1 /*	$NetBSD: bus_dma.c,v 1.95 2016/06/18 16:51:44 skrll Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #define _ARM32_BUS_DMA_PRIVATE
34 
35 #include "opt_arm_bus_space.h"
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.95 2016/06/18 16:51:44 skrll Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/proc.h>
44 #include <sys/buf.h>
45 #include <sys/bus.h>
46 #include <sys/cpu.h>
47 #include <sys/reboot.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/kmem.h>
51 #include <sys/mbuf.h>
52 #include <sys/vnode.h>
53 #include <sys/device.h>
54 
55 #include <uvm/uvm.h>
56 
57 #include <arm/cpufunc.h>
58 
59 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
60 #include <dev/mm.h>
61 #endif
62 
63 #ifdef BUSDMA_COUNTERS
64 static struct evcnt bus_dma_creates =
65 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
66 static struct evcnt bus_dma_bounced_creates =
67 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
68 static struct evcnt bus_dma_loads =
69 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
70 static struct evcnt bus_dma_bounced_loads =
71 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
72 static struct evcnt bus_dma_coherent_loads =
73 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
74 static struct evcnt bus_dma_read_bounces =
75 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
76 static struct evcnt bus_dma_write_bounces =
77 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
78 static struct evcnt bus_dma_bounced_unloads =
79 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
80 static struct evcnt bus_dma_unloads =
81 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
82 static struct evcnt bus_dma_bounced_destroys =
83 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
84 static struct evcnt bus_dma_destroys =
85 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
86 static struct evcnt bus_dma_sync_prereadwrite =
87 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
88 static struct evcnt bus_dma_sync_preread_begin =
89 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
90 static struct evcnt bus_dma_sync_preread =
91 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
92 static struct evcnt bus_dma_sync_preread_tail =
93 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
94 static struct evcnt bus_dma_sync_prewrite =
95 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
96 static struct evcnt bus_dma_sync_postread =
97 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
98 static struct evcnt bus_dma_sync_postreadwrite =
99 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
100 static struct evcnt bus_dma_sync_postwrite =
101 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
102 
103 EVCNT_ATTACH_STATIC(bus_dma_creates);
104 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
105 EVCNT_ATTACH_STATIC(bus_dma_loads);
106 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
107 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
108 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
109 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
110 EVCNT_ATTACH_STATIC(bus_dma_unloads);
111 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
112 EVCNT_ATTACH_STATIC(bus_dma_destroys);
113 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
114 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
115 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
116 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
117 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
118 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
119 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
120 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
121 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
122 
123 #define	STAT_INCR(x)	(bus_dma_ ## x.ev_count++)
124 #else
125 #define	STAT_INCR(x)	/*(bus_dma_ ## x.ev_count++)*/
126 #endif
127 
128 int	_bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
129 	    bus_size_t, struct vmspace *, int);
130 static struct arm32_dma_range *
131 	_bus_dma_paddr_inrange(struct arm32_dma_range *, int, paddr_t);
132 
133 /*
134  * Check to see if the specified page is in an allowed DMA range.
135  */
136 inline struct arm32_dma_range *
_bus_dma_paddr_inrange(struct arm32_dma_range * ranges,int nranges,bus_addr_t curaddr)137 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
138     bus_addr_t curaddr)
139 {
140 	struct arm32_dma_range *dr;
141 	int i;
142 
143 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
144 		if (curaddr >= dr->dr_sysbase &&
145 		    curaddr < (dr->dr_sysbase + dr->dr_len))
146 			return (dr);
147 	}
148 
149 	return (NULL);
150 }
151 
152 /*
153  * Check to see if the specified busaddr is in an allowed DMA range.
154  */
155 static inline paddr_t
_bus_dma_busaddr_to_paddr(bus_dma_tag_t t,bus_addr_t curaddr)156 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
157 {
158 	struct arm32_dma_range *dr;
159 	u_int i;
160 
161 	if (t->_nranges == 0)
162 		return curaddr;
163 
164 	for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
165 		if (dr->dr_busbase <= curaddr
166 		    && curaddr < dr->dr_busbase + dr->dr_len)
167 			return curaddr - dr->dr_busbase + dr->dr_sysbase;
168 	}
169 	panic("%s: curaddr %#lx not in range", __func__, curaddr);
170 }
171 
172 /*
173  * Common function to load the specified physical address into the
174  * DMA map, coalescing segments and boundary checking as necessary.
175  */
176 static int
_bus_dmamap_load_paddr(bus_dma_tag_t t,bus_dmamap_t map,bus_addr_t paddr,bus_size_t size,bool coherent)177 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
178     bus_addr_t paddr, bus_size_t size, bool coherent)
179 {
180 	bus_dma_segment_t * const segs = map->dm_segs;
181 	int nseg = map->dm_nsegs;
182 	bus_addr_t lastaddr;
183 	bus_addr_t bmask = ~(map->_dm_boundary - 1);
184 	bus_addr_t curaddr;
185 	bus_size_t sgsize;
186 	uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
187 
188 	if (nseg > 0)
189 		lastaddr = segs[nseg-1].ds_addr + segs[nseg-1].ds_len;
190 	else
191 		lastaddr = 0xdead;
192 
193  again:
194 	sgsize = size;
195 
196 	/* Make sure we're in an allowed DMA range. */
197 	if (t->_ranges != NULL) {
198 		/* XXX cache last result? */
199 		const struct arm32_dma_range * const dr =
200 		    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
201 		if (dr == NULL)
202 			return (EINVAL);
203 
204 		/*
205 		 * If this region is coherent, mark the segment as coherent.
206 		 */
207 		_ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
208 
209 		/*
210 		 * In a valid DMA range.  Translate the physical
211 		 * memory address to an address in the DMA window.
212 		 */
213 		curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
214 #if 0
215 		printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
216 		    t, paddr, dr->dr_sysbase, dr->dr_busbase,
217 		    dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
218 #endif
219 	} else
220 		curaddr = paddr;
221 
222 	/*
223 	 * Make sure we don't cross any boundaries.
224 	 */
225 	if (map->_dm_boundary > 0) {
226 		bus_addr_t baddr;	/* next boundary address */
227 
228 		baddr = (curaddr + map->_dm_boundary) & bmask;
229 		if (sgsize > (baddr - curaddr))
230 			sgsize = (baddr - curaddr);
231 	}
232 
233 	/*
234 	 * Insert chunk into a segment, coalescing with the
235 	 * previous segment if possible.
236 	 */
237 	if (nseg > 0 && curaddr == lastaddr &&
238 	    segs[nseg-1].ds_len + sgsize <= map->dm_maxsegsz &&
239 	    ((segs[nseg-1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
240 	    (map->_dm_boundary == 0 ||
241 	     (segs[nseg-1].ds_addr & bmask) == (curaddr & bmask))) {
242 	     	/* coalesce */
243 		segs[nseg-1].ds_len += sgsize;
244 	} else if (nseg >= map->_dm_segcnt) {
245 		return (EFBIG);
246 	} else {
247 		/* new segment */
248 		segs[nseg].ds_addr = curaddr;
249 		segs[nseg].ds_len = sgsize;
250 		segs[nseg]._ds_flags = _ds_flags;
251 		nseg++;
252 	}
253 
254 	lastaddr = curaddr + sgsize;
255 
256 	paddr += sgsize;
257 	size -= sgsize;
258 	if (size > 0)
259 		goto again;
260 
261 	map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
262 	map->dm_nsegs = nseg;
263 	return (0);
264 }
265 
266 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
267 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
268 	    bus_size_t size, int flags);
269 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
270 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
271 	    int direction);
272 
273 static int
_bus_dma_load_bouncebuf(bus_dma_tag_t t,bus_dmamap_t map,void * buf,size_t buflen,int buftype,int flags)274 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
275 	size_t buflen, int buftype, int flags)
276 {
277 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
278 	struct vmspace * const vm = vmspace_kernel();
279 	int error;
280 
281 	KASSERT(cookie != NULL);
282 	KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
283 
284 	/*
285 	 * Allocate bounce pages, if necessary.
