1 //=-- lsan_common.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of LeakSanitizer.
10 // Implementation of common leak checking functionality.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "lsan_common.h"
15 
16 #include "sanitizer_common/sanitizer_common.h"
17 #include "sanitizer_common/sanitizer_flag_parser.h"
18 #include "sanitizer_common/sanitizer_flags.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_procmaps.h"
21 #include "sanitizer_common/sanitizer_report_decorator.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_suppressions.h"
25 #include "sanitizer_common/sanitizer_thread_registry.h"
26 #include "sanitizer_common/sanitizer_tls_get_addr.h"
27 
28 #if CAN_SANITIZE_LEAKS
29 namespace __lsan {
30 
31 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
32 // also to protect the global list of root regions.
33 BlockingMutex global_mutex(LINKER_INITIALIZED);
34 
35 Flags lsan_flags;
36 
37 
DisableCounterUnderflow()38 void DisableCounterUnderflow() {
39   if (common_flags()->detect_leaks) {
40     Report("Unmatched call to __lsan_enable().\n");
41     Die();
42   }
43 }
44 
SetDefaults()45 void Flags::SetDefaults() {
46 #define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
47 #include "lsan_flags.inc"
48 #undef LSAN_FLAG
49 }
50 
RegisterLsanFlags(FlagParser * parser,Flags * f)51 void RegisterLsanFlags(FlagParser *parser, Flags *f) {
52 #define LSAN_FLAG(Type, Name, DefaultValue, Description) \
53   RegisterFlag(parser, #Name, Description, &f->Name);
54 #include "lsan_flags.inc"
55 #undef LSAN_FLAG
56 }
57 
58 #define LOG_POINTERS(...)                           \
59   do {                                              \
60     if (flags()->log_pointers) Report(__VA_ARGS__); \
61   } while (0)
62 
63 #define LOG_THREADS(...)                           \
64   do {                                             \
65     if (flags()->log_threads) Report(__VA_ARGS__); \
66   } while (0)
67 
68 ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)];
69 static SuppressionContext *suppression_ctx = nullptr;
70 static const char kSuppressionLeak[] = "leak";
71 static const char *kSuppressionTypes[] = { kSuppressionLeak };
72 static const char kStdSuppressions[] =
73 #if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
74     // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
75     // definition.
76     "leak:*pthread_exit*\n"
77 #endif  // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
78 #if SANITIZER_MAC
79     // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
80     "leak:*_os_trace*\n"
81 #endif
82     // TLS leak in some glibc versions, described in
83     // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
84     "leak:*tls_get_addr*\n";
85 
InitializeSuppressions()86 void InitializeSuppressions() {
87   CHECK_EQ(nullptr, suppression_ctx);
88   suppression_ctx = new (suppression_placeholder)
89       SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
90   suppression_ctx->ParseFromFile(flags()->suppressions);
91   if (&__lsan_default_suppressions)
92     suppression_ctx->Parse(__lsan_default_suppressions());
93   suppression_ctx->Parse(kStdSuppressions);
94 }
95 
GetSuppressionContext()96 static SuppressionContext *GetSuppressionContext() {
97   CHECK(suppression_ctx);
98   return suppression_ctx;
99 }
100 
101 static InternalMmapVector<RootRegion> *root_regions;
102 
GetRootRegions()103 InternalMmapVector<RootRegion> const *GetRootRegions() { return root_regions; }
104 
InitializeRootRegions()105 void InitializeRootRegions() {
106   CHECK(!root_regions);
107   ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
108   root_regions = new (placeholder) InternalMmapVector<RootRegion>();
109 }
110 
InitCommonLsan()111 void InitCommonLsan() {
112   InitializeRootRegions();
113   if (common_flags()->detect_leaks) {
114     // Initialization which can fail or print warnings should only be done if
115     // LSan is actually enabled.
116     InitializeSuppressions();
117     InitializePlatformSpecificModules();
118   }
119 }
120 
121 class Decorator: public __sanitizer::SanitizerCommonDecorator {
122  public:
Decorator()123   Decorator() : SanitizerCommonDecorator() { }
Error()124   const char *Error() { return Red(); }
Leak()125   const char *Leak() { return Blue(); }
126 };
127 
CanBeAHeapPointer(uptr p)128 static inline bool CanBeAHeapPointer(uptr p) {
129   // Since our heap is located in mmap-ed memory, we can assume a sensible lower
130   // bound on heap addresses.
131   const uptr kMinAddress = 4 * 4096;
132   if (p < kMinAddress) return false;
133 #if defined(__x86_64__)
134   // Accept only canonical form user-space addresses.
