1 /*	$NetBSD: if_alc.c,v 1.21 2016/06/10 13:27:14 ozaki-r Exp $	*/
2 /*	$OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $	*/
3 /*-
4  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
31 
32 #ifdef _KERNEL_OPT
33 #include "vlan.h"
34 #endif
35 
36 #include <sys/param.h>
37 #include <sys/proc.h>
38 #include <sys/endian.h>
39 #include <sys/systm.h>
40 #include <sys/types.h>
41 #include <sys/sockio.h>
42 #include <sys/mbuf.h>
43 #include <sys/queue.h>
44 #include <sys/kernel.h>
45 #include <sys/device.h>
46 #include <sys/callout.h>
47 #include <sys/socket.h>
48 #include <sys/module.h>
49 
50 #include <sys/bus.h>
51 
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_llc.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net/bpf.h>
59 
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #endif
66 
67 #include <net/if_types.h>
68 #include <net/if_vlanvar.h>
69 
70 #include <net/bpf.h>
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78 
79 #include <dev/pci/if_alcreg.h>
80 
81 /*
82  * Devices supported by this driver.
83  */
84 static struct alc_ident alc_ident_table[] = {
85 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
86 		"Atheros AR8131 PCIe Gigabit Ethernet" },
87 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
88 		"Atheros AR8132 PCIe Fast Ethernet" },
89 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
90 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
91 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
92 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
93 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
94 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
95 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
96 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
97 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8161, 9 * 1024,
98 		"Atheros AR8161 PCIe Gigabit Ethernet" },
99 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8162, 9 * 1024,
100 		"Atheros AR8162 PCIe Fast Ethernet" },
101 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8171, 9 * 1024,
102 		"Atheros AR8171 PCIe Gigabit Ethernet" },
103 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8172, 9 * 1024,
104 		"Atheros AR8172 PCIe Fast Ethernet" },
105 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2200, 9 * 1024,
106 		"Killer E2200 Gigabit Ethernet" },
107 	{ 0, 0, 0, NULL },
108 };
109 
110 static int	alc_match(device_t, cfdata_t, void *);
111 static void	alc_attach(device_t, device_t, void *);
112 static int	alc_detach(device_t, int);
113 
114 static int	alc_init(struct ifnet *);
115 static int	alc_init_backend(struct ifnet *, bool);
116 static void	alc_start(struct ifnet *);
117 static int	alc_ioctl(struct ifnet *, u_long, void *);
118 static void	alc_watchdog(struct ifnet *);
119 static int	alc_mediachange(struct ifnet *);
120 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
121 
122 static void	alc_aspm(struct alc_softc *, int, int);
123 static void	alc_aspm_813x(struct alc_softc *, int);
124 static void	alc_aspm_816x(struct alc_softc *, int);
125 static void	alc_disable_l0s_l1(struct alc_softc *);
126 static int	alc_dma_alloc(struct alc_softc *);
127 static void	alc_dma_free(struct alc_softc *);
128 static void	alc_dsp_fixup(struct alc_softc *, int);
129 static int	alc_encap(struct alc_softc *, struct mbuf **);
130 static struct alc_ident *
131 		alc_find_ident(struct pci_attach_args *);
132 static void	alc_get_macaddr(struct alc_softc *);
133 static void	alc_get_macaddr_813x(struct alc_softc *);
134 static void	alc_get_macaddr_816x(struct alc_softc *);
135 static void	alc_get_macaddr_par(struct alc_softc *);
136 static void	alc_init_cmb(struct alc_softc *);
137 static void	alc_init_rr_ring(struct alc_softc *);
138 static int	alc_init_rx_ring(struct alc_softc *, bool);
139 static void	alc_init_smb(struct alc_softc *);
140 static void	alc_init_tx_ring(struct alc_softc *);
141 static int	alc_intr(void *);
142 static void	alc_mac_config(struct alc_softc *);
143 static uint32_t	alc_mii_readreg_813x(struct alc_softc *, int, int);
144 static uint32_t	alc_mii_readreg_816x(struct alc_softc *, int, int);
145 static void	alc_mii_writereg_813x(struct alc_softc *, int, int, int);
146 static void	alc_mii_writereg_816x(struct alc_softc *, int, int, int);
147 static int	alc_miibus_readreg(device_t, int, int);
148 static void	alc_miibus_statchg(struct ifnet *);
149 static void	alc_miibus_writereg(device_t, int, int, int);
150 static uint32_t	alc_miidbg_readreg(struct alc_softc *, int);
151 static void	alc_miidbg_writereg(struct alc_softc *, int, int);
152 static uint32_t	alc_miiext_readreg(struct alc_softc *, int, int);
153 static uint32_t	alc_miiext_writereg(struct alc_softc *, int, int, int);
154 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *, bool);
155 static void	alc_phy_down(struct alc_softc *);
156 static void	alc_phy_reset(struct alc_softc *);
157 static void	alc_phy_reset_813x(struct alc_softc *);
158 static void	alc_phy_reset_816x(struct alc_softc *);
159 static void	alc_reset(struct alc_softc *);
160 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
161 static int	alc_rxintr(struct alc_softc *);
162 static void	alc_iff(struct alc_softc *);
163 static void	alc_rxvlan(struct alc_softc *);
164 static void	alc_start_queue(struct alc_softc *);
165 static void	alc_stats_clear(struct alc_softc *);
166 static void	alc_stats_update(struct alc_softc *);
167 static void	alc_stop(struct ifnet *, int);
168 static void	alc_stop_mac(struct alc_softc *);
169 static void	alc_stop_queue(struct alc_softc *);
170 static void	alc_tick(void *);
171 static void	alc_txeof(struct alc_softc *);
172 
173 uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
174 
175 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
176     alc_match, alc_attach, alc_detach, NULL);
177 
178 int alcdebug = 0;
179 #define	DPRINTF(x)	do { if (alcdebug) printf x; } while (0)
180 
181 #define ETHER_ALIGN		2
182 #define ALC_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
183 
184 static int
alc_miibus_readreg(device_t dev,int phy,int reg)185 alc_miibus_readreg(device_t dev, int phy, int reg)
186 {
187 	struct alc_softc *sc = device_private(dev);
188 	int v;
189 
190 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
191 		v = alc_mii_readreg_816x(sc, phy, reg);
192 	else
193 		v = alc_mii_readreg_813x(sc, phy, reg);
194 	return (v);
195 }
196 
197 static uint32_t
alc_mii_readreg_813x(struct alc_softc * sc,int phy,int reg)198 alc_mii_readreg_813x(struct alc_softc *sc, int phy, int reg)
199 {
200 	uint32_t v;
201 	int i;
202 
203 	if (phy != sc->alc_phyaddr)
204 		return (0);
205 
206 	/*
207 	 * For AR8132 fast ethernet controller, do not report 1000baseT
208 	 * capability to mii(4). Even though AR8132 uses the same
209 	 * model/revision number of F1 gigabit PHY, the PHY has no
210 	 * ability to establish 1000baseT link.
