1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
6 // Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 
12 
13 #ifndef EIGEN_PRODUCTEVALUATORS_H
14 #define EIGEN_PRODUCTEVALUATORS_H
15 
16 namespace Eigen {
17 
18 namespace internal {
19 
20 /** \internal
21   * Evaluator of a product expression.
22   * Since products require special treatments to handle all possible cases,
23   * we simply deffer the evaluation logic to a product_evaluator class
24   * which offers more partial specialization possibilities.
25   *
26   * \sa class product_evaluator
27   */
28 template<typename Lhs, typename Rhs, int Options>
29 struct evaluator<Product<Lhs, Rhs, Options> >
30  : public product_evaluator<Product<Lhs, Rhs, Options> >
31 {
32   typedef Product<Lhs, Rhs, Options> XprType;
33   typedef product_evaluator<XprType> Base;
34 
35   EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {}
36 };
37 
38 // Catch "scalar * ( A * B )" and transform it to "(A*scalar) * B"
39 // TODO we should apply that rule only if that's really helpful
40 template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
41 struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
42                                                const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
43                                                const Product<Lhs, Rhs, DefaultProduct> > >
44 {
45   static const bool value = true;
46 };
47 template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
48 struct evaluator<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
49                                const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
50                                const Product<Lhs, Rhs, DefaultProduct> > >
51  : public evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> >
52 {
53   typedef CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
54                                const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
55                                const Product<Lhs, Rhs, DefaultProduct> > XprType;
56   typedef evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> > Base;
57 
58   EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
59     : Base(xpr.lhs().functor().m_other * xpr.rhs().lhs() * xpr.rhs().rhs())
60   {}
61 };
62 
63 
64 template<typename Lhs, typename Rhs, int DiagIndex>
65 struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> >
66  : public evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> >
67 {
68   typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType;
69   typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > Base;
70 
71   EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
72     : Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>(
73         Product<Lhs, Rhs, LazyProduct>(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()),
74         xpr.index() ))
75   {}
76 };
77 
78 
79 // Helper class to perform a matrix product with the destination at hand.
80 // Depending on the sizes of the factors, there are different evaluation strategies
81 // as controlled by internal::product_type.
82 template< typename Lhs, typename Rhs,
83           typename LhsShape = typename evaluator_traits<Lhs>::Shape,
84           typename RhsShape = typename evaluator_traits<Rhs>::Shape,
85           int ProductType = internal::product_type<Lhs,Rhs>::value>
86 struct generic_product_impl;
87 
88 template<typename Lhs, typename Rhs>
89 struct evaluator_assume_aliasing<Product<Lhs, Rhs, DefaultProduct> > {
90   static const bool value = true;
91 };
92 
93 // This is the default evaluator implementation for products:
94 // It creates a temporary and call generic_product_impl
95 template<typename Lhs, typename Rhs, int Options, int ProductTag, typename LhsShape, typename RhsShape>
96 struct product_evaluator<Product<Lhs, Rhs, Options>, ProductTag, LhsShape, RhsShape>
97   : public evaluator<typename Product<Lhs, Rhs, Options>::PlainObject>
98 {
99   typedef Product<Lhs, Rhs, Options> XprType;
100   typedef typename XprType::PlainObject PlainObject;
101   typedef evaluator<PlainObject> Base;
102   enum {
103     Flags = Base::Flags | EvalBeforeNestingBit
104   };
105 
106   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
107   explicit product_evaluator(const XprType& xpr)
108     : m_result(xpr.rows(), xpr.cols())
109   {
110     ::new (static_cast<Base*>(this)) Base(m_result);
111 
112 // FIXME shall we handle nested_eval here?,
113 // if so, then we must take care at removing the call to nested_eval in the specializations (e.g., in permutation_matrix_product, transposition_matrix_product, etc.)
114 //     typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
115 //     typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
116 //     typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
117 //     typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
118 //
119 //     const LhsNested lhs(xpr.lhs());
120 //     const RhsNested rhs(xpr.rhs());
121 //
122 //     generic_product_impl<LhsNestedCleaned, RhsNestedCleaned>::evalTo(m_result, lhs, rhs);
123 
124     generic_product_impl<Lhs, Rhs, LhsShape, RhsShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
125   }
126 
127 protected:
128   PlainObject m_result;
129 };
130 
131 // The following three shortcuts are enabled only if the scalar types match excatly.
132 // TODO: we could enable them for different scalar types when the product is not vectorized.
133 
134 // Dense = Product
135 template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
136 struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::assign_op<Scalar,Scalar>, Dense2Dense,
137   typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
138 {
139   typedef Product<Lhs,Rhs,Options> SrcXprType;
140   static EIGEN_STRONG_INLINE
141   void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &)
142   {
143     Index dstRows = src.rows();
144     Index dstCols = src.cols();
145     if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
146       dst.resize(dstRows, dstCols);
147     // FIXME shall we handle nested_eval here?