286 	 */
287 	if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
288 		error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
289 		if (error)
290 			return (error);
291 	}
292 
293 	/*
294 	 * Cache a pointer to the caller's buffer and load the DMA map
295 	 * with the bounce buffer.
296 	 */
297 	cookie->id_origbuf = buf;
298 	cookie->id_origbuflen = buflen;
299 	error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
300 	    buflen, vm, flags);
301 	if (error)
302 		return (error);
303 
304 	STAT_INCR(bounced_loads);
305 	map->dm_mapsize = buflen;
306 	map->_dm_vmspace = vm;
307 	map->_dm_buftype = buftype;
308 
309 	/* ...so _bus_dmamap_sync() knows we're bouncing */
310 	map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
311 	cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
312 	return 0;
313 }
314 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
315 
316 /*
317  * Common function for DMA map creation.  May be called by bus-specific
318  * DMA map creation functions.
319  */
320 int
_bus_dmamap_create(bus_dma_tag_t t,bus_size_t size,int nsegments,bus_size_t maxsegsz,bus_size_t boundary,int flags,bus_dmamap_t * dmamp)321 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
322     bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
323 {
324 	struct arm32_bus_dmamap *map;
325 	void *mapstore;
326 
327 #ifdef DEBUG_DMA
328 	printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx flags=%x\n",
329 	    t, size, nsegments, maxsegsz, boundary, flags);
330 #endif	/* DEBUG_DMA */
331 
332 	/*
333 	 * Allocate and initialize the DMA map.  The end of the map
334 	 * is a variable-sized array of segments, so we allocate enough
335 	 * room for them in one shot.
336 	 *
337 	 * Note we don't preserve the WAITOK or NOWAIT flags.  Preservation
338 	 * of ALLOCNOW notifies others that we've reserved these resources,
339 	 * and they are not to be freed.
340 	 *
341 	 * The bus_dmamap_t includes one bus_dma_segment_t, hence
342 	 * the (nsegments - 1).
343 	 */
344 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
345 	    (sizeof(bus_dma_segment_t) * (nsegments - 1));
346 	const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
347 	if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
348 		return (ENOMEM);
349 
350 	map = (struct arm32_bus_dmamap *)mapstore;
351 	map->_dm_size = size;
352 	map->_dm_segcnt = nsegments;
353 	map->_dm_maxmaxsegsz = maxsegsz;
354 	map->_dm_boundary = boundary;
355 	map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
356 	map->_dm_origbuf = NULL;
357 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
358 	map->_dm_vmspace = vmspace_kernel();
359 	map->_dm_cookie = NULL;
360 	map->dm_maxsegsz = maxsegsz;
361 	map->dm_mapsize = 0;		/* no valid mappings */
362 	map->dm_nsegs = 0;
363 
364 	*dmamp = map;
365 
366 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
367 	struct arm32_bus_dma_cookie *cookie;
368 	int cookieflags;
369 	void *cookiestore;
370 	int error;
371 
372 	cookieflags = 0;
373 
374 	if (t->_may_bounce != NULL) {
375 		error = (*t->_may_bounce)(t, map, flags, &cookieflags);
376 		if (error != 0)
377 			goto out;
378 	}
379 
380 	if (t->_ranges != NULL)
381 		cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
382 
383 	if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
384 		STAT_INCR(creates);
385 		return 0;
386 	}
387 
388 	const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
389 	    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
390 
391 	/*
392 	 * Allocate our cookie.
393 	 */
394 	if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
395 		error = ENOMEM;
396 		goto out;
397 	}
398 	cookie = (struct arm32_bus_dma_cookie *)cookiestore;
399 	cookie->id_flags = cookieflags;
400 	map->_dm_cookie = cookie;
401 	STAT_INCR(bounced_creates);
402 
403 	error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
404  out:
405 	if (error)
406 		_bus_dmamap_destroy(t, map);
407 #else
408 	STAT_INCR(creates);
409 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
410 
411 #ifdef DEBUG_DMA
412 	printf("dmamap_create:map=%p\n", map);
413 #endif	/* DEBUG_DMA */
414 	return (0);
415 }
416 
417 /*
418  * Common function for DMA map destruction.  May be called by bus-specific
419  * DMA map destruction functions.
420  */
421 void
_bus_dmamap_destroy(bus_dma_tag_t t,bus_dmamap_t map)422 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
423 {
424 
425 #ifdef DEBUG_DMA
426 	printf("dmamap_destroy: t=%p map=%p\n", t, map);
427 #endif	/* DEBUG_DMA */
428 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
429 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
430 
431 	/*
432 	 * Free any bounce pages this map might hold.
433 	 */
434 	if (cookie != NULL) {
435 		const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
436 		    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
437 
438 		if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
439 			STAT_INCR(bounced_unloads);
440 		map->dm_nsegs = 0;
441 		if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
442 			_bus_dma_free_bouncebuf(t, map);
443 		STAT_INCR(bounced_destroys);
444 		kmem_intr_free(cookie, cookiesize);
445 	} else
446 #endif
447 	STAT_INCR(destroys);
448 
449 	if (map->dm_nsegs > 0)
450 		STAT_INCR(unloads);
451 
452 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
453 	    (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
454 	kmem_intr_free(map, mapsize);
455 }
456 
457 /*
458  * Common function for loading a DMA map with a linear buffer.  May
459  * be called by bus-specific DMA map load functions.
460  */
461 int
_bus_dmamap_load(bus_dma_tag_t t,bus_dmamap_t map,void * buf,bus_size_t buflen,struct proc * p,int flags)462 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
463     bus_size_t buflen, struct proc *p, int flags)
464 {
465 	struct vmspace *vm;
466 	int error;
467 
468 #ifdef DEBUG_DMA
469 	printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
470 	    t, map, buf, buflen, p, flags);
471 #endif	/* DEBUG_DMA */
472 
473 	if (map->dm_nsegs > 0) {
474 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
475 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
476 		if (cookie != NULL) {
477 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
478 				STAT_INCR(bounced_unloads);
479 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
480 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
481 			}
482 		} else
483 #endif
484 		STAT_INCR(unloads);
485 	}
486 
487 	/*
488 	 * Make sure that on error condition we return "no valid mappings".
489 	 */
490 	map->dm_mapsize = 0;
491 	map->dm_nsegs = 0;
492 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
493 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
494 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
495 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
496 
497 	if (buflen > map->_dm_size)
498 		return (EINVAL);
499 
500 	if (p != NULL) {
501 		vm = p->p_vmspace;
502 	} else {
503 		vm = vmspace_kernel();
504 	}
505 
506 	/* _bus_dmamap_load_buffer() clears this if we're not... */
507 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
508 
509 	error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
510 	if (error == 0) {
511 		map->dm_mapsize = buflen;
512 		map->_dm_vmspace = vm;
513 		map->_dm_origbuf = buf;
514 		map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
515 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
516 			STAT_INCR(coherent_loads);
517 		} else {
518 			STAT_INCR(loads);
519 		}
520 		return 0;
521 	}
522 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
523 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
524 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
525 		error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
526 		    _BUS_DMA_BUFTYPE_LINEAR, flags);
527 	}
528 #endif
529 	return (error);
530 }
531 
532 /*
533  * Like _bus_dmamap_load(), but for mbufs.