211 	 */
212 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
213 	    reg == MII_EXTSR)
214 		return 0;
215 
216 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
217 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
218 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
219 		DELAY(5);
220 		v = CSR_READ_4(sc, ALC_MDIO);
221 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
222 			break;
223 	}
224 
225 	if (i == 0) {
226 		printf("%s: phy read timeout: phy %d, reg %d\n",
227 		    device_xname(sc->sc_dev), phy, reg);
228 		return (0);
229 	}
230 
231 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
232 }
233 
234 static uint32_t
alc_mii_readreg_816x(struct alc_softc * sc,int phy,int reg)235 alc_mii_readreg_816x(struct alc_softc *sc, int phy, int reg)
236 {
237 	uint32_t clk, v;
238 	int i;
239 
240 	if (phy != sc->alc_phyaddr)
241 		return (0);
242 
243 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
244 		clk = MDIO_CLK_25_128;
245 	else
246 		clk = MDIO_CLK_25_4;
247 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
248 	    MDIO_SUP_PREAMBLE | clk | MDIO_REG_ADDR(reg));
249 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
250 		DELAY(5);
251 		v = CSR_READ_4(sc, ALC_MDIO);
252 		if ((v & MDIO_OP_BUSY) == 0)
253 			break;
254 	}
255 
256 	if (i == 0) {
257 		printf("%s: phy read timeout: phy %d, reg %d\n",
258 		    device_xname(sc->sc_dev), phy, reg);
259 		return (0);
260 	}
261 
262 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
263 }
264 
265 static void
alc_miibus_writereg(device_t dev,int phy,int reg,int val)266 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
267 {
268 	struct alc_softc *sc = device_private(dev);
269 
270 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
271 		alc_mii_writereg_816x(sc, phy, reg, val);
272 	else
273 		alc_mii_writereg_813x(sc, phy, reg, val);
274 
275 	return;
276 }
277 
278 static void
alc_mii_writereg_813x(struct alc_softc * sc,int phy,int reg,int val)279 alc_mii_writereg_813x(struct alc_softc *sc, int phy, int reg, int val)
280 {
281 	uint32_t v;
282 	int i;
283 
284 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
285 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
286 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
287 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
288 		DELAY(5);
289 		v = CSR_READ_4(sc, ALC_MDIO);
290 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
291 			break;
292 	}
293 
294 	if (i == 0)
295 		printf("%s: phy write timeout: phy %d, reg %d\n",
296 		    device_xname(sc->sc_dev), phy, reg);
297 
298 	return;
299 }
300 
301 static void
alc_mii_writereg_816x(struct alc_softc * sc,int phy,int reg,int val)302 alc_mii_writereg_816x(struct alc_softc *sc, int phy, int reg, int val)
303 {
304 	uint32_t clk, v;
305 	int i;
306 
307 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
308 		clk = MDIO_CLK_25_128;
309 	else
310 		clk = MDIO_CLK_25_4;
311 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
312 	    ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) | MDIO_REG_ADDR(reg) |
313 	    MDIO_SUP_PREAMBLE | clk);
314 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
315 		DELAY(5);
316 		v = CSR_READ_4(sc, ALC_MDIO);
317 		if ((v & MDIO_OP_BUSY) == 0)
318 			break;
319 	}
320 
321 	if (i == 0)
322 		printf("%s: phy write timeout: phy %d, reg %d\n",
323 		    device_xname(sc->sc_dev), phy, reg);
324 
325 	return;
326 }
327 
328 static void
alc_miibus_statchg(struct ifnet * ifp)329 alc_miibus_statchg(struct ifnet *ifp)
330 {
331 	struct alc_softc *sc = ifp->if_softc;
332 	struct mii_data *mii = &sc->sc_miibus;
333 	uint32_t reg;
334 
335 	if ((ifp->if_flags & IFF_RUNNING) == 0)
336 		return;
337 
338 	sc->alc_flags &= ~ALC_FLAG_LINK;
339 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
340 	    (IFM_ACTIVE | IFM_AVALID)) {
341 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
342 		case IFM_10_T:
343 		case IFM_100_TX:
344 			sc->alc_flags |= ALC_FLAG_LINK;
345 			break;
346 		case IFM_1000_T:
347 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
348 				sc->alc_flags |= ALC_FLAG_LINK;
349 			break;
350 		default:
351 			break;
352 		}
353 	}
354 	/* Stop Rx/Tx MACs. */
355 	alc_stop_mac(sc);
356 
357 	/* Program MACs with resolved speed/duplex/flow-control. */
358 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
359 		alc_start_queue(sc);
360 		alc_mac_config(sc);
361 		/* Re-enable Tx/Rx MACs. */
362 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
363 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
364 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
365 	}
366 	alc_aspm(sc, 0, IFM_SUBTYPE(mii->mii_media_active));
367 	alc_dsp_fixup(sc, IFM_SUBTYPE(mii->mii_media_active));
368 }
369 
370 static uint32_t
alc_miidbg_readreg(struct alc_softc * sc,int reg)371 alc_miidbg_readreg(struct alc_softc *sc, int reg)
372 {
373 
374 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
375 	    reg);
376 	return (alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
377 	    ALC_MII_DBG_DATA));
378 }
379 
380 static void
alc_miidbg_writereg(struct alc_softc * sc,int reg,int val)381 alc_miidbg_writereg(struct alc_softc *sc, int reg, int val)
382 {
383 
384 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
385 	    reg);
386 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, val);
387 
388 	return;
389 }
390 
391 static uint32_t
alc_miiext_readreg(struct alc_softc * sc,int devaddr,int reg)392 alc_miiext_readreg(struct alc_softc *sc, int devaddr, int reg)
393 {
394 	uint32_t clk, v;
395 	int i;
396 
397 	CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
398 	    EXT_MDIO_DEVADDR(devaddr));
399 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
400 		clk = MDIO_CLK_25_128;
401 	else
402 		clk = MDIO_CLK_25_4;
403 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
404 	    MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
405 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
406 		DELAY(5);
407 		v = CSR_READ_4(sc, ALC_MDIO);
408 		if ((v & MDIO_OP_BUSY) == 0)
409 			break;
410 	}
411 
412 	if (i == 0) {
413 		printf("%s: phy ext read timeout: %d\n",
414 		    device_xname(sc->sc_dev), reg);
415 		return (0);
416 	}
417 
418 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
419 }
420 
421 static uint32_t
alc_miiext_writereg(struct alc_softc * sc,int devaddr,int reg,int val)422 alc_miiext_writereg(struct alc_softc *sc, int devaddr, int reg, int val)
423 {
424 	uint32_t clk, v;
425 	int i;
426 
427 	CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
428 	    EXT_MDIO_DEVADDR(devaddr));
429 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
430 		clk = MDIO_CLK_25_128;
431 	else
432 		clk = MDIO_CLK_25_4;
433 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
434 	    ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) |
435 	    MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
436 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
437 		DELAY(5);
438 		v = CSR_READ_4(sc, ALC_MDIO);
439 		if ((v & MDIO_OP_BUSY) == 0)
440 			break;
441 	}
442 
443 	if (i == 0) {
444 		printf("%s: phy ext write timeout: reg %d\n",
445 		    device_xname(sc->sc_dev), reg);
446 		return (0);
447 	}
448 
449 	return (0);
450 }
451 
452 static void
alc_dsp_fixup(struct alc_softc * sc,int media)453 alc_dsp_fixup(struct alc_softc *sc, int media)
454 {
455 	uint16_t agc, len, val;
456 
457 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
458 		return;
459 	if (AR816X_REV(sc->alc_rev) >= AR816X_REV_C0)
460 		return;
461 
462 	/*
463 	 * Vendor PHY magic.
464 	 * 1000BT/AZ, wrong cable length
465 	 */
466 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
467 		len = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL6);
468 		len = (len >> EXT_CLDCTL6_CAB_LEN_SHIFT) &
469 		    EXT_CLDCTL6_CAB_LEN_MASK;
470 		/* XXX: used to be (alc >> shift) & mask which is 0 */
471 		agc = alc_miidbg_readreg(sc, MII_DBG_AGC) & DBG_AGC_2_VGA_MASK;
472 		agc >>= DBG_AGC_2_VGA_SHIFT;
473 		if ((media == IFM_1000_T && len > EXT_CLDCTL6_CAB_LEN_SHORT1G &&
474 		    agc > DBG_AGC_LONG1G_LIMT) ||
475 		    (media == IFM_100_TX && len > DBG_AGC_LONG100M_LIMT &&
476 		    agc > DBG_AGC_LONG1G_LIMT)) {
477 			alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
478 			    DBG_AZ_ANADECT_LONG);
479 			val = alc_miiext_readreg(sc, MII_EXT_ANEG,
480 			    MII_EXT_ANEG_AFE);
481 			val |= ANEG_AFEE_10BT_100M_TH;
482 			alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
483 			    val);
484 		} else {
485 			alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
486 			    DBG_AZ_ANADECT_DEFAULT);
487 			val = alc_miiext_readreg(sc, MII_EXT_ANEG,
488 			    MII_EXT_ANEG_AFE);
489 			val &= ~ANEG_AFEE_10BT_100M_TH;
490 			alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
491 			    val);
492 		}
493 		if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
494 		    AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
495 			if (media == IFM_1000_T) {
496 				/*
497 				 * Giga link threshold, raise the tolerance of
498 				 * noise 50%.