148     generic_product_impl<Lhs, Rhs>::evalTo(dst, src.lhs(), src.rhs());
149   }
150 };
151 
152 // Dense += Product
153 template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
154 struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::add_assign_op<Scalar,Scalar>, Dense2Dense,
155   typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
156 {
157   typedef Product<Lhs,Rhs,Options> SrcXprType;
158   static EIGEN_STRONG_INLINE
159   void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar,Scalar> &)
160   {
161     eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
162     // FIXME shall we handle nested_eval here?
163     generic_product_impl<Lhs, Rhs>::addTo(dst, src.lhs(), src.rhs());
164   }
165 };
166 
167 // Dense -= Product
168 template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
169 struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::sub_assign_op<Scalar,Scalar>, Dense2Dense,
170   typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
171 {
172   typedef Product<Lhs,Rhs,Options> SrcXprType;
173   static EIGEN_STRONG_INLINE
174   void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar,Scalar> &)
175   {
176     eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
177     // FIXME shall we handle nested_eval here?
178     generic_product_impl<Lhs, Rhs>::subTo(dst, src.lhs(), src.rhs());
179   }
180 };
181 
182 
183 // Dense ?= scalar * Product
184 // TODO we should apply that rule if that's really helpful
185 // for instance, this is not good for inner products
186 template< typename DstXprType, typename Lhs, typename Rhs, typename AssignFunc, typename Scalar, typename ScalarBis, typename Plain>
187 struct Assignment<DstXprType, CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>, const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>,
188                                            const Product<Lhs,Rhs,DefaultProduct> >, AssignFunc, Dense2Dense>
189 {
190   typedef CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>,
191                         const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>,
192                         const Product<Lhs,Rhs,DefaultProduct> > SrcXprType;
193   static EIGEN_STRONG_INLINE
194   void run(DstXprType &dst, const SrcXprType &src, const AssignFunc& func)
195   {
196     call_assignment_no_alias(dst, (src.lhs().functor().m_other * src.rhs().lhs())*src.rhs().rhs(), func);
197   }
198 };
199 
200 //----------------------------------------
201 // Catch "Dense ?= xpr + Product<>" expression to save one temporary
202 // FIXME we could probably enable these rules for any product, i.e., not only Dense and DefaultProduct
203 
204 template<typename OtherXpr, typename Lhs, typename Rhs>
205 struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_sum_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr,
206                                                const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > {
207   static const bool value = true;
208 };
209 
210 template<typename OtherXpr, typename Lhs, typename Rhs>
211 struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_difference_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr,
212                                                const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > {
213   static const bool value = true;
214 };
215 
216 template<typename DstXprType, typename OtherXpr, typename ProductType, typename Func1, typename Func2>
217 struct assignment_from_xpr_op_product
218 {
219   template<typename SrcXprType, typename InitialFunc>
220   static EIGEN_STRONG_INLINE
221   void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/)
222   {
223     call_assignment_no_alias(dst, src.lhs(), Func1());
224     call_assignment_no_alias(dst, src.rhs(), Func2());
225   }
226 };
227 
228 #define EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(ASSIGN_OP,BINOP,ASSIGN_OP2) \
229   template< typename DstXprType, typename OtherXpr, typename Lhs, typename Rhs, typename DstScalar, typename SrcScalar, typename OtherScalar,typename ProdScalar> \
230   struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<OtherScalar,ProdScalar>, const OtherXpr, \
231                                             const Product<Lhs,Rhs,DefaultProduct> >, internal::ASSIGN_OP<DstScalar,SrcScalar>, Dense2Dense> \
232     : assignment_from_xpr_op_product<DstXprType, OtherXpr, Product<Lhs,Rhs,DefaultProduct>, internal::ASSIGN_OP<DstScalar,OtherScalar>, internal::ASSIGN_OP2<DstScalar,ProdScalar> > \
233   {}
234 
235 EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op,    scalar_sum_op,add_assign_op);
236 EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_sum_op,add_assign_op);
237 EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_sum_op,sub_assign_op);
238 
239 EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op,    scalar_difference_op,sub_assign_op);
240 EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_difference_op,sub_assign_op);
241 EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_difference_op,add_assign_op);
242 
243 //----------------------------------------
244 
245 template<typename Lhs, typename Rhs>
246 struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,InnerProduct>
247 {
248   template<typename Dst>
249   static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
250   {
251     dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
252   }
253 
254   template<typename Dst>
255   static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
256   {
257     dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum();
258   }
259 
260   template<typename Dst>
261   static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
262   { dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); }
263 };
264 
265 
266 /***********************************************************************
267 *  Implementation of outer dense * dense vector product
268 ***********************************************************************/
269 
270 // Column major result
271 template<typename Dst, typename Lhs, typename Rhs, typename Func>
272 void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const false_type&)
273 {
274   evaluator<Rhs> rhsEval(rhs);
275   typename nested_eval<Lhs,Rhs::SizeAtCompileTime>::type actual_lhs(lhs);
276   // FIXME if cols is large enough, then it might be useful to make sure that lhs is sequentially stored
