1*> \brief \b CUNCSD
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CUNCSD + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cuncsd.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cuncsd.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cuncsd.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       RECURSIVE SUBROUTINE CUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
22*                                    SIGNS, M, P, Q, X11, LDX11, X12,
23*                                    LDX12, X21, LDX21, X22, LDX22, THETA,
24*                                    U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
25*                                    LDV2T, WORK, LWORK, RWORK, LRWORK,
26*                                    IWORK, INFO )
27*
28*       .. Scalar Arguments ..
29*       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
30*       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
31*      $                   LDX21, LDX22, LRWORK, LWORK, M, P, Q
32*       ..
33*       .. Array Arguments ..
34*       INTEGER            IWORK( * )
35*       REAL               THETA( * )
36*       REAL               RWORK( * )
37*       COMPLEX            U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
38*      $                   V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
39*      $                   X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
40*      $                   * )
41*       ..
42*
43*
44*> \par Purpose:
45*  =============
46*>
47*> \verbatim
48*>
49*> CUNCSD computes the CS decomposition of an M-by-M partitioned
50*> unitary matrix X:
51*>
52*>                                 [  I  0  0 |  0  0  0 ]
53*>                                 [  0  C  0 |  0 -S  0 ]
54*>     [ X11 | X12 ]   [ U1 |    ] [  0  0  0 |  0  0 -I ] [ V1 |    ]**H
55*> X = [-----------] = [---------] [---------------------] [---------]   .
56*>     [ X21 | X22 ]   [    | U2 ] [  0  0  0 |  I  0  0 ] [    | V2 ]
57*>                                 [  0  S  0 |  0  C  0 ]
58*>                                 [  0  0  I |  0  0  0 ]
59*>
60*> X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P,
61*> (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
62*> R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
63*> which R = MIN(P,M-P,Q,M-Q).
64*> \endverbatim
65*
66*  Arguments:
67*  ==========
68*
69*> \param[in] JOBU1
70*> \verbatim
71*>          JOBU1 is CHARACTER
72*>          = 'Y':      U1 is computed;
73*>          otherwise:  U1 is not computed.
74*> \endverbatim
75*>
76*> \param[in] JOBU2
77*> \verbatim
78*>          JOBU2 is CHARACTER
79*>          = 'Y':      U2 is computed;
80*>          otherwise:  U2 is not computed.
81*> \endverbatim
82*>
83*> \param[in] JOBV1T
84*> \verbatim
85*>          JOBV1T is CHARACTER
86*>          = 'Y':      V1T is computed;
87*>          otherwise:  V1T is not computed.
88*> \endverbatim
89*>
90*> \param[in] JOBV2T
91*> \verbatim
92*>          JOBV2T is CHARACTER
93*>          = 'Y':      V2T is computed;
94*>          otherwise:  V2T is not computed.
95*> \endverbatim
96*>
97*> \param[in] TRANS
98*> \verbatim
99*>          TRANS is CHARACTER
100*>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
101*>                      order;
102*>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
103*>                      major order.
104*> \endverbatim
105*>
106*> \param[in] SIGNS
107*> \verbatim
108*>          SIGNS is CHARACTER
109*>          = 'O':      The lower-left block is made nonpositive (the
110*>                      "other" convention);
111*>          otherwise:  The upper-right block is made nonpositive (the
112*>                      "default" convention).
113*> \endverbatim
114*>
115*> \param[in] M
116*> \verbatim
117*>          M is INTEGER
118*>          The number of rows and columns in X.
119*> \endverbatim
120*>
121*> \param[in] P
122*> \verbatim
123*>          P is INTEGER
124*>          The number of rows in X11 and X12. 0 <= P <= M.
125*> \endverbatim
126*>
127*> \param[in] Q
128*> \verbatim
129*>          Q is INTEGER
130*>          The number of columns in X11 and X21. 0 <= Q <= M.
131*> \endverbatim
132*>
133*> \param[in,out] X11
134*> \verbatim
135*>          X11 is COMPLEX array, dimension (LDX11,Q)
136*>          On entry, part of the unitary matrix whose CSD is desired.