499 				 */
500 				val = alc_miidbg_readreg(sc, MII_DBG_MSE20DB);
501 				val &= ~DBG_MSE20DB_TH_MASK;
502 				val |= (DBG_MSE20DB_TH_HI <<
503 				    DBG_MSE20DB_TH_SHIFT);
504 				alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
505 			} else if (media == IFM_100_TX)
506 				alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
507 				    DBG_MSE16DB_UP);
508 		}
509 	} else {
510 		val = alc_miiext_readreg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE);
511 		val &= ~ANEG_AFEE_10BT_100M_TH;
512 		alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, val);
513 		if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
514 		    AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
515 			alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
516 			    DBG_MSE16DB_DOWN);
517 			val = alc_miidbg_readreg(sc, MII_DBG_MSE20DB);
518 			val &= ~DBG_MSE20DB_TH_MASK;
519 			val |= (DBG_MSE20DB_TH_DEFAULT << DBG_MSE20DB_TH_SHIFT);
520 			alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
521 		}
522  	}
523 }
524 
525 static void
alc_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)526 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
527 {
528 	struct alc_softc *sc = ifp->if_softc;
529 	struct mii_data *mii = &sc->sc_miibus;
530 
531 	if ((ifp->if_flags & IFF_UP) == 0)
532 		return;
533 
534 	mii_pollstat(mii);
535 	ifmr->ifm_status = mii->mii_media_status;
536 	ifmr->ifm_active = mii->mii_media_active;
537 }
538 
539 static int
alc_mediachange(struct ifnet * ifp)540 alc_mediachange(struct ifnet *ifp)
541 {
542 	struct alc_softc *sc = ifp->if_softc;
543 	struct mii_data *mii = &sc->sc_miibus;
544 	int error;
545 
546 	if (mii->mii_instance != 0) {
547 		struct mii_softc *miisc;
548 
549 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
550 			mii_phy_reset(miisc);
551 	}
552 	error = mii_mediachg(mii);
553 
554 	return (error);
555 }
556 
557 static struct alc_ident *
alc_find_ident(struct pci_attach_args * pa)558 alc_find_ident(struct pci_attach_args *pa)
559 {
560 	struct alc_ident *ident;
561 	uint16_t vendor, devid;
562 
563 	vendor = PCI_VENDOR(pa->pa_id);
564 	devid = PCI_PRODUCT(pa->pa_id);
565 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
566 		if (vendor == ident->vendorid && devid == ident->deviceid)
567 			return (ident);
568 	}
569 
570 	return (NULL);
571 }
572 
573 static int
alc_match(device_t dev,cfdata_t match,void * aux)574 alc_match(device_t dev, cfdata_t match, void *aux)
575 {
576 	struct pci_attach_args *pa = aux;
577 
578 	return alc_find_ident(pa) != NULL;
579 }
580 
581 static void
alc_get_macaddr(struct alc_softc * sc)582 alc_get_macaddr(struct alc_softc *sc)
583 {
584 
585 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
586 		alc_get_macaddr_816x(sc);
587 	else
588 		alc_get_macaddr_813x(sc);
589 }
590 
591 static void
alc_get_macaddr_813x(struct alc_softc * sc)592 alc_get_macaddr_813x(struct alc_softc *sc)
593 {
594 	uint32_t opt;
595 	uint16_t val;
596 	int eeprom, i;
597 
598 	eeprom = 0;
599 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
600 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
601 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
602 		/*
603 		 * EEPROM found, let TWSI reload EEPROM configuration.
604 		 * This will set ethernet address of controller.
605 		 */
606 		eeprom++;
607 		switch (sc->alc_ident->deviceid) {
608 		case PCI_PRODUCT_ATTANSIC_AR8131:
609 		case PCI_PRODUCT_ATTANSIC_AR8132:
610 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
611 				opt |= OPT_CFG_CLK_ENB;
612 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
613 				CSR_READ_4(sc, ALC_OPT_CFG);
614 				DELAY(1000);
615 			}
616 			break;
617 		case PCI_PRODUCT_ATTANSIC_AR8151:
618 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
619 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
620 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
621 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
622 			    ALC_MII_DBG_ADDR, 0x00);
623 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
624 			    ALC_MII_DBG_DATA);
625 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
626 			    ALC_MII_DBG_DATA, val & 0xFF7F);
627 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
628 			    ALC_MII_DBG_ADDR, 0x3B);
629 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
630 			    ALC_MII_DBG_DATA);
631 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
632 			    ALC_MII_DBG_DATA, val | 0x0008);
633 			DELAY(20);
634 			break;
635 		}
636 
637 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
638 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
639 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
640 		CSR_READ_4(sc, ALC_WOL_CFG);
641 
642 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
643 		    TWSI_CFG_SW_LD_START);
644 		for (i = 100; i > 0; i--) {
645 			DELAY(1000);
646 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
647 			    TWSI_CFG_SW_LD_START) == 0)
648 				break;
649 		}
650 		if (i == 0)
651 			printf("%s: reloading EEPROM timeout!\n",
652 			    device_xname(sc->sc_dev));
653 	} else {
654 		if (alcdebug)
655 			printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
656 	}
657 	if (eeprom != 0) {
658 		switch (sc->alc_ident->deviceid) {
659 		case PCI_PRODUCT_ATTANSIC_AR8131:
660 		case PCI_PRODUCT_ATTANSIC_AR8132:
661 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
662 				opt &= ~OPT_CFG_CLK_ENB;
663 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
664 				CSR_READ_4(sc, ALC_OPT_CFG);
665 				DELAY(1000);
666 			}
667 			break;
668 		case PCI_PRODUCT_ATTANSIC_AR8151:
669 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
670 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
671 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
672 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
673 			    ALC_MII_DBG_ADDR, 0x00);
674 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
675 			    ALC_MII_DBG_DATA);
676 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
677 			    ALC_MII_DBG_DATA, val | 0x0080);
678 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
679 			    ALC_MII_DBG_ADDR, 0x3B);
680 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
681 			    ALC_MII_DBG_DATA);
682 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
683 			    ALC_MII_DBG_DATA, val & 0xFFF7);
684 			DELAY(20);
685 			break;
686 		}
687 	}
688 
689 	alc_get_macaddr_par(sc);
690 }
691 
692 static void
alc_get_macaddr_816x(struct alc_softc * sc)693 alc_get_macaddr_816x(struct alc_softc *sc)
694 {
695 	uint32_t reg;
696 	int i, reloaded;
697 
698 	reloaded = 0;
699 	/* Try to reload station address via TWSI. */
700 	for (i = 100; i > 0; i--) {
701 		reg = CSR_READ_4(sc, ALC_SLD);
702 		if ((reg & (SLD_PROGRESS | SLD_START)) == 0)
703 			break;
704 		DELAY(1000);
705 	}
706 	if (i != 0) {
707 		CSR_WRITE_4(sc, ALC_SLD, reg | SLD_START);
708 		for (i = 100; i > 0; i--) {
709 			DELAY(1000);
710 			reg = CSR_READ_4(sc, ALC_SLD);
711 			if ((reg & SLD_START) == 0)
712 				break;
713 		}
714 		if (i != 0)
715 			reloaded++;
716 		else if (alcdebug)
717 			printf("%s: reloading station address via TWSI timed out!\n",
718 			    device_xname(sc->sc_dev));
719 	}
720 
721 	/* Try to reload station address from EEPROM or FLASH. */
722 	if (reloaded == 0) {
723 		reg = CSR_READ_4(sc, ALC_EEPROM_LD);
724 		if ((reg & (EEPROM_LD_EEPROM_EXIST |
725 		    EEPROM_LD_FLASH_EXIST)) != 0) {
726 			for (i = 100; i > 0; i--) {
727 				reg = CSR_READ_4(sc, ALC_EEPROM_LD);
728 				if ((reg & (EEPROM_LD_PROGRESS |
729 				    EEPROM_LD_START)) == 0)
730 					break;
731 				DELAY(1000);
732 			}
733 			if (i != 0) {
734 				CSR_WRITE_4(sc, ALC_EEPROM_LD, reg |
735 				    EEPROM_LD_START);
736 				for (i = 100; i > 0; i--) {
737 					DELAY(1000);
738 					reg = CSR_READ_4(sc, ALC_EEPROM_LD);
739 					if ((reg & EEPROM_LD_START) == 0)
740 						break;
741 				}
742 			} else if (alcdebug)
743 				printf("%s: reloading EEPROM/FLASH timed out!\n",
744 			  	  device_xname(sc->sc_dev));
745 		}
746 	}
747 
748 	alc_get_macaddr_par(sc);
749 }
750 
751 
752 static void