534  */
535 int
_bus_dmamap_load_mbuf(bus_dma_tag_t t,bus_dmamap_t map,struct mbuf * m0,int flags)536 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
537     int flags)
538 {
539 	int error;
540 	struct mbuf *m;
541 
542 #ifdef DEBUG_DMA
543 	printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
544 	    t, map, m0, flags);
545 #endif	/* DEBUG_DMA */
546 
547 	if (map->dm_nsegs > 0) {
548 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
549 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
550 		if (cookie != NULL) {
551 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
552 				STAT_INCR(bounced_unloads);
553 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
554 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
555 			}
556 		} else
557 #endif
558 		STAT_INCR(unloads);
559 	}
560 
561 	/*
562 	 * Make sure that on error condition we return "no valid mappings."
563 	 */
564 	map->dm_mapsize = 0;
565 	map->dm_nsegs = 0;
566 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
567 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
568 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
569 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
570 
571 	KASSERT(m0->m_flags & M_PKTHDR);
572 
573 	if (m0->m_pkthdr.len > map->_dm_size)
574 		return (EINVAL);
575 
576 	/* _bus_dmamap_load_paddr() clears this if we're not... */
577 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
578 
579 	error = 0;
580 	for (m = m0; m != NULL && error == 0; m = m->m_next) {
581 		int offset;
582 		int remainbytes;
583 		const struct vm_page * const *pgs;
584 		paddr_t paddr;
585 		int size;
586 
587 		if (m->m_len == 0)
588 			continue;
589 		/*
590 		 * Don't allow reads in read-only mbufs.
591 		 */
592 		if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
593 			error = EFAULT;
594 			break;
595 		}
596 		switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
597 		case M_EXT|M_CLUSTER:
598 			/* XXX KDASSERT */
599 			KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
600 			paddr = m->m_ext.ext_paddr +
601 			    (m->m_data - m->m_ext.ext_buf);
602 			size = m->m_len;
603 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
604 			    false);
605 			break;
606 
607 		case M_EXT|M_EXT_PAGES:
608 			KASSERT(m->m_ext.ext_buf <= m->m_data);
609 			KASSERT(m->m_data <=
610 			    m->m_ext.ext_buf + m->m_ext.ext_size);
611 
612 			offset = (vaddr_t)m->m_data -
613 			    trunc_page((vaddr_t)m->m_ext.ext_buf);
614 			remainbytes = m->m_len;
615 
616 			/* skip uninteresting pages */
617 			pgs = (const struct vm_page * const *)
618 			    m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
619 
620 			offset &= PAGE_MASK;	/* offset in the first page */
621 
622 			/* load each page */
623 			while (remainbytes > 0) {
624 				const struct vm_page *pg;
625 
626 				size = MIN(remainbytes, PAGE_SIZE - offset);
627 
628 				pg = *pgs++;
629 				KASSERT(pg);
630 				paddr = VM_PAGE_TO_PHYS(pg) + offset;
631 
632 				error = _bus_dmamap_load_paddr(t, map,
633 				    paddr, size, false);
634 				if (error)
635 					break;
636 				offset = 0;
637 				remainbytes -= size;
638 			}
639 			break;
640 
641 		case 0:
642 			paddr = m->m_paddr + M_BUFOFFSET(m) +
643 			    (m->m_data - M_BUFADDR(m));
644 			size = m->m_len;
645 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
646 			    false);
647 			break;
648 
649 		default:
650 			error = _bus_dmamap_load_buffer(t, map, m->m_data,
651 			    m->m_len, vmspace_kernel(), flags);
652 		}
653 	}
654 	if (error == 0) {
655 		map->dm_mapsize = m0->m_pkthdr.len;
656 		map->_dm_origbuf = m0;
657 		map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
658 		map->_dm_vmspace = vmspace_kernel();	/* always kernel */
659 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
660 			STAT_INCR(coherent_loads);
661 		} else {
662 			STAT_INCR(loads);
663 		}
664 		return 0;
665 	}
666 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
667 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
668 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
669 		error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
670 		    _BUS_DMA_BUFTYPE_MBUF, flags);
671 	}
672 #endif
673 	return (error);
674 }
675 
676 /*
677  * Like _bus_dmamap_load(), but for uios.
678  */
679 int
_bus_dmamap_load_uio(bus_dma_tag_t t,bus_dmamap_t map,struct uio * uio,int flags)680 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
681     int flags)
682 {
683 	int i, error;
684 	bus_size_t minlen, resid;
685 	struct iovec *iov;
686 	void *addr;
687 
688 	/*
689 	 * Make sure that on error condition we return "no valid mappings."
690 	 */
691 	map->dm_mapsize = 0;
692 	map->dm_nsegs = 0;
693 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
694 	    "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
695 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
696 
697 	resid = uio->uio_resid;
698 	iov = uio->uio_iov;
699 
700 	/* _bus_dmamap_load_buffer() clears this if we're not... */
701 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
702 
703 	error = 0;
704 	for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
705 		/*
706 		 * Now at the first iovec to load.  Load each iovec
707 		 * until we have exhausted the residual count.
708 		 */
709 		minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
710 		addr = (void *)iov[i].iov_base;
711 
712 		error = _bus_dmamap_load_buffer(t, map, addr, minlen,
713 		    uio->uio_vmspace, flags);
714 
715 		resid -= minlen;
716 	}
717 	if (error == 0) {
718 		map->dm_mapsize = uio->uio_resid;
719 		map->_dm_origbuf = uio;
720 		map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
721 		map->_dm_vmspace = uio->uio_vmspace;
722 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
723 			STAT_INCR(coherent_loads);
724 		} else {
725 			STAT_INCR(loads);
726 		}
727 	}
728 	return (error);
729 }
730 
731 /*
732  * Like _bus_dmamap_load(), but for raw memory allocated with
733  * bus_dmamem_alloc().
734  */
735 int
_bus_dmamap_load_raw(bus_dma_tag_t t,bus_dmamap_t map,bus_dma_segment_t * segs,int nsegs,bus_size_t size0,int flags)736 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
737     bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
738 {
739 
740 	bus_size_t size;
741 	int i, error = 0;
742 
743 	/*
744 	 * Make sure that on error conditions we return "no valid mappings."
745 	 */
746 	map->dm_mapsize = 0;
747 	map->dm_nsegs = 0;
748 	KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
749 
750 	if (size0 > map->_dm_size)
751 		return EINVAL;
752 
753 	for (i = 0, size = size0; i < nsegs && size > 0; i++) {
754 		bus_dma_segment_t *ds = &segs[i];
755 		bus_size_t sgsize;
756 
757 		sgsize = MIN(ds->ds_len, size);
758 		if (sgsize == 0)
759 			continue;
760 		error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
761 		    sgsize, false);
762 		if (error != 0)
763 			break;
764 		size -= sgsize;
765 	}
766 
767 	if (error != 0) {
768 		map->dm_mapsize = 0;
769 		map->dm_nsegs = 0;
770 		return error;
771 	}
772 
773 	/* XXX TBD bounce */
774 
775 	map->dm_mapsize = size0;
776 	return 0;
777 }
778 
779 /*
780  * Common function for unloading a DMA map.  May be called by
781  * bus-specific DMA map unload functions.
782  */
783 void
_bus_dmamap_unload(bus_dma_tag_t t,bus_dmamap_t map)784 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
785 {
786 
787 #ifdef DEBUG_DMA
788 	printf("dmamap_unload: t=%p map=%p\n", t, map);
789 #endif	/* DEBUG_DMA */
790 
791 	/*
792 	 * No resources to free; just mark the mappings as
793 	 * invalid.