277   // FIXME not very good if rhs is real and lhs complex while alpha is real too
278   const Index cols = dst.cols();
279   for (Index j=0; j<cols; ++j)
280     func(dst.col(j), rhsEval.coeff(Index(0),j) * actual_lhs);
281 }
282 
283 // Row major result
284 template<typename Dst, typename Lhs, typename Rhs, typename Func>
285 void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const true_type&)
286 {
287   evaluator<Lhs> lhsEval(lhs);
288   typename nested_eval<Rhs,Lhs::SizeAtCompileTime>::type actual_rhs(rhs);
289   // FIXME if rows is large enough, then it might be useful to make sure that rhs is sequentially stored
290   // FIXME not very good if lhs is real and rhs complex while alpha is real too
291   const Index rows = dst.rows();
292   for (Index i=0; i<rows; ++i)
293     func(dst.row(i), lhsEval.coeff(i,Index(0)) * actual_rhs);
294 }
295 
296 template<typename Lhs, typename Rhs>
297 struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,OuterProduct>
298 {
299   template<typename T> struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
300   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
301 
302   // TODO it would be nice to be able to exploit our *_assign_op functors for that purpose
303   struct set  { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived()  = src; } };
304   struct add  { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
305   struct sub  { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
306   struct adds {
307     Scalar m_scale;
308     explicit adds(const Scalar& s) : m_scale(s) {}
309     template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
310       dst.const_cast_derived() += m_scale * src;
311     }
312   };
313 
314   template<typename Dst>
315   static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
316   {
317     internal::outer_product_selector_run(dst, lhs, rhs, set(), is_row_major<Dst>());
318   }
319 
320   template<typename Dst>
321   static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
322   {
323     internal::outer_product_selector_run(dst, lhs, rhs, add(), is_row_major<Dst>());
324   }
325 
326   template<typename Dst>
327   static inline void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
328   {
329     internal::outer_product_selector_run(dst, lhs, rhs, sub(), is_row_major<Dst>());
330   }
331 
332   template<typename Dst>
333   static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
334   {
335     internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), is_row_major<Dst>());
336   }
337 
338 };
339 
340 
341 // This base class provides default implementations for evalTo, addTo, subTo, in terms of scaleAndAddTo
342 template<typename Lhs, typename Rhs, typename Derived>
343 struct generic_product_impl_base
344 {
345   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
346 
347   template<typename Dst>
348   static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
349   { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); }
350 
351   template<typename Dst>
352   static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
353   { scaleAndAddTo(dst,lhs, rhs, Scalar(1)); }
354 
355   template<typename Dst>
356   static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
357   { scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); }
358 
359   template<typename Dst>
360   static EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
361   { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); }
362 
363 };
364 
365 template<typename Lhs, typename Rhs>
366 struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct>
367   : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct> >
368 {
369   typedef typename nested_eval<Lhs,1>::type LhsNested;
370   typedef typename nested_eval<Rhs,1>::type RhsNested;
371   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
372   enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
373   typedef typename internal::remove_all<typename internal::conditional<int(Side)==OnTheRight,LhsNested,RhsNested>::type>::type MatrixType;
374 
375   template<typename Dest>
376   static EIGEN_STRONG_INLINE void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
377   {
378     LhsNested actual_lhs(lhs);
379     RhsNested actual_rhs(rhs);
380     internal::gemv_dense_selector<Side,
381                             (int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
382                             bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)
383                            >::run(actual_lhs, actual_rhs, dst, alpha);
384   }
385 };
386 
387 template<typename Lhs, typename Rhs>
388 struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode>
389 {
390   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
391 
392   template<typename Dst>
393   static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
394   {
395     // Same as: dst.noalias() = lhs.lazyProduct(rhs);
396     // but easier on the compiler side
397     call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::assign_op<typename Dst::Scalar,Scalar>());
398   }
399 
400   template<typename Dst>
401   static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
402   {
403     // dst.noalias() += lhs.lazyProduct(rhs);
404     call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::add_assign_op<typename Dst::Scalar,Scalar>());
405   }
406 
407   template<typename Dst>
408   static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
409   {
410     // dst.noalias() -= lhs.lazyProduct(rhs);
411     call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::sub_assign_op<typename Dst::Scalar,Scalar>());
412   }
413 
414 //   template<typename Dst>
415 //   static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
416 //   { dst.noalias() += alpha * lhs.lazyProduct(rhs); }
417 };
418 
419 // This specialization enforces the use of a coefficient-based evaluation strategy
420 template<typename Lhs, typename Rhs>
421 struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,LazyCoeffBasedProductMode>
422   : generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> {};
423 
424 // Case 2: Evaluate coeff by coeff
425 //
426 // This is mostly taken from CoeffBasedProduct.h
427 // The main difference is that we add an extra argument to the etor_product_*_impl::run() function
428 // for the inner dimension of the product, because evaluator object do not know their size.