135   return ((p >> 47) == 0);
136 #elif defined(__mips64)
137   return ((p >> 40) == 0);
138 #elif defined(__aarch64__)
139   unsigned runtimeVMA =
140     (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
141   return ((p >> runtimeVMA) == 0);
142 #else
143   return true;
144 #endif
145 }
146 
147 // Scans the memory range, looking for byte patterns that point into allocator
148 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
149 // There are two usage modes for this function: finding reachable chunks
150 // (|tag| = kReachable) and finding indirectly leaked chunks
151 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
152 // so |frontier| = 0.
ScanRangeForPointers(uptr begin,uptr end,Frontier * frontier,const char * region_type,ChunkTag tag)153 void ScanRangeForPointers(uptr begin, uptr end,
154                           Frontier *frontier,
155                           const char *region_type, ChunkTag tag) {
156   CHECK(tag == kReachable || tag == kIndirectlyLeaked);
157   const uptr alignment = flags()->pointer_alignment();
158   LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
159   uptr pp = begin;
160   if (pp % alignment)
161     pp = pp + alignment - pp % alignment;
162   for (; pp + sizeof(void *) <= end; pp += alignment) {
163     void *p = *reinterpret_cast<void **>(pp);
164     if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
165     uptr chunk = PointsIntoChunk(p);
166     if (!chunk) continue;
167     // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
168     if (chunk == begin) continue;
169     LsanMetadata m(chunk);
170     if (m.tag() == kReachable || m.tag() == kIgnored) continue;
171 
172     // Do this check relatively late so we can log only the interesting cases.
173     if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
174       LOG_POINTERS(
175           "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
176           "%zu.\n",
177           pp, p, chunk, chunk + m.requested_size(), m.requested_size());
178       continue;
179     }
180 
181     m.set_tag(tag);
182     LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
183                  chunk, chunk + m.requested_size(), m.requested_size());
184     if (frontier)
185       frontier->push_back(chunk);
186   }
187 }
188 
189 // Scans a global range for pointers
ScanGlobalRange(uptr begin,uptr end,Frontier * frontier)190 void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
191   uptr allocator_begin = 0, allocator_end = 0;
192   GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
193   if (begin <= allocator_begin && allocator_begin < end) {
194     CHECK_LE(allocator_begin, allocator_end);
195     CHECK_LE(allocator_end, end);
196     if (begin < allocator_begin)
197       ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
198                            kReachable);
199     if (allocator_end < end)
200       ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
201   } else {
202     ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
203   }
204 }
205 
ForEachExtraStackRangeCb(uptr begin,uptr end,void * arg)206 void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
207   Frontier *frontier = reinterpret_cast<Frontier *>(arg);
208   ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
209 }
210 
211 #if SANITIZER_FUCHSIA
212 
213 // Fuchsia handles all threads together with its own callback.
ProcessThreads(SuspendedThreadsList const &,Frontier *)214 static void ProcessThreads(SuspendedThreadsList const &, Frontier *) {}
215 
216 #else
217 
218 #if SANITIZER_ANDROID
219 // FIXME: Move this out into *libcdep.cpp
220 extern "C" SANITIZER_WEAK_ATTRIBUTE void __libc_iterate_dynamic_tls(
221     pid_t, void (*cb)(void *, void *, uptr, void *), void *);
222 #endif
223 
224 // Scans thread data (stacks and TLS) for heap pointers.
ProcessThreads(SuspendedThreadsList const & suspended_threads,Frontier * frontier)225 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
226                            Frontier *frontier) {
227   InternalMmapVector<uptr> registers;
228   for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
229     tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i));
230     LOG_THREADS("Processing thread %d.\n", os_id);
231     uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
232     DTLS *dtls;
233     bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
234                                               &tls_begin, &tls_end,
235                                               &cache_begin, &cache_end, &dtls);
236     if (!thread_found) {
237       // If a thread can't be found in the thread registry, it's probably in the
238       // process of destruction. Log this event and move on.
239       LOG_THREADS("Thread %d not found in registry.\n", os_id);
240       continue;
241     }
242     uptr sp;
243     PtraceRegistersStatus have_registers =
244         suspended_threads.GetRegistersAndSP(i, &registers, &sp);
245     if (have_registers != REGISTERS_AVAILABLE) {
246       Report("Unable to get registers from thread %d.\n", os_id);
247       // If unable to get SP, consider the entire stack to be reachable unless
248       // GetRegistersAndSP failed with ESRCH.
