1 //----------------------------------------------------------------------------
2 // Anti-Grain Geometry - Version 2.4
3 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
4 //
5 // Permission to copy, use, modify, sell and distribute this software
6 // is granted provided this copyright notice appears in all copies.
7 // This software is provided "as is" without express or implied
8 // warranty, and with no claim as to its suitability for any purpose.
9 //
10 //----------------------------------------------------------------------------
11 // Contact: mcseem@antigrain.com
12 //          mcseemagg@yahoo.com
13 //          http://www.antigrain.com
14 //----------------------------------------------------------------------------
15 //
16 // Adaptation for high precision colors has been sponsored by
17 // Liberty Technology Systems, Inc., visit http://lib-sys.com
18 //
19 // Liberty Technology Systems, Inc. is the provider of
20 // PostScript and PDF technology for software developers.
21 //
22 //----------------------------------------------------------------------------
23 
24 #ifndef AGG_SPAN_GOURAUD_GRAY_INCLUDED
25 #define AGG_SPAN_GOURAUD_GRAY_INCLUDED
26 
27 #include "agg_basics.h"
28 #include "agg_color_gray.h"
29 #include "agg_dda_line.h"
30 #include "agg_span_gouraud.h"
31 
32 namespace agg
33 {
34 
35     //=======================================================span_gouraud_gray
36     template<class ColorT> class span_gouraud_gray : public span_gouraud<ColorT>
37     {
38     public:
39         typedef ColorT color_type;
40         typedef typename color_type::value_type value_type;
41         typedef span_gouraud<color_type> base_type;
42         typedef typename base_type::coord_type coord_type;
43         enum subpixel_scale_e
44         {
45             subpixel_shift = 4,
46             subpixel_scale = 1 << subpixel_shift
47         };
48 
49     private:
50         //--------------------------------------------------------------------
51         struct gray_calc
52         {
initgray_calc53             void init(const coord_type& c1, const coord_type& c2)
54             {
55                 m_x1  = c1.x - 0.5;
56                 m_y1  = c1.y - 0.5;
57                 m_dx  = c2.x - c1.x;
58                 double dy = c2.y - c1.y;
59                 m_1dy = (fabs(dy) < 1e-10) ? 1e10 : 1.0 / dy;
60                 m_v1 = c1.color.v;
61                 m_a1 = c1.color.a;
62                 m_dv = c2.color.v - m_v1;
63                 m_da = c2.color.a - m_a1;
64             }
65 
calcgray_calc66             void calc(double y)
67             {
68                 double k = (y - m_y1) * m_1dy;
69                 if(k < 0.0) k = 0.0;
70                 if(k > 1.0) k = 1.0;
71                 m_v = m_v1 + iround(m_dv * k);
72                 m_a = m_a1 + iround(m_da * k);
73                 m_x = iround((m_x1 + m_dx * k) * subpixel_scale);
74             }
75 
76             double m_x1;
77             double m_y1;
78             double m_dx;
79             double m_1dy;
80             int    m_v1;
81             int    m_a1;
82             int    m_dv;
83             int    m_da;
84             int    m_v;
85             int    m_a;
86             int    m_x;
87         };
88 
89 
90     public:
91         //--------------------------------------------------------------------
span_gouraud_gray()92         span_gouraud_gray() {}
93         span_gouraud_gray(const color_type& c1,
94                           const color_type& c2,
95                           const color_type& c3,
96                           double x1, double y1,
97                           double x2, double y2,
98                           double x3, double y3,
99                           double d = 0) :
base_type(c1,c2,c3,x1,y1,x2,y2,x3,y3,d)100             base_type(c1, c2, c3, x1, y1, x2, y2, x3, y3, d)
101         {}
102 
103         //--------------------------------------------------------------------
prepare()104         void prepare()
105         {
106             coord_type coord[3];
107             base_type::arrange_vertices(coord);
108 
109             m_y2 = int(coord[1].y);
110 
111             m_swap = cross_product(coord[0].x, coord[0].y,
112                                    coord[2].x, coord[2].y,
113                                    coord[1].x, coord[1].y) < 0.0;
114 
115             m_c1.init(coord[0], coord[2]);
116             m_c2.init(coord[0], coord[1]);
117             m_c3.init(coord[1], coord[2]);
118         }
119 
120         //--------------------------------------------------------------------
