcKUnSFID/AqBfluXjkiSdBPDjsiz/9vejgXcjusWV3ehG+7hTh8jvZ3uAW4VhRDtpV6yj3leSJHbHO3PmDB+H0OF0Oo1oNMpJHiGXYpFTLpfj84rtoGI+rVbLyDYpebhcLvh8PoWcXrVaRSQSYam0np4e6PV6drCjpfp6vc60GSo8JDoL0VcoCTeZTJx4nT59movkCoUCG5IQYuf1elkL2uPxYGpqCg6HA1euXGHqwh//8R/jjTfewKlTp/Arv/IreOGFF/D1r38dv/Zrv8ZFd7VajZNFMtYAwPQMvV6PYrEIg8HAS+E/+qM/itOnT3PhaTQahcPh4KRQLForFAqs7+xwOFCr1eBwONDT08P34KWXXuJCvCeffBIA8O1vfxtbW1sYGhrC0NAQ1tbWMDg4yHSHnZ0dbGxsoFqtYmBgAOVyGZOTk2xPToWURPdYXl5mugRRVw4fPox6vQ673Y6ZmRlu79LSEiRJwsDAgMLoqFqtoq+vj4tAHQ4H3njjDS7AJO7+yMgI0uk0t4cKfkdHRxGLxVCv1zE4OIiZmRmmjhANgWgK999/Px5++OF9C4xTqRRPMjoVXRLFiyYz1Aek/S0W/i0tLSGRSCgmPZTwG41G2O12vmfUrnbFjyIVw2w2c/IpFovu7OwoCgpFyhmNAe2oaJSk00RDTFY7jXMHLTps9/3dKBi8XYGgemzsdM87bdPuuHfrmt5LiIXpojV8u2u5V36nDhLvtbjyiwB+A8B/BQBZlq9IkvQ/AXxoEu9udKMb7eNOCl2+3+0BbhWGEe2kXbFOu33JHa+vr4+PQ9zbXC7HRYpi4RgtwYrFb7TsTu0gnqXIi47H49BoNNjZ2WE5OqJQUHEfARyUMEmShLW1NVitVubykrSfWLwHgAsHqXgulUpxMeDp06fh9/uRSCQUHOdcLodiscioKbBbhGa1WrG+vo50Oo3vfve7+Ku/+iuUy2X86I/+KJ566ins7Ozg9ddfh9Pp5OK6YDAIg8GgMIuhZX/qB5psiJQQah8VnhK32Ww2M3JPRWtXr15lakQ2m4VWq+VVAroHN2/eRK1Ww82bN/n5CIVCqNfrCIVCSCQSaLVaWF5ehsfjweLiIrtTAkAwGOQiOK/Xy1QlWh2ge0t623TP6D4R/YXaS5rl1WqVE1Xq652dHZRKJTidTqyvr/PEKxgM8vOxtrYGk8nE7aGC3+XlZQBgXny1WuXiOToftY8KUfcrMKaiu/2KLinhpmJgup/pdBrlcllR+BcKhbgtlUoF4XCYV32o6JXumUghA5TFj9Q+QttJG18sFiX5TZroiXSVdgWcIhUNANbX1/mz/QoO1ePHnRYl3o2CwdsVCKrHxk73vNM27Y57t67pvQSND0QTbFeESddyr/xOvdc4COJ9SZblhyRJuizL8ql3PvuuLMv3fz8aeDeii3h3oxvt472iGncq99QJxVEXToroWzupsbGxMUSjUV5mJrOQVquFbDaLZDKJoaEhnD17Fpubm1hYWGCjjlAoxEkC2V0bDAaW7iMUnBBGoiDo9XokEglUKhW2yAbAxXWUUEmSxHJ3Op2OC/PUodfr2Zb7dkEFSjqdjos7bTYb7rvvPqyurqJYLLIyino/SoapaNBms+HChQv46le/isHBQTz99NMwGAywWq1YXFzEd77zHXz2s5/tqOFLBYZEryFutyzLCjMcuidE7aCleqLxkBsnJWmFQgFms5m1ve12OxsSHT16FOl0mikhrVYL09PT2NraQjweZ55stVqFwWBAq9WCyWTitmi1Wng8HiQSCWg0GpYFpCTT5XLBbDZje3sbkiQpJhq9vb0olUqo1WoK18hqtcqce3IqVRfO0nkJ5aZiVXGCAuzy5mkSRlKHYpEj8dDV+xENRTSlcblcuHHjBnQ6HRwOB2KxGKrVKtOtotEojh07xi6jQ0NDCAQCXBhIzwn1ldvtZg67LMuMUBNa7vV6WSPeYrHAaDTCZDIxZYSk9wjRBMCUCdL/ttvtvGpAKz+9vb0IBoMssUjHEGUTRYdWkjKk6yEHWpGSRch6u0K+/RDndu6Y7aQZxVW2TuPdt771Lezs7MDj8WB8fJyPdTtkWkSFSbaQJArpmRSlBKkNdLxOcobqdr5f0nz7/QZ0QrzVqzLi6ue9Hu8V8U5IknQYgPzOwT4HYOcutq8b3ejGBxRqN7E7jTuVe9oPxSGnNOIEEhLW19fHxVmiu1wgEOBiSOJ6E5rq8XgwOjqK3t5enD9/npMBAIpCtWaziUqlArPZzGidzWbD/Pw8zp07h1wuh3q9jv7+foWhDCV35MRYr9c5MSGJvN7eXi4CbadWIlrE7xdUcCkWJNJkwO/3A4CCm0uujMBuMeB3v/tduN1unqzUajVMTk5ieHgYW1tbSCaT+LM/+zPodDoYjUZMTEzggQceaKs4QkgiJfh6vR4A+NwjIyMAdtHUQqHABW2UcNEEgYxrgN2EmyY/lKRTf1IB5fr6Oh599FE2Amo2m1hfX8fw8DAn1yIKbzAYWOmArgkAq4lQQR65T1YqFeaaA7uW0/V6nd0+DQYDI9qyLLPqCQDmYXdy2BQLYymprdVqChlFUjjx+XzIZrN8TuKBkyY6PQ9ut5v12mmlRkR5qW/1ej0rrxCSX61Wsba2hlOnTsFoNCKZTEKn03GhKLlWLiwsoNlsIp/Pc+JN97per7OyCQCedIqFqoFAAM888wyA3VUbMjEKBoPIZDL8rpMGeyaT4Xee2kDvJBVKArvFxk8++aSieJGKO6k9VHhps9kwPT2NbDbLbbhdIV+nokRSrTEajSwbSduQAg8VTQLtEdqNjQ1EIhHU63XEYjGe8LvecaRVu12K+9H1Z95xB6W2koKRXq+HwWDgPgegODdtm8lk2hYviueicbVTe95NdPoN6O3t3VOoSp+Tk2Ymk1G4an4YEu/94iCJ968A+AMAM5IkhQFsAvjb72urutGNbnwo4qCFLbcrjBGLrqjoi+Sy2hX9UBGPiHiTY5+62EpdLEUSfIS46XQ6Rl3F883OzqJWq7FiApmZkLmO3+9ng5RKpYJYLMZJjtfrxcjICIaGhpDL5RAOh6HX6+FyuVAsFqHX6xkN3tzcZCUNrVbLKDIl5YcOHUKxWESpVEJvby88Ho8C3QuHw1zYeO3aNbavJ2TyL//yLyHLMvr6+pBOp/F7v/d7ePXVV7G1tQUA+LM/+zMAYEWNT33qU1wYWSqVoNfrGZkeGhqCRqNh2oXNZkNvby9u3LjBKCcATsBqtZqiyDSXyzF/3mq1Ih6Pw+12w2q1IpvNcsEgFcRubW0hFospZMiOHTuG9fV1zM7OYnh4mB0lE4kEMpkMent7+TNaqaB2JRIJlEoluFwuThZFY5qlpSUuhoxGowpnRiq6JSUdQlMBMHoej8d5YqHT6aDX63Ho0CE2JCIZv83NTaZxkFPm7OwsFwCLhbLZbBaNRgNGo5FlBD0eDxsR2Ww2hSnP8PAwrly5ArPZzO9VNBpV9C2Z71AhXzgchsvlgt1u5+efZOcGBgawsrLCjqrVahUzMzNwOp28bTAYRDgcRk9PD4xGIyqVimLFRHz/xYJCQm7FwupO77za8bFdoaAoiSeOAe0KFu+0KFE8RrtjtTtnu2OTSo7H48Hg4OBt3S47HZ8+LxaLikLk/Y5xO9fM/frlvca7Oa56nw9bEWWnOLBzpSRJVgAaAGUAn5dl+avvZ8PuZnSpJt3oxgcX6iVDWk69fv0620wTlaTd8i4VZQHK5Vs67s7ODjKZDObn5+F0OuH3+2EymXDjxg1uQ6PRgNvtBgBWQVldXUUgEOBiOIPBgHg8jmazqXAx1Ov12NjYYESJEqpsNsvJKC33kt42uTFS8STxvGdmZpBKpZh33Gw20dvbi3q9jmQyyWYudrsdU1NTCAQCyGQyqFQqaDabsNvtsNvtTMWQZRk+nw+yLCtUNba3t1Gv13HhwgV8/etf5344cuQIjh8/jhdeeAFutxunT5/G22+/jf7+fly8eBETExP4l//yX8LlcnERqdVq5YSKCufeeOMNLC0toa+vDz/xEz+BVCqF8+fPo1wuw2azIRaLwWazwe12s/X79vY2fD4fTp06xcWCkUiEqTsGgwEajQY9PT3o6elBoVDAtWvXYDKZ8PDDD6NQKCAUCiGZTKLRaECn02FwcBC9vb1YWlriiQrxlEkVJpVKoVQqYWhoCMPDw+x0SWYmwC1KiF6vR7VaxdGjRxGPx7G1tcXUGrJ712q1nECRHjLJRNLk7/r16wgGg2i1WhgYGMCNGzfQaDRgsVjQ29vLtADR4ZQoFjabDeFwGLOzszh58iTefPNNlq+cnZ3Fzs4O8vk8pqamWM+e3CIpkaWCxhs3bigKedWFioVCgSeQRLFqt5xPRc1qRQ31+3j+/HncvHkTWq0WNpsNjz/+eEfqwMWLFxGJRDA3N4eTJ09yu/1+P8LhMIaGhhS6zJ0KHi9cuKBQK1G7V168eHHPZEMsMG1XfLq5ucmTP3KW3a8dYtH3fu6VExMTSKVSbQvE74S2t7S0xGNAO+rFfhSS/YoV1dS/dkXs7Y7/XgpT3833t9t+vyL871e8K6qJJEkO7KLdQwC+AeDFd/7+/wLwA/jQJN7d6EY3PrigIioACge4SCTCrnyia524vCu6ugHK5Vs6Lh2bnCdpWZpQSABMJyBXxnK5jEgkwkvEoVAIer2edab9fj9rYpM+eK1WQ6lUYsUSKp7MZrNMGyC6g0ghEf8tOlBSiBxwStZrtRr8fv8eSkIul2Pt8GKxyEk9tXF5eRkWiwW5XA7f/OY3cenSJQC77nvZbBbr6+tYX18HADzzzDMYHR3FyZMnUSqVsLW1hbNnzyIUCmF7e1tRTFkoFBSFc+RASaohwWAQiUSCdY6BW0Whi4uLyOVyXBhJco7RaFRReEr64ITWk+QiFcGazWZsbW0pKB03b97E9va2ggpBUavVmM8PgGk1dM/o2aD7QTQUcl4kZ0pCxgHwisby8jJrhhPHnIozE4kEP1sajQZra2vctmKxiGq1CovFwpx2Kmqk1ZWdnR12VbXZbNjc3EQul+OCWqKf0P5klCQ6J1JBIx1LLBAVCxWvXr2KfD7P5yO3USpmpqCi5k4ulvQ+BgIB7rNqtbqnWE4cB+je0HVSuwOBAGq1GgKBAAC0LTSkoGevVCpxkazavXJxcRGFQoGdPtXF29R/4rVdvnyZJyWk5b5fO8Si79u5VxLVRl0gfie0vVAotMfvQL3Nfm1Q37t2+4kFrO3asJ/+9u22f6/f3277/Yrw74XYj2ryxwDSAN4A8IsA/ikAA4CfkGX5u+9/0957SJL0NICnjxw58kE3pRvd+KGNTtqxpKurRrzF/dRLo2q6CR03k8kw59Tv97PuNUU7xNtsNh8I8R4cHLxriPfk5ORdQ7zT6TSSySSeeOIJBeJNLprf/e53+fo/9alP4Wtf+xoAYGhoiHnPVOxnNpvxT//pP0WlUsHAwMC+iPfExASi0Sgj3kQfIBWS2yHes7OzCIVC7PzXCfF2u92MeJO2N4APBeJNxZ4HQbyJWtIO8SZK1X6It9lsZmqHSN0Ih8Oo1Wp7EG/xXSIaVrPZ5GJINZ0B6KwhrX4fg8GgAvFW003EcYCkNkUa0ejoKAC0Rbw7jS2RSGRffe65ubmOiDfpmKsRb0mSFIh3O13tdv2jRrzFdraj2qiv5aC0PZIvFe/n7Y51ENpGO+pfpzao7/1+bb/b399u+3Za7PdSdKSaSJK0JMvyiXf+rQWQAHBIluWD+/LeI9GlmnSjG3cn7oa2q1oBYL9qemBX13d1dZV5u729vazzTEoFZJtsMplY1cRgMMBut6NYLLLqA+lZk/tgq9VCsViE1WpFJpNh6/jx8XFcvnwZ9XodbrcbZ8+eRTabxeuvvw6dTsdyd1qtFk6nE4VCgYs6qT3f+973UK/X2ciFCi+B3aKxo0ePshQbmZdQknrz5k0YjUY4nU6k02l2I3Q4HDh58iSSySQ+//nPAwB+93d/F3q9Hj6fDy+88AL+9//+37j//vvx0ksv4ed+7udgtVpx6tQp/OIv/iI+9alP4ROf+AQX2qlDkiRoNBrmrZMh0IULF7iI0WazsZGOJElwOp1wuVys8y3LMg4fPsxWzlarFWNjY9jY2EAymWQ3RlqdoGMCu4WWpLwiov29vb04fPgwTpw4gStXruC1117jNptMJtjtdiSTSdYBJxURsnyXZRlTU1OQJIm52sViEQ6HAydOnGB9dFpmHxgYYL3xeDzOE4kzZ85gZ2eH3ThpQpLNZhGJRNgEqNls4tixY7DZbCgUCrh8+TJkWcbIyAhTbURKh/jsk6Y2AJ5cybLM1vCTk5MYGxtjdZ+NjQ0kEgkcOnSI9b+9Xq+CGqTWwAegWIon+kIsFkMmk0GpVOL37bHHHmM9drGNm5ubSCaTcDgczGkXlUxupx19u21Emlk72ks7qgYpj4g68eFwmOk8RMnppBXdTjlEVGWZmZlRaPzvR4tQj2Pqz/ajTLT7vN11X7x4kQ2UZmdn9+ilH0S5hdrWbky/HWWl3fai94J4bPW/ScOdwAtqTycqzoct3q2qCa+PyrLclCRp88OYdHejG924e3HQ5dD9gnSnSWdbvRSqtjDe3NxktLNQKHCRF2lCOxwOrK+vo1wus7oFLXWTRBppRMuyzMWNVPyn0WjYBhrYpX7kcjmUSiXIsoxEIsFcUEqwRdUQSvJoX7vdzoVvwC0FEDEqlQrTNSgJtNvtTMsQ7a1JLQXYpZr4/X4sLCzwsf78z/8chw4dwgsvvIBkMone3l68+eabGB4extjYGLRaLSKRCH7zN38TBoOhY9JN/UPXRPQFokUQXYIUD2j7TCbDFuqk3EFa1ETPyWazikRa3W90f2kfMgIS+5UkD0nJRexLoviQuQyFmuYjKoXQtRDVIZVKsZ46aXPTNqQeotYGJwpOPp9nSgspphBNQdQoF6k2wC1Kh/jsl8tlfh5pcki0GFILSaVSrE9Nz4io/53P5xXUILUGPgDFUjzRF0j1hvqHrL9Jj11NYyGqDa3UEF3jINrRt9tGpJm1o720o2oQBQMA68SLGuV0XzppRYt60iJtJxKJoNls7tH4348WoR7Hbqe73YnyQZ+3u+7FxUWFVr9aL70TRaNd29qN6bejrLTbXvReEI+t/jd5K4h6/vtRcX6QYr/Ee1aSpNw7/5YAmN/5WwIgy7LseN9b141udOOeirtR8U7W5W63e1/lAPqOULzvF+I9MDCwB/Em+/nvN+JtMplw4cIF5HI5DA4OwuPxYGdnB+fOneN+u3DhAi5cuMA85Gq1imKxiL/1t/4WLBYL9Ho9BgcHme8rSdKHEvEeGRnBxMQECoXCu0K8Sce6E+Lt8/lui3jPzc3dMeI9OzurQLyJaqO2Eqdnn9Q9gPaI99jY2B0h3nQO9fK72qqc1DHUiDepoajbWKvVOiLendQ/2r3nnbbppMDRiUZA+3g8nj2IN9F59lNbobEmnU7voe2YzeY9iPftaBHtrNjfi7JKu+uem5tri3h3Ov5+bXu3lBX19vupu6hpPh6PZw/i3YmK84MUB1Y1+TBHl2rSjW50jjtZOrzdcqj6u4OYMHTaVlRSCAQCzPv0er3s2NcuATl9+jTGx8cZpaaETK/XY2dnB8eOHYPP58PCwgI7DpKdt8PhgEajUZhkULsKhQKWl5fhdDphMpkQjUZRKpVYw9lms6Gnpwe1Wg2JRALValWBVGo0GjgcDqaNAOBCTWA3uSS0khK4r3zlK+g0dv3tv/238dWvflWR2AO7yiU+nw//4B/8AwC7S9SdxnmLxcKaz729vazbTJrhpHlutVpZ25oKXSORCGq1GpxOJzsX9vb2wu12M