137*> \endverbatim
138*>
139*> \param[in] LDX11
140*> \verbatim
141*>          LDX11 is INTEGER
142*>          The leading dimension of X11. LDX11 >= MAX(1,P).
143*> \endverbatim
144*>
145*> \param[in,out] X12
146*> \verbatim
147*>          X12 is COMPLEX array, dimension (LDX12,M-Q)
148*>          On entry, part of the unitary matrix whose CSD is desired.
149*> \endverbatim
150*>
151*> \param[in] LDX12
152*> \verbatim
153*>          LDX12 is INTEGER
154*>          The leading dimension of X12. LDX12 >= MAX(1,P).
155*> \endverbatim
156*>
157*> \param[in,out] X21
158*> \verbatim
159*>          X21 is COMPLEX array, dimension (LDX21,Q)
160*>          On entry, part of the unitary matrix whose CSD is desired.
161*> \endverbatim
162*>
163*> \param[in] LDX21
164*> \verbatim
165*>          LDX21 is INTEGER
166*>          The leading dimension of X11. LDX21 >= MAX(1,M-P).
167*> \endverbatim
168*>
169*> \param[in,out] X22
170*> \verbatim
171*>          X22 is COMPLEX array, dimension (LDX22,M-Q)
172*>          On entry, part of the unitary matrix whose CSD is desired.
173*> \endverbatim
174*>
175*> \param[in] LDX22
176*> \verbatim
177*>          LDX22 is INTEGER
178*>          The leading dimension of X11. LDX22 >= MAX(1,M-P).
179*> \endverbatim
180*>
181*> \param[out] THETA
182*> \verbatim
183*>          THETA is REAL array, dimension (R), in which R =
184*>          MIN(P,M-P,Q,M-Q).
185*>          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
186*>          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
187*> \endverbatim
188*>
189*> \param[out] U1
190*> \verbatim
191*>          U1 is COMPLEX array, dimension (LDU1,P)
192*>          If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
193*> \endverbatim
194*>
195*> \param[in] LDU1
196*> \verbatim
197*>          LDU1 is INTEGER
198*>          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
199*>          MAX(1,P).
200*> \endverbatim
201*>
202*> \param[out] U2
203*> \verbatim
204*>          U2 is COMPLEX array, dimension (LDU2,M-P)
205*>          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
206*>          matrix U2.
207*> \endverbatim
208*>
209*> \param[in] LDU2
210*> \verbatim
211*>          LDU2 is INTEGER
212*>          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
213*>          MAX(1,M-P).
214*> \endverbatim
215*>
216*> \param[out] V1T
217*> \verbatim
218*>          V1T is COMPLEX array, dimension (LDV1T,Q)
219*>          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
220*>          matrix V1**H.
221*> \endverbatim
222*>
223*> \param[in] LDV1T
224*> \verbatim
225*>          LDV1T is INTEGER
226*>          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
227*>          MAX(1,Q).
228*> \endverbatim
229*>
230*> \param[out] V2T
231*> \verbatim
232*>          V2T is COMPLEX array, dimension (LDV2T,M-Q)
233*>          If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary
234*>          matrix V2**H.
235*> \endverbatim
236*>
237*> \param[in] LDV2T
238*> \verbatim
239*>          LDV2T is INTEGER
240*>          The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
241*>          MAX(1,M-Q).
242*> \endverbatim
243*>
244*> \param[out] WORK
245*> \verbatim
246*>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
247*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
248*> \endverbatim
249*>
250*> \param[in] LWORK
251*> \verbatim
252*>          LWORK is INTEGER
253*>          The dimension of the array WORK.
254*>
255*>          If LWORK = -1, then a workspace query is assumed; the routine
256*>          only calculates the optimal size of the WORK array, returns
257*>          this value as the first entry of the work array, and no error
258*>          message related to LWORK is issued by XERBLA.