429 
430 template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
431 struct etor_product_coeff_impl;
432 
433 template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
434 struct etor_product_packet_impl;
435 
436 template<typename Lhs, typename Rhs, int ProductTag>
437 struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, DenseShape>
438     : evaluator_base<Product<Lhs, Rhs, LazyProduct> >
439 {
440   typedef Product<Lhs, Rhs, LazyProduct> XprType;
441   typedef typename XprType::Scalar Scalar;
442   typedef typename XprType::CoeffReturnType CoeffReturnType;
443 
444   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
445   explicit product_evaluator(const XprType& xpr)
446     : m_lhs(xpr.lhs()),
447       m_rhs(xpr.rhs()),
448       m_lhsImpl(m_lhs),     // FIXME the creation of the evaluator objects should result in a no-op, but check that!
449       m_rhsImpl(m_rhs),     //       Moreover, they are only useful for the packet path, so we could completely disable them when not needed,
450                             //       or perhaps declare them on the fly on the packet method... We have experiment to check what's best.
451       m_innerDim(xpr.lhs().cols())
452   {
453     EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
454     EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::AddCost);
455     EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
456 #if 0
457     std::cerr << "LhsOuterStrideBytes=  " << LhsOuterStrideBytes << "\n";
458     std::cerr << "RhsOuterStrideBytes=  " << RhsOuterStrideBytes << "\n";
459     std::cerr << "LhsAlignment=         " << LhsAlignment << "\n";
460     std::cerr << "RhsAlignment=         " << RhsAlignment << "\n";
461     std::cerr << "CanVectorizeLhs=      " << CanVectorizeLhs << "\n";
462     std::cerr << "CanVectorizeRhs=      " << CanVectorizeRhs << "\n";
463     std::cerr << "CanVectorizeInner=    " << CanVectorizeInner << "\n";
464     std::cerr << "EvalToRowMajor=       " << EvalToRowMajor << "\n";
465     std::cerr << "Alignment=            " << Alignment << "\n";
466     std::cerr << "Flags=                " << Flags << "\n";
467 #endif
468   }
469 
470   // Everything below here is taken from CoeffBasedProduct.h
471 
472   typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
473   typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
474 
475   typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
476   typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
477 
478   typedef evaluator<LhsNestedCleaned> LhsEtorType;
479   typedef evaluator<RhsNestedCleaned> RhsEtorType;
480 
481   enum {
482     RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime,
483     ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime,
484     InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime),
485     MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime,
486     MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime
487   };
488 
489   typedef typename find_best_packet<Scalar,RowsAtCompileTime>::type LhsVecPacketType;
490   typedef typename find_best_packet<Scalar,ColsAtCompileTime>::type RhsVecPacketType;
491 
492   enum {
493 
494     LhsCoeffReadCost = LhsEtorType::CoeffReadCost,
495     RhsCoeffReadCost = RhsEtorType::CoeffReadCost,
496     CoeffReadCost = InnerSize==0 ? NumTraits<Scalar>::ReadCost
497                   : InnerSize == Dynamic ? HugeCost
498                   : InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
499                     + (InnerSize - 1) * NumTraits<Scalar>::AddCost,
500 
501     Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
502 
503     LhsFlags = LhsEtorType::Flags,
504     RhsFlags = RhsEtorType::Flags,
505 
506     LhsRowMajor = LhsFlags & RowMajorBit,
507     RhsRowMajor = RhsFlags & RowMajorBit,
508 
509     LhsVecPacketSize = unpacket_traits<LhsVecPacketType>::size,
510     RhsVecPacketSize = unpacket_traits<RhsVecPacketType>::size,
511 
512     // Here, we don't care about alignment larger than the usable packet size.