2rrcDiQSCSQTCZhsVgwPDyM69evAwDz5clsR6/Xw+l0csJLHGDSyQZ2+fmyLPO5qQ9p4gQAg4ODKJfLSKfT0Gq1jPwSZ99kMqG/vx/JZJITdqPRiIGBAZZKpKSaihcTiQRrjNPzodVqWWqvVCrh0KFDMJlMLDlpNBoRi8XYDMZqtXJRb61WQ19fH4aHh1kCc3V1FclkEj09PRgeHkYoFEI8Hoder+d7I7bLarXCZrMpluxPnDiB69evIxKJ4IEHHsCTTz65511bWlpCKBRCPp/H6dOn4XQ6sbCwwAXIPp+PKWCdKB/tlIpEOgPRVhqNBh566CGFtXs7SoloTENqR3a7na+TEuhYLIZisdhWCakThU289nbqSp2oMOrjAmB5zP7+fqyurrIUKbWdaC2U9N9OkUVNc4lEInv6nyaDBCz09PQoKEri+JxKpQ5k5NOpDeqxfj81ETIm6+/vx9mzZw+kNtLp3AdZPd3v+WlHSfqg470a6HSjG934AY47WTq83XKo+rvbqQHst62opJDL5VCtVhEIBLC1tcVmJu2W3Em9gBQLSC2CErXl5WVsb29zgSIAVjYhNNfhcLCxBbXr6tWrrK9MCihiQluv11EqldgCXh2i2Yn4GQXZye/s7ODrX/96R1T60KFDsNlskGUZP/VTP4VDhw7htddew8LCAmZnZ/HZz34Wer0ewWCQEehOQUm3eH5x+2azye6R+XweWq0WyWQSAPj66Rik8kLFoGQeQ8vfhUKBVV2A3SSG7gkpg6TTaTZBogkRtUeSJIRCIciyrOhfMgWhEFViCNkm2hCwuxwfDAah1WqRz++yJwnNp3ZRe2kFhZBvmgBIkgSLxYJYLMbW8YFAgAtqd3Z22DSHVHSooJOuia6F6BCE0hNqTfefjkcmRaLCTLlcRiaTYUrP4uIikskkWq0W/H7/nsSb6BhbW1v83pCjJyn6VCoVpoB1onyI44JIExD3IVOXdtbuakoJUQ5IYpJUSug6qY/Iqr6dEpLf70cymUQmk1FQ2MRrb6eu1IkKoz4uTbJLpRLC4TBT22iFi571dvSJ2yl1ALs0F1ppEPuftqHJLU2yRGUnYHd8DgaDij4A9rdaV7dBPdZ3oqpsbOwqvxDN5XbUmXZxp7TF/Z4fYC8l6V6ObuLdjW78kMedLh0edL92S5r7nV+9raikcCeIN6kXkGLBe0W8qV2zs7PfF8T7z//8z9sm3Z/+9KfxV3/1V8hms7h58yZ8Ph+efPJJuFwuDAwMwOFw4NixYxgcHESlUmF0+IcN8R4YGPhQIt7FYlGBeOt0uveEeLdbqic6BrC71E9KQJVKRYF4i9SEdpQPtUKJmj7RztSlE22B6CH0zpHaUTvE22g0tkW8abxoR2Hbr837UWHUx/V6vQdCvEltRN0v7dqjprkQ4q2mhszNzSkQb/F7cXx2uVx7+mA/aqC6Deqxfj81EUmSGPE+qNrIfud+N9vvR0m6l6ObeHejGz+gcZClPPVS48svv6xYtuvt7cVHP/rRjsekpdhvfetb7OhIMlQ0UEqShPPnzyukyPZTMqHvtra2sL6+jhs3bmB8fByPPvooVldXGZ2RZRmvvPIKS7HZbDZ87GMfAwB885vf5CJKnU6HVCrF5/b5fKzTnc/nWcc4n88jk8mwzvLi4iIajQbMZjMajQYXzaXTaebPajQayLLMaDadx2q1snW2aPlOCWokEoFOp0N/fz80Gg0sFgvzna9du4apqSmFljEARKNRALv28D//8z+P6elpHD16lBHURx99lLeTJIml8sTo7e1FOp3mxF+NeANg63ij0cjOldVqFel0mpNbSiRrtRq2t7cB3LL3pmegr6+PTWQIGc/n80w7oIJLh8OBBx98EH6/H2traxgeHmYe+Cc+8QkA4AlYoVDA1tYWFxyK8opHjx7F2NgYlpaWIMsyF5eurq4im83CYrFAkiRYrVZIkoTHHnsMgUAAhUIBPT09jPaePXsWW1tbeOONNwCAeailUgkWiwWVSkWhP//kk0+y6gVxq0kvW6vVcuJMCG6r1YJGo0GpVEIikUCr1YLD4WAu/mOPPaZIRDvRnqhI0mw2Y3x8HBaLBQsLC3A6nZibm8Pw8DD+x//4H4hEIvB4PNwuj8fDUn30rokKHnSPaRn/xo0bSKVS2NzcZGWZzc1NXLt2jSdCa2tr/JyfP38e0WgUfX192NraQjAYhNvths1mw/z8PJstjY2NMV96amoK4XAY169fR7VaZbfR6elppnqYTCZYrVZ+t1ZXV7nQkSgX2WwWQ0NDPEao6Q/iWEb7ra6u4u2334YkSRgeHsaZM2d47EqlUgiHwxgcHNxDtVHLKno8nrbmOe0iHo8ztSQWi+HMmTM4c+YM3wNqP8X4+DhOnz7d9ljE4yc1EFG1hfoA6GzyIya0s7OzfG5xbFa3B4CC0re0tMQqJgcJul/lchn5fP490USsVmtbeqL6t+Zeim7i3Y1u/IDGQZby1EuNt1u2a3dMcYk3HA6z8YJoJEHL2jTI76dkIh6Xlv9v3rzJxY/kJpnNZll9IR6Ps2EH/U3JGyV+AFgRIpPJsKIIAFZnIKoFoYKAUhmDtieUXE3NoBD3F78nlPbZZ58FAPzkT/4kXnvtNXz+85/nhKTVauHjH/84enp6UK/XcePGDQQCASwsLOCxxx7D2bNnodVqWRnF4/EgFovtaWO7EBU/OgX1CyXl1WqVE0XxOEajUWHuU6lUEAwGmRZByDH1HyHVBoNBQSHJ5XJYXFxELBaDLMsIBoMwGAwAoFDgaGeik8vluK/Fe1ur1XjZn8x1isUitFotcrmcQkGGttXpdKx6sbW1pXi2KKmkY9B3Ozs78Pv9rHqRSCS40DYYDLKiTqlUUiinUP+Sgs36+jonvPTuhMNhXjVoR3sSr4u02yuVCiuipFIp7iuivtCzTTUEt1MUCoVCTN0RlWVEmgFNhIjiFQgE0Gg09n0/xfsJYF/1ERpfiNYhUo8cDgevwNB5SU3mIPSHjY0NNiiiZ1+kaJCCC7CXatNJreOgJjiBQADFYpGpJeI5D6I4om7H7dRAOpn8dGr/QdqjprrcyfWLz/dBaCKdqCZqWhA9W+rfmnspuol3N7rxAxoHWcpTb3O7ZbtO1fa0vCki3oSqkBmD2nxDPF67Jd/Z2Vku+jp06BAmJiawuroKm83GP1Y3b95EtVqFx+NRGHbk83kF4k3ydKQIQc6ElMhLkoSenh40m02Fs2A7xLtWqzHiTUkfuWRSkm+1WlGtVhnxpmSB5Owo/vzP/xwA8Ed/9EcsqXfs2DH09PSgWCwiFovh6NGjOHHiBB577DGMj4/D6/Xixo0b0Gq1jHg7nU6mcGi1WkiS1JZnrka82wWZ2YiINxnSiIg3cbKpD0wmE0ZHRzEwMIBAIACfz8eINymg+Hw+2Gw2RrybzSYcDgfm5ubg9/sRi8UUiLeowEGINymT1Go1BeI9NDTEiHehUIDNZmPEu1gswmKxoFarwWq1KhRkwuEwq5OQ6oXX61Ug3uJzUavVePWC1CRI9WJoaAhXr15lygZJXk5OTiqUU1qtFiwWC6OkDoeDC9vo3SHVh060pytXrgDYRbyHhoZgsViYCjU4OIiRkRGmtqgR78HBwQO9h5TU036kLCPSDLxeL9bW1pjiFQwGGfEmeT5CvNX3kxDv/dRHaHwxmUycqNOqgdls5rbSeUlN5iD0h4mJXYOiUCjEiLeIYtMEqB3VRjxmp393CjqvmlrS7h4clCpyOzWQ/Ux+9vv3fu1pR0U86PWLz/e7paa0owW1M3q616KratKNbvyQxJ1ST9QKJrQ0SEGcUnV1/e0UA9qppNB5C4UClpaWYDAY8OCDD6JQKKDVajF/kiYGxP+lQjNaIo1Go7Db7XC73Zifn0c2m8WFCxeg0WgwPj6OM2fOIJVK4dVXX0Wz2WTZtkQigWaziUqlwkvdzWYTBoMBIyMjCIVCXKCn1WphNBq5cJH4x2JyTdsajUYuyKKQZRn/+l//64736dFHH4Xb7cZ3vvMdGAwG/Oqv/iqMRiOjhy6XC7lcju3NKdGme2MwGJgPTG0l50uSyiN6CAA4HA6eWAC3rNtpgkATB9JqpoT35MmTCIfDTGuhCUc0GoXFYsHQ0BDW19chSRIXg1LirtfrFSsJLpcLrVYLNpsN+Xwe9XodPp8P5XIZk5OTkGUZ5XKZ7z0ZoQBgFQeLxYK33noL9XodBoMB9XodfX19qFQqMJvNLE/YbDZhsVhQrVZhs9lQLpcZyTYajSiXy3A4HLDZbJycB4NB2O12TE5OIhAIIJfLoVKpsO63RqOB0WiEw+HgZIKKAUlSkeg5JBFIE4VAIACv18u0F6PRiKGhIaZf0PNP75SonGGz2RQT3aWlpbZmMeJ7nUqlcOnSJeYnp1IppNNp+Hw+nDp1Cqurq9ja2oJer8eP/MiPwOPxKIxliP5x6dIl2O12PPLII3tUJigZ288cRUz+xM+z2Sy7RhIFjJJsSirFMUpNl+tEXaP20bWITpWdFD9ExRWHw7EHQFAfmxQ26H61a+O7QWDbXSP9u5Oqx91QDTlo2+ieixKO+xn53O76xON1Miq616OratKNbnTjjqknagUTMjygEM05xCXH2ykGtFNJofPSEjoAxVK0qBgA3KJ6yLKMer0Ov9/PS/yZTIZNMMj0ptVqYXNzk3nHZDtOS8yEYopqGMAukr22trbnOzGRVlM7xIRSpGJQiJMXAPjCF76Ar3zlK/z3ysoKEokEjhw5gk9/+tPQ6XSKc4gKHvV6XXE+uhaKRqOhQLdlWVYk3QC4Dzpdj3jd9B0Z+QDgBFSj0fD9yefzWFtb4+0zmcweBRgxMpkMq4zQdsFgEBaLBX6/H16vlykUIhUBAJsxkdY7cKuPt7e3odfrkclkIEkSt4cSbVI1ERVP6JjValVhaFStVlEqlRT64hStVgvlcpnNddQKJkRnIf14omSQKg8ZLhHST9tTe0SqiaicUS6XFdQuUghR0zXUlIR4PM7UDepXMveJRqPIZrO8/+joKAKBAL9nRP+Ix+PMZW+nUgJgX3MUke4gfk7vLN13Wi0RaSWdlDbou05qSkQtIfWj/egI4rU4nU6sr693pMyJ24v36yB0l4PEftSWTvTAOz3nu22jup+INiS26XbHbkd5pON1Mir6MEc38e5GN35I4t1QT8TPaWmQgopaxO8PohjQTiWFzjs7O8uI99zc3B7Em8wxDoJ4E3omIt60JEs0h/cD8dbr9ZyYt0O81Ynu5OQk0yWIS/3MM8/g/vvvZ0RV5BX/sCLe4r0XqQhEc/owI96HDx8+EOJN1AdSzlAj3sVisS1dQ01JIIlNNeI9OzurQLzpuKKxDLC7pE/PQTuVCZfL1RbxFukQIuItfq5GvOlYIiVBTXe4HT1CbB9di4h4twu6FtEUqxNlTtxejXi3a+Odxn7Ulk70wLuhGnLQ/eieqxHvg15/O8ojHe9epYu8l+hSTbrRjW504y6GyWTCRz7yEXz7298GsJuQ/+RP/iRKpRJ+7dd+Df/sn/0z+P1+HD16FNeuXcPq6ioymQz+y3/5L3jkkUfw2c9+Fl6v9wO+im50oxvd6Ma7jS7VpBvd+JDGnXDjbsfbFnmPQPuCmnbSU2KFfLtjET+zXbEU8fxoG6/Xi2QyyYjXSy+9xHbXlUqFC+iIp0pV75VKBdvb29BoNHC73SzjR9bdRMfQarXo7+9negAhxbIsw2KxwG63I5FIoNFowOVyYXR0FCsrK6hWq/B6vUzNIGt2o9EIr9eLQqGAarXKNAFCgQlBnpiYwEsvvcSo6vPPP49/+2//LcrlMp5//nlcunQJAPCd73yH+/JjH/sY9Ho9ZmZm8Cu/8is4efIkxsfH8dJLL2Fzc5NpEwBgs9nYqOV20UlppV309vayjKHFYoHVamW0nJQyenp6YDKZkEgkuOCSrv3QoUNc0LS9vc1oe19fH0KhEOr1OkwmExqNBur1OiPpFosF09PTWF1dZdUU0gpPp9NoNpss12i1WqHRaBAIBFCr1TAyMoJarYZms6kofM3lcvB6vajX60gkEqyvDuyi+o8++iij16S2YrFYYDKZUCgUMDMzg/7+fkSjUVy9ehWSJMHpdCKXy6HRaHAxLVE0xsbGWNlla2sLpVKJVwR0Oh2Gh4fhdDrZct5oNGJkZATALlWAaCdGoxEnTpxAIBBQFAeSU6pYwEgoMNFrfD4f+vv7ubCW5BlJ3aS3t5fvg81mg9PpBADMz8/vKbAj7vPQ0BC/o8Tnpvd7Y0PpDktjwfXr15HP5/HQQw8BAMv/AbsrEqLVejvOLtV+pFIpJBIJHkOoWHtsbAw7Ozt8jts5YR6EX3wQ5136jvrAZDJhe3sbc3NzLO/3btwTD+rs245Lv5+b5N1wi+zEJ1fX43TqN7Ev2u3f6bflbsZ75dS/39FNvLvRjXs47oQbdyfOkMD+Elii9JQ4OLY7FvEz28mDAbs8P9pma2uLTT9GR0dx8+ZNNJtNlsWjYxBPldwPRTfISqXCVALRoIb+T9Ju4ufALu+YeOAAWJGDKBaxWAySJEGj0XCCTbxeWZYV3Gc6BiX/+Xwe/+7f/TtFv9frdf7hbBdf+tKXUCqV8PDDD8NutzOvlWThxCDFk4PEnaxiivKCpVJJYfpDx9nZ2eGJjUiTkSSJdcYpKW42myz1SLx4kXMunmt5eVnBlSZ3TJooFQoFGAwGdsqk54nkBkkxRqvV8nF2dna47eK9J8lCmpBRkI67RqPB8vIyTCYTlpeXmQaTSCS4H0RufblcRiAQYAMmOqZYGxAKhZDJZLgv6vU69xcp4NCkUXReJTk8UkcRJfto8koOjpVKBeFwmDXFtVotvy8ajQaZTIbvQzqdRi6XY968WlKOeNykiS/yuen9VrvD0lhA75zIu6f+1+v1irGhHWeXaj/IaRbYnUSQPOni4iI/XwdxwgRuzy/eb+xUf0d9kEql+H5R4t3unLeLduNou/3acenVbbsTbvad1vkAe38bbtdvYl+027/Tb8vdjPfKqX+/4wc68ZYk6WkATx85cuSDbko3uvGu4k65cftts58slPoYovTU7Y5F/MxOiLe4zeHDhxWI9+bmZlvEm3iqHybEWx3hcBh/+qd/2vG+OBwOfOELX8Dg4CAMBgNMJhNOnDiBZDL5oUO8AdzziDfJWu6HeDudThw7duyeQLzJKbUd4k2T03eLeLeTlCPus4h407ZqxJukA2ksMBqNbIQCgOX/6N8i4t3uXaHaD7PZfFvE+yBOmAfhF+83dnaSqfP5fIx473fO20WnMVkd7bj06rbdCTf73dT5tOvj/fpN3RcH/W25m/FeOfXvd3Q53t3oRje6cReCTFYoHA6HAiH+9V//dWQyGWxvb+Pw4cP4z//5P0On+4HGPrrRjW5044cyuhzvbnTjQxiidjZp2O7HUbwdN4/2efPNNxGNRtHf369QTiiVSvje974Hm82Gj3/844plwIsXL+LChQtoNptwuVw4ceKEAt0my+yZmRkUCgXEYjE2sCmVSox8Pv7444y0SZKExcVFXr4VzW00Gg3GxsawubkJSZIwNjaGtbU1lMtlNmCxWq2w2WxotVqIRqOs2mE2mxWqIo1GAyaTiRVAqtUqUwnIKMdkMkGr1SKTyTCargYlCN0kKkokEgGtprUzpBGTbqIH3H///ZicnEStVsPv/M7voNVqMVKvlvHT6XQKS3q6PkmSGPkm9Yx2QeYyooKJVquF0+lk6oH6+ggJJpSZ5PZoX0KgSSVFr9fD5XIxxcPpdKJWq0GSJJbxo31brRbrq8uyzKsgRCcgRQ+bzYaBgQE88sgj/BwT39npdMJgMCAejyOfz7PderPZVFCEqH9cLhesVisMBgPS6TQqlQqsViscDgcAsLKFy+XC6uoq1tfX+RmjFZOpqSncuHEDuVwOer0eVquV+8VkMmFqagqVSgVerxcbGxusokKIcCqVQq1Wg9frRU9PD78b5CQ5OjqK2dlZXL58mVd/qN/IhbOvr48Rcr1ez30lvodk2U1c6Xw+j56eHjY0Uq9IqbX2U6kUc7PNZjMb99A9stls0Gg0sNvt8Hg8jFheuHABiUQCfX19OHPmDLeB7uny8jIsFgs+8YlPdORmA7tjzOLi4h7+NI0VoqIItVv8nK7NZrNhdXWV3x/qB1FvXDx2u/FS5LVHo9E9uuYiP1uSJMWYFQ6H4Xa7cebMGR6X1freLpcLoVBIwXnfj/us5oS3q9chjfeDcs0P4tkgejWo993Pj+HdcKvfDVf9dhz5e5Xr3U28u9GNezSI99jJVnc/rh/Q3rp3Y2NXx7ZUKjEvlBK3nZ0d1Go1pNPpPfy7xcVFFAoFNJtN1Ov1PXzuaDSq+Jw4qETzIOdDNbeUZPyI/0qW39R+4nuS9TdwK6HNvGMhT7J+wC63V5TuI+5vsVjck7SK34vSdp3oHLRtq9XCs88+i3w+j3/+z/859Hr9HolAdZTLZTQajdta0YvRLplXTwg6Jd3ALf6yGM1mk1081SHyrcV2ivs2m00F17nRaCj6W/xOvS+wy6snHeRgMKjghtPxKpUKarUafD4fALC+O9En9Hq9wnI+nU63nbhQe8rlMredOOfZbBYWi0XRlmg0yveRJiWSJCm46PV6XXGNxFX3eDwKLe5isch29LRvPB5nypL4jBHvW6x3IEoPtTkUCrGDKH1GXGOROw2AudKtVgvFYhE7OzvMkxbfWbXWPunb0yTZ6XQilUohEAgwzYo49+VymTm8wWCQxxOyPiet/p2dHVSrVdRqtX252cCtMUbNn6ZtRQ1tsd3qa6Mxjd4v6gdRb1x9bHrO1Jxu4pbncjmFrrmany2OWZIkIZPJoK+vj8dltb63aEVPnPf9uM9qTni7ep1O9vadYj/uO3k2dNLRpm3E9u93zIPEu+Gq344jf69yvbuJdze6cY+GqJ3dzlb3dly/TrzGWCzWFvF2u92MeKv5d3Nzc3eEeBuNxraIt9pK/sOMeANAJBLBoUOH9i1+PHXqFJ566ilGERuNBvOAfxgR77m5OUZ6AXREvMXnmPjO7xfiPTo6itXVVTQajXeNeB8+fPg9Id6tVkuBeHu93jtCvKm/iCt9EMRbXashWrMT4k33SI140/kikQgj3mIbqB6DEO/9uNkAeDxQ86dprBARb2q3+PntEO/bjZ/tON1qxFscv8Q2tEO8xXFZre9NZkfifduP+6zmhLer1+lkb98p9uO+0++O6NXQbptOfgzvhlv9brjqt+PI36tc7y7Huxvd6EY3bhOlUgm///u/j1/5lV9BtVpFT08PAODf//t/j9/4jd/AF7/4RfzSL/0Sbz84OIjt7W08//zz+PjHP/5BNbsb3ehGN7rxAcR+HO9u4t2NbnyfohMnux1PTfxOzQXc77iAErnx+/3Y2dlBJpNhtQRJkrC0tMSoK9lHk/tff38/zpw5w9rbhMAQAkQcblJyMJlMaLVaGBwchMvlwvLyMttz63Q6aLVaXpomJFyr1eLEiROIx+NIJBI4evQoCoUCgsGgAonVarXQ6/UwmUyQJEnxndFohNVqhVarhc1mQ71eRzabVaC0VPCo1+thsVgUCCxRFuh7q9XK9tniuKjT6fCnf/qn8Pv9ePTRR/H666/zdyaTCSaTaQ/F4td+7df4nGKQ4gidj1wSyWlQbCMpQUSjUQBoi+i3O7bNZlNI7REabzAY9kj7aTSattQacnrU6XRwOp1syd5u297eXvT09CCRSDDSLUo6ijE+Pg5ZlhEMBqHRaBTX5XA4YDAYYLPZUKvVWDKSnptsNotkMgmbzQYAbJmeTqdhMBhQKpVgNBphMpn4mbbb7Thy5Ai2t7cxOTnJGvEOhwPb29sYHBzE5uYm01EajQZsNhtGRkYQjUZRrVbhdDoZ4T9x4gRsNptCv16WZWxubrLjZKVSQTKZZHdTUorRarVwOBxYW1uDLMs4dOgQhoeHsbS0BI1GA51Oh3w+D7vdzveyp6cHRqMRdrud3/+LFy9iYWEB/f39OHv2LADsGUfos3Ya16SRT2oj0WgU6XQa8/PzTHEQdatv3ryJnp4ePPnkk3u4wGr96pWVFSwsLMDtdmNqaor5yGoHTjVXud02at652A/q64vH47hw4YJC51u8jk5+BPtpe4vnAKDgaYfDYWxtbSGbzWJ+fp6pMZ2Of7e5xneqx61uA/WryEUX96Gah0gkAp/Pp9jmvbbr/Yr3u8/vNLrFld3oxj0QnTjZ7Xhq4ndqLuB+xwWU+tzhcJi5eKQPTJxEsrsWubIiV5O0t0mbV9Tqjkaj3C76fygUwvb29h5tZopMJsOUCq1Wy5rVpM2r0+n2JLDEza1Wq3uoH8Qd1Wg0zPMVzw3c0qIm7q36uGI7O/GTG40Gy7VduHCBP//85z+Pr3/963tk/wqFAqxWa1vFEmqPeD5RS1ts49ramuL+0P7tkm7x2J1oL+30tDvx2UVd6lgs1nYbCuIuq/u3XYRCIeYoq3XRs9kstFqtgrOt1WqRTCaZZiHLMnON0+k06vW64ljUN9QX+Xwey8vLzM8l2cmtrS3odDosLy8ragSA3f4LBAJ8X+mYGo1G8Q7R+xGLxfgZrdfr3KZcLgetVssUCJ1Ox5QoANja2kIymWSZSGpDpVKBVqvlthDfmt5/4kKXy+U9HN92Ov1qjWvSyCeOOLVZ5BaLutX0zLXjAqv1q/1+P5LJJHPr1XxmkeOs/r96G+pjkv8U+0F9fbStqPMtXkcnP4J219RpLBV52qStTgXi6sR7v/qbu5EEHuR4+7WB+PwiF13ch2oeisUiKpWKYpv32q73K97vPr+b0U28u9GN71N04mS346mJ36m5gLc7rvhv4uGJiPfc3NxtEW9Re7sd4m00Gt8XxBvAPYd4U7EfcCuh+/mf/3kMDw9zgqjRaHDq1Cl86lOf4utuF3eCeE9OTv7AId4jIyM/MIg3vR9Op/NdId7Dw8N3hHjTOz03N8eIt5rj2w7xpiCuMWnkqxFvkVss6lYT4t2OC6zWbJ6dnUWlUlEg3iL3WOQ4q//fDvEWeefqflCPpZFIRKHzLV5HJz+CO+F9izztcDgMSZKQzWYVnPROx7nbXON3o8ct/k39KnLRxW2o5oEQ74O2+4PkVL/ffX43o0s16UY3utGNNtFqtfC1r30NX/jCFxSf/+Zv/ib+zb/5N3jzzTfx8MMP4yMf+Qj+8A//EOPj4x9QS7vRjW50oxv3UnSpJt3oRje6cYfx3HPP7Um6gVuybWfOnMHrr7+Ohx9+eI95Tje60Y1udKMb7aKbeHejG7eJOy3SOIiRjRjtCoBWVlbw2muvodVqKUxnxKIuUUKLCq/IICcUCsFoNOKxxx5DNpvFwsICnE4nhoeHYbPZ8NZbb6FWq2FgYACxWIxl6RqNBk6ePIlwOIzt7W2WaqtUKnC5XNBoNDAYDMjn80wlaLVaaLVaaDQaMBgMrAHdarVYxo/0jA0GAyRJgtvtZk651WqF0+lEsVhErVZjrqdofT44OIhCoYBCoQCfz8eyfqVSia3BiX4hSRJMJhPK5TIv95MMWi6X48/UVAiz2Qyj0YhUKoU//MM/hMvlUnxPTpS/9Vu/hXg8zt+/8MILe+6pTqfbw2PeL2w2G0sNZrNZ7jO6/t7e3n156DqdjqkZIq9eDIPBwNJ6Ho8HRqNxTzGr2Bflchl6vR56vV6hYU73kCTypqam4HA4EAgEYDKZcOXKFZYa1Gg0LH+n0WhYVtBsNkOn08FoNEKr1SKRSECWZRw/fhzpdBqRSAR2u531mM1mMzQaDRey0TtTLpcRDodhMpn4GdPr9bDZbBgfH4fFYsHbb7/Nn8uyDK1WC5/PB7fbjXK5jEQiwe/KysoKlpeXodFo+Pl56KGHcOXKFeTzeUiSxP2XTqfh8/kwPz+vMAKid8NqtUKv18NoNEKn06FcLuPYsWMolUpszU5tN5vNiEQiyGQyOHToEOr1OtNTBgYGmNogyzJLINJYQOPE7OwsCoUCc8eHhoYwNjaGpaUlVKtV2O12yLKsKKIEbhnXuN1u7OzswGAw4MEHH2SjmuvXr3c0yJFlGWtrawrTG9F8plAo7CmqFE1egL3F4GozoHK5jGKxiEajgYceekgxFtKYR/u1MwZ6N0Yy6mOGQiGkUimEw2FUKhXcd999e6g+d3qudvuJBbBiQe1BDGPE3xF1H6m/38/I6P2O/QpY3017Ot2/D7Kw8nbRpZp0oxu3iYWFBTYTmJ+fv6PtAdx233PnzvGPxTPPPMOfUVHPxMQEmzY4nU4u6qIEBthVwJifn8fCwgIuXryIbDYLnU7HP85UJDU8PMzJBoVGo+GCN41GA4vFwkk4cCsBpqSDEm2R70vftxtP1J+3M7KRJInbcZBox1e+G/Hbv/3bsFgsCkOcsbExNjkxmUz4qZ/6KRw+fPiun7uTCczdDOpng8EAk8nUNum+0xgbG0O5XIZGo0EqldpT4Hq7toiFhUajkbnW6jAYDHC73fjlX/5lfmcikUjHZ87tdqNer+8xEQJ2Jyp2u535+/SubGxs7Cm2tNvtbY+h0Wig0WgwOTm5xwhIfY2U8NNEVJwcUeFg5h0XREmSYLVaUSqVYLFYFEWXJpMJFosFExMTPBbQOOFyuWA2m7G1tQVZlmEwGOBwOLiQWqPRwGQyYXh4mMcZAHj22WdRKBQURcLE6aY+pgkyJddUbJxMJtFqtWCz2fDLv/zLAG6NZ+L4ZDabOWmkifXMzAwAKMZKOu7/v703D2+rutb/361ZtmXLsxPHsePMgSBiyABNgSR0oMzzpS1cWi7QUrjfS+fSiQCF0qdQaMtlKHP6a3vbQhnCVIZAgZAJFZHEcQYcK7bj2Zasedy/P5y9OUc6ku3EthxnfZ7Hj6Uz7LP23tLR0tLa7xL7mpqaMDg4KL8EVldXq+6F4p4nzlNex263j+ierXV/T20zFAqpFpSbzWY0NDSM+B6vdS2t88R1xXblfd3r9Wbtl/JzJHWMUvdfdtllo/5cGysyjYHWeIy2PeU45qJvSijVhCCOgNEu0si2QEcLrQVADodDFghJjWCIRV3KiLdyQUl3d7eMeDscDop4jzDibTQaEY/HVU53YWEhBgYGwBiT+dwmk2nY18DREvEGcMQR7+rqahnxrqqqOqKI96JFi7JGvMVCNvGeMZvNGSPedXV1o4p4OxwOWCyWtIi3w+HIGvEW79tcRLztdrvqPuH3+8EYyxrx1iqO5XQ6UVNTIyPeyiJHZrM5Y4GcGTNmyIi3QFl8JjXirVXkRWsxuPJ5SUmJjHin3gsBdTEXrcJAw6F1f09ts7W1FVarVUa8Fy1ahKKiohHf4zNdK9sCWOVC0pEUjFF+jqSOUer+TP2eCLKNweHYk2n+JuvCSoAi3gRBEACA/fv3a96oH3vsMSxZsgRLlizJgVUEQRDE0QZFvI8yJnt+0tHIkYypsijESAoJKPMDU4veaBXGKSgoQFNTk0qCS6SIbN26FQaDAfn5+cjPz5cRHcaYqoRyfX099u/fD6fTienTpyMcDssUiT179qjSOqxWKwoKCtDX1yd/vu/u7pbl18XP6kJyT0SgU38iFyi3H0m6hEg70Ov1MJlMMJvNMnoormE2mzFr1iyVzrLyXEF5ebmMoo4UkU6ibK+mpgYDAwN44YUX8MILL4yqLyJtoKKiAh0dHTKVh3MuZRaVfRgrhO2pKT52ux3FxcXw+/1SO1w5bmazWTNNREtyMC8vD/n5+fB4PHLuy8vLpRRgd3c3kskkbDYbqqqq8Mknn8BoNGLmzJlobm5GLBaTMpRCvjEWi0Gv16OyshJVVVUyGi2k/ESqBgCZAyvSUkSlUGGvkPabN28empqa4PP5MG3aNOzevRvhcBg2m02ms0SjUQwODiI/P1/+chOPx5Gfn4+CggL09vaqXvecc+Tl5aGkpASLFy9GR0cHmpubEYlEMG3aNLS1tUlZQiHdNzAwAM458vPzwRiT8p0mk0lGsEX+8yeffIK+vj753jMYDCgtLYXZbJb52cpcYK/Xi/7+fpSUlGDGjBmorq5GU1MTOjo6EAqFkEwmUV1djfr6enmf0SqaIr50bty4ER0dHTAajVi5cmXaupNgMChfw2VlZVLSsaSkBMXFxQCgulel5iVnuz8q7RH55T6fD/PmzVPd57QKCA1XTGb79u3y9aTMc9f6bFDmqYu58Xg88Pv9aGxslL8ejiYHO/UY5WeAGCsxB6mFibT6cyR55eLaoVAIVqtVXme4Im+jyZ0fLdlytbMVmTsa/SRyvCchk1n4/WjlSMZUWRRiJIUEmpubZdGa1KI3WoVxQqEQgsEgvF6vLDohihwIPWJRPKK3t1fu1+l0cDqd8me1f//73/KDoaSkBE6nE4ODg2mOsCiSI64t7EhNYxAOiCBTCoNy+5HkKAvnLpFIqOxSXiMSiWDv3r1p10l1DJVFabKxfv16bNu2DbfeeqsskAEM6U2fccYZqKyszFiQZiR9ASAdQuX2bCkhR4q4RuqXDpF3q0ylUdqZKTdbS7tb+RoS9PT0IBwOS71jAFJXPZFIIBaLqeZOOb+CRCIhHUaRf62c62AwKJ+Hw2GZQ7137155vtgm0paEpnh3d7c8X6S+iHMApOVxDw4OyqI9Wv1PJBJwOp3ScQcAt9utKmQUi8VU46oc+3A4jIKCAvkeFvcE8SVNnCfGxGazyUIwymI4wsZAIADOOXp7e9HZ2al67x84cAAej0feZ7SKpohccbfbjcHBQVl0SFmMpqenR66t0Ol0so/i+uIeorxXpRYIy3Z/VNrjdrvl3Pn9ftV9zufzpRUQGq6YTGtrK7q6umA0GlX90vpsEIV3lHNjt9uxY8cOhMNhqfcv7FfanFoMTatfqUWDlPd1AGmFibT6M9LPM62iQOLag4ODKCwslNfJVIQmteDRePgmWn3KNq5Hs59EjvckZLLnJx2NHMmYKotCjDSPLzVXMdUOZWGcTBFvu90uF36lRrwbGhrSIt6iihpFvEce8RYpaM8++yw+/vhjAMC5556LhoYG1QK90TrfkznibTabxzXiXVhYOKki3uJ1NJ4Rb1G58kgi3iL/ORqNZox4K/NzRS6wVsTbbDZnjXhny4ft7OyUEW+tdSejjXin5iVnuz8q7RH55akRb8aYZgGh4YrJBAIBWK1WhMNhVb+0PhuUeepibjweDxwOhyriPZoc7NRjlJ8BqRHv1MJEmdo63Lxyce2SkhJYrdaMRWe0bB5p7vxoyZarna3I3NHoJ1GON0EQxxTCyROLBJVMmzZNFaEmCIIgiNGSLcdbN9HGEARB5Iq+vj7cdNNNMJvNmDNnTtr+pUuX5sAqgiAI4liBUk0IgjhmKCsrk48/+eQT1b4bb7wR3/nOdybaJIIgCOIYghzvSYJyha6oTKisZHi4iKpkyspiY8mRVHUc7nitio6jaTfbNqEKktp26grwDRs2oL29HaWlpTCZTJrV04BPK6yJvFBl/rVy9frixYvl/JaWlkod35KSEjgcDuzfvx/vv/++zDMVWthiwSFjDCeeeKLM4e7q6kJzczMSiYTMW43H4+CcS91ioYUbCoXg8XhgMBhkzur06dPlAk69Xo+SkhIkk0mUl5djYGAAer1eM/UiU7EcLfLy8lQa24LRprkprylypJPJJGKxGLq6uvC3v/0Na9asgcPhkAvAxPU45/B6vbItk8kEu92O7u5uua2srAxPPfXUqGwaje0CYbfWokVgqG9GoxF6