259*> \endverbatim
260*>
261*> \param[out] RWORK
262*> \verbatim
263*>          RWORK is REAL array, dimension MAX(1,LRWORK)
264*>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
265*>          If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
266*>          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
267*>          define the matrix in intermediate bidiagonal-block form
268*>          remaining after nonconvergence. INFO specifies the number
269*>          of nonzero PHI's.
270*> \endverbatim
271*>
272*> \param[in] LRWORK
273*> \verbatim
274*>          LRWORK is INTEGER
275*>          The dimension of the array RWORK.
276*>
277*>          If LRWORK = -1, then a workspace query is assumed; the routine
278*>          only calculates the optimal size of the RWORK array, returns
279*>          this value as the first entry of the work array, and no error
280*>          message related to LRWORK is issued by XERBLA.
281*> \endverbatim
282*>
283*> \param[out] IWORK
284*> \verbatim
285*>          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
286*> \endverbatim
287*>
288*> \param[out] INFO
289*> \verbatim
290*>          INFO is INTEGER
291*>          = 0:  successful exit.
292*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
293*>          > 0:  CBBCSD did not converge. See the description of RWORK
294*>                above for details.
295*> \endverbatim
296*
297*> \par References:
298*  ================
299*>
300*>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
301*>      Algorithms, 50(1):33-65, 2009.
302*
303*  Authors:
304*  ========
305*
306*> \author Univ. of Tennessee
307*> \author Univ. of California Berkeley
308*> \author Univ. of Colorado Denver
309*> \author NAG Ltd.
310*
311*> \ingroup complexOTHERcomputational
312*
313*  =====================================================================
314      RECURSIVE SUBROUTINE CUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
315     $                             SIGNS, M, P, Q, X11, LDX11, X12,
316     $                             LDX12, X21, LDX21, X22, LDX22, THETA,
317     $                             U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
318     $                             LDV2T, WORK, LWORK, RWORK, LRWORK,
319     $                             IWORK, INFO )
320*
321*  -- LAPACK computational routine --
322*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
323*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
324*
325*     .. Scalar Arguments ..
326      CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
327      INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
328     $                   LDX21, LDX22, LRWORK, LWORK, M, P, Q
329*     ..
330*     .. Array Arguments ..
331      INTEGER            IWORK( * )
332      REAL               THETA( * )
333      REAL               RWORK( * )
334      COMPLEX            U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
335     $                   V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
336     $                   X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
337     $                   * )
338*     ..
339*
340*  ===================================================================
341*
342*     .. Parameters ..
343      COMPLEX            ONE, ZERO
344      PARAMETER          ( ONE = (1.0E0,0.0E0),
345     $                     ZERO = (0.0E0,0.0E0) )
346*     ..
347*     .. Local Scalars ..
348      CHARACTER          TRANST, SIGNST
349      INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
350     $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
351     $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
352     $                   ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN,
353     $                   LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN,
354     $                   LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN,
355     $                   LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN,
356     $                   LORGQRWORKOPT, LWORKMIN, LWORKOPT, P1, Q1
357      LOGICAL            COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2,
358     $                   WANTV1T, WANTV2T
359      INTEGER            LRWORKMIN, LRWORKOPT
360      LOGICAL            LRQUERY
361*     ..
362*     .. External Subroutines ..
363      EXTERNAL           XERBLA, CBBCSD, CLACPY, CLAPMR, CLAPMT,
364     $                   CUNBDB, CUNGLQ, CUNGQR
365*     ..
366*     .. External Functions ..
367      LOGICAL            LSAME
368      EXTERNAL           LSAME
369*     ..
370*     .. Intrinsic Functions
371      INTRINSIC          INT, MAX, MIN
372*     ..
373*     .. Executable Statements ..