513     LhsAlignment = EIGEN_PLAIN_ENUM_MIN(LhsEtorType::Alignment,LhsVecPacketSize*int(sizeof(typename LhsNestedCleaned::Scalar))),
514     RhsAlignment = EIGEN_PLAIN_ENUM_MIN(RhsEtorType::Alignment,RhsVecPacketSize*int(sizeof(typename RhsNestedCleaned::Scalar))),
515 
516     SameType = is_same<typename LhsNestedCleaned::Scalar,typename RhsNestedCleaned::Scalar>::value,
517 
518     CanVectorizeRhs = bool(RhsRowMajor) && (RhsFlags & PacketAccessBit) && (ColsAtCompileTime!=1),
519     CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit) && (RowsAtCompileTime!=1),
520 
521     EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
522                     : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
523                     : (bool(RhsRowMajor) && !CanVectorizeLhs),
524 
525     Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
526           | (EvalToRowMajor ? RowMajorBit : 0)
527           // TODO enable vectorization for mixed types
528           | (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0)
529           | (XprType::IsVectorAtCompileTime ? LinearAccessBit : 0),
530 
531     LhsOuterStrideBytes = int(LhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename LhsNestedCleaned::Scalar)),
532     RhsOuterStrideBytes = int(RhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename RhsNestedCleaned::Scalar)),
533 
534     Alignment = bool(CanVectorizeLhs) ? (LhsOuterStrideBytes<=0 || (int(LhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,LhsAlignment))!=0 ? 0 : LhsAlignment)
535               : bool(CanVectorizeRhs) ? (RhsOuterStrideBytes<=0 || (int(RhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,RhsAlignment))!=0 ? 0 : RhsAlignment)
536               : 0,
537 
538     /* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
539      * of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
540      * loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
541      * the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
542      */
543     CanVectorizeInner =    SameType
544                         && LhsRowMajor
545                         && (!RhsRowMajor)
546                         && (LhsFlags & RhsFlags & ActualPacketAccessBit)
547                         && (InnerSize % packet_traits<Scalar>::size == 0)
548   };
549 
550   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index row, Index col) const
551   {
552     return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
553   }
554 
555   /* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
556    * which is why we don't set the LinearAccessBit.
557    * TODO: this seems possible when the result is a vector
558    */
559   EIGEN_DEVICE_FUNC const CoeffReturnType coeff(Index index) const
560   {
561     const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index;
562     const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0;
563     return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
564   }
565 
566   template<int LoadMode, typename PacketType>
567   const PacketType packet(Index row, Index col) const
568   {
569     PacketType res;
570     typedef etor_product_packet_impl<bool(int(Flags)&RowMajorBit) ? RowMajor : ColMajor,
571                                      Unroll ? int(InnerSize) : Dynamic,
572                                      LhsEtorType, RhsEtorType, PacketType, LoadMode> PacketImpl;
573     PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
574     return res;
575   }
576 
577   template<int LoadMode, typename PacketType>
578   const PacketType packet(Index index) const
579   {
580     const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index;
581     const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0;
582     return packet<LoadMode,PacketType>(row,col);
583   }
584 
585 protected:
586   typename internal::add_const_on_value_type<LhsNested>::type m_lhs;
587   typename internal::add_const_on_value_type<RhsNested>::type m_rhs;
588 
589   LhsEtorType m_lhsImpl;
590   RhsEtorType m_rhsImpl;
591 
592   // TODO: Get rid of m_innerDim if known at compile time
593   Index m_innerDim;
594 };
595 
596 template<typename Lhs, typename Rhs>
597 struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, LazyCoeffBasedProductMode, DenseShape, DenseShape>
598   : product_evaluator<Product<Lhs, Rhs, LazyProduct>, CoeffBasedProductMode, DenseShape, DenseShape>
599 {
600   typedef Product<Lhs, Rhs, DefaultProduct> XprType;
601   typedef Product<Lhs, Rhs, LazyProduct> BaseProduct;
602   typedef product_evaluator<BaseProduct, CoeffBasedProductMode, DenseShape, DenseShape> Base;
603   enum {
604     Flags = Base::Flags | EvalBeforeNestingBit
605   };
606   EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
607     : Base(BaseProduct(xpr.lhs(),xpr.rhs()))
608   {}
609 };
610 
611 /****************************************
612 *** Coeff based product, Packet path  ***
613 ****************************************/
614 
615 template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
616 struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
617 {
618   static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
619   {
620     etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
621     res =  pmadd(pset1<Packet>(lhs.coeff(row, Index(UnrollingIndex-1))), rhs.template packet<LoadMode,Packet>(Index(UnrollingIndex-1), col), res);
622   }
623 };
624 
625 template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
626 struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
627 {
628   static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
629   {
630     etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
631     res =  pmadd(lhs.template packet<LoadMode,Packet>(row, Index(UnrollingIndex-1)), pset1<Packet>(rhs.coeff(Index(UnrollingIndex-1), col)), res);
632   }
633 };
634 
635 template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
636 struct etor_product_packet_impl<RowMajor, 1, Lhs, Rhs, Packet, LoadMode>
637 {
638   static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
639   {
640     res = pmul(pset1<Packet>(lhs.coeff(row, Index(0))),rhs.template packet<LoadMode,Packet>(Index(0), col));
641   }
642 };
643 
644 template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
645 struct etor_product_packet_impl<ColMajor, 1, Lhs, Rhs, Packet, LoadMode>
646 {
647   static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
648   {
649     res = pmul(lhs.template packet<LoadMode,Packet>(row, Index(0)), pset1<Packet>(rhs.coeff(Index(0), col)));
650   }
651 };
652 
653 template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
654 struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
655 {
656   static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res)
657   {