vV4zt1zojYu2UovNiDx7kU8uxkzkVOfl5aUtpBU64GKeDAaDLKok9Ljj8bgqf1/kywpt7JKSEsTjcXg8HpkDrCzCJDS9bTYbIpGIrBKaTCZhNptlvnt5eblctCfOLy8vRzAYRDKZRHFxsSzEItpLJpNIJBJIJBLy9VZQUIDi4mL5fl+9ejWKiorgcrnAOZfv6/b2diQSCcybNw99fX3o7e1FbW0trFYrDhw4IBc6JpNJ1NbWIhQKob+/X45Pfn6+XAQq3mfhcBg6nU7mz3Z3d8u87mg0iv7+fqmHbzQaMWfOHHg8HkQiEakT3dfXh3379iGZTGLmzJk466yzAED2p6mpSea89/b2IpFIwGAwYMaMGXKtSKZKkWK7yLW2Wq1gjOHjjz+G1WrF3LlzsX//fjDGsHjxYnR1dWFgYCBNVUWp0S3us9nu21qqGdu3b0d3d7e8t86fPx+7d++Wik4VFRWa6idabSr7NxIVjEwqHqltCXWVpUuXwuv1qj5TlWOhVY1Tq79ijYIytzuTCko2veuRKppoKcsMp8IyHKNtI9tYH45SyXDtTWbVkynteDPGzgVwrtZPypMN5QpdUZlQufL6cHE6nfD7/XA6nePieI92ZfFojhcry0cyDtlWRGfaptPp0tpOXQEuKtIFg0FZTMTlcsnKYOK49vZ2WSlLVPFLVSsAhhYdiflta2sDMKQeEgqFYLPZpDKJ0ilTOl+cc5VqSTQahdfrBedcKjWIc5VVAcXiPkCtQqJ0qhOJBHp6emAymeDxeGCxWGQxnFRG4zQr1S+OZE2J8txUxZV3330Xvb29aGpqwsKFCwEAH374IYLBID772c8CgMrJXrRoEfR6vWrbeJJqezZS+5ZKatXDVJSFjZQIx1ar4meqUz0SNRulKol47Si/HCnbEMWERDEmvV6fpvAh6OnpSVvQqVSpEc6+6ItYuCiqpwYCATDGEA6HpUMKDN0LS0pK4PF40N3dDcaYSoVEqbjidrtlESYlbrc7rcKq8v2ZqqaTSCTQ2Ngox8Pn80kVEKU6S2Njo1xIKO4x8Xhcjn1ra2uagkcwGFQtEE0mk/ILklBHUt57bDabPF9s93q9YIyhsLAQfX19CAQCCAQCCAaD8nUi7jOJRCJNVQUA+vv7VYoT2e7bWqoZWmojQkFFqMJoqZ9otans30hUMDKpeKS2JdRVXC4X+vv7VZ+pyrFQjrGW4opSjSZVpSqTCkpqO6ltZiOTKshIVFiGY7RtZBvrw1EqGa69yax6MqUdb875iwBePPnkk6/NtS3DoVyhKyoTplYYOxxEVTJlZbGxZLQri0dzvFZFx9G0m22bUAVJbTv1HLfbnRbx1qoMJqLKWhFv5ep15fzOnj1bFfEWK/aHi3gvWrRowiLeRUVFkzbizTnHT3/6U3zxi1+UDnQ4HJbl5F988UUAQw7PqlWrVDffgoICGAyf3v7OO++8UdkyWijinfuItyjx7XK5UFRUlBbxnjt3bs4j3gUFBZoR75qaGlW0s6GhYUQR70yVIsV2UY3WarVixowZw0a8U1VVUiPeQPb7tpZqRiAQgNlslvdW0YZQdFJWzNQik2rHSFQwMql4pLYlvhSJSsDKz1TlWGSLTiuPFZUpU9VMhuvXSFVcUtvQUpYZToXlcNse7vhMY51p2+G2N5lVT0jVhCCIo5KdO3fi+OOPR15eHqLRKOLxOBoaGvDuu+/iggsuwOuvvy6P/fvf/46ZM2fKX31uueUWrF69GmeeeSYeeughXH/99bnqBkEQBDHFoMqVBEFMOXbt2gXg01QWUYyksLBQRmYXLlyIUCiEG2+8Ed///vfluclkEmvWrMG///1vnHDCCRNvPEEQBHFMQnKCBEEclQjHW3DqqacCUFfPvOeee/Df//3f6OzsxLe//W0AwMknn4ybb74ZAHDiiSfKCoYEQRAEMd5QxHuCybTSVqwELy0tlQv/Vq5cqcolPpwFAqNVNUldkZ66YjtVcSW1P8Mpkbz55pty/5o1a+Q13333XZlPKCqUjWQVe+o1leOltBUAtm7dCpvNhlNPPRX9/f3YvHkzLBYLzGazKt9OqQRQU1ODd999Fx0dHXJRlcVigdVqxfLlyzFr1iy5sru1tVVWcevu7obJZEJVVRXMZrPMo6ypqcGePXswMDAgF6QwxpCfn49QKISKigrs378f0WhU5uYqq0EyxjQXfQkYYygrK0N/f7/M782UTlZeXi4XUun1euh0OtVCutHkcY8nqQvtEokEgsEg/vKXv8htYlEdAKxatQonnHACPvzwQ2zcuBGJRAKrV6/GwYMH4fF4cPbZZ+PBBx+c8H4A6r4oc6D1er2sbMkYQzKZRElJSdpiPSV6vR6MsbQcb6vVKhcaGo1GmX9aVFQEnU6HgYEBAENlvUW1yoKCAllBVWmrwWDA9OnT0dnZqVoAKXLADQaDrLBqMplk7rPBYMDixYtx8OBB9Pb2ygqeZrMZ3d3dsoQ8YwwmkwmRSASJRALFxcXIz89HWVkZCgoK8PHHH8NgMCAUCsnXvMgHFhVNxXjp9Xrk5+ejqKgIfr9fvq+8Xq9cRGixWGSp+fLycvT19SESicBkMiEvL09V8XLTpk3o7OyE1WpFNBqVOeoWiwUOhwODg4Oy8uwHH3wAv98Pi8WCmpoaWR20p6cH1dXVWL58OVwul0qlZPny5ar7jVAYEYjFksDQQta+vj75fvR4PLICrSgZb7fbsXjxYrS0tKCtrQ0WiwUnn3wyBgcH0+4XIg9dVM1UKlMAwPbt22Wlx8LCQvkZcNppp0nVkX/9619SqUksCHc4HCqFCnFeYWGhXFOTuj5GqdJSXFyMFStWyO1ibLq7uxEIBGQF24qKClWVX2BIgaqrqwvLly9HUVGRvL8LxajUzwNlZUqlEsamTZswMDAgx2Y4xRHlvmzbXS6XHC+lwoly3LIpcYz1vt27d8sxslqt8vNJOaYjUYsZD45E3eRogBzvCSbTSluxErytrU2uJk9VzzicF9VoVU1SV6SnrthOVVxJ7c9wSiRCds/lcknH2+Vyobe3V9orFkWMZBV76jWV46W0FRh6g/b396Oqqgputxu9vb2Ix+OwWCyqFeZKJYD+/n50dnaqFsOFQiEkEgk4nU4pUyfOGRwcxODgIOLxOILBIMLhMCwWi1QOEO0lEgkcPHhQLqAUH7perzet5LryOec8o9Mt9mdz1pQojxML01LbmgykLkLcvHkz/vnPfwIYqjQpFFtqampw2WWXYeHChWCM4cwzzwQw5CSedtppE263Fsq+KB1mLSWS4eYxdb4EyteH8rHH41F9mfJ4PHKhZygUQkdHR5qt0WhUpfyRanssFkNvb2+a0kc8HkdjY6NqQWZHR4fmYlDl84GBAQSDQQQCAfkeEso8AmVZ+1SFF1H+XRyvXAQJqBVIlEo/0WgUsVgMOp0O0WgUoVBIln4Xjrr4MmMymeB0OmG1WuUYK5WFWlpaYLFYMDg4iEQigdbWVlgsFrS0tKhUSiwWi+p+I+Qutb7whsNh+bkgxjMWi0mnWzx3Op3S0Q4Gg9JOpZQmY0yWolcqL4lAgLBPKG/s27dPLsZVqo709fUBgGosbDabSqFCfHbs27dPqkilKkIpVVq8Xi8qKirkdjE2XV1dcgGtXq9HIBCQyi1KBap4PC7Va8T9XShGpX4eeDyetM+b5uZmOU/ZPosyfY5n297e3g4AUqEl9bN1OCWOsd4n5jAWi8kvWEqFGuXcKOfjcFVQRsORqJscDZDjPcFkWmkrVoLPnj1bRry1ogOjZbSqJqkr0lNXbKcqrqT2ZzglEq39InqUGvHORLZrKscr1dZoNAqbzSb3Cac4NeKtVAKoqanB4OCgZsS7oaFBRryFcklJScmwEW+r1UoR71EgosSvv/46ysrKpAyjzWZDX18fGGOYM2cO5s6dC71eP2x7yvGcaI6liPeiRYuO6oh3KBQas4i3uAcpVUocDofqfiMURgRjEfFuaGjA4OAgSkpKVK+R1Ih3qjJFIBBASUlJWsRbqTri9XrTIt6pChXitTdcxFuotBQXF2uqr5jN5mEj3m63G11dXVK9RtzfhWJU6udBasRb2Nzd3Z0W8U4l0+d4tu0iuJKqcKIct2xKHGO9z+FwyDEaacT7SFRQRsORqJscDZCqCUEQk55wOCyjarW1teju7kYoFMLnPvc5PPTQQ0fVTZcgCIKY2mRTNaFVRQRBTCoikQiee+45LFy4EE6nEwBkERJgKLJ1wgkn4Omnn8Zrr71GTjdBEARx1ECON0EQk4pf/vKXuPDCC9HU1IQ777wTnHP89a9/VR2zcuVKXHnllarCNARBEAQx2aEc73FEqG1YLBYcPHhQKouIVbjKFcIff/wxXC4XqqurceDAAYRCIcyfPx+XX355mmrHxo0b4fP5sHTpUpkvxxiTOXTKRY1CRaS6uhqRSATFxcWq3Dih7iGorq5GX18f6urq4Pf70d3djZ6eHoTDYdTW1mLVqlVydfhwK8K7urrQ2dmJqqoqrFixQiqQbN68WdohVqzH43HZn02bNqG1tRVms1nmfHd1dckcQJG/t3z5cgDAq6++imAwiOnTp+NLX/oSgKF8NHFOSUkJotGozJctLi5GIBBAIpHAzJkzYTab8cknnyA/Px86nU5WPxTj09LSAuDT/FxRNVFUB6yqqsKsWbNQWFiIPXv2YHBwUFaLtNls8Hg8CAQCiEQiMoe6sLAQZrMZjDF4PJ60Mt6jza+22Wzw+XzDHne4+c0Tme+tdLJfe+01mM1mOW5VVVXo7OzEvn37sHbt2lG1yxhTVUgU28ayX4fbnsFgQGFhoczrFYtolbYeDiI/WVRAjUQiYIypXru9vb1y4ZqwXZmLnvqaEbnU4j0kKCkpQW1tLQ4cOCBLw1dVVcFiscjccZPJpLq+yMlXrlkoKCiQiyqFLeIcsV8og3R1dSEYDKK0tBT9/f0wGAyoqamRShbinrN161a5WLSwsBDhcBher1cqE4l7TiQSkfnmIne+uroahYWF6OjoQDgcRiwWg8FgQH5+Purq6lBZWYmmpiYEAgGZP6/X67Fw4UJUVlbC7/ejsbERlZWVKC0txd69e9HQ0ACfz4ctW7bIhcEiHz8SicDr9aK8vByFhYVysajf75f54so821deeQUHDhyAwWBAfX29rNIq+i0WbhYUFGDVqlUqNSq/3y/tmTVrlkoZRKxfUSpEKe/5SpUQLfWtTGpTI1WpsNvtUgFq+fLlKCkpkfYtWrQIjDG0tbWhr69PNS6ZPgtTUSqJ9fX1wWKx4MCBAygrK8OSJUvkOh8tpRaRr52aFz2axX2Hq1KSOkaZrp1NYSU1Z1+pzKVUXtFq50jsHm0fpirkeI8jQm1DfCAIZRGxCle5Qliofezdu1d+wOzdu1fVjlgR7na7kUgk0laIi1XjypuNst28vDx4vV7VanC3242+vj4Eg0Hk5eWht7dXFiKxWq3o6uqSH/4tLS0qtRCtFeH79++Xih/RaFQqe1RUVEgFkt7eXmmHWLFuNBplf1paWuD1elWr7hsbGxGLxdDR0YGBgQEYDAa5Ol0oCrS1talWYCvPUapFiA9HYGj1vnCilaoPoVAILS0tqmNFG8rFbMlkEh0dHTCZTNi3b59UNgEgbRXlpJUMDg5Kp0PLER6t8zYSpzvTtUbCRK4FEQoKBoNBpUJxyimnYMWKFfB4PJg5c+ao2+WcpzmyY92vw20vHo+rXmtH0paSTAonwNBr9+DBg5rnpco3KkkkEvI1rmRgYACBQACcc/lFsq2tTdWP1C+YWijnPNUWsV+n02Hv3r1S8UTZj5aWFqlkIe45PT09chFxf3+/XNgplIn2798vVUhS6ezsRH9/P8LhsOxLIpGQC6Db29sRDAZV78FYLIbGxkZYLBbs2LEDkUhEKqUkk0k4nU4Eg0E5Hq2trTAYDEgmk1K1RVxXfGEQDiWANAUSoUok7tHKfgu7wuFwmhrVjh07pD2cc5UyiFBsynTPV6qEaKlvZVKbGqlKhdvtlgpQys8G8by0tFS+vlLHReuzMBWlklhBQYFckB4MBqHT6eT7RUupRSzWTVUCGY3jeLgqJaljlOna2RRWlGoqgFpBBvhUeUWrnSOxe7R9mKqQ4z2OCLWNqqoqGfEGPl2Fq1wh7Pf70yLec+fOVbUjIgednZ3w+XyqSEJDQ4P8lq9lQ6aIt1D3KC0tBZAe8Rar80XEW7k6fLgV4cqIt1KBJBwOqyLeQqVA9Ke7uzst4r1o0aK0iLfoa0dHh4x4K1dgi3OyRbyFAoFWxLuurk6uxgeyR7xFVGzPnj0wm80U8T4MXC4XzGYzurq6cMopp6C0tBTr16+H0WjEf/3Xf6G8vBw6nQ5FRUWH1T5FvMc34l1cXDypIt7Ke44Yg9SIt4j0inuOVsS7qqpqRBFvoVYkxmjhwoUoKiqCw+EY14h3TU2NjHjX1dWl9bugoEBGvFPVqBwOhyrirVQGUUa8te75SpUQLfWtTGpTw6H8fBRjKtoQ9omIN2MsLeKd6bMwFaWSWF9fH6qqqmTE2+FwyIi3llKLUKDRUgIZKYerUpI6RpmunU1hJVVNRanMpVRe0WrnSOwebR+mKqRqQhDEpECZr/3cc8/h/PPPxy9+8QusWrVKVqUkCIIgiMlONlUTingTBHHEPPTQQ1iwYAHOOOMMzf3xeFzqTitpb2/HZZddlhad+uxnPwsA+PGPfzwu9hIEQRBELiBVE4IgjgjOOb75zW9i1apVAIZyU3/wgx/gc5/7HIChHF2j0Yjvfve7aee+/fbb2Lhxo6qE+y9+8Yu0gh8EQRAEMRWgiDdBEMOSTCZlTmUqvb298vH69etx7rnnqvaLRcL33nsv7rnnHgBDZd/9fj927typOnb//v2oq6sbY+sJgiAIYnJAjjdBEMNywQUXoKamBg888IBqezKZlI41gDSne+nSpfjoo49U2zweD1asWCGf6/V6XHLJJTjhhBPI6SYIgiCmNOR4jyM9PT3YuHEj9u7dK1U3KioqsG/fPjgcDrS1tcHtdmPatGkoKipCV1cXBgcH5Wp6u90Ou92OlpYWMMZQUVGBhoYGcM6l9qXyv1iFXVNTg/b2dgQCAVn5D/hUjWD27Nlwu90oKiqCxWKB1+uVShFiZb/Vak1TLairq0MgEJDqIEajEbNnz8bg4CDC4TAsFgsKCwvhdrtRVVUFu92OXbt2wWAwoKKiApxzmM1m7N69GwAwf/581NXVoampSdpTX18Pq9WKYDCI7du3gzEGi8WCRCKBSCQCs9kMs9kMAFJVYOfOnRgcHERhYSFWrFgBv9+P3t5etLe3S71V0Y/p06fD7/fD5/PBYDBIlRG9Xg+LxYK8vDz09PTAbDYjPz8f4XAYwWAwbW5How6i1+tRVlYGvV4vNcuBocWEQsEiVTItGwaDAfF4XCpoHK5SyWh45513UFpaKrWzxfg2NTVh165dGc9LXdR88cUX46WXXlJtSyQSWLhwIWKx2Ki1uSc74hcCzjl0uqHMvkxzbTKZEI/HR/VaGMn1OeewWCxgjEn1EK3XjHhdZbJNyN3FYjHVuQUFBQiFQqptjDGUlZVJJZ9QKCRf74lEAnl5eZg/fz4++eQTee1YLCb7H4/HpbKKTqdDcXExBgYGkEgkYDKZ5HvGZrPBYrHA4/EgmUxi1qxZKkWKwsJCbN++HcFgEKFQCLFYDFarFRaLBX6/X7YrlIm2b9+ORCIBo9EIxph87wqb5s2bJxVGhFKJ0M0G1NrQQjJQOb5GoxGhUAg6nQ55eXmIRqPIy8tDVVUV2tvbMWfOHITDYXR1dUm1h+LiYlRWVsLpdMLn86GqqkpK/S1atAgFBQVS87qrqwuVlZWybgKg1