374*
375*     Test input arguments
376*
377      INFO = 0
378      WANTU1 = LSAME( JOBU1, 'Y' )
379      WANTU2 = LSAME( JOBU2, 'Y' )
380      WANTV1T = LSAME( JOBV1T, 'Y' )
381      WANTV2T = LSAME( JOBV2T, 'Y' )
382      COLMAJOR = .NOT. LSAME( TRANS, 'T' )
383      DEFAULTSIGNS = .NOT. LSAME( SIGNS, 'O' )
384      LQUERY = LWORK .EQ. -1
385      LRQUERY = LRWORK .EQ. -1
386      IF( M .LT. 0 ) THEN
387         INFO = -7
388      ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
389         INFO = -8
390      ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
391         INFO = -9
392      ELSE IF ( COLMAJOR .AND.  LDX11 .LT. MAX( 1, P ) ) THEN
393        INFO = -11
394      ELSE IF (.NOT. COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
395        INFO = -11
396      ELSE IF (COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
397        INFO = -13
398      ELSE IF (.NOT. COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
399        INFO = -13
400      ELSE IF (COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
401        INFO = -15
402      ELSE IF (.NOT. COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
403        INFO = -15
404      ELSE IF (COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
405        INFO = -17
406      ELSE IF (.NOT. COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
407        INFO = -17
408      ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
409         INFO = -20
410      ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
411         INFO = -22
412      ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
413         INFO = -24
414      ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
415         INFO = -26
416      END IF
417*
418*     Work with transpose if convenient
419*
420      IF( INFO .EQ. 0 .AND. MIN( P, M-P ) .LT. MIN( Q, M-Q ) ) THEN
421         IF( COLMAJOR ) THEN
422            TRANST = 'T'
423         ELSE
424            TRANST = 'N'
425         END IF
426         IF( DEFAULTSIGNS ) THEN
427            SIGNST = 'O'
428         ELSE
429            SIGNST = 'D'
430         END IF
431         CALL CUNCSD( JOBV1T, JOBV2T, JOBU1, JOBU2, TRANST, SIGNST, M,
432     $                Q, P, X11, LDX11, X21, LDX21, X12, LDX12, X22,
433     $                LDX22, THETA, V1T, LDV1T, V2T, LDV2T, U1, LDU1,
434     $                U2, LDU2, WORK, LWORK, RWORK, LRWORK, IWORK,
435     $                INFO )
436         RETURN
437      END IF
438*
439*     Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if
440*     convenient
441*
442      IF( INFO .EQ. 0 .AND. M-Q .LT. Q ) THEN
443         IF( DEFAULTSIGNS ) THEN
444            SIGNST = 'O'
445         ELSE
446            SIGNST = 'D'
447         END IF
448         CALL CUNCSD( JOBU2, JOBU1, JOBV2T, JOBV1T, TRANS, SIGNST, M,
449     $                M-P, M-Q, X22, LDX22, X21, LDX21, X12, LDX12, X11,
450     $                LDX11, THETA, U2, LDU2, U1, LDU1, V2T, LDV2T, V1T,
451     $                LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK, INFO )
452         RETURN
453      END IF
454*
455*     Compute workspace
456*
457      IF( INFO .EQ. 0 ) THEN
458*
459*        Real workspace
460*
461         IPHI = 2
462         IB11D = IPHI + MAX( 1, Q - 1 )
463         IB11E = IB11D + MAX( 1, Q )
464         IB12D = IB11E + MAX( 1, Q - 1 )
465         IB12E = IB12D + MAX( 1, Q )
466         IB21D = IB12E + MAX( 1, Q - 1 )
467         IB21E = IB21D + MAX( 1, Q )
468         IB22D = IB21E + MAX( 1, Q - 1 )
469         IB22E = IB22D + MAX( 1, Q )
470         IBBCSD = IB22E + MAX( 1, Q - 1 )
471         CALL CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
472     $                THETA, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T,
473     $                V2T, LDV2T, THETA, THETA, THETA, THETA, THETA,