658     res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
659   }
660 };
661 
662 template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
663 struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
664 {
665   static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res)
666   {
667     res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
668   }
669 };
670 
671 template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
672 struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
673 {
674   static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
675   {
676     res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
677     for(Index i = 0; i < innerDim; ++i)
678       res =  pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode,Packet>(i, col), res);
679   }
680 };
681 
682 template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
683 struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
684 {
685   static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
686   {
687     res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
688     for(Index i = 0; i < innerDim; ++i)
689       res =  pmadd(lhs.template packet<LoadMode,Packet>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
690   }
691 };
692 
693 
694 /***************************************************************************
695 * Triangular products
696 ***************************************************************************/
697 template<int Mode, bool LhsIsTriangular,
698          typename Lhs, bool LhsIsVector,
699          typename Rhs, bool RhsIsVector>
700 struct triangular_product_impl;
701 
702 template<typename Lhs, typename Rhs, int ProductTag>
703 struct generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag>
704   : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag> >
705 {
706   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
707 
708   template<typename Dest>
709   static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
710   {
711     triangular_product_impl<Lhs::Mode,true,typename Lhs::MatrixType,false,Rhs, Rhs::ColsAtCompileTime==1>
712         ::run(dst, lhs.nestedExpression(), rhs, alpha);
713   }
714 };
715 
716 template<typename Lhs, typename Rhs, int ProductTag>
717 struct generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag>
718 : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag> >
719 {
720   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
721 
722   template<typename Dest>
723   static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
724   {
725     triangular_product_impl<Rhs::Mode,false,Lhs,Lhs::RowsAtCompileTime==1, typename Rhs::MatrixType, false>::run(dst, lhs, rhs.nestedExpression(), alpha);
726   }
727 };
728 
729 
730 /***************************************************************************
731 * SelfAdjoint products
732 ***************************************************************************/
733 template <typename Lhs, int LhsMode, bool LhsIsVector,
734           typename Rhs, int RhsMode, bool RhsIsVector>
735 struct selfadjoint_product_impl;
736 
737 template<typename Lhs, typename Rhs, int ProductTag>
738 struct generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag>
739   : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag> >
740 {
741   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
742 
743   template<typename Dest>
744   static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
745   {
746     selfadjoint_product_impl<typename Lhs::MatrixType,Lhs::Mode,false,Rhs,0,Rhs::IsVectorAtCompileTime>::run(dst, lhs.nestedExpression(), rhs, alpha);
747   }
748 };
749 
750 template<typename Lhs, typename Rhs, int ProductTag>
751 struct generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag>
752 : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag> >
753 {
754   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
755 
756   template<typename Dest>
757   static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
758   {
759     selfadjoint_product_impl<Lhs,0,Lhs::IsVectorAtCompileTime,typename Rhs::MatrixType,Rhs::Mode,false>::run(dst, lhs, rhs.nestedExpression(), alpha);
760   }
761 };
762 
763 
764 /***************************************************************************
765 * Diagonal products
766 ***************************************************************************/
767 
768 template<typename MatrixType, typename DiagonalType, typename Derived, int ProductOrder>
769 struct diagonal_product_evaluator_base
770   : evaluator_base<Derived>
771 {
772    typedef typename ScalarBinaryOpTraits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
773 public:
774   enum {
775     CoeffReadCost = NumTraits<Scalar>::MulCost + evaluator<MatrixType>::CoeffReadCost + evaluator<DiagonalType>::CoeffReadCost,
776 
777     MatrixFlags = evaluator<MatrixType>::Flags,
778     DiagFlags = evaluator<DiagonalType>::Flags,
779     _StorageOrder = MatrixFlags & RowMajorBit ? RowMajor : ColMajor,
780     _ScalarAccessOnDiag =  !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
781                            ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
782     _SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
783     // FIXME currently we need same types, but in the future the next rule should be the one
784     //_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))),
785     _Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))),
786     _LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0,
787     Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0),
788     Alignment = evaluator<MatrixType>::Alignment
789   };
790 
791   diagonal_product_evaluator_base(const MatrixType &mat, const DiagonalType &diag)
792     : m_diagImpl(diag), m_matImpl(mat)
793   {
794     EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
795     EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
796   }
797 
798   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
799   {
800     return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx);
801   }
802 
803 protected:
804   template<int LoadMode,typename PacketType>
805   EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::true_type) const
806   {
807     return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col),
808                           internal::pset1<PacketType>(m_diagImpl.coeff(id)));
809   }
810 
811   template<int LoadMode,typename PacketType>
812   EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::false_type) const
813   {
814     enum {
815       InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
816       DiagonalPacketLoadMode = EIGEN_PLAIN_ENUM_MIN(LoadMode,((InnerSize%16) == 0) ? int(Aligned16) : int(evaluator<DiagonalType>::Alignment)) // FIXME hardcoded 16!!