p4WiimitgIAbNiwAe3t7aiurpbpYqI2xPbt2xGJRGCz2RAOh1FUVISysjJUV1ejtbVVvp7EXFRXV6sUKpR60SPRhRbXVmo7i1oTFotF6rPv378fTqcT06dPl2OkVOvK1K5SK3o4feqRammPVH86m662y+WCTqdTjZ+WRnbqeI7UhsPp20hsGimZ5kLr8bGg602qJuPI5s2bsXnzZikxpdPpYDQakUgkYLVa4ff7pXyX1WpFPB6XjqBAKU8mPgTq6+vTnG6PxyNvglarVRZNSNUGBgCz2Sw/uIxGo/xwA9K1fpVofTDr9XoYDAZEo1HpOAgnQ6/XS01ao9EIi8WCYDAoP6D1ej2WLVuGTZs2yT6WlJRI6S5xbirCmTGZTDCZTHIcxZcToT+erS+Z2lW+H8ZSak6v10vN4aMNzjnuuOMOVFZWIhwO49RTT4XT6cyoAV1RUYHu7u5RXePWW28dA0uJyUa2L4WiMJJIYzqc94byiw0wdO+rq6uT7/1QKCTlOlPf24wxee8T0nDi/iTa1el0MJlMAIbuYVarFfX19dixYwfC4TAMBgNOP/10Wczrr3/9Kzwej/xyP9I+CMlEvV4vv5wwxmAymWA0GmE0GtHb2yu/FIj7ncViwfHHHw+Px4POzk5Zj2H58uXSps2bN6OpqQlerxfhcBjJZFIeAwx9qRb379NPPx0ApBazx+ORX4LEX2VlpeozRsxdUVERrFYr7Ha7DOQIGckFCxao7BHBnuXLl6uei2uLz7WioiK43W60t7cjFouhsrISCxYswL///W/4/X7E43GYzWbo9XoZ7MnWrtg3nB1az1MZbv9IjxfzA0A1fqltKo8T4zlSGw6nbyOxaaRkmgutx8q5P9zrTQZI1SRH1NfXo7OzUxaSmTZt2hFFvMvKymTEW0RDlP9TI94lJSUqx/tII94zZswY04j33LlzUVRUJIsCFRUVoa6uDlarFcXFxYcV8W5oaIDf74fVaqWI9xghdI0HBwfh9/uxfv16VQGb8847D21tbfLXlenTp6c53nl5eQiFQuCco7KyEitXrsQzzzwjj5+qUMR7YiPedXV1ExLxVmpza2lXz549e0Ij3kLzWkS8M2lPKyPe4hjh2FZXV6sijw0NDcNGvMUi6EwR71S9aGFPNl3oVG1nUWtCRLzr6+tl8aNMEe9M7Y7GjpFqaY9Ufzqbrrb4nEodv9TjUsdzpDYcTt9GYtNIyTYX2eZ+qkIRb4IgsrJ3717MmzdPtW316tV466230NjYiIULF2Lr1q1YtmwZAOCWW27BnXfeKY/1+/3YuHEjZsyYgbfeeguXXnopKioq0NnZCWDoC5SooEYQBEEQRzvZIt4kJ0gQxyjxeBw//elP0dfXh7a2tozHdXV1pW176623cOGFF2LhwoUAgBNPPFHuO/vss+XjK6+8Evn5+fjc5z6HhQsX4lvf+hYqKioADFUErKqqIqebIAiCOGYgx5sgjlFeeeUV3HHHHSgrK0NNTQ0effRR3HjjjWnHZcrXVi58MRqN8vHXv/51AMBXv/pVKR9IEARBEAQ53gRxzJK6kPfaa6/FAw88AL/fr9quFfEGhhbdKPnOd74DYCgn/NVXX8W6deum7Kp0giAIgjgcaHElQRyjaBXDAYYqT86ZMwcA8PLLL+NHP/qR5nG9vb3gnCORSMBgMOCcc84BAKxduxb5+fnjYzRBEARBHMWQ4z2OvPDCC3C5XJoqBQaDAQaDAZFIBEajEdFodNj2CgsLEYlEwDlHfn4+rFarlJiqrKyE2WxGd3c3OOeIRCIq+TqhEJCKxWKRkl6ccxnF1JLiU8r3pSIUToQEUSrl5eUIBoMIBAKqbQUFBdi/f7/qGsXFxYhGo5pSiFoYjUbodLq0MRR9z6bWMNbk5eVpqqBMRlIL2wjuvPNO1NbWAkiX+aurq8OXvvQl/O///i8GBgawcOFClJSU4Atf+AIAwGaz4de//vV4mn1Uo/VaFNJs2cj0/h0JZrMZFosF+fn56OjoyCrbp9frpRJKquqJ2McYg91ux8DAAIqLi1FdXQ2v14uenh6pYgIMqTIJNRBx3yosLJQKGzU1NRgYGJDqHEJ/n3OOgYEBxGIxxGIx6HQ6zJs3D4wxOBwOlJSU4M0330Rvby8WLlyIgoICMMbw8ccfY3BwENFoFHq9HvPnz8fBgwfR398vx7ysrAxlZWUIh8Oorq7G7t27EQ6HMWPGDNTV1eH999+H3+9Hfn4+YrEY9Ho9TjvtNHR2dmL79u2wWCwwmUyoqKhAa2srotEoSkpK0NDQgMHBQYRCIeTn52Px4sVSL/nNN99EW1sb8vLyMGPGDDQ2NiKZTMJutyMQCCAcDqOwsBB5eXkoKiqC2WyGTqdDKBSCz+dDWVkZpk2bhpaWFtTV1aGjowMHDhxAOBxGZWUliouLEQgEEAgEUFFRgXnz5mHLli3o7OyU0p6cc1RVVWH69OmqOg/iT6SKLViwAJxzqSjhcrlU0ozi9bN48WL09fVJ9ZVwOIy6ujrVGGjpPws9Zy2tZrGPMYaWlhZYLBa43W5YrVaYTCZpW+q5ol6Gz+fD0qVLUVJSonkNLe1qpca5zWZDQUEBWlpa4HA4MH/+/GH1roVuuzg+lUz62alSwIejw63U9AaG9Ni7urqwfPlyudBd6HGHQiFYrVbU1NSo9NGVtmfrq2inv78f4XAYy5cvV/V3tJrmWv0TuuHivTPSsTjcdnIJOd7jiLjBahGPx+WHwUicbgAYHByUj2OxGDwej/wQ7ejokBJhWh+smewIh8Oq59kcgGg0mtHWWCymqmCYSk9PT1qEtaenJ825jkaj8svESElNmUhlopxuAJPW6Rbyaz6fD9FoFC+88ELGY7W+WAmEnNgXvvAFvPHGG0gmk9JJJ4ZH67U4Er35I5EYjEQiiMfj8Hq9wx6b7X2n3CckRXt6ehCPx+Hz+dL65vF40r4weDweeZ6QqGSMweVywWAwIBgMIhaLgXMu72OiOmpFRQVcLhdqa2tx4MABJBIJuFwuHH/88VJzWmj/M8bQ2NiIeDyeZrff74fBYEBvb6/U7W5paUF/f7+8xyo1uJ1Op9Sz9vv9MBqN8Hq9st3e3l44nU5YrVYpzZqfn4/y8nI0NzdLJzkcDmNwcFDaKMZQjEsoFMLAwAAsFgsASM3tQCCAjo4O6HQ6OJ1ORKNROY6tra3wer0IhUJIJpNSNrG1tRXxeBxutxvA0Pu/tbUVnHP09/dLDW5xDSHx6HQ6pfQbALS3t0ut7lAohHA4DJ1OB5fLJce2sbERJSUlaWPQ29sLu92O5uZm6QA1NzfD6/XC7XZn3Nfc3AydTof+/n4kk0l4PB4UFBRI21LPbW5uhtvtlq+H2tpazWso21deU4xhUVGRlHp0uVyYP3++5jlKXC4XPB6PPD6V1PNT+681DlpotdPa2goAcnF6S0sL4vE4nE6ndLybm5vR3t4u5Xb7+/vl9dxut8r2bH0V7XR1dcFgMKT1d7hxGg7RPgD53hnpWBxuO7mEHO9xZNGiRRTxPgRFvHNHY2Mjnn32WcyaNSvjlyPl6+Nvf/sbamtrNY81Go144okn0Nraivr6epxzzjlSy5cYHop4H17Ee+7cuaqI9/79+1UR74aGhnGLeDc0NIw44l1SUoL8/HyVXvL+/fvHPOLNGMsa8Y5EIsNGvEtKSoaNePt8Pvn+HmnEW4yBlv6zcOq1tJrFvoaGBrS0tKCqqkoz4p16rqiX4fP55OtD6xpa2tVKjfPUiHemc5QI3XZxfCqZ9LNT63Acjg53qqa32+1GV1cXGhoaVOeJOUyNeNvtdpXt2foq2rFarQiHw2n9Ha2meab2dTrdqMficNvJJaTjTRCTnEAggFNOOQUPPfQQTj311FGfnymXW8mVV16JdevWyeezZs1SfSES3H777XjwwQdx11134corrxxR2wRBEARxLEE63scw//d//zfq8t2Eml/+8pfYuXNnzq6/bds2bN++HT/4wQ9GfW5qKlEmfvKTn+C0006Tz7Wc7oaGBlx22WXYv38/rrrqKnK6CYIgCGKUkOM9hent7cV//Md/4Nxzz821KUctsVgMP/rRjw4r0jxWtLS0ABj66X60iFzN4ZgzZw7eeecdBAIB/PGPf0zbn5eXh9deew3z5s2DyWQatR0EQRAEQZDjPSlhjElN5CNB5DwfOHDgiNs6VhG5txOdty1yY5955hlcffXVAIYWNo6WPXv2AIDmIhOdTgedToff/va30OmGbgV5eXk466yzAHyaonL88cejpaUFZWVlh9MVgiAIgiAOQY73JOXee+894jaOhfz98UakagjHdKL48pe/jK9+9avYsmWL3DbaiPe2bdvw6KOPAgDWrVuX9mVuxYoVOO+883DTTTeptuv1epSWlqKyshIAcMUVV0za1eEEQRAEcTRBjvckYyyd5dFI8hHaiIj3aBzvZ555Bhs2bBjRsQcPHsTixYvTfpXYvXs33n33XdTU1MhtqZUiU2lubsaXv/xlqTqzdOlSvPTSSzCZTPj85z+PX//612hubsYtt9yC888/H//4xz/whz/8AcBQhP0vf/kLEokEioqK8M4772D79u248sor8Y1vfGPEfScIgiAIIjOT3vFmjNUzxh5jjP1dse0Mxti7jLGHGGNn5M66sWc4TepctXU04/F4cOmll6Kvr2/U5x5OxPuSSy7B6tWrR3Ts448/jh07duChhx5SbR8cHMTBgwdV2u1C/zcT99xzD/785z/jiSeeUH2BKy4ulmkjs2bNwi9+8Qs899xzqKioQFlZGXbu3ImVK1fiiiuuwD/+8Q8AwHHHHYeysjI8/fTTJBdIEARBEGPEuDrejLHHGWPdjLEdKdu/yBjbzRjbxxj7YbY2OOfNnPNrUjcD8AOwAGgbW6tzy0hVKEaCcLyPdfWJ3//+9/j73/+O3/zmN6M+d6JSTVLnSDjc//73v+W24RxvkQ7y0UcfoaOjQ24vLi7WPD4SieBnP/sZlixZgj179uCpp57CxRdffFj2EwRBEAQxPONdQOdJAL8H8LTYwBjTA3gAwOcw5DRvZYy9AEAP4K6U87/OOdfSwnuXc/4OY6wSwL0AvjIOth8x999/v6wwNlKUxWnWrl17RNfv6uoCMFQE4UjbOpp5++23AQDvvvvuqMdBVAeLxWKjPnckx7/zzjtptonqcgDw5ptvAhgqvLJ582asXbsWH374IebOnYvCwkJVW6+99hoAYP369aoqhR6PR9OWP//5z9i9ezdOOOEEfOELX8D+/ftx2223jaqPxzqMMZhMpmG/FA1HQUEBotEojEajqsgUAFmRVguD4dNbuCgSU15eLgvRWK1WxGKxtIq2okiO0WhEfn4+AoEArFYrCgoK0NvbqypGJYrmAEMFlJLJpPwTiLZFu5kwGo1IJBLQ6XRgjCGZTGLu3LkoLy9Hd3c3Dh48CL/fP2zKXX5+PpYsWYJgMIjOzk6YzWb4/X6YzWasXLkSJSUl2L59Oz755BN4PB7MnDkT/f39CAQCmDlzJjjnskBUIpEAYwwWiwXxeBz5+fk45ZRT4Pf7kUwmUVNTgz179mBgYADV1dXo6+tDaWkp9uzZg0AggLy8PAQCAdhsNhQXF2P//v3Iz8/H8uXL0dXVhZaWFoTDYVkYLBAIIJFIyEqCVqsVBoMBXq9XzonNZoNer5fVP1evXg2fzweXy4U5c+agoKAA3d3dCAQC4JzL93teXh4KCgpkEZG8vDxEIhFVYR5lSfvdu3dj8+bNKC4uxrx58zTLmG/ZsgX/+te/AABLlixBQUEB7HY72tvbVSXLtcq0K0uqe71eOJ1ONDQ0YNmyZWllz5UlzJVl39vb22VJ98WLF8trKcvaixLhyn1a61KU5ca1bE5tO7Ut5XitWLEi69oX0fe6ujpZlChb2XjxnzGGpqYmFBcXo7KyUhb0UY6J0t7t27ejt7dXVco9tZ8bN26Ez+fD0qVL5X7l2KfOlVYVzrHkSErMj+TcIy1hP96Mq+PNOf8XY6wuZfMyAPs4580AwBj7C4DzOed3AThnhO2KO/4AALPWMYyx6wBcBwAzZ84cvfFjwGidbmBsy5tTjvcQSqdgtIj5mMhfDeLxuHRqBgYGZKVAUZr7xRdfRHV1Na699loAwKuvvgqr1SqVV7q7u/HMM8/I9pROTCgUgl6vh8lkwmc+8xksXboUc+bMmbC+TTVEldgjRXzh1qpgm+19rHW/UJYiz1QRU7wmYrGYvE/FYjH4fL40p1dZvn24vg7nMItf4ZRO+969exEOh9HV1TVsBU9BIBCAy+WSX1TEFwtRzrq2thatra2yyqPSyW5paUE0GlWNK+dcXls4iGJNRX9/P7q6uhCLxdDb24uCggK0tbXJcvPBYFC+DkQl4Wg0mlbeXYyduK6Yp9RKwLFYDAMDA6qxdDqdshx8Y2Mjpk2bhq6uLiSTSVl5GIAsOy+eM8ag1+tVpeiVJe1dLhd6e3tl2XmtMuZOpxOBQACMMbhcLhx//PFwu91yvETJcq0y7cqS6v39/fD7/bKkeWrZc2UJc2XZd1HeXtgtrqUsaw8gbZ+Ww6UsN65lc2rbqW0px6uioiKrUyf6LkrdD1c2XmlHKBSCx+NBe3u7LGGvHBOlva2trejq6oLRaNQs/w4MVbVMJBKq/cqxT52r8Xa8j6TE/EjOPdIS9uNNLkrGVwNoVTxvA7A808GMsVIAvwCwhDH2I875XYyxiwB8AYAdQxH1NDjnjwB4BBiqXDk2po8O8c10NIyl4628+R7LjJXj3d3djc7OTpxwwgljbpuSVOfGaDTKUuNin/LDetOmTQCQ1YHmnGPXrl14+eWXsXjxYnzhC1/I2RfSqQRFvIcYi4i32WweVcTb4XBoRrxFdDAQCEjHd7QR74aGhqwR79mzZw8b8W5oaBiziHdDQ0NaxNtsNh92xFtEQh0Oh7RNRLxTy5g3NDTIiLfD4UBBQQFqa2tlxFsZHU49V1lSXRnxBtLLnitLmCvLvre3t8uS7lpR6dQS4dlKl6eWG9eyWSviLVCO13AlyUXflRFvpQ2pZePF/4aGhqwR71R7xXtXWco9tZ+dnZ3w+Xyq/akl55VzNd4cSYn5kZx7pCXsxx0RzRivPwB1AHYonl8K4FHF8ysB/G48bTjppJP40YLL5eIAuE6nO+K23n33XQ6AT58+fQwsGxu2b9/O165dOyHX6u7u5m63m99yyy0cAL/99ttH3cazzz7LAfCysjKOobUFw54z0uM45/zWW2/lAPhPfvITuW3Pnj0cADcYDPLaK1as4J///Of5Bx98wAHw2bNnc845j8fj8nonnXQSN5lM8vmll17KAfAFCxbw888/nwPgS5Ys4du2bRv1OBAEQRAEMTIAbOMZfNJcqJq0AahRPJ8B4GAO7JiUiMV8RqPxiNuajIsrP/vZz+LnP//5iH9SPhIqKipQW1srI3OHs0AyFzreYmHlwoULAQAWiwUWiwWRSETmfjPG8OSTT8Ltdsvzenp6cO655+Kss87Cxx9/LEvM79mzB//85z/xq1/9Clu2bMFJJ500YX0hCIIgCOJTcuF4bwUwlzE2izFmAvAfAF7IgR2TkvFwvCcTwuHWymUdL47E8dbS8eZjqLUu5kiZSiB+Nq6trZX7zGYzwuGwdLz37duHr33ta9I5B4C2tjbMmjULL7/8Mo4//niYzUPLHwoKCrB9+3Z873vfU6UmEARBEAQxsYy3nOCfAXwAYD5jrI0xdg3nPA7gRgCvAdgF4K+c853jacfRhMgVHQsHaTI63iL6PpayicMx1hHvsfzSIBx75XiIiLfIwY5EIrBYLCrHW8uWZDKJiy++GD//+c/xla98BYsWLcL//M//YNu2bZg