1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * This file contains the code to implement file range locking in
28  * ZFS, although there isn't much specific to ZFS (all that comes to mind
29  * support for growing the blocksize).
30  *
31  * Interface
32  * ---------
33  * Defined in zfs_rlock.h but essentially:
34  *	rl = zfs_range_lock(zp, off, len, lock_type);
35  *	zfs_range_unlock(rl);
36  *	zfs_range_reduce(rl, off, len);
37  *
38  * AVL tree
39  * --------
40  * An AVL tree is used to maintain the state of the existing ranges
41  * that are locked for exclusive (writer) or shared (reader) use.
42  * The starting range offset is used for searching and sorting the tree.
43  *
44  * Common case
45  * -----------
46  * The (hopefully) usual case is of no overlaps or contention for
47  * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree
48  * searched that finds no overlap, and *this* rl_t is placed in the tree.
49  *
50  * Overlaps/Reference counting/Proxy locks
51  * ---------------------------------------
52  * The avl code only allows one node at a particular offset. Also it's very
53  * inefficient to search through all previous entries looking for overlaps
54  * (because the very 1st in the ordered list might be at offset 0 but
55  * cover the whole file).
56  * So this implementation uses reference counts and proxy range locks.
57  * Firstly, only reader locks use reference counts and proxy locks,
58  * because writer locks are exclusive.
59  * When a reader lock overlaps with another then a proxy lock is created
60  * for that range and replaces the original lock. If the overlap
61  * is exact then the reference count of the proxy is simply incremented.
62  * Otherwise, the proxy lock is split into smaller lock ranges and
63  * new proxy locks created for non overlapping ranges.
64  * The reference counts are adjusted accordingly.
65  * Meanwhile, the orginal lock is kept around (this is the callers handle)
66  * and its offset and length are used when releasing the lock.
67  *
68  * Thread coordination
69  * -------------------
70  * In order to make wakeups efficient and to ensure multiple continuous
71  * readers on a range don't starve a writer for the same range lock,
72  * two condition variables are allocated in each rl_t.
73  * If a writer (or reader) can't get a range it initialises the writer
74  * (or reader) cv; sets a flag saying there's a writer (or reader) waiting;
75  * and waits on that cv. When a thread unlocks that range it wakes up all
76  * writers then all readers before destroying the lock.
77  *
78  * Append mode writes
79  * ------------------
80  * Append mode writes need to lock a range at the end of a file.
81  * The offset of the end of the file is determined under the
82  * range locking mutex, and the lock type converted from RL_APPEND to
83  * RL_WRITER and the range locked.
84  *
85  * Grow block handling
86  * -------------------
87  * ZFS supports multiple block sizes currently upto 128K. The smallest
88  * block size is used for the file which is grown as needed. During this
89  * growth all other writers and readers must be excluded.
90  * So if the block size needs to be grown then the whole file is
91  * exclusively locked, then later the caller will reduce the lock
92  * range to just the range to be written using zfs_reduce_range.
93  */
94 
95 #include <sys/zfs_rlock.h>
96 
97 static int
zfs_range_lock_hold(rl_t * rl)98 zfs_range_lock_hold(rl_t *rl)
99 {
100 
101 	KASSERT(rl->r_zp != NULL);
102 	KASSERT(0 < rl->r_refcnt);
103 	KASSERT(mutex_owned(&rl->r_zp->z_range_lock));
104 
105 	if (rl->r_refcnt >= ULONG_MAX)
106 		return (ENFILE); /* XXX What to do?  */
107 
108 	rl->r_refcnt++;
109 	return (0);
110 }
111 
112 static void
zfs_range_lock_rele(rl_t * rl)113 zfs_range_lock_rele(rl_t *rl)
114 {
115 
116 	KASSERT(rl->r_zp != NULL);
117 	KASSERT(0 < rl->r_refcnt);
118 	KASSERT(mutex_owned(&rl->r_zp->z_range_lock));
119 
120 	if (--rl->r_refcnt == 0) {
121 		cv_destroy(&rl->r_wr_cv);
122 		cv_destroy(&rl->r_rd_cv);
123 		kmem_free(rl, sizeof (rl_t));
124 	}
125 }
126 
127 /*
128  * Check if a write lock can be grabbed, or wait and recheck until available.