794 	 */
795 	map->dm_mapsize = 0;
796 	map->dm_nsegs = 0;
797 	map->_dm_origbuf = NULL;
798 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
799 	map->_dm_vmspace = NULL;
800 }
801 
802 static void
_bus_dmamap_sync_segment(vaddr_t va,paddr_t pa,vsize_t len,int ops,bool readonly_p)803 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops, bool readonly_p)
804 {
805 	KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
806 	    "va %#lx pa %#lx", va, pa);
807 #if 0
808 	printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
809 	    va, pa, len, ops, readonly_p);
810 #endif
811 
812 	switch (ops) {
813 	case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
814 #ifdef ARM_MMU_EXTENDED
815 		(void)readonly_p;
816 #else
817 		if (!readonly_p) {
818 #endif
819 			STAT_INCR(sync_prereadwrite);
820 			cpu_dcache_wbinv_range(va, len);
821 			cpu_sdcache_wbinv_range(va, pa, len);
822 			break;
823 #ifndef ARM_MMU_EXTENDED
824 		}
825 		/* FALLTHROUGH */
826 #endif
827 
828 	case BUS_DMASYNC_PREREAD: {
829 		const size_t line_size = arm_dcache_align;
830 		const size_t line_mask = arm_dcache_align_mask;
831 		vsize_t misalignment = va & line_mask;
832 		if (misalignment) {
833 			va -= misalignment;
834 			pa -= misalignment;
835 			len += misalignment;
836 			STAT_INCR(sync_preread_begin);
837 			cpu_dcache_wbinv_range(va, line_size);
838 			cpu_sdcache_wbinv_range(va, pa, line_size);
839 			if (len <= line_size)
840 				break;
841 			va += line_size;
842 			pa += line_size;
843 			len -= line_size;
844 		}
845 		misalignment = len & line_mask;
846 		len -= misalignment;
847 		if (len > 0) {
848 			STAT_INCR(sync_preread);
849 			cpu_dcache_inv_range(va, len);
850 			cpu_sdcache_inv_range(va, pa, len);
851 		}
852 		if (misalignment) {
853 			va += len;
854 			pa += len;
855 			STAT_INCR(sync_preread_tail);
856 			cpu_dcache_wbinv_range(va, line_size);
857 			cpu_sdcache_wbinv_range(va, pa, line_size);
858 		}
859 		break;
860 	}
861 
862 	case BUS_DMASYNC_PREWRITE:
863 		STAT_INCR(sync_prewrite);
864 		cpu_dcache_wb_range(va, len);
865 		cpu_sdcache_wb_range(va, pa, len);
866 		break;
867 
868 #ifdef CPU_CORTEX
869 	/*
870 	 * Cortex CPUs can do speculative loads so we need to clean the cache
871 	 * after a DMA read to deal with any speculatively loaded cache lines.
872 	 * Since these can't be dirty, we can just invalidate them and don't
873 	 * have to worry about having to write back their contents.
874 	 */
875 	case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
876 		STAT_INCR(sync_postreadwrite);
877 		arm_dmb();
878 		cpu_dcache_inv_range(va, len);
879 		cpu_sdcache_inv_range(va, pa, len);
880 		break;
881 	case BUS_DMASYNC_POSTREAD:
882 		STAT_INCR(sync_postread);
883 		arm_dmb();
884 		cpu_dcache_inv_range(va, len);
885 		cpu_sdcache_inv_range(va, pa, len);
886 		break;
887 #endif
888 	}
889 }
890 
891 static inline void
_bus_dmamap_sync_linear(bus_dma_tag_t t,bus_dmamap_t map,bus_addr_t offset,bus_size_t len,int ops)892 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
893     bus_size_t len, int ops)
894 {
895 	bus_dma_segment_t *ds = map->dm_segs;
896 	vaddr_t va = (vaddr_t) map->_dm_origbuf;
897 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
898 	if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
899 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
900 		va = (vaddr_t) cookie->id_bouncebuf;
901 	}
902 #endif
903 
904 	while (len > 0) {
905 		while (offset >= ds->ds_len) {
906 			offset -= ds->ds_len;
907 			va += ds->ds_len;
908 			ds++;
909 		}
910 
911 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
912 		size_t seglen = min(len, ds->ds_len - offset);
913 
914 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
915 			_bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
916 			    false);
917 
918 		offset += seglen;
919 		len -= seglen;
920 	}
921 }
922 
923 static inline void
_bus_dmamap_sync_mbuf(bus_dma_tag_t t,bus_dmamap_t map,bus_size_t offset,bus_size_t len,int ops)924 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
925     bus_size_t len, int ops)
926 {
927 	bus_dma_segment_t *ds = map->dm_segs;
928 	struct mbuf *m = map->_dm_origbuf;
929 	bus_size_t voff = offset;
930 	bus_size_t ds_off = offset;
931 
932 	while (len > 0) {
933 		/* Find the current dma segment */
934 		while (ds_off >= ds->ds_len) {
935 			ds_off -= ds->ds_len;
936 			ds++;
937 		}
938 		/* Find the current mbuf. */
939 		while (voff >= m->m_len) {
940 			voff -= m->m_len;
941 			m = m->m_next;
942 		}
943 
944 		/*
945 		 * Now at the first mbuf to sync; nail each one until
946 		 * we have exhausted the length.
947 		 */
948 		vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
949 		vaddr_t va = mtod(m, vaddr_t) + voff;
950 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
951 
952 		/*
953 		 * We can save a lot of work here if we know the mapping
954 		 * is read-only at the MMU and we aren't using the armv6+
955 		 * MMU:
956 		 *
957 		 * If a mapping is read-only, no dirty cache blocks will
958 		 * exist for it.  If a writable mapping was made read-only,
959 		 * we know any dirty cache lines for the range will have
960 		 * been cleaned for us already.  Therefore, if the upper
961 		 * layer can tell us we have a read-only mapping, we can
962 		 * skip all cache cleaning.
963 		 *
964 		 * NOTE: This only works if we know the pmap cleans pages
965 		 * before making a read-write -> read-only transition.  If
966 		 * this ever becomes non-true (e.g. Physically Indexed
967 		 * cache), this will have to be revisited.
968 		 */
969 
970 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
971 			/*
972 			 * If we are doing preread (DMAing into the mbuf),
973 			 * this mbuf better not be readonly,
974 			 */
975 			KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
976 			_bus_dmamap_sync_segment(va, pa, seglen, ops,
977 			    M_ROMAP(m));
978 		}
979 		voff += seglen;
980 		ds_off += seglen;
981 		len -= seglen;
982 	}
983 }
984 
985 static inline void
_bus_dmamap_sync_uio(bus_dma_tag_t t,bus_dmamap_t map,bus_addr_t offset,bus_size_t len,int ops)986 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
987     bus_size_t len, int ops)
988 {
989 	bus_dma_segment_t *ds = map->dm_segs;
990 	struct uio *uio = map->_dm_origbuf;
991 	struct iovec *iov = uio->uio_iov;
992 	bus_size_t voff = offset;
993 	bus_size_t ds_off = offset;
994 
995 	while (len > 0) {
996 		/* Find the current dma segment */
997 		while (ds_off >= ds->ds_len) {
998 			ds_off -= ds->ds_len;
999 			ds++;
1000 		}
1001 
1002 		/* Find the current iovec. */
1003 		while (voff >= iov->iov_len) {
1004 			voff -= iov->iov_len;
1005 			iov++;
1006 		}
1007 
1008 		/*
1009 		 * Now at the first iovec to sync; nail each one until
1010 		 * we have exhausted the length.