alc_get_macaddr_par(struct alc_softc * sc)753 alc_get_macaddr_par(struct alc_softc *sc)
754 {
755 	uint32_t ea[2];
756 
757 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
758 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
759 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
760 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
761 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
762 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
763 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
764 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
765 }
766 
767 static void
alc_disable_l0s_l1(struct alc_softc * sc)768 alc_disable_l0s_l1(struct alc_softc *sc)
769 {
770 	uint32_t pmcfg;
771 
772 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
773 		/* Another magic from vendor. */
774 		pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
775 		pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
776 		    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
777 		    PM_CFG_MAC_ASPM_CHK | PM_CFG_SERDES_PD_EX_L1);
778 		pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB |
779 		    PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_L1_ENB;
780 		CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
781 	}
782 }
783 
784 static void
alc_phy_reset(struct alc_softc * sc)785 alc_phy_reset(struct alc_softc *sc)
786 {
787 
788 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
789 		alc_phy_reset_816x(sc);
790 	else
791 		alc_phy_reset_813x(sc);
792 }
793 
794 static void
alc_phy_reset_813x(struct alc_softc * sc)795 alc_phy_reset_813x(struct alc_softc *sc)
796 {
797 	uint16_t data;
798 
799 	/* Reset magic from Linux. */
800 	CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_SEL_ANA_RESET);
801 	CSR_READ_2(sc, ALC_GPHY_CFG);
802 	DELAY(10 * 1000);
803 
804 	CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
805 	    GPHY_CFG_SEL_ANA_RESET);
806 	CSR_READ_2(sc, ALC_GPHY_CFG);
807 	DELAY(10 * 1000);
808 
809 	/* DSP fixup, Vendor magic. */
810 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
811 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
812 		    ALC_MII_DBG_ADDR, 0x000A);
813 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
814 		    ALC_MII_DBG_DATA);
815 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
816 		    ALC_MII_DBG_DATA, data & 0xDFFF);
817 	}
818 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
819 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
820 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
821 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
822 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
823 		    ALC_MII_DBG_ADDR, 0x003B);
824 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
825 		    ALC_MII_DBG_DATA);
826 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
827 		    ALC_MII_DBG_DATA, data & 0xFFF7);
828 		DELAY(20 * 1000);
829 	}
830 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
831 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
832 		    ALC_MII_DBG_ADDR, 0x0029);
833 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
834 		    ALC_MII_DBG_DATA, 0x929D);
835 	}
836 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
837 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
838 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
839 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
840 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
841 		    ALC_MII_DBG_ADDR, 0x0029);
842 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
843 		    ALC_MII_DBG_DATA, 0xB6DD);
844 	}
845 
846 	/* Load DSP codes, vendor magic. */
847 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
848 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
849 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
850 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
851 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
852 	    ALC_MII_DBG_DATA, data);
853 
854 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
855 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
856 	    ANA_SERDES_EN_LCKDT;
857 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
858 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
859 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
860 	    ALC_MII_DBG_DATA, data);
861 
862 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
863 	    ANA_LONG_CABLE_TH_100_MASK) |
864 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
865 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
866 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
867 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
868 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
869 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
870 	    ALC_MII_DBG_DATA, data);
871 
872 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
873 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
874 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
875 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
876 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
877 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
878 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
879 	    ALC_MII_DBG_DATA, data);
880 
881 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
882 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
883 	    ANA_OEN_125M;
884 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
885 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
886 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
887 	    ALC_MII_DBG_DATA, data);
888 	DELAY(1000);
889 
890 	/* Disable hibernation. */
891 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
892 	    0x0029);
893 	data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
894 	    ALC_MII_DBG_DATA);
895 	data &= ~0x8000;
896 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
897 	    data);
898 
899 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
900 	    0x000B);
901 	data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
902 	    ALC_MII_DBG_DATA);
903 	data &= ~0x8000;
904 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
905 	    data);
906 }
907 
908 static void
alc_phy_reset_816x(struct alc_softc * sc)909 alc_phy_reset_816x(struct alc_softc *sc)
910 {
911 	uint32_t val;
912 
913 	val = CSR_READ_4(sc, ALC_GPHY_CFG);
914 	val &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
915 	    GPHY_CFG_GATE_25M_ENB | GPHY_CFG_PHY_IDDQ | GPHY_CFG_PHY_PLL_ON |
916 	    GPHY_CFG_PWDOWN_HW | GPHY_CFG_100AB_ENB);
917 	val |= GPHY_CFG_SEL_ANA_RESET;
918 #ifdef notyet
919 	val |= GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN | GPHY_CFG_SEL_ANA_RESET;
920 #else
921 	/* Disable PHY hibernation. */
922 	val &= ~(GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN);
923 #endif
924 	CSR_WRITE_4(sc, ALC_GPHY_CFG, val);
925 	DELAY(10);
926 	CSR_WRITE_4(sc, ALC_GPHY_CFG, val | GPHY_CFG_EXT_RESET);
927 	DELAY(800);
928 
929 	/* Vendor PHY magic. */
930 #ifdef notyet
931 	alc_miidbg_writereg(sc, MII_DBG_LEGCYPS, DBG_LEGCYPS_DEFAULT);
932 	alc_miidbg_writereg(sc, MII_DBG_SYSMODCTL, DBG_SYSMODCTL_DEFAULT);
933 	alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_VDRVBIAS,
934 	    EXT_VDRVBIAS_DEFAULT);
935 #else
936 	/* Disable PHY hibernation. */
937 	alc_miidbg_writereg(sc, MII_DBG_LEGCYPS,
938 	    DBG_LEGCYPS_DEFAULT & ~DBG_LEGCYPS_ENB);
939 	alc_miidbg_writereg(sc, MII_DBG_HIBNEG,
940 	    DBG_HIBNEG_DEFAULT & ~(DBG_HIBNEG_PSHIB_EN | DBG_HIBNEG_HIB_PULSE));
941 	alc_miidbg_writereg(sc, MII_DBG_GREENCFG, DBG_GREENCFG_DEFAULT);
942 #endif
943 
944 	/* XXX Disable EEE. */
945 	val = CSR_READ_4(sc, ALC_LPI_CTL);
946 	val &= ~LPI_CTL_ENB;
947 	CSR_WRITE_4(sc, ALC_LPI_CTL, val);
948 	alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_LOCAL_EEEADV, 0);
949 
950 	/* PHY power saving. */
951 	alc_miidbg_writereg(sc, MII_DBG_TST10BTCFG, DBG_TST10BTCFG_DEFAULT);
952 	alc_miidbg_writereg(sc, MII_DBG_SRDSYSMOD, DBG_SRDSYSMOD_DEFAULT);
953 	alc_miidbg_writereg(sc, MII_DBG_TST100BTCFG, DBG_TST100BTCFG_DEFAULT);
954 	alc_miidbg_writereg(sc, MII_DBG_ANACTL, DBG_ANACTL_DEFAULT);
