1*
2*
3      SUBROUTINE DSTEIN2( N, D, E, M, W, IBLOCK, ISPLIT, ORFAC, Z, LDZ,
4     $                    WORK, IWORK, IFAIL, INFO )
5*
6*  -- ScaLAPACK routine (version 1.7) --
7*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
8*     and University of California, Berkeley.
9*     May 1, 1997
10*
11*     .. Scalar Arguments ..
12      INTEGER            INFO, LDZ, M, N
13      DOUBLE PRECISION   ORFAC
14*     ..
15*     .. Array Arguments ..
16      INTEGER            IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
17     $                   IWORK( * )
18      DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
19*     ..
20*
21*  Purpose
22*  =======
23*
24*  DSTEIN2 computes the eigenvectors of a real symmetric tridiagonal
25*  matrix T corresponding to specified eigenvalues, using inverse
26*  iteration.
27*
28*  The maximum number of iterations allowed for each eigenvector is
29*  specified by an internal parameter MAXITS (currently set to 5).
30*
31*  Arguments
32*  =========
33*
34*  N       (input) INTEGER
35*          The order of the matrix.  N >= 0.
36*
37*  D       (input) DOUBLE PRECISION array, dimension (N)
38*          The n diagonal elements of the tridiagonal matrix T.
39*
40*  E       (input) DOUBLE PRECISION array, dimension (N)
41*          The (n-1) subdiagonal elements of the tridiagonal matrix
42*          T, in elements 1 to N-1.  E(N) need not be set.
43*
44*  M       (input) INTEGER
45*          The number of eigenvectors to be found.  0 <= M <= N.
46*
47*  W       (input) DOUBLE PRECISION array, dimension (N)
48*          The first M elements of W contain the eigenvalues for
49*          which eigenvectors are to be computed.  The eigenvalues
50*          should be grouped by split-off block and ordered from
51*          smallest to largest within the block.  ( The output array
52*          W from DSTEBZ with ORDER = 'B' is expected here. )
53*
54*  IBLOCK  (input) INTEGER array, dimension (N)
55*          The submatrix indices associated with the corresponding
56*          eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
57*          the first submatrix from the top, =2 if W(i) belongs to
58*          the second submatrix, etc.  ( The output array IBLOCK
59*          from DSTEBZ is expected here. )
60*
61*  ISPLIT  (input) INTEGER array, dimension (N)
62*          The splitting points, at which T breaks up into submatrices.
63*          The first submatrix consists of rows/columns 1 to
64*          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
65*          through ISPLIT( 2 ), etc.
66*          ( The output array ISPLIT from DSTEBZ is expected here. )
67*
68*  ORFAC   (input) DOUBLE PRECISION
69*          ORFAC specifies which eigenvectors should be
70*          orthogonalized. Eigenvectors that correspond to eigenvalues
71*          which are within ORFAC*||T|| of each other are to be
72*          orthogonalized.
73*
74*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, M)
75*          The computed eigenvectors.  The eigenvector associated
76*          with the eigenvalue W(i) is stored in the i-th column of
77*          Z.  Any vector which fails to converge is set to its current
78*          iterate after MAXITS iterations.
79*
80*  LDZ     (input) INTEGER
81*          The leading dimension of the array Z.  LDZ >= max(1,N).
82*
83*  WORK    (workspace) DOUBLE PRECISION array, dimension (5*N)
84*
85*  IWORK   (workspace) INTEGER array, dimension (N)
86*
87*  IFAIL   (output) INTEGER array, dimension (M)
88*          On normal exit, all elements of IFAIL are zero.
89*          If one or more eigenvectors fail to converge after
90*          MAXITS iterations, then their indices are stored in
91*          array IFAIL.
92*
93*  INFO    (output) INTEGER
94*          = 0: successful exit.
95*          < 0: if INFO = -i, the i-th argument had an illegal value
96*          > 0: if INFO = i, then i eigenvectors failed to converge
97*               in MAXITS iterations.  Their indices are stored in
98*               array IFAIL.
99*
100*  Internal Parameters
101*  ===================
102*
103*  MAXITS  INTEGER, default = 5
104*          The maximum number of iterations performed.
105*
106*  EXTRA   INTEGER, default = 2
107*          The number of iterations performed after norm growth
108*          criterion is satisfied, should be at least 1.
109*
110*  =====================================================================
111*
112*     .. Parameters ..
113      DOUBLE PRECISION   ZERO, ONE, TEN, ODM1
114      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 1.0D+1,
115     $                   ODM1 = 1.0D-1 )
116      INTEGER            MAXITS, EXTRA
117      PARAMETER          ( MAXITS = 5, EXTRA = 2 )
118*     ..