249       if (have_registers == REGISTERS_UNAVAILABLE_FATAL) continue;
250       sp = stack_begin;
251     }
252 
253     if (flags()->use_registers && have_registers) {
254       uptr registers_begin = reinterpret_cast<uptr>(registers.data());
255       uptr registers_end =
256           reinterpret_cast<uptr>(registers.data() + registers.size());
257       ScanRangeForPointers(registers_begin, registers_end, frontier,
258                            "REGISTERS", kReachable);
259     }
260 
261     if (flags()->use_stacks) {
262       LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
263       if (sp < stack_begin || sp >= stack_end) {
264         // SP is outside the recorded stack range (e.g. the thread is running a
265         // signal handler on alternate stack, or swapcontext was used).
266         // Again, consider the entire stack range to be reachable.
267         LOG_THREADS("WARNING: stack pointer not in stack range.\n");
268         uptr page_size = GetPageSizeCached();
269         int skipped = 0;
270         while (stack_begin < stack_end &&
271                !IsAccessibleMemoryRange(stack_begin, 1)) {
272           skipped++;
273           stack_begin += page_size;
274         }
275         LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
276                     skipped, stack_begin, stack_end);
277       } else {
278         // Shrink the stack range to ignore out-of-scope values.
279         stack_begin = sp;
280       }
281       ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
282                            kReachable);
283       ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
284     }
285 
286     if (flags()->use_tls) {
287       if (tls_begin) {
288         LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
289         // If the tls and cache ranges don't overlap, scan full tls range,
290         // otherwise, only scan the non-overlapping portions
291         if (cache_begin == cache_end || tls_end < cache_begin ||
292             tls_begin > cache_end) {
293           ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
294         } else {
295           if (tls_begin < cache_begin)
296             ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
297                                  kReachable);
298           if (tls_end > cache_end)
299             ScanRangeForPointers(cache_end, tls_end, frontier, "TLS",
300                                  kReachable);
301         }
302       }
303 #if SANITIZER_ANDROID
304       auto *cb = +[](void *dtls_begin, void *dtls_end, uptr /*dso_idd*/,
305                      void *arg) -> void {
306         ScanRangeForPointers(reinterpret_cast<uptr>(dtls_begin),
307                              reinterpret_cast<uptr>(dtls_end),
308                              reinterpret_cast<Frontier *>(arg), "DTLS",
309                              kReachable);
310       };
311 
312       // FIXME: There might be a race-condition here (and in Bionic) if the
313       // thread is suspended in the middle of updating its DTLS. IOWs, we
314       // could scan already freed memory. (probably fine for now)
315       __libc_iterate_dynamic_tls(os_id, cb, frontier);
316 #else
317       if (dtls && !DTLSInDestruction(dtls)) {
318         for (uptr j = 0; j < dtls->dtv_size; ++j) {
319           uptr dtls_beg = dtls->dtv[j].beg;
320           uptr dtls_end = dtls_beg + dtls->dtv[j].size;
321           if (dtls_beg < dtls_end) {
322             LOG_THREADS("DTLS %zu at %p-%p.\n", j, dtls_beg, dtls_end);
323             ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
324                                  kReachable);
325           }
326         }
327       } else {
328         // We are handling a thread with DTLS under destruction. Log about
329         // this and continue.
330         LOG_THREADS("Thread %d has DTLS under destruction.\n", os_id);
331       }
332 #endif
333     }
334   }
335 }
336 
337 #endif  // SANITIZER_FUCHSIA
338 
ScanRootRegion(Frontier * frontier,const RootRegion & root_region,uptr region_begin,uptr region_end,bool is_readable)339 void ScanRootRegion(Frontier *frontier, const RootRegion &root_region,
340                     uptr region_begin, uptr region_end, bool is_readable) {
341   uptr intersection_begin = Max(root_region.begin, region_begin);
342   uptr intersection_end = Min(region_end, root_region.begin + root_region.size);
343   if (intersection_begin >= intersection_end) return;
344   LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
345                root_region.begin, root_region.begin + root_region.size,
346                region_begin, region_end,
347                is_readable ? "readable" : "unreadable");
348   if (is_readable)
349     ScanRangeForPointers(intersection_begin, intersection_end, frontier, "ROOT",
350                          kReachable);
351 }
352 
ProcessRootRegion(Frontier * frontier,const RootRegion & root_region)353 static void ProcessRootRegion(Frontier *frontier,
354                               const RootRegion &root_region) {
355   MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
356   MemoryMappedSegment segment;
357   while (proc_maps.Next(&segment)) {
358     ScanRootRegion(frontier, root_region, segment.start, segment.end,
359                    segment.IsReadable());
360   }
361 }
362 
363 // Scans root regions for heap pointers.