generate(color_type * span,int x,int y,unsigned len)121         void generate(color_type* span, int x, int y, unsigned len)
122         {
123             m_c1.calc(y);
124             const gray_calc* pc1 = &m_c1;
125             const gray_calc* pc2 = &m_c2;
126 
127             if(y < m_y2)
128             {
129                 // Bottom part of the triangle (first subtriangle)
130                 //-------------------------
131                 m_c2.calc(y + m_c2.m_1dy);
132             }
133             else
134             {
135                 // Upper part (second subtriangle)
136                 //-------------------------
137                 m_c3.calc(y - m_c3.m_1dy);
138                 pc2 = &m_c3;
139             }
140 
141             if(m_swap)
142             {
143                 // It means that the triangle is oriented clockwise,
144                 // so that we need to swap the controlling structures
145                 //-------------------------
146                 const gray_calc* t = pc2;
147                 pc2 = pc1;
148                 pc1 = t;
149             }
150 
151             // Get the horizontal length with subpixel accuracy
152             // and protect it from division by zero
153             //-------------------------
154             int nlen = abs(pc2->m_x - pc1->m_x);
155             if(nlen <= 0) nlen = 1;
156 
157             dda_line_interpolator<14> v(pc1->m_v, pc2->m_v, nlen);
158             dda_line_interpolator<14> a(pc1->m_a, pc2->m_a, nlen);
159 
160             // Calculate the starting point of the gradient with subpixel
161             // accuracy and correct (roll back) the interpolators.
162             // This operation will also clip the beginning of the span
163             // if necessary.
164             //-------------------------
165             int start = pc1->m_x - (x << subpixel_shift);
166             v    -= start;
167             a    -= start;
168             nlen += start;
169 
170             int vv, va;
171             enum lim_e { lim = color_type::base_mask };
172 
173             // Beginning part of the span. Since we rolled back the
174             // interpolators, the color values may have overflow.
175             // So that, we render the beginning part with checking
176             // for overflow. It lasts until "start" is positive;
177             // typically it's 1-2 pixels, but may be more in some cases.
178             //-------------------------
179             while(len && start > 0)
180             {
181                 vv = v.y();
182                 va = a.y();
183                 if(vv < 0) vv = 0; if(vv > lim) vv = lim;
184                 if(va < 0) va = 0; if(va > lim) va = lim;
185                 span->v = (value_type)vv;
186                 span->a = (value_type)va;
187                 v     += subpixel_scale;
188                 a     += subpixel_scale;
189                 nlen  -= subpixel_scale;
190                 start -= subpixel_scale;
191                 ++span;
192                 --len;
193             }
194 
195             // Middle part, no checking for overflow.
196             // Actual spans can be longer than the calculated length
197             // because of anti-aliasing, thus, the interpolators can
198             // overflow. But while "nlen" is positive we are safe.
199             //-------------------------
200             while(len && nlen > 0)
201             {
202                 span->v = (value_type)v.y();
203                 span->a = (value_type)a.y();
204                 v    += subpixel_scale;
205                 a    += subpixel_scale;
206                 nlen -= subpixel_scale;
207                 ++span;
208                 --len;
209             }
210 
211             // Ending part; checking for overflow.
212             // Typically it's 1-2 pixels, but may be more in some cases.
213             //-------------------------
214             while(len)
215             {
216                 vv = v.y();
217                 va = a.y();
218                 if(vv < 0) vv = 0; if(vv > lim) vv = lim;
219                 if(va < 0) va = 0; if(va > lim) va = lim;
220                 span->v = (value_type)vv;
221                 span->a = (value_type)va;
222                 v += subpixel_scale;
223                 a += subpixel_scale;
224                 ++span;
225                 --len;
226             }
227         }
228 
229 
230     private:
231         bool      m_swap;
232         int       m_y2;
233         gray_calc m_c1;
234         gray_calc m_c2;
235         gray_calc m_c3;
236     };
237 
238 
239 }
240 
241 #endif
242