119*     .. Local Scalars ..
120      INTEGER            B1, BLKSIZ, BN, GPIND, I, IINFO, INDRV1,
121     $                   INDRV2, INDRV3, INDRV4, INDRV5, ITS, J, J1,
122     $                   JBLK, JMAX, NBLK, NRMCHK
123      DOUBLE PRECISION   EPS, EPS1, NRM, ONENRM, ORTOL, PERTOL, SCL,
124     $                   SEP, STPCRT, TOL, XJ, XJM, ZTR
125*     ..
126*     .. Local Arrays ..
127      INTEGER            ISEED( 4 )
128*     ..
129*     .. External Functions ..
130      INTEGER            IDAMAX
131      DOUBLE PRECISION   DASUM, DDOT, DLAMCH, DNRM2
132      EXTERNAL           IDAMAX, DASUM, DDOT, DLAMCH, DNRM2
133*     ..
134*     .. External Subroutines ..
135      EXTERNAL           DAXPY, DCOPY, DLAGTF, DLAGTS, DLARNV, DSCAL,
136     $                   XERBLA
137*     ..
138*     .. Intrinsic Functions ..
139      INTRINSIC          ABS, MAX, SQRT
140*     ..
141*     .. Executable Statements ..
142*
143*     Test the input parameters.
144*
145      INFO = 0
146      DO 10 I = 1, M
147         IFAIL( I ) = 0
148   10 CONTINUE
149*
150      IF( N.LT.0 ) THEN
151         INFO = -1
152      ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
153         INFO = -4
154      ELSE IF( ORFAC.LT.ZERO ) THEN
155         INFO = -8
156      ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
157         INFO = -10
158      ELSE
159         DO 20 J = 2, M
160            IF( IBLOCK( J ).LT.IBLOCK( J-1 ) ) THEN
161               INFO = -6
162               GO TO 30
163            END IF
164            IF( IBLOCK( J ).EQ.IBLOCK( J-1 ) .AND. W( J ).LT.W( J-1 ) )
165     $           THEN
166               INFO = -5
167               GO TO 30
168            END IF
169   20    CONTINUE
170   30    CONTINUE
171      END IF
172*
173      IF( INFO.NE.0 ) THEN
174         CALL XERBLA( 'DSTEIN2', -INFO )
175         RETURN
176      END IF
177*
178*     Quick return if possible
179*
180      IF( N.EQ.0 .OR. M.EQ.0 ) THEN
181         RETURN
182      ELSE IF( N.EQ.1 ) THEN
183         Z( 1, 1 ) = ONE
184         RETURN
185      END IF
186*
187*     Get machine constants.
188*
189      EPS = DLAMCH( 'Precision' )
190*
191*     Initialize seed for random number generator DLARNV.
192*
193      DO 40 I = 1, 4
194         ISEED( I ) = 1
195   40 CONTINUE
196*
197*     Initialize pointers.
198*
199      INDRV1 = 0
200      INDRV2 = INDRV1 + N
201      INDRV3 = INDRV2 + N
202      INDRV4 = INDRV3 + N
203      INDRV5 = INDRV4 + N
204*
205*     Compute eigenvectors of matrix blocks.
206*
207      J1 = 1
208      DO 160 NBLK = 1, IBLOCK( M )
209*
210*        Find starting and ending indices of block nblk.
211*
212         IF( NBLK.EQ.1 ) THEN
213            B1 = 1
214         ELSE
215            B1 = ISPLIT( NBLK-1 ) + 1
216         END IF
217         BN = ISPLIT( NBLK )
218         BLKSIZ = BN - B1 + 1
219         IF( BLKSIZ.EQ.1 )
220     $      GO TO 60
221         GPIND = J1
222*
223*        Compute reorthogonalization criterion and stopping criterion.
224*
225         ONENRM = ABS( D( B1 ) ) + ABS( E( B1 ) )
226         ONENRM = MAX( ONENRM, ABS( D( BN ) )+ABS( E( BN-1 ) ) )
227         DO 50 I = B1 + 1, BN - 1
228            ONENRM = MAX( ONENRM, ABS( D( I ) )+ABS( E( I-1 ) )+
229     $               ABS( E( I ) ) )
230   50    CONTINUE
231         ORTOL = ORFAC*ONENRM
232*
233         STPCRT = SQRT( ODM1 / BLKSIZ )
234*
235*        Loop through eigenvalues of block nblk.
236*
237   60    CONTINUE
238         JBLK = 0
239         DO 150 J = J1, M
240            IF( IBLOCK( J ).NE.NBLK ) THEN
241               J1 = J
242               GO TO 160
243            END IF
244            JBLK = JBLK + 1
245            XJ = W( J )
246*
247*           Skip all the work if the block size is one.