955 	val = alc_miidbg_readreg(sc, MII_DBG_GREENCFG2);
956 	val &= ~DBG_GREENCFG2_GATE_DFSE_EN;
957 	alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, val);
958 
959 	/* RTL8139C, 120m issue. */
960 	alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_NLP78,
961 	    ANEG_NLP78_120M_DEFAULT);
962 	alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_S3DIG10,
963 	    ANEG_S3DIG10_DEFAULT);
964 
965 	if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0) {
966 		/* Turn off half amplitude. */
967 		val = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3);
968 		val |= EXT_CLDCTL3_BP_CABLE1TH_DET_GT;
969 		alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3, val);
970 		/* Turn off Green feature. */
971 		val = alc_miidbg_readreg(sc, MII_DBG_GREENCFG2);
972 		val |= DBG_GREENCFG2_BP_GREEN;
973 		alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, val);
974 		/* Turn off half bias. */
975 		val = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5);
976 		val |= EXT_CLDCTL5_BP_VD_HLFBIAS;
977 		alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5, val);
978 	}
979 }
980 
981 static void
alc_phy_down(struct alc_softc * sc)982 alc_phy_down(struct alc_softc *sc)
983 {
984 	uint32_t gphy;
985 
986 	switch (sc->alc_ident->deviceid) {
987 	case PCI_PRODUCT_ATTANSIC_AR8161:
988 	case PCI_PRODUCT_ATTANSIC_E2200:
989 	case PCI_PRODUCT_ATTANSIC_AR8162:
990 	case PCI_PRODUCT_ATTANSIC_AR8171:
991 	case PCI_PRODUCT_ATTANSIC_AR8172:
992 		gphy = CSR_READ_4(sc, ALC_GPHY_CFG);
993 		gphy &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
994 		    GPHY_CFG_100AB_ENB | GPHY_CFG_PHY_PLL_ON);
995 		gphy |= GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
996 		    GPHY_CFG_SEL_ANA_RESET;
997 		gphy |= GPHY_CFG_PHY_IDDQ | GPHY_CFG_PWDOWN_HW;
998 		CSR_WRITE_4(sc, ALC_GPHY_CFG, gphy);
999 		break;
1000 	case PCI_PRODUCT_ATTANSIC_AR8151:
1001 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1002 	case PCI_PRODUCT_ATTANSIC_AR8152_B:
1003 	case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1004 		/*
1005 		 * GPHY power down caused more problems on AR8151 v2.0.
1006 		 * When driver is reloaded after GPHY power down,
1007 		 * accesses to PHY/MAC registers hung the system. Only
1008 		 * cold boot recovered from it.  I'm not sure whether
1009 		 * AR8151 v1.0 also requires this one though.  I don't
1010 		 * have AR8151 v1.0 controller in hand.
1011 		 * The only option left is to isolate the PHY and
1012 		 * initiates power down the PHY which in turn saves
1013 		 * more power when driver is unloaded.
1014 		 */
1015 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
1016 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
1017 		break;
1018 	default:
1019 		/* Force PHY down. */
1020 		CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
1021 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
1022 		    GPHY_CFG_PWDOWN_HW);
1023 		DELAY(1000);
1024 		break;
1025 	}
1026 }
1027 
1028 static void
alc_aspm(struct alc_softc * sc,int init,int media)1029 alc_aspm(struct alc_softc *sc, int init, int media)
1030 {
1031 
1032 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
1033 		alc_aspm_816x(sc, init);
1034 	else
1035 		alc_aspm_813x(sc, media);
1036 }
1037 
1038 static void
alc_aspm_813x(struct alc_softc * sc,int media)1039 alc_aspm_813x(struct alc_softc *sc, int media)
1040 {
1041 	uint32_t pmcfg;
1042 	uint16_t linkcfg;
1043 
1044 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1045 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
1046 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
1047 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
1048 		    PCIE_LCSR);
1049 	else
1050 		linkcfg = 0;
1051 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
1052 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
1053 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
1054 	pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
1055 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1056 
1057 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1058 		/* Disable extended sync except AR8152 B v1.0 */
1059 		linkcfg &= ~0x80;
1060 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1061 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
1062 			linkcfg |= 0x80;
1063 		CSR_WRITE_2(sc, sc->alc_expcap + PCIE_LCSR,
1064 		    linkcfg);
1065 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
1066 		    PM_CFG_HOTRST);
1067 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
1068 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1069 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1070 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
1071 		    PM_CFG_PM_REQ_TIMER_SHIFT);
1072 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
1073 	}
1074 
1075 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1076 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
1077 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
1078 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1079 			pmcfg |= PM_CFG_ASPM_L1_ENB;
1080 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1081 			if (sc->alc_ident->deviceid ==
1082 			    PCI_PRODUCT_ATTANSIC_AR8152_B)
1083 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
1084 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
1085 			    PM_CFG_SERDES_PLL_L1_ENB |
1086 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
1087 			pmcfg |= PM_CFG_CLK_SWH_L1;
1088 			if (media == IFM_100_TX || media == IFM_1000_T) {
1089 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
1090 				switch (sc->alc_ident->deviceid) {
1091 				case PCI_PRODUCT_ATTANSIC_AR8152_B:
1092 					pmcfg |= (7 <<
1093 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1094 					break;
1095 				case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1096 				case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1097 					pmcfg |= (4 <<
1098 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1099 					break;
1100 				default:
1101 					pmcfg |= (15 <<
1102 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1103 					break;
1104 				}
1105 			}
1106 		} else {
1107 			pmcfg |= PM_CFG_SERDES_L1_ENB |
1108 			    PM_CFG_SERDES_PLL_L1_ENB |
1109 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
1110 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
1111 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1112 		}
1113 	} else {
1114 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
1115 		    PM_CFG_SERDES_PLL_L1_ENB);
1116 		pmcfg |= PM_CFG_CLK_SWH_L1;
1117 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1118 			pmcfg |= PM_CFG_ASPM_L1_ENB;
1119 	}
1120 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1121 }
1122 
1123 static void
alc_aspm_816x(struct alc_softc * sc,int init)1124 alc_aspm_816x(struct alc_softc *sc, int init)
1125 {
1126 	uint32_t pmcfg;
1127 
1128 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1129 	pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_816X_MASK;
1130 	pmcfg |= PM_CFG_L1_ENTRY_TIMER_816X_DEFAULT;
1131 	pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1132 	pmcfg |= PM_CFG_PM_REQ_TIMER_816X_DEFAULT;
1133 	pmcfg &= ~PM_CFG_LCKDET_TIMER_MASK;
1134 	pmcfg |= PM_CFG_LCKDET_TIMER_DEFAULT;
1135 	pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_CLK_SWH_L1 | PM_CFG_PCIE_RECV;
1136 	pmcfg &= ~(PM_CFG_RX_L1_AFTER_L0S | PM_CFG_TX_L1_AFTER_L0S |
1137 	    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB |
1138 	    PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
1139 	    PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SA_DLY_ENB |
1140 	    PM_CFG_MAC_ASPM_CHK | PM_CFG_HOTRST);
1141 	if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1142 	    (sc->alc_rev & 0x01) != 0)
1143 		pmcfg |= PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB;
1144 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1145 		/* Link up, enable both L0s, L1s. */
1146 		pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1147 		    PM_CFG_MAC_ASPM_CHK;
1148 	} else {
1149 		if (init != 0)
1150 			pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1151 			    PM_CFG_MAC_ASPM_CHK;