1011 		 */
1012 		vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
1013 		vaddr_t va = (vaddr_t) iov->iov_base + voff;
1014 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
1015 
1016 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
1017 			_bus_dmamap_sync_segment(va, pa, seglen, ops, false);
1018 
1019 		voff += seglen;
1020 		ds_off += seglen;
1021 		len -= seglen;
1022 	}
1023 }
1024 
1025 /*
1026  * Common function for DMA map synchronization.  May be called
1027  * by bus-specific DMA map synchronization functions.
1028  *
1029  * This version works for the Virtually Indexed Virtually Tagged
1030  * cache found on 32-bit ARM processors.
1031  *
1032  * XXX Should have separate versions for write-through vs.
1033  * XXX write-back caches.  We currently assume write-back
1034  * XXX here, which is not as efficient as it could be for
1035  * XXX the write-through case.
1036  */
1037 void
_bus_dmamap_sync(bus_dma_tag_t t,bus_dmamap_t map,bus_addr_t offset,bus_size_t len,int ops)1038 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1039     bus_size_t len, int ops)
1040 {
1041 #ifdef DEBUG_DMA
1042 	printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
1043 	    t, map, offset, len, ops);
1044 #endif	/* DEBUG_DMA */
1045 
1046 	/*
1047 	 * Mixing of PRE and POST operations is not allowed.
1048 	 */
1049 	if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
1050 	    (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
1051 		panic("_bus_dmamap_sync: mix PRE and POST");
1052 
1053 	KASSERTMSG(offset < map->dm_mapsize,
1054 	    "offset %lu mapsize %lu",
1055 	    offset, map->dm_mapsize);
1056 	KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1057 	    "len %lu offset %lu mapsize %lu",
1058 	    len, offset, map->dm_mapsize);
1059 
1060 	/*
1061 	 * For a virtually-indexed write-back cache, we need
1062 	 * to do the following things:
1063 	 *
1064 	 *	PREREAD -- Invalidate the D-cache.  We do this
1065 	 *	here in case a write-back is required by the back-end.
1066 	 *
1067 	 *	PREWRITE -- Write-back the D-cache.  Note that if
1068 	 *	we are doing a PREREAD|PREWRITE, we can collapse
1069 	 *	the whole thing into a single Wb-Inv.
1070 	 *
1071 	 *	POSTREAD -- Re-invalidate the D-cache in case speculative
1072 	 *	memory accesses caused cachelines to become valid with now
1073 	 *	invalid data.
1074 	 *
1075 	 *	POSTWRITE -- Nothing.
1076 	 */
1077 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1078 	const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1079 #else
1080 	const bool bouncing = false;
1081 #endif
1082 
1083 	const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1084 #ifdef CPU_CORTEX
1085 	const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1086 #else
1087 	const int post_ops = 0;
1088 #endif
1089 	if (!bouncing && pre_ops == 0 && post_ops == BUS_DMASYNC_POSTWRITE) {
1090 		STAT_INCR(sync_postwrite);
1091 		return;
1092 	}
1093 	KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1094 	    "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1095 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1096 	if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1097 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1098 		STAT_INCR(write_bounces);
1099 		char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1100 		/*
1101 		 * Copy the caller's buffer to the bounce buffer.
1102 		 */
1103 		switch (map->_dm_buftype) {
1104 		case _BUS_DMA_BUFTYPE_LINEAR:
1105 			memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1106 			break;
1107 		case _BUS_DMA_BUFTYPE_MBUF:
1108 			m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1109 			break;
1110 		case _BUS_DMA_BUFTYPE_UIO:
1111 			_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
1112 			break;
1113 #ifdef DIAGNOSTIC
1114 		case _BUS_DMA_BUFTYPE_RAW:
1115 			panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
1116 			break;
1117 
1118 		case _BUS_DMA_BUFTYPE_INVALID:
1119 			panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
1120 			break;
1121 
1122 		default:
1123 			panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
1124 			    map, map->_dm_buftype);
1125 			break;
1126 #endif /* DIAGNOSTIC */
1127 		}
1128 	}
1129 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1130 
1131 	/* Skip cache frobbing if mapping was COHERENT. */
1132 	if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1133 		/* Drain the write buffer. */
1134 		if (pre_ops & BUS_DMASYNC_PREWRITE)
1135 			cpu_drain_writebuf();
1136 		return;
1137 	}
1138 
1139 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1140 	if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
1141 		goto bounce_it;
1142 	}
1143 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1144 
1145 #ifndef ARM_MMU_EXTENDED
1146 	/*
1147 	 * If the mapping belongs to a non-kernel vmspace, and the
1148 	 * vmspace has not been active since the last time a full
1149 	 * cache flush was performed, we don't need to do anything.
1150 	 */
1151 	if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1152 	    vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1153 		return;
1154 #endif
1155 
1156 	int buftype = map->_dm_buftype;
1157 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1158 	if (bouncing) {
1159 		buftype = _BUS_DMA_BUFTYPE_LINEAR;
1160 	}
1161 #endif
1162 
1163 	switch (buftype) {
1164 	case _BUS_DMA_BUFTYPE_LINEAR:
1165 		_bus_dmamap_sync_linear(t, map, offset, len, ops);
1166 		break;
1167 
1168 	case _BUS_DMA_BUFTYPE_MBUF:
1169 		_bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1170 		break;
1171 
1172 	case _BUS_DMA_BUFTYPE_UIO:
1173 		_bus_dmamap_sync_uio(t, map, offset, len, ops);
1174 		break;
1175 
1176 	case _BUS_DMA_BUFTYPE_RAW:
1177 		panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
1178 		break;
1179 
1180 	case _BUS_DMA_BUFTYPE_INVALID:
1181 		panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
1182 		break;
1183 
1184 	default:
1185 		panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
1186 		    map, map->_dm_buftype);
1187 	}
1188 
1189 	/* Drain the write buffer. */
1190 	cpu_drain_writebuf();
1191 
1192 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1193   bounce_it:
1194 	if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1195 		return;
1196 
1197 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1198 	char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1199 	STAT_INCR(read_bounces);
1200 	/*
1201 	 * Copy the bounce buffer to the caller's buffer.
1202 	 */
1203 	switch (map->_dm_buftype) {
1204 	case _BUS_DMA_BUFTYPE_LINEAR:
1205 		memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1206 		break;
1207 
1208 	case _BUS_DMA_BUFTYPE_MBUF:
1209 		m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1210 		break;
1211 
1212 	case _BUS_DMA_BUFTYPE_UIO:
1213 		_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1214 		break;
1215 #ifdef DIAGNOSTIC
1216 	case _BUS_DMA_BUFTYPE_RAW:
1217 		panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
1218 		break;
1219 
1220 	case _BUS_DMA_BUFTYPE_INVALID:
1221 		panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
1222 		break;
1223 
1224 	default:
1225 		panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
1226 		    map, map->_dm_buftype);
1227 		break;
1228 #endif
1229 	}
1230 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1231 }
1232 
1233 /*
1234  * Common function for DMA-safe memory allocation.  May be called
1235  * by bus-specific DMA memory allocation functions.