817     };
818     return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col),
819                           m_diagImpl.template packet<DiagonalPacketLoadMode,PacketType>(id));
820   }
821 
822   evaluator<DiagonalType> m_diagImpl;
823   evaluator<MatrixType>   m_matImpl;
824 };
825 
826 // diagonal * dense
827 template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
828 struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalShape, DenseShape>
829   : diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft>
830 {
831   typedef diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft> Base;
832   using Base::m_diagImpl;
833   using Base::m_matImpl;
834   using Base::coeff;
835   typedef typename Base::Scalar Scalar;
836 
837   typedef Product<Lhs, Rhs, ProductKind> XprType;
838   typedef typename XprType::PlainObject PlainObject;
839 
840   enum {
841     StorageOrder = int(Rhs::Flags) & RowMajorBit ? RowMajor : ColMajor
842   };
843 
844   EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
845     : Base(xpr.rhs(), xpr.lhs().diagonal())
846   {
847   }
848 
849   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
850   {
851     return m_diagImpl.coeff(row) * m_matImpl.coeff(row, col);
852   }
853 
854 #ifndef __CUDACC__
855   template<int LoadMode,typename PacketType>
856   EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const
857   {
858     // FIXME: NVCC used to complain about the template keyword, but we have to check whether this is still the case.
859     // See also similar calls below.
860     return this->template packet_impl<LoadMode,PacketType>(row,col, row,
861                                  typename internal::conditional<int(StorageOrder)==RowMajor, internal::true_type, internal::false_type>::type());
862   }
863 
864   template<int LoadMode,typename PacketType>
865   EIGEN_STRONG_INLINE PacketType packet(Index idx) const
866   {
867     return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
868   }
869 #endif
870 };
871 
872 // dense * diagonal
873 template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
874 struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape, DiagonalShape>
875   : diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight>
876 {
877   typedef diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight> Base;
878   using Base::m_diagImpl;
879   using Base::m_matImpl;
880   using Base::coeff;
881   typedef typename Base::Scalar Scalar;
882 
883   typedef Product<Lhs, Rhs, ProductKind> XprType;
884   typedef typename XprType::PlainObject PlainObject;
885 
886   enum { StorageOrder = int(Lhs::Flags) & RowMajorBit ? RowMajor : ColMajor };
887 
888   EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
889     : Base(xpr.lhs(), xpr.rhs().diagonal())
890   {
891   }
892 
893   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
894   {
895     return m_matImpl.coeff(row, col) * m_diagImpl.coeff(col);
896   }
897 
898 #ifndef __CUDACC__
899   template<int LoadMode,typename PacketType>
900   EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const
901   {
902     return this->template packet_impl<LoadMode,PacketType>(row,col, col,
903                                  typename internal::conditional<int(StorageOrder)==ColMajor, internal::true_type, internal::false_type>::type());
904   }
905 
906   template<int LoadMode,typename PacketType>
907   EIGEN_STRONG_INLINE PacketType packet(Index idx) const
908   {
909     return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
910   }
911 #endif
912 };
913 
914 /***************************************************************************
915 * Products with permutation matrices
916 ***************************************************************************/
917 
918 /** \internal
919   * \class permutation_matrix_product
920   * Internal helper class implementing the product between a permutation matrix and a matrix.
921   * This class is specialized for DenseShape below and for SparseShape in SparseCore/SparsePermutation.h
922   */
923 template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
924 struct permutation_matrix_product;
925 
926 template<typename ExpressionType, int Side, bool Transposed>
927 struct permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
928 {
929     typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
930     typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
931 
932     template<typename Dest, typename PermutationType>
933     static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr)
934     {
935       MatrixType mat(xpr);
936       const Index n = Side==OnTheLeft ? mat.rows() : mat.cols();
937       // FIXME we need an is_same for expression that is not sensitive to constness. For instance
938       // is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true.