9e/aY2UwQBEEQxOExro435/wKzvk0zrmRcz6Dc/7Yoe0vc87ncc5nc85/MV7XZ4ydyxh7RCmtNlnZtWsXLrjgAhntnKoRb+F4j4USxEgZa8c7m+3KBWcjGX/heIdCIXDOsW7dOnR3DyloCsc7HA5ndLyBoaI4AHDKKafga1/7Gm677TbodDrE43H85je/wdy5c4e1gyAIgiCI8WfSV648EjjnL3LOrysqKsq1KcNy3XXX4fnnn5e6zpPB8f7444/BGMM///nPI7ZFIBzYsYx4P//883j55Zcz7h/O8Tabzfje976nuU8r1SSb460c85HksSsj3uvXr8dVV12Fb33rWwCAefPmyetZLBbs3r1bVVDnjDPOwFtvvYUNGzZg+vTp+OCDDxAOh/HKK6/gj3/8I0wm07DXJwiCIAhi4pjSjvfRhHDmhJM4GRZXbtiwAQDw4osvHrEtgvFINbngggtw9tlnZ9wvxlQrN5tzjmg0il//+tea5wo7leceruP9/vvvyzEVCO3tUCgkU0zi8TisViuqq6sBfJrjDQAvvPDpcoizzz4bq1atQl5eHhKJBL797W9jx44d+OIXv5jRPoIgCIIgcgc53pMEkasrHDzheCcSCTz//POHtaDvSCPewqbRRE7fe+89LFu2bFjHOhepJloa6cLZzYTohyg2AABPP/00/vrXvwIAnnvuOTz++ONyn3LMhVMtWLlyJVavXi1t+uEPfwiXywVgyPEWKSbAkCKLstS7lh78Bx98gEQigfLycuzduxf33HOPLCJBEARBEMTkgyQOJgnCyX3wwQcBfLq48oEHHsD/+3//D3/84x/xla98ZVRtHo7jfdttt2HBggW47LLLDsvxvv7669HY2Ih9+/bh+OOPT9s/HqkmwyEc71gshnA4jFtuuQU/+clP8H//9384cOBA2vEDAwMIBoOorq7WTBf58Y9/DAC47LLLcOGFFwIACgsLMXPmTNTV1cnjsqWatLa24u6775bPX3jhBXR1dcnnFRUVsNvt8vm+ffvS2njppZfw0Ucf4aSTTpLV4wiCIAiCmLyQ4z2OrF27dsTHdnZ2qp739/dj7dq1eOONNwAAjz/+uKbzlY2tW7cCGIrqjtSWW2+9FcDQYk+RFvHBBx+M+HzRj4cffhhlZWVp+0Wk+w9/+APeeuutjO28/vrriMfjOOuss0Z0XSDzeH/wwQcAgDfeeAObNm3CSy+9hE2bNsntwNAXHXH+bbfdhmQyiW9/+9t44IEHRnS9Sy+9FADw7W9/W267//77AQx92aiqqlKd19bWltbe5s2b5ePOzk789re/lc/FFwSbzQafzweTyYRrrrkG69evx/r16zPaSBw5w1Vj1EKn06kW2mpRXl6O/v7+rCXhBcrqlYwx6HS6jOfl5eXBbrejo6NDZbder4fRaIROp0v7NUbreiUlJSgoKJDlrK1WKzweT1plzUwox0Cv18Nut0On08lS6Xa7HdFoFMFgMG2MxfWj0SgyLY4Xx5hMJhQWFiKZTCIQCCA/Px86nQ7t7e2qX7SsViuSySQikQj0er2sNNnd3Y1wOIyamhr09vYiEAjAbDbLsaqvr4fH45El13t7e8EYg9FohM/nQ1lZGTjn6Ovrg16vRyAQQFlZGYqKihAOh7FgwQK0tLSgvb0d0WhUBh1KSkpQWVmJcDiMgwcPIplMwmQyoby8HH19fXA4HFizZg0AYPfu3bIKYktLC/bv3w/GGAoKCpBIJLB8+XLMmjULGzduRG9vL4xGI4LBICKRiCzaccIJJ8Dv96O3txf5+fmqX8eSySRsNhsWL16M/v5+uFwulJaWoq+vD3V1dRgcHIROp0N1dTVaW1vTHhcUFKClpQUWiwUHDx7E3Llz5WtHVFksLy9HT0+PrCioLOXd09ODTZs2obOzE1VVVVixYgUAqI5VnitsVFaFFO319PTA5XJJGzNdX7QvbGxpacG+fftQUVGB0047LWs1S7vdLit3OhwOVduiPcaYrDoJQFaFVJZj7+npwfbt2+Hz+eT4l5eXY8uWLbLK57Jly+RxopJq6rVHQqaxT90v7E+du0ztKMdbvA6U/Rzuuodj69EOOd45xO12o7KyEhaLJe1DVK/XA/g08n04peSVbUaj0VEvthPn7969G++88w6++93vgjGG999/H6tXr9aUPBTnZHI6RI636E8wGMTf//53nHfeeaoI7/vvvw8Ao3K8MyEi9+KDGUCa8yDGJh6PS9t7e3uztqs1J8oxf/bZZ2Ub4gsNMFTi2OfzZW27r69PNb6XXnopnn76acTjcVxwwQVwOByTqjDSVOZw0ryGc7oBSAd0JChfV5zzrM56MBiUKjmpbYzEyRfH9vT0IBKJSKfQ6/WO+HxAPQaJRAIDAwOqbcr0KS1bhxsfcYzZbJZqP8lkEn19fQDSf3FSPk8kEvB6vfD7/fJ97Ha7pR3hcBjhcBh6vR6NjY0wmUzyuNS0QDHWynnp6OjAwMAADAYDnE4nBgcHEYlEVP0fGBhAKBRCLBaTbcfjcbjdbuj1erhcLul4u1wueDwe2ZZw3kOhEEwmE5xOJzjncLvdCAaDSCQS4JwjmUwOVcrT6eByuWAwGBAMBtHX1ye/SIgvPUVFRcjPz4fb7YbH40FbWxsKCgrgdDphtVoBDN0TxTgqH4dCIeh0OvT398NgMMDlcuH444+H2+2G3W5Hc3MzysvL0dzcDK/XK58Lmpub0dLSgkAggHA4jIqKCgBQHas8V9jodDpleXDRXnNzM9rb26WNma4v2hc27t27F4lEAh0dHXC5XPI8pR3Kc0TfbTabqm1ln8W4A0Ovd5fLpXK8m5ub0draCq/XK8e/vLwcTqcTfr8fTqcTy5Ytk8cBQ0G51GuPhExjn7pf2J86d5naUY63eB0o+zncdQ/H1qOdKe14M8bOBXDunDlzcmaDz+fDPffcg4suuggnnHCC3B6LxfDUU09hzZo1+MxnPpPRsT4Sx1vc5AcHB3HnnXfiiiuuUL3ph0N8iIgodm9vL3bu3ImtW7eiqqpK1Z/Uc4azV+xvampCc3Mz3nrrLVx00UUjtk0LzrmmM6pcuCo+ND/++GPVMWLx4sGDB9POE1GmVLScZ3EDAjI77vfcc0/GeViwYAGampqk7vayZcuwYMECVFZW4sorr0RBQQEKCgo0zyXGB4p4U8R7PCLexcXFw0a8BQ6HI2vEu6GhAbNmzUJnZ+cRRbzr6+tht9vhcrkwe/bsUUe8q6qqVBHv2tpaVeRYOMniuaC+vh7d3d0y4q0VaVaeK2xURryVbfl8vrSIt9b1m5ubpY1z586VEW+Hw5E14l1bWyujzqlti/YaGho0I96p/Q4EArDb7XL8AaChoUFGvJXHpUa8U8cxG5nGPnW/sD917jK1oxxvZcR7pNc9HFuPejLVkp9KfyeddBLPFW+88QYHwM844wweDof5cccdx19//XXe19fHAfAf/OAHnHPOCwsLOQD5d8IJJ3DOOb///vs5AH7jjTeO+tp33XWXqs0bbrhh2HPEsZxz/o1vfEN1/rvvvstvuOEGDoDfd999nHPO16xZw4uLi+X5paWlHAB///33NdsvKSnhAPi6des455y/8MILcnwy2TFSmwOBgOb2lStXcgD85ptv5ldeeaWqT+LP4XCo7AHAn3rqKQ6An3baaRwAv/rqq1Xn/Otf/9JsS+tPaY/40+l0/He/+51q20033cQPHDjADx48yK+//noOgN96660jGgeCIAiCIHIPgG08g09KqibjjIhKGQwGuN1u7Ny5E9/85jflT0UiIqOsQFheXi7PE+omh7MYMXVx5WgrLmpFdEWURERz33zzTQwMDKRdM5O9qXKC4r/WIkclGzZswPnnn4+BgQF0dHSM2F7l9gMHDmDdunWax4h+Ke0WP4WLuaisrFSdc9ppp2W099prr1U911poWVFRgRtvvBEfffSR3FZeXo6tW7fipJNOwh/+8Ad8+9vfxne/+92M1yEIgiAI4uiBHO9xRqRUiJxtYMiRE46Y+BlV6RRbrda0lI2JcLxTf7pOldqLRCJym8h3S0VcI5NcYGrlSvGTt1KuT+v48847Dy+88AJKSkowffp0uV+Z0uL3+zXbEI73M888o7kf+DQtR+kgC5WRTI53NlLTm/bv3592zLRp0wAM/Yx86qmnAhhaYHnxxRejsrISmzdvJolAgiAIgphCkOM9zgjH0GAwqHKNhSMtHFllPqjS8RaO7EQ43qn7U3MrQ6GQXLiklfOsvGY4HMa7776LxYsX48wzz5T7UyPeIl80m/RhMpnMWHVS6eBninhncsiVaI1zR0cH9Ho9rrzySgCQ+XbAp2XaM5HqeJ977rlpxwjHW+SdAsDnP/953H333diyZQtOPvnkYe0mCIIgCOLogRzvcUZEdMVqckAd8dYq4CIqEQJj63gPp+udGqUWSgGCUCgkU0wyFZ4RdofDYZx22mnYsWMH3nzzTbk/VcdbuciLZ1jAFo1GMzreynFROtjKtpQOeSYlEDHOyoh3Z2cnbDYbvvnNbyIcDqs0uoXMYyaKiopQU1Mjn4tfCB577DHccMMNAIYc78bGRnz2s5/FJ598AmAo+v39739/TCqXEgRBEAQxuSDHe5wREV29Xi+dumQymdXxtlqtMlIunOVsxVgyMdqIt9LxDoVCaGpqUu0PBoPS8R5O2UCr0iLwaWRfXEvZTialhWg0qkrVyWSz0vFWpqAox06ZtrFq1SrVNQC1I9/V1QWbzQbGGMxms1Q+AYZWXYviOVoYjUa4XC6VFjcwJP8kZBN3796NE088EU1NTbIADhXCIQiCIIipy5R2vBlj5zLGHskkRzURCGdQGfFOTTVJdYi1Uk2GK22uxWgc76uuukqV2uB0OtMkAZWpJqnpG6nR6kwavKkOrtLxzjRPkUgkLeItrqd0lJWR7UzRfaXjXVpamna80kl3Op0qR1jpeAOfFs3RwmQyobi4GDfddFPa9YU843vvvYfLLrsMTU1NuO666wAAM2bMyNgmQRAEQRBHN1Pa8eacv8g5v66oqChnNnR3dwPIHvF2u92qc7Qc761bt2Ljxo2juvZoHO9169apqikK0f/a2lq5LRQKSee4p6cHTz/9tNwXj8dVizNFv1MREWqtVBPRdqr+8Zw5c9Ic+b1796Kzs1MV8Va2lamvmRzvTCk9yjFJdbyvuOKKjHOSKVUkLy9P7rvmmmvwxz/+EeXl5bjlllvQ19cnC0cQBEEQBDH1mNKOd675y1/+gjvvvBPAkDOZKcc7VSFEy/EGPq3mOFJGkuP9ySefqBxogYgeKxVEgsGgyjH9z//8T/k4EomoIs5aEW/OeZrjrRXxTnWataL98+fPR11dncoepeM92oh3e3s77rvvvrSUHuW1Ux1vQP3FRInS8b7iiivkY5/PhzPOOAMA8JWvfEVu1+l0KCkp0WyLIAiCIIipwZSuXJlrXn31Vfk4EomoIt7CYYxGo2hsbFSdl7q4sri4GAMDA6NeYKkV8e7q6sL06dOxYcMGnHbaaVi6dKlKh1sgbC0uLpbbBgcHkUwmUVRUlJYWEg6HVeknWhFvUcYY+NTJTo14b9iwAc8///yI+heJRI4o4l1WVqbad/PNN2Pu3LmqbUrnXCvPfPr06XjqqadgMBhUjrRwvNvb21V2zZgxA0uWLMGKFStUizUJgiAIgpj6UMR7HFE6beFwWJXjrYysfvTRR7I0PKBeXBmNRpGXlwe9Xp/V8X777bdx8803q7alqpRs2bIFa9euRTKZxG233QYAmk43MOR4m81m5OXlyW1C5STVYRXXUi6oTI14KyXzAMgiOKI8MzDkeK9evRr333+/pk0LFy5M2zbaiLeyP8r5Eezdu1f1XKTcCGw2mxw7wVVXXYUvf/nLqnLzer0eDz74IBYtWoTXXnsNd999N6LRKJYsWQIA5HQTBEEQxDEIOd7jiMVikY/D4bBmjjcwVFxFaDoD6akmJpMJFoslq+O9atUq3HfffRlVPgQPPvggAMgFfpnw+XzIy8tT9UE46Zkcb2UUPDXiHQqFVFFo4aQGAgGZzjLcIthbbrlF87oCZdrKaHO8tairq0N1dbVq2+DgIH76059qHq+cQ8457r//fixduhQ7duwgiUCCIAiCIMjxHk+U+cHKiHcsFlM53h0dHSqH0GAwaDremapBKhHVFoHskn/DOd5erxdWq1WlJnIkEe+2tjbpWOfn56O9vR2ccwSDQemwpjreIhda8NWvfhW/+c1vVNu++MUvysejzfHWytkGhrS+7777bpX++EhQzo/NZsPbb7+N119/HbNnzx5VOwRBEARBTE0ox3sc+de//iUfb9q0STqm4XBYlf/tdrtRXl4un3/wwQeIRqNYu3YtXC4XBgYGEI1GsXHjRqxduzbrNW+//XYpSbdv376Mx/X19WVta+vWrQiFQrDZbDj//PPxzjvvyFx0pdKH4P7771c5/aksWLBARs9LS0tx4MAB/OhHP8L+/ftRWloKnU6Xltut/OJw/fXXY+3atWmpIEree+89fOMb38ha6XL37t3y8ZNPPql5DOccoVAI69aty3itVNxuN1588UX5/N577yVN7imE3W7PqE1/uJhMpmG19YfDYDCkyX4q2+ecyy+hjDFYLBb5pd9qtSIcDmsWrmKMZSxoZTQaYTab5RfN8vJydHZ2IplMptlTXl6OgoIC9PX1wWazSXv8fj8KCkvkUC4AACtvSURBVAowMDCAiooK1NfXw+VyyV/14vF42vX1er3U0xe/vpnNZsTjcdhsNiQSCQSDQeh0OiQSCRiNRkyfPh19fX0YHBxEQUGBLMZVV1eHjo4OmM1mVFdXY9euXYhEIjAajSgrK0MwGATnHIsXL4bf70dvby8qKiqwYsUKAMCGDRuwb98+xGIx6HQ6JJNJmEwmrFmzBj6fDy6XC6WlpfD5fLDZbKipqQHnHI2NjSgqKkI0GkV/fz8WLFgAzjk6OjrAOUdxcTF0Oh16e3uh0+mg1+sRCASQn5+PWCwGxhjy8/MRDAYRjUZhMBhgNBoRiUSwcOFCFBQUwG63Y8+ePejq6kJhYSHMZjNsNhsWL14MANi4cSN8Ph/mzZuHwcFB6HQ6LF68GP39/di8eTOKi4sxb948tLe3I5lMorCwEC0tLXA4HCgpKcGGDRvQ3t6OsrIyTJs2DQ6HA+Xl5ejp6YHL5ZKvr1AohHA4jOXLl2P+/Pno6elBc3Mz6uvrAQDbt2+X4yNsc7lc6O/vx+DgIEwmEwBg+fLlAIY+T3U6HVauXCmPraurA+dctulyuVT9cblccDgcmD9/Pnbv3q16nkom+4RwQFlZGRYsWACPxwO73Y7W1lZ5LdF/5fnisfKzPfU6yvPEPUZ5jrBZ2U9xzvbt25FMJuX4p14jdX+mbZns1BqvTMdv2bIFTqcTDQ0NWLZsWdrYjjWZ7Mg2lpMJcrzHkUgkgsrKSpSWlqKxsVFVkKa1tVU+jsViqjQEcSMHhhYk6vV6+YGWzakE1OklR/KhHg6HYTQaUV5ejvLycmzatEneUJV50oJEIiE/NJUfyqltAkMLDA8cOACfz4dAIICZM2eioKAgLTVGGZEWUfFs6RqxWAwPP/wwAOC//uu/NI8xmUxoaGiA0+lUpdEAwNy5c7M69lqEw2G88cYb2LZtG4qKinDBBRdIp4KYOoy10w0c2ftTkMnp1mpffKEUZCvKlcnpBobeZ8pflJRrG1Lt6enpwcDAADjn8Pv90knU6XTy+h0dHfD5fCpVJC2EY638ZUvcZ5TzI34tjEQiaG1tlTYp7y/ife73++H1emU70WhUrj/R6XRwuVyyBkMwGJRyny0tLXIMxL06Go3C6XQiGAwiFArB7XbDaDTKX