129  */
130 static void
zfs_range_lock_writer(znode_t * zp,rl_t * new)131 zfs_range_lock_writer(znode_t *zp, rl_t *new)
132 {
133 	avl_tree_t *tree = &zp->z_range_avl;
134 	rl_t *rl;
135 	avl_index_t where;
136 	uint64_t end_size;
137 	uint64_t off = new->r_off;
138 	uint64_t len = new->r_len;
139 
140 	for (;;) {
141 		/*
142 		 * Range locking is also used by zvol and uses a
143 		 * dummied up znode. However, for zvol, we don't need to
144 		 * append or grow blocksize, and besides we don't have
145 		 * a z_phys or z_zfsvfs - so skip that processing.
146 		 *
147 		 * Yes, this is ugly, and would be solved by not handling
148 		 * grow or append in range lock code. If that was done then
149 		 * we could make the range locking code generically available
150 		 * to other non-zfs consumers.
151 		 */
152 		if (zp->z_vnode) { /* caller is ZPL */
153 			/*
154 			 * If in append mode pick up the current end of file.
155 			 * This is done under z_range_lock to avoid races.
156 			 */
157 			if (new->r_type == RL_APPEND)
158 				new->r_off = zp->z_phys->zp_size;
159 
160 			/*
161 			 * If we need to grow the block size then grab the whole
162 			 * file range. This is also done under z_range_lock to
163 			 * avoid races.
164 			 */
165 			end_size = MAX(zp->z_phys->zp_size, new->r_off + len);
166 			if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
167 			    zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) {
168 				new->r_off = 0;
169 				new->r_len = UINT64_MAX;
170 			}
171 		}
172 
173 		/*
174 		 * First check for the usual case of no locks
175 		 */
176 		if (avl_numnodes(tree) == 0) {
177 			new->r_type = RL_WRITER; /* convert to writer */
178 			avl_add(tree, new);
179 			return;
180 		}
181 
182 		/*
183 		 * Look for any locks in the range.
184 		 */
185 		rl = avl_find(tree, new, &where);
186 		if (rl)
187 			goto wait; /* already locked at same offset */
188 
189 		rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
190 		KASSERT(0 < rl->r_refcnt);
191 		if (rl && (rl->r_off < new->r_off + new->r_len))
192 			goto wait;
193 
194 		rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
195 		KASSERT(0 < rl->r_refcnt);
196 		if (rl && rl->r_off + rl->r_len > new->r_off)
197 			goto wait;
198 
199 		new->r_type = RL_WRITER; /* convert possible RL_APPEND */
200 		avl_insert(tree, new, where);
201 		return;
202 wait:
203 		if (!rl->r_write_wanted) {
204 			rl->r_write_wanted = B_TRUE;
205 		}
206 		if (zfs_range_lock_hold(rl) != 0)
207 			panic("too many waiters on zfs range lock %p", rl);
208 		cv_wait(&rl->r_wr_cv, &zp->z_range_lock);
209 		zfs_range_lock_rele(rl);
210 
211 		/* reset to original */
212 		new->r_off = off;
213 		new->r_len = len;
214 	}
215 }
216 
217 /*
218  * If this is an original (non-proxy) lock then replace it by
219  * a proxy and return the proxy.