939       //if(is_same<MatrixTypeCleaned,Dest>::value && extract_data(dst) == extract_data(mat))
940       if(is_same_dense(dst, mat))
941       {
942         // apply the permutation inplace
943         Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(perm.size());
944         mask.fill(false);
945         Index r = 0;
946         while(r < perm.size())
947         {
948           // search for the next seed
949           while(r<perm.size() && mask[r]) r++;
950           if(r>=perm.size())
951             break;
952           // we got one, let's follow it until we are back to the seed
953           Index k0 = r++;
954           Index kPrev = k0;
955           mask.coeffRef(k0) = true;
956           for(Index k=perm.indices().coeff(k0); k!=k0; k=perm.indices().coeff(k))
957           {
958                   Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k)
959             .swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
960                        (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev));
961 
962             mask.coeffRef(k) = true;
963             kPrev = k;
964           }
965         }
966       }
967       else
968       {
969         for(Index i = 0; i < n; ++i)
970         {
971           Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
972                (dst, ((Side==OnTheLeft) ^ Transposed) ? perm.indices().coeff(i) : i)
973 
974           =
975 
976           Block<const MatrixTypeCleaned,Side==OnTheLeft ? 1 : MatrixTypeCleaned::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixTypeCleaned::ColsAtCompileTime>
977                (mat, ((Side==OnTheRight) ^ Transposed) ? perm.indices().coeff(i) : i);
978         }
979       }
980     }
981 };
982 
983 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
984 struct generic_product_impl<Lhs, Rhs, PermutationShape, MatrixShape, ProductTag>
985 {
986   template<typename Dest>
987   static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
988   {
989     permutation_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
990   }
991 };
992 
993 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
994 struct generic_product_impl<Lhs, Rhs, MatrixShape, PermutationShape, ProductTag>
995 {
996   template<typename Dest>
997   static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
998   {
999     permutation_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
1000   }
1001 };
1002 
1003 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1004 struct generic_product_impl<Inverse<Lhs>, Rhs, PermutationShape, MatrixShape, ProductTag>
1005 {
1006   template<typename Dest>
1007   static void evalTo(Dest& dst, const Inverse<Lhs>& lhs, const Rhs& rhs)
1008   {
1009     permutation_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
1010   }
1011 };
1012 
1013 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1014 struct generic_product_impl<Lhs, Inverse<Rhs>, MatrixShape, PermutationShape, ProductTag>
1015 {
1016   template<typename Dest>
1017   static void evalTo(Dest& dst, const Lhs& lhs, const Inverse<Rhs>& rhs)
1018   {
1019     permutation_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
1020   }
1021 };
1022 
1023 
1024 /***************************************************************************
1025 * Products with transpositions matrices
1026 ***************************************************************************/
1027 
1028 // FIXME could we unify Transpositions and Permutation into a single "shape"??
1029 
1030 /** \internal
1031   * \class transposition_matrix_product
1032   * Internal helper class implementing the product between a permutation matrix and a matrix.
1033   */
1034 template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
1035 struct transposition_matrix_product
1036 {
1037   typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
1038   typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
1039 
1040   template<typename Dest, typename TranspositionType>
1041   static inline void run(Dest& dst, const TranspositionType& tr, const ExpressionType& xpr)
1042   {
1043     MatrixType mat(xpr);
1044     typedef typename TranspositionType::StorageIndex StorageIndex;
1045     const Index size = tr.size();
1046     StorageIndex j = 0;
1047 
1048     if(!is_same_dense(dst,mat))
1049       dst = mat;
1050 
1051     for(Index k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
1052       if(Index(j=tr.coeff(k))!=k)
1053       {
1054         if(Side==OnTheLeft)        dst.row(k).swap(dst.row(j));
1055         else if(Side==OnTheRight)  dst.col(k).swap(dst.col(j));
1056       }
1057   }
1058 };
1059 
1060 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1061 struct generic_product_impl<Lhs, Rhs, TranspositionsShape, MatrixShape, ProductTag>
1062 {
1063   template<typename Dest>
1064   static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
1065   {
1066     transposition_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
1067   }
1068 };
1069 
1070 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1071 struct generic_product_impl<Lhs, Rhs, MatrixShape, TranspositionsShape, ProductTag>
1072 {
1073   template<typename Dest>
1074   static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
1075   {
1076     transposition_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
1077   }
1078 };
1079 
1080 
1081 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1082 struct generic_product_impl<Transpose<Lhs>, Rhs, TranspositionsShape, MatrixShape, ProductTag>
1083 {
1084   template<typename Dest>
1085   static void evalTo(Dest& dst, const Transpose<Lhs>& lhs, const Rhs& rhs)
1086   {
1087     transposition_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
1088   }
1089 };
1090 
1091 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1092 struct generic_product_impl<Lhs, Transpose<Rhs>, MatrixShape, TranspositionsShape, ProductTag>
1093 {
1094   template<typename Dest>
1095   static void evalTo(Dest& dst, const Lhs& lhs, const Transpose<Rhs>& rhs)
1096   {
1097     transposition_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
1098   }
1099 };
1100 
1101 } // end namespace internal
1102 
1103 } // end namespace Eigen
1104 
1105 #endif // EIGEN_PRODUCT_EVALUATORS_H
1106