/L6+voQiUTkInUAaGxsRF5envx1VIyBmDtxvxcOMjD0yyPnXO5LJpOyYNfxxx8Pt9uNzs5OBINB9Pf3w2KxoKioSP7a53a7kUgk4Pf7YbVaAQz9Euh2u9HX1wePx4NQKCTnZ9++fXIsamtr0dLSIsUCkskkbDYbysvL0dzcjPb2dni9XjDGEAqFpF3z589Hc3MzvF6vVPFqbW2F1+tV2dbe3o6uri4kk0kkEgnk5eXJdTaihoR47vF44HQ6UV9fL9tsb29X9cfj8cjru1wu1fNUMtkXDoeRTCYRCAQQiURgt9vhdrvl+OTn58v+K88Xj1MdP+VxyvPcbjfsdrvqHGGzsp/iHOFDiPFPvUbq/kzbMtmpNV6Zjnc6nfD7/XA6nRPieGeyI9tYTiamtOPNGDsXwLlz5szJyfXD4TAsFovqw8hkMiEej6dpd4tv98CnZc3/9Kc/ob29HSUlJTAYDDhw4ABuu+02XH311arFecr2Ux1vZW74FVdcgT//+c9yf7YS8uFwWGWT0WiUqSbiZq0kHo/L6+Tn52dNixE53YODgwgGgygoKIDNZkv74NVKBVEuQhXY7XaYTCZVf1K1wI1Go/yCc9ZZZ+G8884DAPzHf/wH2tra8N5776GwsDCjzZl48cUX0djYiBUrVmDVqlUZ01eIoxuKeH/KsRzxFtFMt9utGfFuaGjIGPGeMWPGhES8a2trYbVa0yLewvbOzs60iHd9fT3sdjvC4fCwEW+3262KeIt26+vr4fP5pCyqiHg7HA65XxkRDgQCsNvtKtt8Ph+sVqsq4i3O93q90Ol08rlWxNvn86n6IyK2oh3l81Qy2acV8a6trZURb2X/tSLew11HPK+trZVRWoGwObWf9fX1CAQCSCaTGa+Ruj/Ttkx2ao1XpuNFMKuhoUFzbMeaTHZkG8tJBed8yv+ddNJJPBeceOKJ/Nxzz+VLly7lADgAPm/ePL5gwQIOgBuNRrn90ksvlY9vu+02+RgAP/3003lDQ4N8fvPNN6uu43a75b5bb71VbrfZbHz27Nly34cffqhqt6WlRfVc+Td9+nR++umny7bOPvtsue9Xv/pV2vGvvfYav/nmm3lBQQFfsmRJxnaNRiP/6KOPOAD+29/+lgPgDz74ID///PP54sWLVcc+8MAD8rFAnKv8e+GFF/gpp5zCzzzzTLntySefVB1jNps5AH733XenzdMPf/hDOXap19Oira2Nd3R0cM4537t3L9+yZcvhvDwIgiAIgpiCANjGM/iktLhyHPF4PCgqKlLlPhcVFclUDWWVQuWiv1S9aLG4UqCMkv3whz/EP/7xD/lcXIsf+mlXuRAyNUUkWw64x+NRHa/8uUYrYhCJRDAwMAC73Y5slUJnzJghbRI545WVlZg+fbrqJ2sAmjnSWtF2MabiJ2IAuPrqq9PsA4DPfe5zaeeLKNtw6SHJZBIPPfQQFi1aJKUb58yZg6VLl2Y9jyAIgiAIApjiqSa5RuSvKRVEFixYgP379wMYUgfp6upCPB5PUzVRItJTBOKn43g8jrvvvlt1rPg5PBQKgXOuksxTXgMYWoiZiWAwqHJylQ58ZWUlOOcyJQYYcmz379+P2tpaTdUTQX19vfwp8qGHHgIAVFVVyZ+ElWilfqTmZYvj8vLysn6ROOWUU/DBBx/gxBNPTNun/On9Jz/5iebPZbt27cJ1112H9957D2vWrMEdd9yR8VoEQRAEQRBaUMR7HFmzZg0aGhpw7733ym3Tp0+XkeT8/HzpXCqjrakR78HBQZXDKRzF1OI3er1eLuQRiiDKMuSpEe933nkHp59+ekb7lY63MuIttn//+9+XyiiXXnopdu7ciXnz5knHe86cOao8cQBYtGhRWtS6srIyTS8byB7xVjr9wvFOzStfuHChPP65555DKBRSnScQX2QsFgtuv/12XHjhhar9zz//PE488UQ0NjbiiSeeIIlAgiAIgiAOC3K8x5G//e1v+PrXv45vfetbstphXV2dyvFWPhakOt67du1SOd7r1q3Dm2++mRYhrq2tlY63WGSZLdUEGHKYM5Ep1UTYcvfdd6tSOnp7ezF37lwZZV+9erVKyxwAPvvZz6Zdp7q6WnMRhFZ1R+HIK0vZK9N3BGazGZs2bcLvfvc76PV62O12zWg5ANx55524+uqrccUVV6i2C0f+M5/5DK6++mrs2rULV199tabzThAEQRAEMRzkeE8QN998M+644w58/etfl05iXl6eTCvRcryFk9nb25vmNP785z/He++9p9pWV1cnHW+RRqJMNdFyPM8888y0bcJZz5RqotyequKhdLx1Op1q/4svvohLLrlEdXxzczPMZrOm411VVZW2rbCwED/84Q/x9ttvq7alOt5PPfUUCgsLcc011yAej6dF3pVUVlbiiSeekP3yer34xje+gdNOOw2JRAJlZWV4+OGHVTn5BEEQBEEQo4Uc7wmioKAAP/7xj2EymVRR7pqaGvlYIBzvefPmAQC+9KUvpTm477//Pq699lr5nDGGmpoa6Xg/8cQTAIZk0JTHCJ599lls2LBBU8/0+uuvB6BexKmVagKk52GvWrVKOvhCT3fHjh149NFHcc4556RFi0WxHyExqETLWWaM4a677pIFF4AheTOR+iEkyy6//PK0c0fCs88+i4ULF+IPf/gDVq5cmVVykSAIgiAIYjSQ450DlI63cK6j0SjWr1+PV199VUbBS0pK4PP58Nxzz0ln9qyzzsKpp56a1qbNZoPdbkdfX590nAFIxz6VCy+8UJZkV0bFKyoqsGbNGgDA5s2b5fba2lr5WBk5t1qtiEaj+N73voff//73KC0tlV8chON93HHH4ZprrtG0QxTE0ev1Kkf7mmuu0dTsVqLUZxftf/3rX896Tib6+/tx0UUX4eKLL0ZlZSU2b96Me+65J2N6CkEQBEEQxGghVZMckOp4P/bYYwiHwzj77LMBAI899hiAIYdYLLoUDmBlZWVacRhgSOquqKgIwWAQjzzyCADglltu0cypTqWsrAx9fX2orKzE66+/jnnz5sHhcOCXv/ylPEZUjgTSVVeMRiN+9atfyeczZ84EMJR2komtW7emlZi/6qqr8Oijj2LdunX4yle+Mqzd27ZtkyouhYWF8Hg8acotIyUvLw8tLS24++67cfPNN2etkEkQBEEQBHE4TGnHO9eVKzMhUjXMZjOuu+46JBIJVURYSAcqFUnEQr8FCxbgk08+SWvT7/en6WevWLFiRJUUy8vLsXv3bjz99NMyheOjjz5KOy618mUmvvjFL+LVV1/VzB8XnHzyyWnbHnzwQZx++um48MILR7SAsaioSNXnbPrhWjQ2NmLt2rV47LHHUFBQgK1bt6YtbCUIgiAIghgrpnSqCef8Rc75daN1yMYb4dwxxqDX63HjjTeq8qaFTKDS8W5ubgYw5HgLqcDTTz8dc+fOxdy5c3H55ZenOZ7Tpk0bkeMtFk6K/PBM/PGPfxxxiesvfOELo3ZiDQYDvvrVr6ZFrZX55WNBJBLBrbfeihNPPBFvvPEGduzYASBdTYYgCIIgCGIsmdKO92RFpIpkiur29/cDUEvmibSM+vp63HfffXA4HHjppZewZ88eNDU14c9//nNaPnJVVVVaWsjHH3+MXbt2qbZddNFFAIBZs2ZltVun0014CsaOHTuwc+fOMWvv/fffx5IlS7B27Vpccskl2LVrF1asWDFm7RMEQRAEQWRiSqeaTHYyOd5aEe8nn3wSjzzyCI477jjodDpVKohON/T96eKLL4bZbMY777yD3//+96isrExrW6kGIrjyyivxuc99TlO+L9ccd9xxY9rez372MwQCAbz88ss466yzxrRtgiAIgiCIbFDEOwdwzgFkdryFMseXvvQluc3hcOCBBx6QTrYWFosFl1xyCe6//374fL5RRacno9M9Vjz33HNob28HMFR8aOfOneR0EwRBEAQx4ZDjnQOE452JU045BZzzjFKAw6HT6VQl6I9VDh48iIsuuggXXngh7r33XgBDeuE0NgRBEARB5AJyvHOASAFRSvQRY0cymcRDDz2EhQsX4pVXXsEvf/lLlTQiQRAEQRBELqAc7xxw7bXXoqCgAFdccUWuTZmS/PKXv8SPf/xjrF69Gg8//DAmm5wkQRAEQRDHJuR45wC9Xo+vfvWrE3a9999/X1U6fioSiUTQ09ODGTNm4Prrr8eMGTNw5ZVXjkgPnCAIgiAIYiJgw+UbTwVOPvlkvm3btlybQYwT77//Pq699lrk5+dj8+bNWRegEgRBEARBjCeMsQ855+mVAkE53sRRjNfrxQ033ICVK1ciEAhg7dq15HQTBEEQBDFpoVSTcWTt2rW5NmHK0t3djXXr1sHv92PFihVYtWoVtm7diq1bt+baNOIYw2g0IhaLyedmsxmMMSQSCdjtdni93hFXfM2ETqeThbdGs99kMslri8dWqxWcc4TDYTDGwDmHXq+HyWRCKBQCMFQt1mg0IhQKQafTQa/XIz8/HwMDA4hGo4hEIkgkEmnXs9lsCIfDMBqNSCaTiEQisNlsGBwclMfo9XrodDpZrTeRSCAvLw+Dg4OIRqMq1Se9Xg/OueybXq+H1WqF3+8HMCTJqtPpoNPpYLPZMHPmTEybNg2bN2+Gz+eD3W6H0WhEVVUV+vv70dLSAgCoq6uD1WpFV1cXamtr0dXVhUgkAp1Oh7KyMni9XnR1dcFgMKC+vh6rVq0CAGzfvh0+nw86nQ6hUAherxeMMXR3dyMWi6G4uBj5+flyHLxeLxYtWgS/34/e3l4kk0kEAgHk5+cjHA5jYGAAOp0Oc+fOhcViwcGDBxGJRMA5xwknnADOOUKhEEKhEHp7e8EYw/Tp07FgwQJ4PB4wxtDS0gKHwwGv1wun0yn7pdfrkUwm0dDQgDVr1qCnpwfbt29HMpmEw+FAeXm53BYIBORfRUUF5s2bB4/HA7vdjvb2dvh8PthsNnDOsXfvXkyfPh3hcBgOhwMlJSVobm6G3W6Hx+NBfX29rDbc09MDl8sFnU4na0g0NzerjtGip6cHb775Jnp7e7Fs2TIsW7YMW7ZswebNm2G32zFt2jQ4HA45J8lkEjU1NdJm5f9Ue7JdX+wX/RbtKh+LNpV90epXat9Tr5fJFqUNSvvFXHV3d8t5WrFiRVrftPoNALt374bL5Rp2zkYyTuPN7t27sXXrVthsNpx66qkjsiHXNo8GcryJo4pkMgmdToeSkhLU1NTgM5/5DKqrq3NtFnEMo3S6gaH1BoKenp4xuUY2pzvbfqXDLx4L5xr4VNo0kUiotvf09MBsNiMajYIxBsYY+vv7kUgkssqh+nw+AOoxUTrd4lqJREIewxhDIBDQbC/VuU8kEtLpFvaL9gYGBsA5R0dHh3ws+iGcXIHb7YbFYkE8HkdjY6O0mTEGv9+PcDgs225paUFzczMAoLW1VTrboVAIyWQSsVhMjv/AwACCwSD6+voQi8Wg0+ngcrlgMBgQDAYRjUah0+nkmIhr7N27F4WFhRgcHEQikYBer4fL5UJpaSm8Xi/C4bCcv1gshkgkArvdjubmZnmN/v5++P1+dHd3gzEm75Uulwtr1qxBc3MzWltbAQx9QSovL5fbxDWSySSCwSBCoRDsdjvcbrf8glFUVIS+vj4kk0k0NjaipKQELpcLtbW18Hq9cLvd0ibh+DQ3N8saCvn5+QCGfqlUHqNFc3MzDhw4gEQiAafTiWXLlsHpdMLn88Hn8yGZTMJms8k5AYYqPgublf9T7cl2fbFf9Fu0q3ws2lT2RatfqX1PvV4mW5Q2KO0Xc9XV1SW/wFVUVKT1TavfAOByueDxeIads5GM03jjcrnQ09OD/v5+VFVVjciGXNs8Gqa0480YOxfAuaRqcfSTTCbhdDqxZcsWXHPNNTCbzbjssstybRZBUMRbwWSOeBcWFsqId21t7Ygj3nV1dTKqGQgEYLfbJzTiXVJSkjHi3dDQkBbxLi8vV0W8RWS4vr4egUAAyWRS9kdsKykp0Yx419bWor29HXa7HTabDTNmzMgY8a6trVVFg0X74hcCrShxJurr67F//3709vaioaEBANDQ0KCKeCvnRBmNFnZksifb9cV+0e/DiXhn67vWtVL3KW1QXkvMldlslvOk1TetfgNDRfhSI96Zjh1unMYbh8OBaDQKm802YhtybfNooMWVxKSnqakJ1157Ld577z2sXr0a69atw/Tp03NtFkEQBEEQRBq0uJI4KonH47jtttvgcDiwc+dOPPHEE3jjjTfI6SYIgiAI4qhkSqeaEEc3er0eb7/9Ni6++GLcd999qKioyLVJBEEQBEEQhw1FvIlJhdfrxf/8z/+gra0NjDG8/PLL+NOf/kRON0EQBEEQRz3keBOThn/84x9YtGgRfve73+GNN94AAFgslhxbRRAEQRAEMTaQ403knIMHD+Kiiy7CRRddhLKyMmzatAlXX311rs0iCIIgCIIYU8jxJnLO7bffjldeeQV33XUXtm3bhqVLl+baJIIgCIIgiDGH5ASJnNDU1IREIoHjjjsOfX19GBgYAOmtEwRBEARxtENygsSkIRKJYO3atXA4HLj55psBAKWlpeR0EwRBEAQx5SE5QWLCeP/993Httddi165duOKKK/Cb3/wm1yYRBEEQBEFMGOR4ExPCSy+9hHPOOQczZ87ESy+9hC996Uu5NokgCIIgCGJCoVQTYlzp6ekBAJx55pm44447sHPnTnK6CYIgCII4JiHHmxgXDh48iIsvvhgnnXQSfD4fzGYzfvzjH6OgoCDXphEEQRAEQeQEcryJMSWZTOLhhx/GokWL8PLLL+OGG26gIjgEQRAEQRCgHG9iDPF4PDjvvPPw7rvvYvXq1XjooYcwd+7cXJtFEARBEAQxKZjSEW/G2LmMsUe8Xm+uTTkmKCoqQmVlJR5//HG88cYb5HQTBEEQBEEomNKON+f8Rc75dUVFRbk2ZcqyceNGnHLKKWhrawNjDH/729/wta99DYyxXJtGEARBEAQxqZjSjjcxfgwODuJb3/oWVq5ciYMHD6K9vT3XJhEEQRAEQUxqyPEmRs3zzz+PRYsW4cEHH8R///d/Y+fOnVi+fHmuzSIIgiAIgpjU0OJKYtQ899xzKCkpwbPPPotly5bl2hyCIAiCIIijAnK8iWFJJpN49NFHsXTpUixZsgS//e1vYbFYYDQac20aQRAEQRDEUQOlmhBZaWpqwhlnnIHrr78eTzzxBADAZrOR000QBEEQBDFKyPEmNIlGo7jtttvgcDiwY8cOPP7447j//vtzbRZBEARBEMRRCznehCYPPfQQfv7zn+Oiiy7Crl27SCKQIAiCIAjiCKEcb0IyODiI5uZmnHjiibj++uuxaNEinHnmmbk2iyAIgiAIYkpAEW8CwJBSyaJFi3DBBRcgFovBbDaT000QBEEQBDGGkON9jHPw4EFcfPHFuPDCC1FaWoq//e1vtHCSIAiCIAhiHKBUk2OYvXv3YunSpQiHw7jrrrvwne98h5xugiAIgiCIcYIc72OQQCCA/Px8zJkzB9/85jfx9a9/HXPnzs21WQRBEARBEFMaSjU5hhASgXV1dWhrawNjDHfddRc53QRBEARBEBMARbyPETZu3Ihrr70WjY2NuPzyy2EymXJtEkEQBEEQxDEFRbynOMlkEjfeeCNWrlwJn8+H9evX4y9/+QsqKipybRpBEARBEMQxBTneUxydTodIJIKbbroJO3fuxNlnn51rkwiCIAiCII5JyPGegnR0dODyyy+H0+kEADzyyCO4//77YbPZcmwZQRAEQRDEsQs53lOIZDKJRx55BAsXLsTzzz+PHTt2AACVeicIgiAIgpgEkOM9RWhqasIZZ5yB66