1function X=idwt(cA,cD,wname,[L])
2// Inverse Discrete Fast Wavelet Transform
3// Calling Sequence
4// X=idwt(cA,cD,wname,[L])
5// X=idwt(cA,cD,Lo_R,Hi_R,[L])
6// Parameters
7// wname: wavelet name, haar( "haar"), daubechies ("db1" to "db36"), coiflets ("coif1" to "coif17"), symlets ("sym2" to "sym20"), legendre ("leg1" to "leg9"), bathlets("bath4.0" to "bath4.15" and "bath6.0" to "bath6.15"), dmey ("dmey"), beyklin ("beylkin"), vaidyanathan ("vaidyanathan"), biorthogonal B-spline wavelets ("bior1.1" to "bior6.8"), "rbior1.1" to "rbior6.8"
8// x : reconstructed vector
9// Lo_R: lowpass synthesis filter
10// Hi_R: highpass syntheis filter
11// L : restruction length
12// cA: approximation coefficent
13// cD: detail coefficent
14// Description
15// idwt is for inverse discrete fast wavelet transform. Coefficent could be void vector as '[]' for cA or cD.
16// Examples
17// x=rand(1,100);
18// [cA,cD]=dwt(x,'db2','mode','asymh');
19// x0=idwt(cA,cD,'db2',100);
20//
21//
22//
23// Authors
24// Roger Liu and Isaac Zhi
25// Copyright (C) 2010-2015 - Holger Nahrstaedt
26// See Also
27// dwt
28// dwt2
29// idwt2
30