1152 		else if ((sc->sc_ec.ec_if.if_flags & IFF_RUNNING) != 0)
1153 			pmcfg |= PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK;
1154 	}
1155 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1156 }
1157 
1158 static void
alc_attach(device_t parent,device_t self,void * aux)1159 alc_attach(device_t parent, device_t self, void *aux)
1160 {
1161 
1162 	struct alc_softc *sc = device_private(self);
1163 	struct pci_attach_args *pa = aux;
1164 	pci_chipset_tag_t pc = pa->pa_pc;
1165 	pci_intr_handle_t ih;
1166 	const char *intrstr;
1167 	struct ifnet *ifp;
1168 	pcireg_t memtype;
1169 	const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
1170 	uint16_t burst;
1171 	int base, mii_flags, state, error = 0;
1172 	uint32_t cap, ctl, val;
1173 	char intrbuf[PCI_INTRSTR_LEN];
1174 
1175 	sc->alc_ident = alc_find_ident(pa);
1176 
1177 	aprint_naive("\n");
1178 	aprint_normal(": %s\n", sc->alc_ident->name);
1179 
1180 	sc->sc_dev = self;
1181 	sc->sc_dmat = pa->pa_dmat;
1182 	sc->sc_pct = pa->pa_pc;
1183 	sc->sc_pcitag = pa->pa_tag;
1184 
1185 	/*
1186 	 * Allocate IO memory
1187 	 */
1188 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
1189 	switch (memtype) {
1190 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1191 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
1192 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1193 		break;
1194 	default:
1195 		aprint_error_dev(self, "invalid base address register\n");
1196 		break;
1197 	}
1198 
1199 	if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
1200 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
1201 		aprint_error_dev(self, "could not map mem space\n");
1202 		return;
1203 	}
1204 
1205 	if (pci_intr_map(pa, &ih) != 0) {
1206 		printf(": can't map interrupt\n");
1207 		goto fail;
1208 	}
1209 
1210 	/*
1211 	 * Allocate IRQ
1212 	 */
1213 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
1214 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc);
1215 	if (sc->sc_irq_handle == NULL) {
1216 		printf(": could not establish interrupt");
1217 		if (intrstr != NULL)
1218 			printf(" at %s", intrstr);
1219 		printf("\n");
1220 		goto fail;
1221 	}
1222 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1223 
1224 	/* Set PHY address. */
1225 	sc->alc_phyaddr = ALC_PHY_ADDR;
1226 
1227 	/* Initialize DMA parameters. */
1228 	sc->alc_dma_rd_burst = 0;
1229 	sc->alc_dma_wr_burst = 0;
1230 	sc->alc_rcb = DMA_CFG_RCB_64;
1231 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
1232 	    &base, NULL)) {
1233 		sc->alc_flags |= ALC_FLAG_PCIE;
1234 		sc->alc_expcap = base;
1235 		burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1236 		    base + PCIE_DCSR) >> 16;
1237 		sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
1238 		sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
1239 		if (alcdebug) {
1240 			printf("%s: Read request size : %u bytes.\n",
1241 			    device_xname(sc->sc_dev),
1242 			    alc_dma_burst[sc->alc_dma_rd_burst]);
1243 			printf("%s: TLP payload size : %u bytes.\n",
1244 			    device_xname(sc->sc_dev),
1245 			    alc_dma_burst[sc->alc_dma_wr_burst]);
1246 		}
1247 		if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
1248 			sc->alc_dma_rd_burst = 3;
1249 		if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
1250 			sc->alc_dma_wr_burst = 3;
1251 
1252 		/* Clear data link and flow-control protocol error. */
1253 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
1254 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
1255 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
1256 
1257 		if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1258  			CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
1259  			    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
1260  			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
1261  			    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
1262  			    PCIE_PHYMISC_FORCE_RCV_DET);
1263  			if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1264 			    sc->alc_rev == ATHEROS_AR8152_B_V10) {
1265  				val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
1266  				val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
1267  				    PCIE_PHYMISC2_SERDES_TH_MASK);
1268 				val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
1269 				val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
1270 				CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
1271 			}
1272 			/* Disable ASPM L0S and L1. */
1273 			cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1274 			    base + PCIE_LCAP) >> 16;
1275 			if ((cap & 0x00000c00) != 0) {
1276 				ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1277 				    base + PCIE_LCSR) >> 16;
1278 				if ((ctl & 0x08) != 0)
1279 					sc->alc_rcb = DMA_CFG_RCB_128;
1280 				if (alcdebug)
1281 					printf("%s: RCB %u bytes\n",
1282 					    device_xname(sc->sc_dev),
1283 					    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
1284 				state = ctl & 0x03;
1285 				if (state & 0x01)
1286 					sc->alc_flags |= ALC_FLAG_L0S;
1287 				if (state & 0x02)
1288 					sc->alc_flags |= ALC_FLAG_L1S;
1289 				if (alcdebug)
1290 					printf("%s: ASPM %s %s\n",
1291 					    device_xname(sc->sc_dev),
1292 					    aspm_state[state],
1293 					    state == 0 ? "disabled" : "enabled");
1294 				alc_disable_l0s_l1(sc);
1295 			} else {
1296 				aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
1297 			}
1298 		} else {
1299 			val = CSR_READ_4(sc, ALC_PDLL_TRNS1);
1300 			val &= ~PDLL_TRNS1_D3PLLOFF_ENB;
1301 			CSR_WRITE_4(sc, ALC_PDLL_TRNS1, val);
1302 			val = CSR_READ_4(sc, ALC_MASTER_CFG);
1303 			if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1304 			    (sc->alc_rev & 0x01) != 0) {
1305 				if ((val & MASTER_WAKEN_25M) == 0 ||
1306 				    (val & MASTER_CLK_SEL_DIS) == 0) {
1307 					val |= MASTER_WAKEN_25M | MASTER_CLK_SEL_DIS;
1308 					CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1309 				}
1310 			} else {
1311 				if ((val & MASTER_WAKEN_25M) == 0 ||
1312 				    (val & MASTER_CLK_SEL_DIS) != 0) {
1313 					val |= MASTER_WAKEN_25M;
1314 					val &= ~MASTER_CLK_SEL_DIS;
1315 					CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1316 				}
1317 			}
1318 		}
1319 		alc_aspm(sc, 1, IFM_UNKNOWN);
1320 	}
1321 
1322 	/* Reset PHY. */
1323 	alc_phy_reset(sc);
1324 
1325 	/* Reset the ethernet controller. */
1326 	alc_stop_mac(sc);
1327 	alc_reset(sc);
1328 
1329 	/*
1330 	 * One odd thing is AR8132 uses the same PHY hardware(F1
1331 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
1332 	 * the PHY supports 1000Mbps but that's not true. The PHY
1333 	 * used in AR8132 can't establish gigabit link even if it
1334 	 * shows the same PHY model/revision number of AR8131.
1335 	 */
1336 	switch (sc->alc_ident->deviceid) {
1337 	case PCI_PRODUCT_ATTANSIC_AR8161:
1338 		if (PCI_SUBSYS_ID(pci_conf_read(
1339 		   sc->sc_pct, sc->sc_pcitag, PCI_SUBSYS_ID_REG)) == 0x0091 &&
1340 		   sc->alc_rev == 0)
1341 			sc->alc_flags |= ALC_FLAG_LINK_WAR;
1342 		/* FALLTHROUGH */
1343 	case PCI_PRODUCT_ATTANSIC_E2200:
1344 	case PCI_PRODUCT_ATTANSIC_AR8171:
1345 		sc->alc_flags |= ALC_FLAG_AR816X_FAMILY;
1346 		break;
1347 	case PCI_PRODUCT_ATTANSIC_AR8162:
1348 	case PCI_PRODUCT_ATTANSIC_AR8172:
1349 		sc->alc_flags |= ALC_FLAG_FASTETHER | ALC_FLAG_AR816X_FAMILY;
1350 		break;
1351 	case PCI_PRODUCT_ATTANSIC_AR8152_B:
1352 	case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1353 		sc->alc_flags |= ALC_FLAG_APS;
1354 		/* FALLTHROUGH */
1355 	case PCI_PRODUCT_ATTANSIC_AR8132:
1356 		sc->alc_flags |= ALC_FLAG_FASTETHER;
1357 		break;
1358 	case PCI_PRODUCT_ATTANSIC_AR8151:
1359 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1360 		sc->alc_flags |= ALC_FLAG_APS;
1361 		/* FALLTHROUGH */
1362 	default:
1363 		break;
1364 	}
1365 	sc->alc_flags |= ALC_FLAG_JUMBO;
1366 
1367 	/*
1368 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
1369 	 * addition, Atheros said that enabling SMB wouldn't improve
1370 	 * performance. However I think it's bad to access lots of
1371 	 * registers to extract MAC statistics.