220  */
221 static rl_t *
zfs_range_proxify(avl_tree_t * tree,rl_t * rl)222 zfs_range_proxify(avl_tree_t *tree, rl_t *rl)
223 {
224 	rl_t *proxy;
225 
226 	if (rl->r_proxy)
227 		return (rl); /* already a proxy */
228 
229 	ASSERT3U(rl->r_cnt, ==, 1);
230 	ASSERT(rl->r_write_wanted == B_FALSE);
231 	ASSERT(rl->r_read_wanted == B_FALSE);
232 	avl_remove(tree, rl);
233 	rl->r_cnt = 0;
234 
235 	/* create a proxy range lock */
236 	proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP);
237 	proxy->r_zp = rl->r_zp;
238 	proxy->r_off = rl->r_off;
239 	proxy->r_len = rl->r_len;
240 	proxy->r_cnt = 1;
241 	proxy->r_type = RL_READER;
242 	proxy->r_proxy = B_TRUE;
243 	cv_init(&proxy->r_wr_cv, NULL, CV_DEFAULT, NULL);
244 	cv_init(&proxy->r_rd_cv, NULL, CV_DEFAULT, NULL);
245 	proxy->r_write_wanted = B_FALSE;
246 	proxy->r_read_wanted = B_FALSE;
247 	proxy->r_refcnt = 1;
248 	avl_add(tree, proxy);
249 
250 	return (proxy);
251 }
252 
253 /*
254  * Split the range lock at the supplied offset
255  * returning the *front* proxy.
256  */
257 static rl_t *
zfs_range_split(avl_tree_t * tree,rl_t * rl,uint64_t off)258 zfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off)
259 {
260 	rl_t *front, *rear;
261 
262 	ASSERT3U(rl->r_len, >, 1);
263 	ASSERT3U(off, >, rl->r_off);
264 	ASSERT3U(off, <, rl->r_off + rl->r_len);
265 	ASSERT(rl->r_write_wanted == B_FALSE);
266 	ASSERT(rl->r_read_wanted == B_FALSE);
267 
268 	/* create the rear proxy range lock */
269 	rear = kmem_alloc(sizeof (rl_t), KM_SLEEP);
270 	rear->r_zp = rl->r_zp;
271 	rear->r_off = off;
272 	rear->r_len = rl->r_off + rl->r_len - off;
273 	rear->r_cnt = rl->r_cnt;
274 	rear->r_type = RL_READER;
275 	rear->r_proxy = B_TRUE;
276 	cv_init(&rear->r_wr_cv, NULL, CV_DEFAULT, NULL);
277 	cv_init(&rear->r_rd_cv, NULL, CV_DEFAULT, NULL);
278 	rear->r_refcnt = 1;
279 	rear->r_write_wanted = B_FALSE;
280 	rear->r_read_wanted = B_FALSE;
281 
282 	front = zfs_range_proxify(tree, rl);
283 	front->r_len = off - rl->r_off;
284 
285 	avl_insert_here(tree, rear, front, AVL_AFTER);
286 	return (front);
287 }
288 
289 /*
290  * Create and add a new proxy range lock for the supplied range.
291  */
292 static void
zfs_range_new_proxy(avl_tree_t * tree,uint64_t off,uint64_t len,znode_t * zp)293 zfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len, znode_t *zp)
294 {
295 	rl_t *rl;
296 
297 	ASSERT(len);
298 	rl = kmem_alloc(sizeof (rl_t), KM_SLEEP);
299 	rl->r_zp = zp;
300 	rl->r_off = off;
301 	rl->r_len = len;
302 	rl->r_cnt = 1;
303 	rl->r_type = RL_READER;
304 	rl->r_proxy = B_TRUE;
305 	cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL);
306 	cv_init(&rl->r_rd_cv, NULL, CV_DEFAULT, NULL);
307 	rl->r_write_wanted = B_FALSE;
308 	rl->r_read_wanted = B_FALSE;
309 	rl->r_refcnt = 1;
310 	avl_add(tree, rl);
311 }
312 
313 static void
zfs_range_add_reader(avl_tree_t * tree,rl_t * new,rl_t * prev,avl_index_t where)314 zfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where)
315 {
316 	znode_t *zp = new->r_zp;
317 	rl_t *next;
318 	uint64_t off = new->r_off;
319 	uint64_t len = new->r_len;
320 
321 	/*
322 	 * prev arrives either:
323 	 * - pointing to an entry at the same offset
324 	 * - pointing to the entry with the closest previous offset whose
325 	 *   range may overlap with the new range
326 	 * - null, if there were no ranges starting before the new one
327 	 */
328 	if (prev) {
329 		if (prev->r_off + prev->r_len <= off) {
330 			prev = NULL;
331 		} else if (prev->r_off != off) {
332 			/*
333 			 * convert to proxy if needed then
334 			 * split this entry and bump ref count
335 			 */
336 			prev = zfs_range_split(tree, prev, off);
337 			prev = AVL_NEXT(tree, prev); /* move to rear range */
338 		}
339 	}
340 	ASSERT((prev == NULL) || (prev->r_off == off));
341 
342 	if (prev)
343 		next = prev;
344 	else
345 		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
346 
347 	if (next == NULL || off + len <= next->r_off) {
348 		/* no overlaps, use the original new rl_t in the tree */
349 		avl_insert(tree, new, where);
350 		return;
351 	}
352 
353 	KASSERT(0 < next->r_refcnt);
354 	if (off < next->r_off) {
355 		/* Add a proxy for initial range before the overlap */
356 		zfs_range_new_proxy(tree, off, next->r_off - off, zp);
357 	}
358 
359 	new->r_cnt = 0; /* will use proxies in tree */
360 	/*
361 	 * We now search forward through the ranges, until we go past the end
362 	 * of the new range. For each entry we make it a proxy if it
363 	 * isn't already, then bump its reference count. If there's any
364 	 * gaps between the ranges then we create a new proxy range.