248*
249            IF( BLKSIZ.EQ.1 ) THEN
250               WORK( INDRV1+1 ) = ONE
251               GO TO 120
252            END IF
253*
254*           If eigenvalues j and j-1 are too close, add a relatively
255*           small perturbation.
256*
257            IF( JBLK.GT.1 ) THEN
258               EPS1 = ABS( EPS*XJ )
259               PERTOL = TEN*EPS1
260               SEP = XJ - XJM
261               IF( SEP.LT.PERTOL )
262     $            XJ = XJM + PERTOL
263            END IF
264*
265            ITS = 0
266            NRMCHK = 0
267*
268*           Get random starting vector.
269*
270            CALL DLARNV( 2, ISEED, BLKSIZ, WORK( INDRV1+1 ) )
271*
272*           Copy the matrix T so it won't be destroyed in factorization.
273*
274            CALL DCOPY( BLKSIZ, D( B1 ), 1, WORK( INDRV4+1 ), 1 )
275            CALL DCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV2+2 ), 1 )
276            CALL DCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV3+1 ), 1 )
277*
278*           Compute LU factors with partial pivoting  ( PT = LU )
279*
280            TOL = ZERO
281            CALL DLAGTF( BLKSIZ, WORK( INDRV4+1 ), XJ, WORK( INDRV2+2 ),
282     $                   WORK( INDRV3+1 ), TOL, WORK( INDRV5+1 ), IWORK,
283     $                   IINFO )
284*
285*           Update iteration count.
286*
287   70       CONTINUE
288            ITS = ITS + 1
289            IF( ITS.GT.MAXITS )
290     $         GO TO 100
291*
292*           Normalize and scale the righthand side vector Pb.
293*
294            SCL = BLKSIZ*ONENRM*MAX( EPS,
295     $            ABS( WORK( INDRV4+BLKSIZ ) ) ) /
296     $            DASUM( BLKSIZ, WORK( INDRV1+1 ), 1 )
297            CALL DSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
298*
299*           Solve the system LU = Pb.
300*
301            CALL DLAGTS( -1, BLKSIZ, WORK( INDRV4+1 ), WORK( INDRV2+2 ),
302     $                   WORK( INDRV3+1 ), WORK( INDRV5+1 ), IWORK,
303     $                   WORK( INDRV1+1 ), TOL, IINFO )
304*
305*           Reorthogonalize by modified Gram-Schmidt if eigenvalues are
306*           close enough.
307*
308            IF( JBLK.EQ.1 )
309     $         GO TO 90
310            IF( ABS( XJ-XJM ).GT.ORTOL )
311     $         GPIND = J
312*
313            IF( GPIND.NE.J ) THEN
314               DO 80 I = GPIND, J - 1
315                  ZTR = -DDOT( BLKSIZ, WORK( INDRV1+1 ), 1, Z( B1, I ),
316     $                  1 )
317                  CALL DAXPY( BLKSIZ, ZTR, Z( B1, I ), 1,
318     $                        WORK( INDRV1+1 ), 1 )
319   80          CONTINUE
320            END IF
321*
322*           Check the infinity norm of the iterate.
323*
324   90       CONTINUE
325            JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
326            NRM = ABS( WORK( INDRV1+JMAX ) )
327*
328*           Continue for additional iterations after norm reaches
329*           stopping criterion.
330*
331            IF( NRM.LT.STPCRT )
332     $         GO TO 70
333            NRMCHK = NRMCHK + 1
334            IF( NRMCHK.LT.EXTRA+1 )
335     $         GO TO 70
336*
337            GO TO 110
338*
339*           If stopping criterion was not satisfied, update info and
340*           store eigenvector number in array ifail.
341*
342  100       CONTINUE
343            INFO = INFO + 1
344            IFAIL( INFO ) = J
345*
346*           Accept iterate as jth eigenvector.
347*
348  110       CONTINUE
349            SCL = ONE / DNRM2( BLKSIZ, WORK( INDRV1+1 ), 1 )
350            JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
351            IF( WORK( INDRV1+JMAX ).LT.ZERO )
352     $         SCL = -SCL
353            CALL DSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
354  120       CONTINUE
355            DO 130 I = 1, N
356               Z( I, J ) = ZERO
357  130       CONTINUE
358            DO 140 I = 1, BLKSIZ
359               Z( B1+I-1, J ) = WORK( INDRV1+I )
360  140       CONTINUE
361*
362*           Save the shift to check eigenvalue spacing at next
363*           iteration.
364*
365            XJM = XJ
366*
367  150    CONTINUE
368  160 CONTINUE
369*
370      RETURN
371*
372*     End of DSTEIN2
373*
374      END
375