+/Hg0NDdi+fTuuuuqqXJtFEARBEARBHIJUTcaRtWvXTti13n77bWzduhXnnXcelixZgj/96U8Tdm2CmIoUFhYiFAohFovBbDbDaDQiEAjAYrGAc45wOCyPZYyhrKwMwWAQwWAQnHO5b/r06ejt7UU0Gh0XO4uLizE4OIhEIjEm7el0OhQWFiIQCCAWi8ntdrsdoVAI0WhU9s9oNIJzjng8DgAwm83ysZY9jDFwzmGxWOT+ZDIJo9GIeDwOzjl0Oh2SySQsFgvi8Tji8ThsNhs8Ho/KRlHsizGGkpISdHV1IZFIoKioCIwx+Hw+lJSUoKysDNFoFIWFhfjkk0+QSCQQj8dht9sxd+5cdHR0IJlMwu/3Ix6PIz8/HytXrgQAbN68GZFIBH6/H9XV1XA4HPB4PLDb7dizZw9aWloQCARgMAx9lFZUVKC4uBhWqxU1NTVobW1FR0cHWltbkUwmUVtbC5PJhD179oBzDrPZjEQiIcdt2rRpWLBgAfbs2YNEIoFQKASj0YjFixejpaUFBw8ehMlkQiKRwKJFi8AYQ3d3NzweD3w+H5LJJKqqqtDf3w+9Xo+qqiqUlJSgpqYGe/bsQWdnJ6qqqrBixQqUl5er5qanpwfNzc2w2+2yj+J/a2srdDodFi9eDABobm5GfX29bEOcK7bt3r0bmzdvRnFxsepa4jjGGJqammCxWFBWVqZqV1yXMYaWlhY4HA54vV44nU40NDRg1qxZaddXsnv3brhcLtTV1WFwcFDarXVsar+V/ezv78fWrVths9mwYMECtLe3I5lMwuFwoL+/Hy6XCw6HA/Pnz0/rfzaUx6b2ebjze3p6sH37dvh8PthsNtkvrTaztdXT04ONGzfC5/Nh3rx58Pv9SCaTqKmpSZvz6upq1ethJH1M7WeqjVrPhzs/07ajEXK8j2JaW1sRi8VQX1+PlStX4uSTT0ZBQUGuzSKIKcHg4KB8HIlEEIlEAAChUCjtWM45enp6pGOp5ODBg+Nq58DAwJi2l0wmVU6uQGub0jEHIMcoE2JslF9aALWTLh4HAoGM104mk6prKcfY6/XKxz09PfD7/TAajWhra0MsFkMymQQA9Pb2IhgMgjEmvywlk0kEg0G4XC4AQF9fH3w+H3Q6HVpaWgAMfQFxu93o7OyEx+MB5xyRSASMMbS2tsLr9aKwsBD9/f0IhUJob2+X4yQccGGDGAfl/mAwiFAoJG0yGAxwOp0YHBxENBpFIpGA0WiEy+VCaWkpurq65HYAcLvd8stLOBxGKBRCf38/urq6EAgEEAqFUFFRkea4NDc3w+v1wu12yz6K/+I1n5+fL8e4ublZtiHOFdtcLhd6e3vh9XpV11IeJ77UhkIhVbvius3NzdDpdHC5XOjv74ff74fT6QTnPO36SlwuFzweD5xOJ6xWq7Q7k6Om7Leyn263Gz09Pejv70ckEpH7bDYb3G43PB4PXC4X5s+fn9b/bCiP1epztvObm5vla6yoqEj2S6vNbG01NzfD7XYjkUjA7/fLcerv70+b897eXtXrYSR9TO1nqo1az4c7P9O2o5Ep7Xgzxs4FcO6cOXNybcqYEg6H8eabb2Lr1q2oqanBrFmzYDAYyOkmiDGEIt7HbsTb4XAAGLrXFhQUpEW8a2trYbVaRxTx1ul00uGuqakZ84i32WwedcRbREaV1NfXo7m5GbW1tbKP4r/oR2pENfVcsc3hcCAcDqO4uFjzuIaGBlXEW9muuG5DQ8OwEW8tHA5HWsQ707Gp/Vb20263IxqNpkW8xT4R8dbqfzZSj1X2ebjz6+vrEQgEYLfbYbPZ5PFabQ7X587OzowRb+VYiIj3SG3M1M/hng93/kjOOVpgqdGZqcjJJ5/Mt23blmszxoQXXngBN9xwAw4ePIibbroJd9xxB6mVEARBEARBTBIYYx9yzk/W2jelI95Tjbfeegvnn38+Fi9ejGeeeQbLly/PtUkEQRAEQRDECCFVk0lOMplEY2MjAGDVqlV4+umn8eGHH5LTTRAEQRAEcZRBjvckpqmpCatWrcKKFSvQ2dkJxhiuvPJKmdtIEARBEARBHD2Q4z0JiUajuP322+FwOLB9+3bcd999qKyszLVZBEEQBEEQxBFAOd6TjEAggBUrVmDHjh24/PLLcf/995PTTRAEQRAEMQWgiPckQch25efn4/zzz8f69evxl7/8hZxugiAIgiCIKQI53pOA559/HnPnzoXT6QQA3HHHHTj77LNzbBVBEARBEAQxlpDjnUM6OjpwySWX4IILLkBhYSEYY7k2iSAIgiAIghgnyPHOEU888QQWLlyI9evX4xe/+AU+/PBDLFmyJNdmEQRBEARBEOMELa7MEa2trViyZAkefvhhzJs3L9fmEARBEARBEOMMlYyfIKLRKO6++24sWbIE55xzDuLxOPR6PaWXEARBEARBTCGylYynVJMJ4IMPPkBDQwN+9rOf4Y033gAAGAwGcroJgiAIgiCOIcjxHkcGBwdx44034jOf+Qy8Xi9efPFF3Hfffbk2iyAIgiAIgsgB5HiPI+vXr8f//u//4qabbkJjYyPOOeecXJtEEARBEARB5AhaXDmOXHHFFTjhhBNw/PHH59oUgiAIgiAIIsdQxHscYYyR000QBEEQBEEAIMebIAiCIAiCICYEcrwJgiAIgiAIYgIgx5sgCIIgCIIgJgByvAmCIAiCIAhiAiDHmyAIgiAIgiAmAHK8CYIgCIIgCGICIMebIAiCIAiCICYAcrwJgiAIgiAIYgIgx5sgCIIgCIIgJgByvAmCIAiCIAhiAiDHmyAIgiAIgiAmAHK8CYIgCIIgCGICIMebIAiCIAiCICYAcrwJgiAIgiAIYgIgx5sgCIIgCIIgJgByvAmCIAiCIAhiAiDHmyAIgiAIgiAmAHK8CYIgCIIgCGICIMebIAiCIAiCICYAcrwJgiAIgiAIYgJgnPNc2zDuMMZ6ALizHFIEwDvKfVrbtbaVAegdgZljTbY+jXc7Iz1nuONGOy8jnatczYmWLRPVTq7mJNN2eq+M7pzDnZcj3U7vlcM/jt4rY9vOZHqvTKY5AcZmXibjnGTbN9nnpZZzXq65h3N+zP8BeGS0+7S2Z9i2bbL1abzbGek5wx032nkZ6Vzlak5yOS+5mpPRzBW9V8Z+Xo50O71Xxn5ORjsv9F6ZmHk5WudkrOZlMs7J0T4vmf4o1WSIFw9jn9b2bO1MNGNly+G0M9JzhjtutPMymrnKFbmal1zNSabtNCejO+dw52WstucCeq+M7DoTCb1XRmfLRDEW9kzGOcm272iYF02OiVSTXMIY28Y5PznXdhCfQnMyOaF5mXzQnExOaF4mHzQnk5PJOC8U8R5/Hsm1AUQaNCeTE5qXyQfNyeSE5mXyQXMyOZl080IRb4IgCIIgCIKYACjiTRAEQRAEQRATADneBEEQBEEQBDEBkONNEARBEARBEBMAOd4TCGMsnzH2FGPsD4yxr+TaHmIIxlg9Y+wxxtjfc20LMQRj7IJD75PnGWOfz7U9xBCMsYWMsYcYY39njH0z1/YQQxz6bPmQMXZOrm0hhmCMncEYe/fQ++WMXNtDAIwxHWPsF4yx3zHG/jNXdpDjfYQwxh5njHUzxnakbP8iY2w3Y2wfY+yHhzZfBODvnPNrAZw34cYeQ4xmXjjnzZzza3Jj6bHDKOfkuUPvk6sBXJ4Dc48ZRjkvuzjn3wBwGYBJJdE1lRjl5woA/ADAXyfWymOPUc4LB+AHYAHQNtG2HiuMck7OB1ANIIYczgk53kfOkwC+qNzAGNMDeADAWQAWAbiCMbYIwAwArYcOS0ygjcciT2Lk80JMDE9i9HPyk0P7ifHjSYxiXhhj5wF4D8CbE2vmMcWTGOGcMMbOBNAIoGuijTwGeRIjf6+8yzk/C0NfitZOsJ3HEk9i5HMyH8AHnPNvA8jZL3bkeB8hnPN/AehP2bwMwL5DkdQogL9g6JtWG4acb4DGflwZ5bwQE8Bo5oQNcTeAVzjnzom29VhitO8VzvkLnPNTAVC63DgxyjlZBWAFgC8DuJYxRp8t48Ro5oVznjy0fwCAeQLNPKY4DB9s4NAxOQt+GnJ14SlONT6NbANDk70cwG8B/J4xdjaOktKmUwzNeWGMlQL4BYAljLEfcc7vyol1xyaZ3is3ATgTQBFjbA7n/KFcGHcMk+m9cgaGUubMAF6eeLOOaTTnhHN+IwAwxq4G0Ktw+IiJIdN75SIAXwBgB/D7HNh1LJPpc+V+AL9jjH0WwL9yYRhAjvd4wTS2cc55AMDXJtoYQpJpXvoAfGOijSEAZJ6T32LoiyqRGzLNy9sA3p5YU4hDaM6JfMD5kxNnCqEg03vlWQDPTrQxBIDMcxIEkPP1XPST1PjQBqBG8XwGgIM5soX4FJqXyQfNyeSE5mXyQXMyOaF5mXxM6jkhx3t82ApgLmNsFmPMBOA/ALyQY5sImpfJCM3J5ITmZfJBczI5oXmZfEzqOSHH+whhjP0ZwAcA5jPG2hhj13DO4wBuBPAagF0A/so535lLO481aF4mHzQnkxOal8kHzcnkhOZl8nE0zgnjnA9/FEEQBEEQBEEQRwRFvAmCIAiCIAhiAiDHmyAIgiAIgiAmAHK8CYIgCIIgCGICIMebIAiCIAiCICYAcrwJgiAIgiAIYgIgx5sgCIIgCIIgJgByvAmCICYxjLFSxthHh/46GWPthx77GWP/O07X/B/G2FXj0fYw1y1njL060dclCIKYKEjHmyAI4iiBMXYrAD/n/NfjeA0DACeAhkOFKMblGpnaZow9AeBRzvn743FtgiCIXEIRb4IgiKMQxtgZjLH1hx7fyhh7ijH2T8ZYC2PsIsbYrxhj2xljrzLGjIeOO4kx9g5j7EPG2GuMsWkaTa8G4OScxxljsxljTsU15zLGPszWFmPsWsbYVsaYizH2DGMs79D2Jxlj9zLGNgC4mzF2uiKS/2/GmO3QZZ4D8JXxGjeCIIhcQo43QRDE1GA2gLMBnA/gjwA2cM4XAwgBOPuQ8/07AJdwzk8C8DiAX2i08xkAHwIA5/wTAF7G2ImH9n0NwJPDtPUs53wp59yBoXLN1yjangfgTM75dwB8F8C3OOcnAvjsITsBYNuh5wRBEFMOQ64NIAiCIMaEVzjnMcbYdgB6ACJXejuAOgDzARwP4HXGGA4d06HRzjQMOcyCRwF8jTH2bQCXA1g2TFvHM8buAGAHUADgNUVbf+OcJw49fh/AvYyx/w9Dznrboe3dAKaPtvMEQRBHA+R4EwRBTA0iAMA5TzLGYvzTBTxJDN3rGYCdnPNThmknBMCieP4MgJ8DeAvAh5zzPsbY9CxtPQngAs65izF2NYAzFPsC4gHn/JeMsZcAfAnAJsbYmZzzpkPXDoEgCGIKQqkmBEEQxwa7AZQzxk4BAMaYkTF2nMZxuwDMEU8452EMRa0fBPDECNqyAeg4lI6SMVebMTabc76dc343htJLFhzaNQ/AjsPsI0EQxKSGHG+CIIhjAM55FMAlGFrY6ALwEYBTNQ59BcBpKdv+PwAcwD9H0NZPAWwG8DqApiwm/Q9jbMeh80OHrgsAqwC8NJq+EQRBHC2QnCBBEAShgjH2DwDf55zvPfT8uwCKOOc/nYBr/wvA+ZzzgfG+FkEQxERDjjdBEAShgjE2H0Al5/xfh5zw2QBWc857x/m65QA+wzl/bjyvQxAEkSvI8SYIgiAIgiCICYByvAmCIAiCIAhiAiDHmyAIgiAIgiAmAHK8CYIgCIIgCGICIMebIAiCIAiCICYAcrwJgiAIgiAIYgIgx5sgCIIgCIIgJoD/HyQKC3ZCl5ZOAAAAAElFTkSuQmCC\n",
346      "text/plain": [
347       "<Figure size 864x648 with 1 Axes>"
348      ]
349     },
350     "metadata": {
351      "needs_background": "light"
352     },
353     "output_type": "display_data"
354    }
355   ],
356   "source": [
357    "from matplotlib.pylab import plt\n",
358    "plt.rcParams[\"figure.figsize\"] = (12,9)\n",
359    "\n",
360    "# Use log scale on both axes.\n",
361    "plt.xscale('log')\n",
362    "plt.yscale('log')\n",
363    "\n",
364    "# Plot all data points.\n",
365    "plt.plot(t_grid[:, 0], res, color='gray', marker='.', linestyle='None', alpha=.4, markersize=3.5)\n",
366    "\n",
367    "# Plot the root mean square computed over all\n",
368    "# data points at each timestep.\n",
369    "plt.plot(t_grid[:, 0], np.sqrt(np.mean(res*res, axis = 1)), color='k', label=\"RMS\")\n",
370    "\n",
371    "# Plot sqrt(t).\n",
372    "plt.plot(t_grid[:, 0], 1.5e-16 * np.sqrt(t_grid[:, 0]), 'k--', label=\"$\\sqrt{t}$ (Brouwer's law)\")\n",
373    "\n",
374    "plt.xlabel(\"Time (years)\")\n",
375    "plt.ylabel(\"Rel. energy error\")\n",
376    "plt.legend();"
377   ]
378  },
379  {
380   "cell_type": "markdown",
381   "id": "8ba18c8b",
382   "metadata": {},
383   "source": [
384    "The plot clearly shows how the average energy error starts out around machine precision and then begins to grow following Brouwer's law. These results indicate that heyoka.py is able to optimally conserve the invariants of a dynamical system over long-term integrations."
385   ]
386  }
387 ],
388 "metadata": {
389  "kernelspec": {
390   "display_name": "Python 3 (ipykernel)",
391   "language": "python",
392   "name": "python3"
393  },
394  "language_info": {
395   "codemirror_mode": {
396    "name": "ipython",
397    "version": 3
398   },
399   "file_extension": ".py",
400   "mimetype": "text/x-python",
401   "name": "python",
402   "nbconvert_exporter": "python",
403   "pygments_lexer": "ipython3",
404   "version": "3.8.10"
405  }
406 },
407 "nbformat": 4,
408 "nbformat_minor": 5
409}
410