1372 	 */
1373 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
1374 	/*
1375 	 * Don't use Tx CMB. It is known to have silicon bug.
1376 	 */
1377 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
1378 	sc->alc_rev = PCI_REVISION(pa->pa_class);
1379 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
1380 	    MASTER_CHIP_REV_SHIFT;
1381 	if (alcdebug) {
1382 		printf("%s: PCI device revision : 0x%04x\n",
1383 		    device_xname(sc->sc_dev), sc->alc_rev);
1384 		printf("%s: Chip id/revision : 0x%04x\n",
1385 		    device_xname(sc->sc_dev), sc->alc_chip_rev);
1386 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
1387 		    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
1388 		    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
1389 	}
1390 
1391 	error = alc_dma_alloc(sc);
1392 	if (error)
1393 		goto fail;
1394 
1395 	callout_init(&sc->sc_tick_ch, 0);
1396 	callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
1397 
1398 	/* Load station address. */
1399 	alc_get_macaddr(sc);
1400 
1401 	aprint_normal_dev(self, "Ethernet address %s\n",
1402 	    ether_sprintf(sc->alc_eaddr));
1403 
1404 	ifp = &sc->sc_ec.ec_if;
1405 	ifp->if_softc = sc;
1406 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1407 	ifp->if_init = alc_init;
1408 	ifp->if_ioctl = alc_ioctl;
1409 	ifp->if_start = alc_start;
1410 	ifp->if_stop = alc_stop;
1411 	ifp->if_watchdog = alc_watchdog;
1412 	IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
1413 	IFQ_SET_READY(&ifp->if_snd);
1414 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1415 
1416 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
1417 
1418 #ifdef ALC_CHECKSUM
1419 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1420 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1421 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1422 #endif
1423 
1424 #if NVLAN > 0
1425 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
1426 #endif
1427 
1428 	/*
1429 	 * XXX
1430 	 * It seems enabling Tx checksum offloading makes more trouble.
1431 	 * Sometimes the controller does not receive any frames when
1432 	 * Tx checksum offloading is enabled. I'm not sure whether this
1433 	 * is a bug in Tx checksum offloading logic or I got broken
1434 	 * sample boards. To safety, don't enable Tx checksum offloading
1435 	 * by default but give chance to users to toggle it if they know
1436 	 * their controllers work without problems.
1437 	 * Fortunately, Tx checksum offloading for AR816x family
1438 	 * seems to work.
1439 	 */
1440 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1441 		ifp->if_capenable &= ~IFCAP_CSUM_IPv4_Tx;
1442 		ifp->if_capabilities &= ~ALC_CSUM_FEATURES;
1443 	}
1444 
1445 	/* Set up MII bus. */
1446 	sc->sc_miibus.mii_ifp = ifp;
1447 	sc->sc_miibus.mii_readreg = alc_miibus_readreg;
1448 	sc->sc_miibus.mii_writereg = alc_miibus_writereg;
1449 	sc->sc_miibus.mii_statchg = alc_miibus_statchg;
1450 
1451 	sc->sc_ec.ec_mii = &sc->sc_miibus;
1452 	ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange,
1453 	    alc_mediastatus);
1454 	mii_flags = 0;
1455 	if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
1456 		mii_flags |= MIIF_DOPAUSE;
1457 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
1458 		MII_OFFSET_ANY, mii_flags);
1459 
1460 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
1461 		printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
1462 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
1463 		    0, NULL);
1464 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
1465 	} else
1466 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
1467 
1468 	if_attach(ifp);
1469 	ether_ifattach(ifp, sc->alc_eaddr);
1470 
1471 	if (!pmf_device_register(self, NULL, NULL))
1472 		aprint_error_dev(self, "couldn't establish power handler\n");
1473 	else
1474 		pmf_class_network_register(self, ifp);
1475 
1476 	return;
1477 fail:
1478 	alc_dma_free(sc);
1479 	if (sc->sc_irq_handle != NULL) {
1480 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1481 		sc->sc_irq_handle = NULL;
1482 	}
1483 	if (sc->sc_mem_size) {
1484 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1485 		sc->sc_mem_size = 0;
1486 	}
1487 }
1488 
1489 static int
alc_detach(device_t self,int flags)1490 alc_detach(device_t self, int flags)
1491 {
1492 	struct alc_softc *sc = device_private(self);
1493 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1494 	int s;
1495 
1496 	s = splnet();
1497 	alc_stop(ifp, 0);
1498 	splx(s);
1499 
1500 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
1501 
1502 	/* Delete all remaining media. */
1503 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
1504 
1505 	ether_ifdetach(ifp);
1506 	if_detach(ifp);
1507 	alc_dma_free(sc);
1508 
1509 	alc_phy_down(sc);
1510 	if (sc->sc_irq_handle != NULL) {
1511 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1512 		sc->sc_irq_handle = NULL;
1513 	}
1514 	if (sc->sc_mem_size) {
1515 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1516 		sc->sc_mem_size = 0;
1517 	}
1518 
1519 	return (0);
1520 }
1521 
1522 static int
alc_dma_alloc(struct alc_softc * sc)1523 alc_dma_alloc(struct alc_softc *sc)
1524 {
1525 	struct alc_txdesc *txd;
1526 	struct alc_rxdesc *rxd;
1527 	int nsegs, error, i;
1528 
1529 	/*
1530 	 * Create DMA stuffs for TX ring
1531 	 */
1532 	error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
1533 	    ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
1534 	if (error) {
1535 		sc->alc_cdata.alc_tx_ring_map = NULL;
1536 		return (ENOBUFS);
1537 	}
1538 
1539 	/* Allocate DMA'able memory for TX ring */
1540 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
1541 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
1542 	    &nsegs, BUS_DMA_NOWAIT);
1543 	if (error) {
1544 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
1545 		    device_xname(sc->sc_dev));
1546 		return error;
1547 	}
1548 
1549 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
1550 	    nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
1551 	    BUS_DMA_NOWAIT);
1552 	if (error)
1553 		return (ENOBUFS);
1554 
1555 	/* Load the DMA map for Tx ring. */
1556 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
1557 	    sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
1558 	if (error) {
1559 		printf("%s: could not load DMA'able memory for Tx ring.\n",
1560 		    device_xname(sc->sc_dev));
1561 		bus_dmamem_free(sc->sc_dmat,
1562 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
1563 		return error;
1564 	}
1565 
1566 	sc->alc_rdata.alc_tx_ring_paddr =
1567 	    sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
1568 
1569 	/*
1570 	 * Create DMA stuffs for RX ring
1571 	 */
1572 	error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
1573 	    ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
1574 	if (error)
1575 		return (ENOBUFS);
1576 
1577 	/* Allocate DMA'able memory for RX ring */
1578 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
1579 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
1580 	    &nsegs, BUS_DMA_NOWAIT);
1581 	if (error) {
1582 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
1583 		    device_xname(sc->sc_dev));
1584 		return error;
1585 	}
1586 
1587 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
1588 	    nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
1589 	    BUS_DMA_NOWAIT);
1590 	if (error)
1591 		return (ENOBUFS);
1592 
1593 	/* Load the DMA map for Rx ring. */
1594 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
1595 	    sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
1596 	if (error) {
1597 		printf("%s: could not load DMA'able memory for Rx ring.\n",
1598 		    device_xname(sc->sc_dev));
1599 		bus_dmamem_free(sc->sc_dmat,
1600 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1601 		return error;
1602 	}
1603 
1604 	sc->alc_rdata.alc_rx_ring_paddr =
1605 	    sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
1606 
1607 	/*
1608 	 * Create DMA stuffs for RX return ring
1609 	 */
1610 	error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
1611 	    ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
1612 	if (error)
1613 		return (ENOBUFS);
1614 
1615 	/* Allocate DMA'able memory for RX return ring */
1616 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
1617 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
1618 	    &nsegs, BUS_DMA_NOWAIT);
1619 	if (error) {
1620 		printf("%s: could not allocate DMA'able memory for Rx "
1621 		    "return ring.\n", device_xname(sc->sc_dev));
1622 		return error;
1623 	}
1624 
1625 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
1626 	    nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
1627 	    BUS_DMA_NOWAIT);
1628 	if (error)
1629 		return (ENOBUFS);
1630 
1631 	/*  Load the DMA map for Rx return ring. */
1632 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
1633 	    sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
1634 	if (error) {
1635 		printf("%s: could not load DMA'able memory for Rx return ring."