365 	 */
366 	for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) {
367 		if (off + len <= next->r_off)
368 			break;
369 		if (prev && prev->r_off + prev->r_len < next->r_off) {
370 			/* there's a gap */
371 			ASSERT3U(next->r_off, >, prev->r_off + prev->r_len);
372 			zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
373 			    next->r_off - (prev->r_off + prev->r_len), zp);
374 		}
375 		if (off + len == next->r_off + next->r_len) {
376 			/* exact overlap with end */
377 			next = zfs_range_proxify(tree, next);
378 			KASSERT(0 < next->r_refcnt);
379 			next->r_cnt++;
380 			return;
381 		}
382 		if (off + len < next->r_off + next->r_len) {
383 			/* new range ends in the middle of this block */
384 			next = zfs_range_split(tree, next, off + len);
385 			KASSERT(0 < next->r_refcnt);
386 			next->r_cnt++;
387 			return;
388 		}
389 		ASSERT3U(off + len, >, next->r_off + next->r_len);
390 		next = zfs_range_proxify(tree, next);
391 		KASSERT(0 < next->r_refcnt);
392 		next->r_cnt++;
393 	}
394 
395 	/* Add the remaining end range. */
396 	zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
397 	    (off + len) - (prev->r_off + prev->r_len), zp);
398 }
399 
400 /*
401  * Check if a reader lock can be grabbed, or wait and recheck until available.
402  */
403 static void
zfs_range_lock_reader(znode_t * zp,rl_t * new)404 zfs_range_lock_reader(znode_t *zp, rl_t *new)
405 {
406 	avl_tree_t *tree = &zp->z_range_avl;
407 	rl_t *prev, *next;
408 	avl_index_t where;
409 	uint64_t off = new->r_off;
410 	uint64_t len = new->r_len;
411 
412 	/*
413 	 * Look for any writer locks in the range.
414 	 */
415 retry:
416 	prev = avl_find(tree, new, &where);
417 	if (prev == NULL)
418 		prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
419 
420 	/*
421 	 * Check the previous range for a writer lock overlap.
422 	 */
423 	if (prev && (off < prev->r_off + prev->r_len)) {
424 		if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) {
425 			if (!prev->r_read_wanted) {
426 				prev->r_read_wanted = B_TRUE;
427 			}
428 			if (zfs_range_lock_hold(prev) != 0)
429 				panic("too many waiters on zfs range lock %p",
430 				    prev);
431 			cv_wait(&prev->r_rd_cv, &zp->z_range_lock);
432 			zfs_range_lock_rele(prev);
433 			goto retry;
434 		}
435 		if (off + len < prev->r_off + prev->r_len)
436 			goto got_lock;
437 	}
438 
439 	/*
440 	 * Search through the following ranges to see if there's
441 	 * write lock any overlap.
