1function X=idwt(cA,cD,wname,[L]) 2// Inverse Discrete Fast Wavelet Transform 3// Calling Sequence 4// X=idwt(cA,cD,wname,[L]) 5// X=idwt(cA,cD,Lo_R,Hi_R,[L]) 6// Parameters 7// wname: wavelet name, haar( "haar"), daubechies ("db1" to "db36"), coiflets ("coif1" to "coif17"), symlets ("sym2" to "sym20"), legendre ("leg1" to "leg9"), bathlets("bath4.0" to "bath4.15" and "bath6.0" to "bath6.15"), dmey ("dmey"), beyklin ("beylkin"), vaidyanathan ("vaidyanathan"), biorthogonal B-spline wavelets ("bior1.1" to "bior6.8"), "rbior1.1" to "rbior6.8" 8// x : reconstructed vector 9// Lo_R: lowpass synthesis filter 10// Hi_R: highpass syntheis filter 11// L : restruction length 12// cA: approximation coefficent 13// cD: detail coefficent 14// Description 15// idwt is for inverse discrete fast wavelet transform. Coefficent could be void vector as '[]' for cA or cD. 16// Examples 17// x=rand(1,100); 18// [cA,cD]=dwt(x,'db2','mode','asymh'); 19// x0=idwt(cA,cD,'db2',100); 20// 21// 22// 23// Authors 24// Roger Liu and Isaac Zhi 25// Copyright (C) 2010-2015 - Holger Nahrstaedt 26// See Also 27// dwt 28// dwt2 29// idwt2 30