1236  */
1237 
1238 extern paddr_t physical_start;
1239 extern paddr_t physical_end;
1240 
1241 int
_bus_dmamem_alloc(bus_dma_tag_t t,bus_size_t size,bus_size_t alignment,bus_size_t boundary,bus_dma_segment_t * segs,int nsegs,int * rsegs,int flags)1242 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1243     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1244     int flags)
1245 {
1246 	struct arm32_dma_range *dr;
1247 	int error, i;
1248 
1249 #ifdef DEBUG_DMA
1250 	printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
1251 	    "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
1252 	    boundary, segs, nsegs, rsegs, flags);
1253 #endif
1254 
1255 	if ((dr = t->_ranges) != NULL) {
1256 		error = ENOMEM;
1257 		for (i = 0; i < t->_nranges; i++, dr++) {
1258 			if (dr->dr_len == 0
1259 			    || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1260 				continue;
1261 			error = _bus_dmamem_alloc_range(t, size, alignment,
1262 			    boundary, segs, nsegs, rsegs, flags,
1263 			    trunc_page(dr->dr_sysbase),
1264 			    trunc_page(dr->dr_sysbase + dr->dr_len));
1265 			if (error == 0)
1266 				break;
1267 		}
1268 	} else {
1269 		error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1270 		    segs, nsegs, rsegs, flags, trunc_page(physical_start),
1271 		    trunc_page(physical_end));
1272 	}
1273 
1274 #ifdef DEBUG_DMA
1275 	printf("dmamem_alloc: =%d\n", error);
1276 #endif
1277 
1278 	return(error);
1279 }
1280 
1281 /*
1282  * Common function for freeing DMA-safe memory.  May be called by
1283  * bus-specific DMA memory free functions.
1284  */
1285 void
_bus_dmamem_free(bus_dma_tag_t t,bus_dma_segment_t * segs,int nsegs)1286 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1287 {
1288 	struct vm_page *m;
1289 	bus_addr_t addr;
1290 	struct pglist mlist;
1291 	int curseg;
1292 
1293 #ifdef DEBUG_DMA
1294 	printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
1295 #endif	/* DEBUG_DMA */
1296 
1297 	/*
1298 	 * Build a list of pages to free back to the VM system.
1299 	 */
1300 	TAILQ_INIT(&mlist);
1301 	for (curseg = 0; curseg < nsegs; curseg++) {
1302 		for (addr = segs[curseg].ds_addr;
1303 		    addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1304 		    addr += PAGE_SIZE) {
1305 			m = PHYS_TO_VM_PAGE(addr);
1306 			TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1307 		}
1308 	}
1309 	uvm_pglistfree(&mlist);
1310 }
1311 
1312 /*
1313  * Common function for mapping DMA-safe memory.  May be called by
1314  * bus-specific DMA memory map functions.
1315  */
1316 int
_bus_dmamem_map(bus_dma_tag_t t,bus_dma_segment_t * segs,int nsegs,size_t size,void ** kvap,int flags)1317 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1318     size_t size, void **kvap, int flags)
1319 {
1320 	vaddr_t va;
1321 	paddr_t pa;
1322 	int curseg;
1323 	const uvm_flag_t kmflags = UVM_KMF_VAONLY
1324 	    | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1325 	vsize_t align = 0;
1326 
1327 #ifdef DEBUG_DMA
1328 	printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
1329 	    segs, nsegs, (unsigned long)size, flags);
1330 #endif	/* DEBUG_DMA */
1331 
1332 #ifdef PMAP_MAP_POOLPAGE
1333 	/*
1334 	 * If all of memory is mapped, and we are mapping a single physically
1335 	 * contiguous area then this area is already mapped.  Let's see if we
1336 	 * avoid having a separate mapping for it.
1337 	 */
1338 	if (nsegs == 1) {
1339 		/*
1340 		 * If this is a non-COHERENT mapping, then the existing kernel
1341 		 * mapping is already compatible with it.
1342 		 */
1343 		bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1344 		pa = segs[0].ds_addr;
1345 
1346 		/*
1347 		 * This is a COHERENT mapping which, unless this address is in
1348 		 * a COHERENT dma range, will not be compatible.
1349 		 */
1350 		if (t->_ranges != NULL) {
1351 			const struct arm32_dma_range * const dr =
1352 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1353 			if (dr != NULL
1354 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1355 				direct_mapable = true;
1356 			}
1357 		}
1358 
1359 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1360 		/*
1361 		 * The page can only be direct mapped if was allocated out
1362 		 * of the arm poolpage vm freelist.
1363 		 */
1364 		int lcv = vm_physseg_find(atop(pa), NULL);
1365 		KASSERT(lcv != -1);
1366 		if (direct_mapable) {
1367 			direct_mapable =
1368 			    (arm_poolpage_vmfreelist == VM_PHYSMEM_PTR(lcv)->free_list);
1369 		}
1370 #endif
1371 
1372 		if (direct_mapable) {
1373 			*kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1374 #ifdef DEBUG_DMA
1375 			printf("dmamem_map: =%p\n", *kvap);
1376 #endif	/* DEBUG_DMA */
1377 			return 0;
1378 		}
1379 	}
1380 #endif
1381 
1382 	size = round_page(size);
1383 	if (__predict_true(size > L2_L_SIZE)) {
1384 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1385 		if (size >= L1_SS_SIZE)
1386 			align = L1_SS_SIZE;
1387 		else
1388 #endif
1389 		if (size >= L1_S_SIZE)
1390 			align = L1_S_SIZE;
1391 		else
1392 			align = L2_L_SIZE;
1393 	}
1394 
1395 	va = uvm_km_alloc(kernel_map, size, align, kmflags);
1396 	if (__predict_false(va == 0 && align > 0)) {
1397 		align = 0;
1398 		va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1399 	}
1400 
1401 	if (va == 0)
1402 		return (ENOMEM);
1403 
1404 	*kvap = (void *)va;
1405 
1406 	for (curseg = 0; curseg < nsegs; curseg++) {
1407 		for (pa = segs[curseg].ds_addr;
1408 		    pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1409 		    pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1410 			bool uncached = (flags & BUS_DMA_COHERENT);
1411 #ifdef DEBUG_DMA
1412 			printf("wiring p%lx to v%lx", pa, va);
1413 #endif	/* DEBUG_DMA */
1414 			if (size == 0)
1415 				panic("_bus_dmamem_map: size botch");
1416 
1417 			const struct arm32_dma_range * const dr =
1418 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1419 			/*
1420 			 * If this dma region is coherent then there is
1421 			 * no need for an uncached mapping.
1422 			 */
1423 			if (dr != NULL
1424 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1425 				uncached = false;
1426 			}
1427 
1428 			pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1429 			    PMAP_WIRED | (uncached ? PMAP_NOCACHE : 0));
1430 		}
1431 	}
1432 	pmap_update(pmap_kernel());
1433 #ifdef DEBUG_DMA
1434 	printf("dmamem_map: =%p\n", *kvap);
1435 #endif	/* DEBUG_DMA */
1436 	return (0);
1437 }
1438 
1439 /*
1440  * Common function for unmapping DMA-safe memory.  May be called by
1441  * bus-specific DMA memory unmapping functions.
1442  */
1443 void
_bus_dmamem_unmap(bus_dma_tag_t t,void * kva,size_t size)1444 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1445 {
1446 
1447 #ifdef DEBUG_DMA
1448 	printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
1449 #endif	/* DEBUG_DMA */
1450 	KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1451 	    "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
1452 
1453 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1454 	/*
1455 	 * Check to see if this used direct mapped memory.  Get its physical
1456 	 * address and try to map it.  If the resultant matches the kva, then
1457 	 * it was and so we can just return since we have notice to free up.
1458 	 */
1459 	paddr_t pa;
1460 	vaddr_t va;
1461 	(void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
1462 	if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
1463 		return;
1464 #endif
1465 
1466 	size = round_page(size);
1467 	pmap_kremove((vaddr_t)kva, size);
1468 	pmap_update(pmap_kernel());
1469 	uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1470 }
1471 
1472 /*
1473  * Common functin for mmap(2)'ing DMA-safe memory.  May be called by
1474  * bus-specific DMA mmap(2)'ing functions.