ProcessRootRegions(Frontier * frontier)364 static void ProcessRootRegions(Frontier *frontier) {
365   if (!flags()->use_root_regions) return;
366   CHECK(root_regions);
367   for (uptr i = 0; i < root_regions->size(); i++) {
368     ProcessRootRegion(frontier, (*root_regions)[i]);
369   }
370 }
371 
FloodFillTag(Frontier * frontier,ChunkTag tag)372 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
373   while (frontier->size()) {
374     uptr next_chunk = frontier->back();
375     frontier->pop_back();
376     LsanMetadata m(next_chunk);
377     ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
378                          "HEAP", tag);
379   }
380 }
381 
382 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
383 // which are reachable from it as indirectly leaked.
MarkIndirectlyLeakedCb(uptr chunk,void * arg)384 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
385   chunk = GetUserBegin(chunk);
386   LsanMetadata m(chunk);
387   if (m.allocated() && m.tag() != kReachable) {
388     ScanRangeForPointers(chunk, chunk + m.requested_size(),
389                          /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
390   }
391 }
392 
393 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
394 // frontier.
CollectIgnoredCb(uptr chunk,void * arg)395 static void CollectIgnoredCb(uptr chunk, void *arg) {
396   CHECK(arg);
397   chunk = GetUserBegin(chunk);
398   LsanMetadata m(chunk);
399   if (m.allocated() && m.tag() == kIgnored) {
400     LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n",
401                  chunk, chunk + m.requested_size(), m.requested_size());
402     reinterpret_cast<Frontier *>(arg)->push_back(chunk);
403   }
404 }
405 
GetCallerPC(u32 stack_id,StackDepotReverseMap * map)406 static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) {
407   CHECK(stack_id);
408   StackTrace stack = map->Get(stack_id);
409   // The top frame is our malloc/calloc/etc. The next frame is the caller.
410   if (stack.size >= 2)
411     return stack.trace[1];
412   return 0;
413 }
414 
415 struct InvalidPCParam {
416   Frontier *frontier;
417   StackDepotReverseMap *stack_depot_reverse_map;
418   bool skip_linker_allocations;
419 };
420 
421 // ForEachChunk callback. If the caller pc is invalid or is within the linker,
422 // mark as reachable. Called by ProcessPlatformSpecificAllocations.
MarkInvalidPCCb(uptr chunk,void * arg)423 static void MarkInvalidPCCb(uptr chunk, void *arg) {
424   CHECK(arg);
425   InvalidPCParam *param = reinterpret_cast<InvalidPCParam *>(arg);
426   chunk = GetUserBegin(chunk);
427   LsanMetadata m(chunk);
428   if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) {
429     u32 stack_id = m.stack_trace_id();
430     uptr caller_pc = 0;
431     if (stack_id > 0)
432       caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map);
433     // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
434     // it as reachable, as we can't properly report its allocation stack anyway.
435     if (caller_pc == 0 || (param->skip_linker_allocations &&
436                            GetLinker()->containsAddress(caller_pc))) {
437       m.set_tag(kReachable);
438       param->frontier->push_back(chunk);
439     }
440   }
441 }
442 
443 // On Linux, treats all chunks allocated from ld-linux.so as reachable, which
444 // covers dynamically allocated TLS blocks, internal dynamic loader's loaded
445 // modules accounting etc.
446 // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
447 // They are allocated with a __libc_memalign() call in allocate_and_init()
448 // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
449 // blocks, but we can make sure they come from our own allocator by intercepting
450 // __libc_memalign(). On top of that, there is no easy way to reach them. Their
451 // addresses are stored in a dynamically allocated array (the DTV) which is
452 // referenced from the static TLS. Unfortunately, we can't just rely on the DTV
453 // being reachable from the static TLS, and the dynamic TLS being reachable from
454 // the DTV. This is because the initial DTV is allocated before our interception
455 // mechanism kicks in, and thus we don't recognize it as allocated memory. We
456 // can't special-case it either, since we don't know its size.
457 // Our solution is to include in the root set all allocations made from
458 // ld-linux.so (which is where allocate_and_init() is implemented). This is
459 // guaranteed to include all dynamic TLS blocks (and possibly other allocations
460 // which we don't care about).
461 // On all other platforms, this simply checks to ensure that the caller pc is
462 // valid before reporting chunks as leaked.