442 	 */
443 	if (prev)
444 		next = AVL_NEXT(tree, prev);
445 	else
446 		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
447 	for (; next; next = AVL_NEXT(tree, next)) {
448 		if (off + len <= next->r_off)
449 			goto got_lock;
450 		if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) {
451 			if (!next->r_read_wanted) {
452 				next->r_read_wanted = B_TRUE;
453 			}
454 			if (zfs_range_lock_hold(next) != 0)
455 				panic("too many waiters on zfs range lock %p",
456 				    next);
457 			cv_wait(&next->r_rd_cv, &zp->z_range_lock);
458 			zfs_range_lock_rele(next);
459 			goto retry;
460 		}
461 		if (off + len <= next->r_off + next->r_len)
462 			goto got_lock;
463 	}
464 
465 got_lock:
466 	/*
467 	 * Add the read lock, which may involve splitting existing
468 	 * locks and bumping ref counts (r_cnt).
469 	 */
470 	zfs_range_add_reader(tree, new, prev, where);
471 }
472 
473 /*
474  * Lock a range (offset, length) as either shared (RL_READER)
475  * or exclusive (RL_WRITER). Returns the range lock structure
476  * for later unlocking or reduce range (if entire file
477  * previously locked as RL_WRITER).
478  */
479 rl_t *
zfs_range_lock(znode_t * zp,uint64_t off,uint64_t len,rl_type_t type)480 zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type)
481 {
482 	rl_t *new;
483 
484 	ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND);
485 
486 	new = kmem_alloc(sizeof (rl_t), KM_SLEEP);
487 	new->r_zp = zp;
488 	new->r_off = off;
489 	if (len + off < off)	/* overflow */
490 		len = UINT64_MAX - off;
491 	new->r_len = len;
492 	new->r_cnt = 1; /* assume it's going to be in the tree */
493 	new->r_type = type;
494 	new->r_proxy = B_FALSE;
495 	cv_init(&new->r_wr_cv, NULL, CV_DEFAULT, NULL);
496 	cv_init(&new->r_rd_cv, NULL, CV_DEFAULT, NULL);
497 	new->r_write_wanted = B_FALSE;
498 	new->r_read_wanted = B_FALSE;
499 	new->r_refcnt = 1;
500 
501 	mutex_enter(&zp->z_range_lock);
502 	if (type == RL_READER) {
503 		/*
504 		 * First check for the usual case of no locks
505 		 */
506 		if (avl_numnodes(&zp->z_range_avl) == 0)
507 			avl_add(&zp->z_range_avl, new);
508 		else
509 			zfs_range_lock_reader(zp, new);
510 	} else {
511 		zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */
512 	}
513 	mutex_exit(&zp->z_range_lock);
514 	return (new);
515 }
516 
517 /*
518  * Unlock a reader lock
519  */
520 static void
zfs_range_unlock_reader(znode_t * zp,rl_t * remove)521 zfs_range_unlock_reader(znode_t *zp, rl_t *remove)
522 {
523 	avl_tree_t *tree = &zp->z_range_avl;
524 	rl_t *rl, *next;
525 	uint64_t len;
526 
527 	/*
528 	 * The common case is when the remove entry is in the tree
529 	 * (cnt == 1) meaning there's been no other reader locks overlapping
530 	 * with this one. Otherwise the remove entry will have been
531 	 * removed from the tree and replaced by proxies (one or
532 	 * more ranges mapping to the entire range).
533 	 */
534 	if (remove->r_cnt == 1) {
535 		avl_remove(tree, remove);
536 		if (remove->r_write_wanted) {
537 			cv_broadcast(&remove->r_wr_cv);
538 		}
539 		if (remove->r_read_wanted) {
540 			cv_broadcast(&remove->r_rd_cv);
541 		}
542 	} else {
543 		ASSERT3U(remove->r_cnt, ==, 0);
544 		ASSERT3U(remove->r_write_wanted, ==, 0);
545 		ASSERT3U(remove->r_read_wanted, ==, 0);
546 		/*
547 		 * Find start proxy representing this reader lock,
548 		 * then decrement ref count on all proxies
549 		 * that make up this range, freeing them as needed.