1475  */
1476 paddr_t
_bus_dmamem_mmap(bus_dma_tag_t t,bus_dma_segment_t * segs,int nsegs,off_t off,int prot,int flags)1477 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1478     off_t off, int prot, int flags)
1479 {
1480 	paddr_t map_flags;
1481 	int i;
1482 
1483 	for (i = 0; i < nsegs; i++) {
1484 		KASSERTMSG((off & PAGE_MASK) == 0,
1485 		    "off %#qx (%#x)", off, (int)off & PAGE_MASK);
1486 		KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1487 		    "ds_addr %#lx (%#x)", segs[i].ds_addr,
1488 		    (int)segs[i].ds_addr & PAGE_MASK);
1489 		KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1490 		    "ds_len %#lx (%#x)", segs[i].ds_addr,
1491 		    (int)segs[i].ds_addr & PAGE_MASK);
1492 		if (off >= segs[i].ds_len) {
1493 			off -= segs[i].ds_len;
1494 			continue;
1495 		}
1496 
1497 		map_flags = 0;
1498 		if (flags & BUS_DMA_PREFETCHABLE)
1499 			map_flags |= ARM32_MMAP_WRITECOMBINE;
1500 
1501 		return (arm_btop((u_long)segs[i].ds_addr + off) | map_flags);
1502 
1503 	}
1504 
1505 	/* Page not found. */
1506 	return (-1);
1507 }
1508 
1509 /**********************************************************************
1510  * DMA utility functions
1511  **********************************************************************/
1512 
1513 /*
1514  * Utility function to load a linear buffer.  lastaddrp holds state
1515  * between invocations (for multiple-buffer loads).  segp contains
1516  * the starting segment on entrace, and the ending segment on exit.
1517  * first indicates if this is the first invocation of this function.
1518  */
1519 int
_bus_dmamap_load_buffer(bus_dma_tag_t t,bus_dmamap_t map,void * buf,bus_size_t buflen,struct vmspace * vm,int flags)1520 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1521     bus_size_t buflen, struct vmspace *vm, int flags)
1522 {
1523 	bus_size_t sgsize;
1524 	bus_addr_t curaddr;
1525 	vaddr_t vaddr = (vaddr_t)buf;
1526 	int error;
1527 	pmap_t pmap;
1528 
1529 #ifdef DEBUG_DMA
1530 	printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
1531 	    buf, buflen, flags);
1532 #endif	/* DEBUG_DMA */
1533 
1534 	pmap = vm_map_pmap(&vm->vm_map);
1535 
1536 	while (buflen > 0) {
1537 		/*
1538 		 * Get the physical address for this segment.
1539 		 *
1540 		 * XXX Doesn't support checking for coherent mappings
1541 		 * XXX in user address space.
1542 		 */
1543 		bool coherent;
1544 		if (__predict_true(pmap == pmap_kernel())) {
1545 			pd_entry_t *pde;
1546 			pt_entry_t *ptep;
1547 			(void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
1548 			if (__predict_false(pmap_pde_section(pde))) {
1549 				paddr_t s_frame = L1_S_FRAME;
1550 				paddr_t s_offset = L1_S_OFFSET;
1551 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1552 				if (__predict_false(pmap_pde_supersection(pde))) {
1553 					s_frame = L1_SS_FRAME;
1554 					s_offset = L1_SS_OFFSET;
1555 				}
1556 #endif
1557 				curaddr = (*pde & s_frame) | (vaddr & s_offset);
1558 				coherent = (*pde & L1_S_CACHE_MASK) == 0;
1559 			} else {
1560 				pt_entry_t pte = *ptep;
1561 				KDASSERTMSG((pte & L2_TYPE_MASK) != L2_TYPE_INV,
1562 				    "va=%#"PRIxVADDR" pde=%#x ptep=%p pte=%#x",
1563 				    vaddr, *pde, ptep, pte);
1564 				if (__predict_false((pte & L2_TYPE_MASK)
1565 						    == L2_TYPE_L)) {
1566 					curaddr = (pte & L2_L_FRAME) |
1567 					    (vaddr & L2_L_OFFSET);
1568 					coherent = (pte & L2_L_CACHE_MASK) == 0;
1569 				} else {
1570 					curaddr = (pte & ~PAGE_MASK) |
1571 					    (vaddr & PAGE_MASK);
1572 					coherent = (pte & L2_S_CACHE_MASK) == 0;
1573 				}
1574 			}
1575 		} else {
1576 			(void) pmap_extract(pmap, vaddr, &curaddr);
1577 			coherent = false;
1578 		}
1579 		KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
1580 		    "va %#lx curaddr %#lx", vaddr, curaddr);
1581 
1582 		/*
1583 		 * Compute the segment size, and adjust counts.
1584 		 */
1585 		sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1586 		if (buflen < sgsize)
1587 			sgsize = buflen;
1588 
1589 		error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1590 		    coherent);
1591 		if (error)
1592 			return (error);
1593 
1594 		vaddr += sgsize;
1595 		buflen -= sgsize;
1596 	}
1597 
1598 	return (0);
1599 }
1600 
1601 /*
1602  * Allocate physical memory from the given physical address range.
1603  * Called by DMA-safe memory allocation methods.
1604  */
1605 int
_bus_dmamem_alloc_range(bus_dma_tag_t t,bus_size_t size,bus_size_t alignment,bus_size_t boundary,bus_dma_segment_t * segs,int nsegs,int * rsegs,int flags,paddr_t low,paddr_t high)1606 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1607     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1608     int flags, paddr_t low, paddr_t high)
1609 {
1610 	paddr_t curaddr, lastaddr;
1611 	struct vm_page *m;
1612 	struct pglist mlist;
1613 	int curseg, error;
1614 
1615 	KASSERTMSG(boundary == 0 || (boundary & (boundary-1)) == 0,
1616 	    "invalid boundary %#lx", boundary);
1617 
1618 #ifdef DEBUG_DMA
1619 	printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
1620 	    t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1621 #endif	/* DEBUG_DMA */
1622 
1623 	/* Always round the size. */
1624 	size = round_page(size);
1625 
1626 	/*
1627 	 * We accept boundaries < size, splitting in multiple segments
1628 	 * if needed. uvm_pglistalloc does not, so compute an appropriate
1629 	 * boundary: next power of 2 >= size
1630 	 */
1631 	bus_size_t uboundary = boundary;
1632 	if (uboundary <= PAGE_SIZE) {
1633 		uboundary = 0;
1634 	} else {
1635 		while (uboundary < size) {
1636 			uboundary <<= 1;
1637 		}
1638 	}
1639 
1640 	/*
1641 	 * Allocate pages from the VM system.
1642 	 */
1643 	error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1644 	    &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1645 	if (error)
1646 		return (error);
1647 
1648 	/*
1649 	 * Compute the location, size, and number of segments actually
1650 	 * returned by the VM code.
1651 	 */
1652 	m = TAILQ_FIRST(&mlist);
1653 	curseg = 0;
1654 	lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1655 	segs[curseg].ds_len = PAGE_SIZE;
1656 #ifdef DEBUG_DMA
1657 		printf("alloc: page %lx\n", lastaddr);
1658 #endif	/* DEBUG_DMA */
1659 	m = TAILQ_NEXT(m, pageq.queue);
1660 
1661 	for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1662 		curaddr = VM_PAGE_TO_PHYS(m);
1663 		KASSERTMSG(low <= curaddr && curaddr < high,
1664 		    "uvm_pglistalloc returned non-sensicaladdress %#lx "
1665 		    "(low=%#lx, high=%#lx\n", curaddr, low, high);
1666 #ifdef DEBUG_DMA
1667 		printf("alloc: page %lx\n", curaddr);
1668 #endif	/* DEBUG_DMA */
1669 		if (curaddr == lastaddr + PAGE_SIZE
1670 		    && (lastaddr & boundary) == (curaddr & boundary))
1671 			segs[curseg].ds_len += PAGE_SIZE;
1672 		else {
1673 			curseg++;
1674 			if (curseg >= nsegs) {
1675 				uvm_pglistfree(&mlist);
1676 				return EFBIG;
1677 			}
1678 			segs[curseg].ds_addr = curaddr;
1679 			segs[curseg].ds_len = PAGE_SIZE;
1680 		}
1681 		lastaddr = curaddr;
1682 	}
1683 
1684 	*rsegs = curseg + 1;
1685 
1686 	return (0);
1687 }
1688 
1689 /*
1690  * Check if a memory region intersects with a DMA range, and return the
1691  * page-rounded intersection if it does.