ProcessPC(Frontier * frontier)463 void ProcessPC(Frontier *frontier) {
464   StackDepotReverseMap stack_depot_reverse_map;
465   InvalidPCParam arg;
466   arg.frontier = frontier;
467   arg.stack_depot_reverse_map = &stack_depot_reverse_map;
468   arg.skip_linker_allocations =
469       flags()->use_tls && flags()->use_ld_allocations && GetLinker() != nullptr;
470   ForEachChunk(MarkInvalidPCCb, &arg);
471 }
472 
473 // Sets the appropriate tag on each chunk.
ClassifyAllChunks(SuspendedThreadsList const & suspended_threads,Frontier * frontier)474 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads,
475                               Frontier *frontier) {
476   ForEachChunk(CollectIgnoredCb, frontier);
477   ProcessGlobalRegions(frontier);
478   ProcessThreads(suspended_threads, frontier);
479   ProcessRootRegions(frontier);
480   FloodFillTag(frontier, kReachable);
481 
482   CHECK_EQ(0, frontier->size());
483   ProcessPC(frontier);
484 
485   // The check here is relatively expensive, so we do this in a separate flood
486   // fill. That way we can skip the check for chunks that are reachable
487   // otherwise.
488   LOG_POINTERS("Processing platform-specific allocations.\n");
489   ProcessPlatformSpecificAllocations(frontier);
490   FloodFillTag(frontier, kReachable);
491 
492   // Iterate over leaked chunks and mark those that are reachable from other
493   // leaked chunks.
494   LOG_POINTERS("Scanning leaked chunks.\n");
495   ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
496 }
497 
498 // ForEachChunk callback. Resets the tags to pre-leak-check state.
ResetTagsCb(uptr chunk,void * arg)499 static void ResetTagsCb(uptr chunk, void *arg) {
500   (void)arg;
501   chunk = GetUserBegin(chunk);
502   LsanMetadata m(chunk);
503   if (m.allocated() && m.tag() != kIgnored)
504     m.set_tag(kDirectlyLeaked);
505 }
506 
PrintStackTraceById(u32 stack_trace_id)507 static void PrintStackTraceById(u32 stack_trace_id) {
508   CHECK(stack_trace_id);
509   StackDepotGet(stack_trace_id).Print();
510 }
511 
512 // ForEachChunk callback. Aggregates information about unreachable chunks into
513 // a LeakReport.
CollectLeaksCb(uptr chunk,void * arg)514 static void CollectLeaksCb(uptr chunk, void *arg) {
515   CHECK(arg);
516   LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
517   chunk = GetUserBegin(chunk);
518   LsanMetadata m(chunk);
519   if (!m.allocated()) return;
520   if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
521     u32 resolution = flags()->resolution;
522     u32 stack_trace_id = 0;
523     if (resolution > 0) {
524       StackTrace stack = StackDepotGet(m.stack_trace_id());
525       stack.size = Min(stack.size, resolution);
526       stack_trace_id = StackDepotPut(stack);
527     } else {
528       stack_trace_id = m.stack_trace_id();
529     }
530     leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
531                                 m.tag());
532   }
533 }
534 
PrintMatchedSuppressions()535 static void PrintMatchedSuppressions() {
536   InternalMmapVector<Suppression *> matched;
537   GetSuppressionContext()->GetMatched(&matched);
538   if (!matched.size())
539     return;
540   const char *line = "-----------------------------------------------------";
541   Printf("%s\n", line);
542   Printf("Suppressions used:\n");
543   Printf("  count      bytes template\n");
544   for (uptr i = 0; i < matched.size(); i++)
545     Printf("%7zu %10zu %s\n", static_cast<uptr>(atomic_load_relaxed(
546         &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ);
547   Printf("%s\n\n", line);
548 }
549 
ReportIfNotSuspended(ThreadContextBase * tctx,void * arg)550 static void ReportIfNotSuspended(ThreadContextBase *tctx, void *arg) {
551   const InternalMmapVector<tid_t> &suspended_threads =
552       *(const InternalMmapVector<tid_t> *)arg;
553   if (tctx->status == ThreadStatusRunning) {
554     uptr i = InternalLowerBound(suspended_threads, 0, suspended_threads.size(),
555                                 tctx->os_id, CompareLess<int>());
556     if (i >= suspended_threads.size() || suspended_threads[i] != tctx->os_id)
557       Report("Running thread %d was not suspended. False leaks are possible.\n",
558              tctx->os_id);
559   }
560 }
561 
562 #if SANITIZER_FUCHSIA
563 
564 // Fuchsia provides a libc interface that guarantees all threads are
565 // covered, and SuspendedThreadList is never really used.