474     $                THETA, THETA, THETA, RWORK, -1, CHILDINFO )
475         LBBCSDWORKOPT = INT( RWORK(1) )
476         LBBCSDWORKMIN = LBBCSDWORKOPT
477         LRWORKOPT = IBBCSD + LBBCSDWORKOPT - 1
478         LRWORKMIN = IBBCSD + LBBCSDWORKMIN - 1
479         RWORK(1) = LRWORKOPT
480*
481*        Complex workspace
482*
483         ITAUP1 = 2
484         ITAUP2 = ITAUP1 + MAX( 1, P )
485         ITAUQ1 = ITAUP2 + MAX( 1, M - P )
486         ITAUQ2 = ITAUQ1 + MAX( 1, Q )
487         IORGQR = ITAUQ2 + MAX( 1, M - Q )
488         CALL CUNGQR( M-Q, M-Q, M-Q, U1, MAX(1,M-Q), U1, WORK, -1,
489     $                CHILDINFO )
490         LORGQRWORKOPT = INT( WORK(1) )
491         LORGQRWORKMIN = MAX( 1, M - Q )
492         IORGLQ = ITAUQ2 + MAX( 1, M - Q )
493         CALL CUNGLQ( M-Q, M-Q, M-Q, U1, MAX(1,M-Q), U1, WORK, -1,
494     $                CHILDINFO )
495         LORGLQWORKOPT = INT( WORK(1) )
496         LORGLQWORKMIN = MAX( 1, M - Q )
497         IORBDB = ITAUQ2 + MAX( 1, M - Q )
498         CALL CUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
499     $                X21, LDX21, X22, LDX22, THETA, THETA, U1, U2,
500     $                V1T, V2T, WORK, -1, CHILDINFO )
501         LORBDBWORKOPT = INT( WORK(1) )
502         LORBDBWORKMIN = LORBDBWORKOPT
503         LWORKOPT = MAX( IORGQR + LORGQRWORKOPT, IORGLQ + LORGLQWORKOPT,
504     $              IORBDB + LORBDBWORKOPT ) - 1
505         LWORKMIN = MAX( IORGQR + LORGQRWORKMIN, IORGLQ + LORGLQWORKMIN,
506     $              IORBDB + LORBDBWORKMIN ) - 1
507         WORK(1) = MAX(LWORKOPT,LWORKMIN)
508*
509         IF( LWORK .LT. LWORKMIN
510     $       .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
511            INFO = -22
512         ELSE IF( LRWORK .LT. LRWORKMIN
513     $            .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
514            INFO = -24
515         ELSE
516            LORGQRWORK = LWORK - IORGQR + 1
517            LORGLQWORK = LWORK - IORGLQ + 1
518            LORBDBWORK = LWORK - IORBDB + 1
519            LBBCSDWORK = LRWORK - IBBCSD + 1
520         END IF
521      END IF
522*
523*     Abort if any illegal arguments
524*
525      IF( INFO .NE. 0 ) THEN
526         CALL XERBLA( 'CUNCSD', -INFO )
527         RETURN
528      ELSE IF( LQUERY .OR. LRQUERY ) THEN
529         RETURN
530      END IF
531*
532*     Transform to bidiagonal block form
533*
534      CALL CUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21,
535     $             LDX21, X22, LDX22, THETA, RWORK(IPHI), WORK(ITAUP1),
536     $             WORK(ITAUP2), WORK(ITAUQ1), WORK(ITAUQ2),
537     $             WORK(IORBDB), LORBDBWORK, CHILDINFO )
538*
539*     Accumulate Householder reflectors
540*
541      IF( COLMAJOR ) THEN
542         IF( WANTU1 .AND. P .GT. 0 ) THEN
543            CALL CLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
544            CALL CUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
545     $                   LORGQRWORK, INFO)
546         END IF
547         IF( WANTU2 .AND. M-P .GT. 0 ) THEN
548            CALL CLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
549            CALL CUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
550     $                   WORK(IORGQR), LORGQRWORK, INFO )
551         END IF
552         IF( WANTV1T .AND. Q .GT. 0 ) THEN
553            CALL CLACPY( 'U', Q-1, Q-1, X11(1,2), LDX11, V1T(2,2),
554     $                   LDV1T )
555            V1T(1, 1) = ONE
556            DO J = 2, Q
557               V1T(1,J) = ZERO
558               V1T(J,1) = ZERO
559            END DO
560            CALL CUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
561     $                   WORK(IORGLQ), LORGLQWORK, INFO )
562         END IF