550 		 */
551 		rl = avl_find(tree, remove, NULL);
552 		ASSERT(rl);
553 		ASSERT(rl->r_cnt);
554 		ASSERT(rl->r_type == RL_READER);
555 		for (len = remove->r_len; len != 0; rl = next) {
556 			len -= rl->r_len;
557 			if (len) {
558 				next = AVL_NEXT(tree, rl);
559 				ASSERT(next);
560 				ASSERT(rl->r_off + rl->r_len == next->r_off);
561 				ASSERT(next->r_cnt);
562 				ASSERT(next->r_type == RL_READER);
563 			}
564 			rl->r_cnt--;
565 			if (rl->r_cnt == 0) {
566 				avl_remove(tree, rl);
567 				if (rl->r_write_wanted) {
568 					cv_broadcast(&rl->r_wr_cv);
569 				}
570 				if (rl->r_read_wanted) {
571 					cv_broadcast(&rl->r_rd_cv);
572 				}
573 				zfs_range_lock_rele(rl);
574 			}
575 		}
576 	}
577 	zfs_range_lock_rele(remove);
578 }
579 
580 /*
581  * Unlock range and destroy range lock structure.
582  */
583 void
zfs_range_unlock(rl_t * rl)584 zfs_range_unlock(rl_t *rl)
585 {
586 	znode_t *zp = rl->r_zp;
587 
588 	ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER);
589 	ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0);
590 	ASSERT(!rl->r_proxy);
591 
592 	mutex_enter(&zp->z_range_lock);
593 	if (rl->r_type == RL_WRITER) {
594 		/* writer locks can't be shared or split */
595 		avl_remove(&zp->z_range_avl, rl);
596 		if (rl->r_write_wanted) {
597 			cv_broadcast(&rl->r_wr_cv);
598 		}
599 		if (rl->r_read_wanted) {
600 			cv_broadcast(&rl->r_rd_cv);
601 		}
602 		zfs_range_lock_rele(rl);
603 		mutex_exit(&zp->z_range_lock);
604 	} else {
605 		/*
606 		 * lock may be shared, let zfs_range_unlock_reader()
607 		 * release the lock and free the rl_t
608 		 */
609 		zfs_range_unlock_reader(zp, rl);
610 		mutex_exit(&zp->z_range_lock);
611 	}
612 }
613 
614 /*
615  * Reduce range locked as RL_WRITER from whole file to specified range.
616  * Asserts the whole file is exclusivly locked and so there's only one
617  * entry in the tree.
618  */
619 void
zfs_range_reduce(rl_t * rl,uint64_t off,uint64_t len)620 zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len)
621 {
622 	znode_t *zp = rl->r_zp;
623 
624 	/* Ensure there are no other locks */
625 	ASSERT(avl_numnodes(&zp->z_range_avl) == 1);
626 	ASSERT(rl->r_off == 0);
627 	ASSERT(rl->r_type == RL_WRITER);
628 	ASSERT(!rl->r_proxy);
629 	ASSERT3U(rl->r_len, ==, UINT64_MAX);
630 	ASSERT3U(rl->r_cnt, ==, 1);
631 
632 	mutex_enter(&zp->z_range_lock);
633 	rl->r_off = off;
634 	rl->r_len = len;
635 	if (rl->r_write_wanted)
636 		cv_broadcast(&rl->r_wr_cv);
637 	if (rl->r_read_wanted)
638 		cv_broadcast(&rl->r_rd_cv);
639 	mutex_exit(&zp->z_range_lock);
640 }
641 
642 /*
643  * AVL comparison function used to order range locks
644  * Locks are ordered on the start offset of the range.
645  */
646 int
zfs_range_compare(const void * arg1,const void * arg2)647 zfs_range_compare(const void *arg1, const void *arg2)
648 {
649 	const rl_t *rl1 = arg1;
650 	const rl_t *rl2 = arg2;
651 
652 	if (rl1->r_off > rl2->r_off)
653 		return (1);
654 	if (rl1->r_off < rl2->r_off)
655 		return (-1);
656 	return (0);
657 }
658