ReportUnsuspendedThreads(const SuspendedThreadsList &)566 static void ReportUnsuspendedThreads(const SuspendedThreadsList &) {}
567 
568 #else  // !SANITIZER_FUCHSIA
569 
ReportUnsuspendedThreads(const SuspendedThreadsList & suspended_threads)570 static void ReportUnsuspendedThreads(
571     const SuspendedThreadsList &suspended_threads) {
572   InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
573   for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
574     threads[i] = suspended_threads.GetThreadID(i);
575 
576   Sort(threads.data(), threads.size());
577 
578   GetThreadRegistryLocked()->RunCallbackForEachThreadLocked(
579       &ReportIfNotSuspended, &threads);
580 }
581 
582 #endif  // !SANITIZER_FUCHSIA
583 
CheckForLeaksCallback(const SuspendedThreadsList & suspended_threads,void * arg)584 static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
585                                   void *arg) {
586   CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
587   CHECK(param);
588   CHECK(!param->success);
589   ReportUnsuspendedThreads(suspended_threads);
590   ClassifyAllChunks(suspended_threads, &param->frontier);
591   ForEachChunk(CollectLeaksCb, &param->leak_report);
592   // Clean up for subsequent leak checks. This assumes we did not overwrite any
593   // kIgnored tags.
594   ForEachChunk(ResetTagsCb, nullptr);
595   param->success = true;
596 }
597 
CheckForLeaks()598 static bool CheckForLeaks() {
599   if (&__lsan_is_turned_off && __lsan_is_turned_off())
600     return false;
601   EnsureMainThreadIDIsCorrect();
602   CheckForLeaksParam param;
603   LockStuffAndStopTheWorld(CheckForLeaksCallback, &param);
604 
605   if (!param.success) {
606     Report("LeakSanitizer has encountered a fatal error.\n");
607     Report(
608         "HINT: For debugging, try setting environment variable "
609         "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
610     Report(
611         "HINT: LeakSanitizer does not work under ptrace (strace, gdb, etc)\n");
612     Die();
613   }
614   param.leak_report.ApplySuppressions();
615   uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
616   if (unsuppressed_count > 0) {
617     Decorator d;
618     Printf("\n"
619            "================================================================="
620            "\n");
621     Printf("%s", d.Error());
622     Report("ERROR: LeakSanitizer: detected memory leaks\n");
623     Printf("%s", d.Default());
624     param.leak_report.ReportTopLeaks(flags()->max_leaks);
625   }
626   if (common_flags()->print_suppressions)
627     PrintMatchedSuppressions();
628   if (unsuppressed_count > 0) {
629     param.leak_report.PrintSummary();
630     return true;
631   }
632   return false;
633 }
634 
635 static bool has_reported_leaks = false;
HasReportedLeaks()636 bool HasReportedLeaks() { return has_reported_leaks; }
637 
DoLeakCheck()638 void DoLeakCheck() {
639   BlockingMutexLock l(&global_mutex);
640   static bool already_done;
641   if (already_done) return;
642   already_done = true;
643   has_reported_leaks = CheckForLeaks();
644   if (has_reported_leaks) HandleLeaks();
645 }
646 
DoRecoverableLeakCheck()647 static int DoRecoverableLeakCheck() {
648   BlockingMutexLock l(&global_mutex);
649   bool have_leaks = CheckForLeaks();
650   return have_leaks ? 1 : 0;
651 }
652 
DoRecoverableLeakCheckVoid()653 void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
654 
GetSuppressionForAddr(uptr addr)655 static Suppression *GetSuppressionForAddr(uptr addr) {
656   Suppression *s = nullptr;
657 
658   // Suppress by module name.
659   SuppressionContext *suppressions = GetSuppressionContext();
660   if (const char *module_name =
661           Symbolizer::GetOrInit()->GetModuleNameForPc(addr))
662     if (suppressions->Match(module_name, kSuppressionLeak, &s))
663       return s;
664 
665   // Suppress by file or function name.
666   SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
667   for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
668     if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) ||
669         suppressions->Match(cur->info.file, kSuppressionLeak, &s)) {
670       break;
671     }
672   }
673   frames->ClearAll();
674   return s;
675 }
676 
GetSuppressionForStack(u32 stack_trace_id)677 static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
678   StackTrace stack = StackDepotGet(stack_trace_id);
679   for (uptr i = 0; i < stack.size; i++) {
680     Suppression *s = GetSuppressionForAddr(
681         StackTrace::GetPreviousInstructionPc(stack.trace[i]));
682     if (s) return s;
683   }
684   return nullptr;
685 }
686 
687 ///// LeakReport implementation. /////
688 
689 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
690 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
691 // in real-world applications.