563         IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
564            CALL CLACPY( 'U', P, M-Q, X12, LDX12, V2T, LDV2T )
565            IF( M-P .GT. Q ) THEN
566               CALL CLACPY( 'U', M-P-Q, M-P-Q, X22(Q+1,P+1), LDX22,
567     $                      V2T(P+1,P+1), LDV2T )
568            END IF
569            IF( M .GT. Q ) THEN
570               CALL CUNGLQ( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
571     $                      WORK(IORGLQ), LORGLQWORK, INFO )
572            END IF
573         END IF
574      ELSE
575         IF( WANTU1 .AND. P .GT. 0 ) THEN
576            CALL CLACPY( 'U', Q, P, X11, LDX11, U1, LDU1 )
577            CALL CUNGLQ( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGLQ),
578     $                   LORGLQWORK, INFO)
579         END IF
580         IF( WANTU2 .AND. M-P .GT. 0 ) THEN
581            CALL CLACPY( 'U', Q, M-P, X21, LDX21, U2, LDU2 )
582            CALL CUNGLQ( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
583     $                   WORK(IORGLQ), LORGLQWORK, INFO )
584         END IF
585         IF( WANTV1T .AND. Q .GT. 0 ) THEN
586            CALL CLACPY( 'L', Q-1, Q-1, X11(2,1), LDX11, V1T(2,2),
587     $                   LDV1T )
588            V1T(1, 1) = ONE
589            DO J = 2, Q
590               V1T(1,J) = ZERO
591               V1T(J,1) = ZERO
592            END DO
593            CALL CUNGQR( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
594     $                   WORK(IORGQR), LORGQRWORK, INFO )
595         END IF
596         IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
597            P1 = MIN( P+1, M )
598            Q1 = MIN( Q+1, M )
599            CALL CLACPY( 'L', M-Q, P, X12, LDX12, V2T, LDV2T )
600            IF ( M .GT. P+Q ) THEN
601               CALL CLACPY( 'L', M-P-Q, M-P-Q, X22(P1,Q1), LDX22,
602     $                      V2T(P+1,P+1), LDV2T )
603            END IF
604            CALL CUNGQR( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
605     $                   WORK(IORGQR), LORGQRWORK, INFO )
606         END IF
607      END IF
608*
609*     Compute the CSD of the matrix in bidiagonal-block form
610*
611      CALL CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
612     $             RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
613     $             LDV2T, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
614     $             RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
615     $             RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD),
616     $             LBBCSDWORK, INFO )
617*
618*     Permute rows and columns to place identity submatrices in top-
619*     left corner of (1,1)-block and/or bottom-right corner of (1,2)-
620*     block and/or bottom-right corner of (2,1)-block and/or top-left
621*     corner of (2,2)-block
622*
623      IF( Q .GT. 0 .AND. WANTU2 ) THEN
624         DO I = 1, Q
625            IWORK(I) = M - P - Q + I
626         END DO
627         DO I = Q + 1, M - P
628            IWORK(I) = I - Q
629         END DO
630         IF( COLMAJOR ) THEN
631            CALL CLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
632         ELSE
633            CALL CLAPMR( .FALSE., M-P, M-P, U2, LDU2, IWORK )
634         END IF
635      END IF
636      IF( M .GT. 0 .AND. WANTV2T ) THEN
637         DO I = 1, P
638            IWORK(I) = M - P - Q + I
639         END DO
640         DO I = P + 1, M - Q
641            IWORK(I) = I - P
642         END DO
643         IF( .NOT. COLMAJOR ) THEN
644            CALL CLAPMT( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
645         ELSE
646            CALL CLAPMR( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
647         END IF
648      END IF
649*
650      RETURN
651*
652*     End CUNCSD
653*
654      END
655
656