1692  */
1693 int
arm32_dma_range_intersect(struct arm32_dma_range * ranges,int nranges,paddr_t pa,psize_t size,paddr_t * pap,psize_t * sizep)1694 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1695     paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1696 {
1697 	struct arm32_dma_range *dr;
1698 	int i;
1699 
1700 	if (ranges == NULL)
1701 		return (0);
1702 
1703 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1704 		if (dr->dr_sysbase <= pa &&
1705 		    pa < (dr->dr_sysbase + dr->dr_len)) {
1706 			/*
1707 			 * Beginning of region intersects with this range.
1708 			 */
1709 			*pap = trunc_page(pa);
1710 			*sizep = round_page(min(pa + size,
1711 			    dr->dr_sysbase + dr->dr_len) - pa);
1712 			return (1);
1713 		}
1714 		if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1715 			/*
1716 			 * End of region intersects with this range.
1717 			 */
1718 			*pap = trunc_page(dr->dr_sysbase);
1719 			*sizep = round_page(min((pa + size) - dr->dr_sysbase,
1720 			    dr->dr_len));
1721 			return (1);
1722 		}
1723 	}
1724 
1725 	/* No intersection found. */
1726 	return (0);
1727 }
1728 
1729 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1730 static int
_bus_dma_alloc_bouncebuf(bus_dma_tag_t t,bus_dmamap_t map,bus_size_t size,int flags)1731 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1732     bus_size_t size, int flags)
1733 {
1734 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1735 	int error = 0;
1736 
1737 	KASSERT(cookie != NULL);
1738 
1739 	cookie->id_bouncebuflen = round_page(size);
1740 	error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1741 	    PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1742 	    map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1743 	if (error == 0) {
1744 		error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1745 		    cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1746 		    (void **)&cookie->id_bouncebuf, flags);
1747 		if (error) {
1748 			_bus_dmamem_free(t, cookie->id_bouncesegs,
1749 			    cookie->id_nbouncesegs);
1750 			cookie->id_bouncebuflen = 0;
1751 			cookie->id_nbouncesegs = 0;
1752 		} else {
1753 			cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1754 		}
1755 	} else {
1756 		cookie->id_bouncebuflen = 0;
1757 		cookie->id_nbouncesegs = 0;
1758 	}
1759 
1760 	return (error);
1761 }
1762 
1763 static void
_bus_dma_free_bouncebuf(bus_dma_tag_t t,bus_dmamap_t map)1764 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1765 {
1766 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1767 
1768 	KASSERT(cookie != NULL);
1769 
1770 	_bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1771 	_bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1772 	cookie->id_bouncebuflen = 0;
1773 	cookie->id_nbouncesegs = 0;
1774 	cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1775 }
1776 
1777 /*
1778  * This function does the same as uiomove, but takes an explicit
1779  * direction, and does not update the uio structure.
1780  */
1781 static int
_bus_dma_uiomove(void * buf,struct uio * uio,size_t n,int direction)1782 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1783 {
1784 	struct iovec *iov;
1785 	int error;
1786 	struct vmspace *vm;
1787 	char *cp;
1788 	size_t resid, cnt;
1789 	int i;
1790 
1791 	iov = uio->uio_iov;
1792 	vm = uio->uio_vmspace;
1793 	cp = buf;
1794 	resid = n;
1795 
1796 	for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1797 		iov = &uio->uio_iov[i];
1798 		if (iov->iov_len == 0)
1799 			continue;
1800 		cnt = MIN(resid, iov->iov_len);
1801 
1802 		if (!VMSPACE_IS_KERNEL_P(vm) &&
1803 		    (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1804 		    != 0) {
1805 			preempt();
1806 		}
1807 		if (direction == UIO_READ) {
1808 			error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1809 		} else {
1810 			error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1811 		}
1812 		if (error)
1813 			return (error);
1814 		cp += cnt;
1815 		resid -= cnt;
1816 	}
1817 	return (0);
1818 }
1819 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1820 
1821 int
_bus_dmatag_subregion(bus_dma_tag_t tag,bus_addr_t min_addr,bus_addr_t max_addr,bus_dma_tag_t * newtag,int flags)1822 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1823     bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1824 {
1825 
1826 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1827 	struct arm32_dma_range *dr;
1828 	bool subset = false;
1829 	size_t nranges = 0;
1830 	size_t i;
1831 	for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1832 		if (dr->dr_sysbase <= min_addr
1833 		    && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1834 			subset = true;
1835 		}
1836 		if (min_addr <= dr->dr_sysbase + dr->dr_len
1837 		    && max_addr >= dr->dr_sysbase) {
1838 			nranges++;
1839 		}
1840 	}
1841 	if (subset) {
1842 		*newtag = tag;
1843 		/* if the tag must be freed, add a reference */
1844 		if (tag->_tag_needs_free)
1845 			(tag->_tag_needs_free)++;
1846 		return 0;
1847 	}
1848 	if (nranges == 0) {
1849 		nranges = 1;
1850 	}
1851 
1852 	const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1853 	if ((*newtag = kmem_intr_zalloc(tagsize,
1854 	    (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1855 		return ENOMEM;
1856 
1857 	dr = (void *)(*newtag + 1);
1858 	**newtag = *tag;
1859 	(*newtag)->_tag_needs_free = 1;
1860 	(*newtag)->_ranges = dr;
1861 	(*newtag)->_nranges = nranges;
1862 
1863 	if (tag->_ranges == NULL) {
1864 		dr->dr_sysbase = min_addr;
1865 		dr->dr_busbase = min_addr;
1866 		dr->dr_len = max_addr + 1 - min_addr;
1867 	} else {
1868 		for (i = 0; i < nranges; i++) {
1869 			if (min_addr > dr->dr_sysbase + dr->dr_len
1870 			    || max_addr < dr->dr_sysbase)
1871 				continue;
1872 			dr[0] = tag->_ranges[i];
1873 			if (dr->dr_sysbase < min_addr) {
1874 				psize_t diff = min_addr - dr->dr_sysbase;
1875 				dr->dr_busbase += diff;
1876 				dr->dr_len -= diff;
1877 				dr->dr_sysbase += diff;
1878 			}
1879 			if (max_addr != 0xffffffff
1880 			    && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
1881 				dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1882 			}
1883 			dr++;
1884 		}
1885 	}
1886 
1887 	return 0;
1888 #else
1889 	return EOPNOTSUPP;
1890 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1891 }
1892 
1893 void
_bus_dmatag_destroy(bus_dma_tag_t tag)1894 _bus_dmatag_destroy(bus_dma_tag_t tag)
1895 {
1896 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1897 	switch (tag->_tag_needs_free) {
1898 	case 0:
1899 		break;				/* not allocated with kmem */
1900 	case 1: {
1901 		const size_t tagsize = sizeof(*tag)
1902 		    + tag->_nranges * sizeof(*tag->_ranges);
1903 		kmem_intr_free(tag, tagsize);	/* last reference to tag */
1904 		break;
1905 	}
1906 	default:
1907 		(tag->_tag_needs_free)--;	/* one less reference */
1908 	}
1909 #endif
1910 }
1911