692 // FIXME: Get rid of this limit by changing the implementation of LeakReport to
693 // use a hash table.
694 const uptr kMaxLeaksConsidered = 5000;
695 
AddLeakedChunk(uptr chunk,u32 stack_trace_id,uptr leaked_size,ChunkTag tag)696 void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
697                                 uptr leaked_size, ChunkTag tag) {
698   CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
699   bool is_directly_leaked = (tag == kDirectlyLeaked);
700   uptr i;
701   for (i = 0; i < leaks_.size(); i++) {
702     if (leaks_[i].stack_trace_id == stack_trace_id &&
703         leaks_[i].is_directly_leaked == is_directly_leaked) {
704       leaks_[i].hit_count++;
705       leaks_[i].total_size += leaked_size;
706       break;
707     }
708   }
709   if (i == leaks_.size()) {
710     if (leaks_.size() == kMaxLeaksConsidered) return;
711     Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
712                   is_directly_leaked, /* is_suppressed */ false };
713     leaks_.push_back(leak);
714   }
715   if (flags()->report_objects) {
716     LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
717     leaked_objects_.push_back(obj);
718   }
719 }
720 
LeakComparator(const Leak & leak1,const Leak & leak2)721 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
722   if (leak1.is_directly_leaked == leak2.is_directly_leaked)
723     return leak1.total_size > leak2.total_size;
724   else
725     return leak1.is_directly_leaked;
726 }
727 
ReportTopLeaks(uptr num_leaks_to_report)728 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
729   CHECK(leaks_.size() <= kMaxLeaksConsidered);
730   Printf("\n");
731   if (leaks_.size() == kMaxLeaksConsidered)
732     Printf("Too many leaks! Only the first %zu leaks encountered will be "
733            "reported.\n",
734            kMaxLeaksConsidered);
735 
736   uptr unsuppressed_count = UnsuppressedLeakCount();
737   if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
738     Printf("The %zu top leak(s):\n", num_leaks_to_report);
739   Sort(leaks_.data(), leaks_.size(), &LeakComparator);
740   uptr leaks_reported = 0;
741   for (uptr i = 0; i < leaks_.size(); i++) {
742     if (leaks_[i].is_suppressed) continue;
743     PrintReportForLeak(i);
744     leaks_reported++;
745     if (leaks_reported == num_leaks_to_report) break;
746   }
747   if (leaks_reported < unsuppressed_count) {
748     uptr remaining = unsuppressed_count - leaks_reported;
749     Printf("Omitting %zu more leak(s).\n", remaining);
750   }
751 }
752 
PrintReportForLeak(uptr index)753 void LeakReport::PrintReportForLeak(uptr index) {
754   Decorator d;
755   Printf("%s", d.Leak());
756   Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
757          leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
758          leaks_[index].total_size, leaks_[index].hit_count);
759   Printf("%s", d.Default());
760 
761   PrintStackTraceById(leaks_[index].stack_trace_id);
762 
763   if (flags()->report_objects) {
764     Printf("Objects leaked above:\n");
765     PrintLeakedObjectsForLeak(index);
766     Printf("\n");
767   }
768 }
769 
PrintLeakedObjectsForLeak(uptr index)770 void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
771   u32 leak_id = leaks_[index].id;
772   for (uptr j = 0; j < leaked_objects_.size(); j++) {
773     if (leaked_objects_[j].leak_id == leak_id)
774       Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
775              leaked_objects_[j].size);
776   }
777 }
778 
PrintSummary()779 void LeakReport::PrintSummary() {
780   CHECK(leaks_.size() <= kMaxLeaksConsidered);
781   uptr bytes = 0, allocations = 0;
782   for (uptr i = 0; i < leaks_.size(); i++) {
783       if (leaks_[i].is_suppressed) continue;
784       bytes += leaks_[i].total_size;
785       allocations += leaks_[i].hit_count;
786   }
787   InternalScopedString summary(kMaxSummaryLength);
788   summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
789                  allocations);
790   ReportErrorSummary(summary.data());
791 }
792 
ApplySuppressions()793 void LeakReport::ApplySuppressions() {
794   for (uptr i = 0; i < leaks_.size(); i++) {
795     Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
796     if (s) {
797       s->weight += leaks_[i].total_size;
798       atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) +
799           leaks_[i].hit_count);
800       leaks_[i].is_suppressed = true;
801     }
802   }
803 }
804 
UnsuppressedLeakCount()805 uptr LeakReport::UnsuppressedLeakCount() {
806   uptr result = 0;
807   for (uptr i = 0; i < leaks_.size(); i++)
808     if (!leaks_[i].is_suppressed) result++;
809   return result;
810 }
811 
812 } // namespace __lsan
813 #else // CAN_SANITIZE_LEAKS
814 namespace __lsan {
InitCommonLsan()815 void InitCommonLsan() { }
DoLeakCheck()816 void DoLeakCheck() { }
DoRecoverableLeakCheckVoid()817 void DoRecoverableLeakCheckVoid() { }
DisableInThisThread()818 void DisableInThisThread() { }
EnableInThisThread()819 void EnableInThisThread() { }
820 }
821 #endif // CAN_SANITIZE_LEAKS
822 
823 using namespace __lsan;
824 
825 extern "C" {
826 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_ignore_object(const void * p)827 void __lsan_ignore_object(const void *p) {
828 #if CAN_SANITIZE_LEAKS
829   if (!common_flags()->detect_leaks)
830     return;
831   // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
832   // locked.
833   BlockingMutexLock l(&global_mutex);
834   IgnoreObjectResult res = IgnoreObjectLocked(p);
835   if (res == kIgnoreObjectInvalid)
836     VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
837   if (res == kIgnoreObjectAlreadyIgnored)
838     VReport(1, "__lsan_ignore_object(): "
839            "heap object at %p is already being ignored\n", p);
840   if (res == kIgnoreObjectSuccess)
841     VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
842 #endif // CAN_SANITIZE_LEAKS
843 }
844 
845 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_register_root_region(const void * begin,uptr size)846 void __lsan_register_root_region(const void *begin, uptr size) {
847 #if CAN_SANITIZE_LEAKS
848   BlockingMutexLock l(&global_mutex);
849   CHECK(root_regions);
850   RootRegion region = {reinterpret_cast<uptr>(begin), size};
851   root_regions->push_back(region);
852   VReport(1, "Registered root region at %p of size %llu\n", begin, size);
853 #endif // CAN_SANITIZE_LEAKS
854 }
855 
856 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_unregister_root_region(const void * begin,uptr size)857 void __lsan_unregister_root_region(const void *begin, uptr size) {
858 #if CAN_SANITIZE_LEAKS
859   BlockingMutexLock l(&global_mutex);
860   CHECK(root_regions);
861   bool removed = false;
862   for (uptr i = 0; i < root_regions->size(); i++) {
863     RootRegion region = (*root_regions)[i];
864     if (region.begin == reinterpret_cast<uptr>(begin) && region.size == size) {
865       removed = true;
866       uptr last_index = root_regions->size() - 1;
867       (*root_regions)[i] = (*root_regions)[last_index];
868       root_regions->pop_back();
869       VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
870       break;
871     }
872   }
873   if (!removed) {
874     Report(
875         "__lsan_unregister_root_region(): region at %p of size %llu has not "
876         "been registered.\n",
877         begin, size);
878     Die();
879   }
880 #endif // CAN_SANITIZE_LEAKS
881 }
882 
883 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_disable()884 void __lsan_disable() {
885 #if CAN_SANITIZE_LEAKS
886   __lsan::DisableInThisThread();
887 #endif
888 }
889 
890 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_enable()891 void __lsan_enable() {
892 #if CAN_SANITIZE_LEAKS
893   __lsan::EnableInThisThread();
894 #endif
895 }
896 
897 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_do_leak_check()898 void __lsan_do_leak_check() {
899 #if CAN_SANITIZE_LEAKS
900   if (common_flags()->detect_leaks)
901     __lsan::DoLeakCheck();
902 #endif // CAN_SANITIZE_LEAKS
903 }
904 
905 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_do_recoverable_leak_check()906 int __lsan_do_recoverable_leak_check() {
907 #if CAN_SANITIZE_LEAKS
908   if (common_flags()->detect_leaks)
909     return __lsan::DoRecoverableLeakCheck();
910 #endif // CAN_SANITIZE_LEAKS
911   return 0;
912 }
913 
SANITIZER_INTERFACE_WEAK_DEF(const char *,__lsan_default_options,void)914 SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_options, void) {
915   return "";
916 }
917 
918 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
919 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__lsan_is_turned_off()920 int __lsan_is_turned_off() {
921   return 0;
922 }
923 
924 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__lsan_default_suppressions()925 const char *__lsan_default_suppressions() {
926   return "";
927 }
928 #endif
929 } // extern "C"
930