1636 		    "\n", device_xname(sc->sc_dev));
1637 		bus_dmamem_free(sc->sc_dmat,
1638 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1639 		return error;
1640 	}
1641 
1642 	sc->alc_rdata.alc_rr_ring_paddr =
1643 	    sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
1644 
1645 	/*
1646 	 * Create DMA stuffs for CMB block
1647 	 */
1648 	error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
1649 	    ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
1650 	    &sc->alc_cdata.alc_cmb_map);
1651 	if (error)
1652 		return (ENOBUFS);
1653 
1654 	/* Allocate DMA'able memory for CMB block */
1655 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
1656 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1,
1657 	    &nsegs, BUS_DMA_NOWAIT);
1658 	if (error) {
1659 		printf("%s: could not allocate DMA'able memory for "
1660 		    "CMB block\n", device_xname(sc->sc_dev));
1661 		return error;
1662 	}
1663 
1664 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
1665 	    nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
1666 	    BUS_DMA_NOWAIT);
1667 	if (error)
1668 		return (ENOBUFS);
1669 
1670 	/*  Load the DMA map for CMB block. */
1671 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
1672 	    sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
1673 	    BUS_DMA_WAITOK);
1674 	if (error) {
1675 		printf("%s: could not load DMA'able memory for CMB block\n",
1676 		    device_xname(sc->sc_dev));
1677 		bus_dmamem_free(sc->sc_dmat,
1678 		    &sc->alc_rdata.alc_cmb_seg, 1);
1679 		return error;
1680 	}
1681 
1682 	sc->alc_rdata.alc_cmb_paddr =
1683 	    sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
1684 
1685 	/*
1686 	 * Create DMA stuffs for SMB block
1687 	 */
1688 	error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
1689 	    ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
1690 	    &sc->alc_cdata.alc_smb_map);
1691 	if (error)
1692 		return (ENOBUFS);
1693 
1694 	/* Allocate DMA'able memory for SMB block */
1695 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
1696 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1,
1697 	    &nsegs, BUS_DMA_NOWAIT);
1698 	if (error) {
1699 		printf("%s: could not allocate DMA'able memory for "
1700 		    "SMB block\n", device_xname(sc->sc_dev));
1701 		return error;
1702 	}
1703 
1704 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
1705 	    nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
1706 	    BUS_DMA_NOWAIT);
1707 	if (error)
1708 		return (ENOBUFS);
1709 
1710 	/*  Load the DMA map for SMB block */
1711 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
1712 	    sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
1713 	    BUS_DMA_WAITOK);
1714 	if (error) {
1715 		printf("%s: could not load DMA'able memory for SMB block\n",
1716 		    device_xname(sc->sc_dev));
1717 		bus_dmamem_free(sc->sc_dmat,
1718 		    &sc->alc_rdata.alc_smb_seg, 1);
1719 		return error;
1720 	}
1721 
1722 	sc->alc_rdata.alc_smb_paddr =
1723 	    sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
1724 
1725 
1726 	/* Create DMA maps for Tx buffers. */
1727 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1728 		txd = &sc->alc_cdata.alc_txdesc[i];
1729 		txd->tx_m = NULL;
1730 		txd->tx_dmamap = NULL;
1731 		error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
1732 		    ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
1733 		    &txd->tx_dmamap);
1734 		if (error) {
1735 			printf("%s: could not create Tx dmamap.\n",
1736 			    device_xname(sc->sc_dev));
1737 			return error;
1738 		}
1739 	}
1740 
1741 	/* Create DMA maps for Rx buffers. */
1742 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1743 	    BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
1744 	if (error) {
1745 		printf("%s: could not create spare Rx dmamap.\n",
1746 		    device_xname(sc->sc_dev));
1747 		return error;
1748 	}
1749 
1750 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1751 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1752 		rxd->rx_m = NULL;
1753 		rxd->rx_dmamap = NULL;
1754 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1755 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
1756 		if (error) {
1757 			printf("%s: could not create Rx dmamap.\n",
1758 			    device_xname(sc->sc_dev));
1759 			return error;
1760 		}
1761 	}
1762 
1763 	return (0);
1764 }
1765 
1766 
1767 static void
alc_dma_free(struct alc_softc * sc)1768 alc_dma_free(struct alc_softc *sc)
1769 {
1770 	struct alc_txdesc *txd;
1771 	struct alc_rxdesc *rxd;
1772 	int i;
1773 
1774 	/* Tx buffers */
1775 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1776 		txd = &sc->alc_cdata.alc_txdesc[i];
1777 		if (txd->tx_dmamap != NULL) {
1778 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
1779 			txd->tx_dmamap = NULL;
1780 		}
1781 	}
1782 	/* Rx buffers */
1783 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1784 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1785 		if (rxd->rx_dmamap != NULL) {
1786 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
1787 			rxd->rx_dmamap = NULL;
1788 		}
1789 	}
1790 	if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1791 		bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
1792 		sc->alc_cdata.alc_rx_sparemap = NULL;
1793 	}
1794 
1795 	/* Tx ring. */
1796 	if (sc->alc_cdata.alc_tx_ring_map != NULL)
1797 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
1798 	if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1799 	    sc->alc_rdata.alc_tx_ring != NULL)
1800 		bus_dmamem_free(sc->sc_dmat,
1801 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
1802 	sc->alc_rdata.alc_tx_ring = NULL;
1803 	sc->alc_cdata.alc_tx_ring_map = NULL;
1804 
1805 	/* Rx ring. */
1806 	if (sc->alc_cdata.alc_rx_ring_map != NULL)
1807 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
1808 	if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1809 	    sc->alc_rdata.alc_rx_ring != NULL)
1810 		bus_dmamem_free(sc->sc_dmat,
1811 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1812 	sc->alc_rdata.alc_rx_ring = NULL;
1813 	sc->alc_cdata.alc_rx_ring_map = NULL;
1814 
1815 	/* Rx return ring. */
1816 	if (sc->alc_cdata.alc_rr_ring_map != NULL)
1817 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
1818 	if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1819 	    sc->alc_rdata.alc_rr_ring != NULL)
1820 		bus_dmamem_free(sc->sc_dmat,
1821 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1822 	sc->alc_rdata.alc_rr_ring = NULL;
1823 	sc->alc_cdata.alc_rr_ring_map = NULL;
1824 
1825 	/* CMB block */
1826 	if (sc->alc_cdata.alc_cmb_map != NULL)
1827 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
1828 	if (sc->alc_cdata.alc_cmb_map != NULL &&
1829 	    sc->alc_rdata.alc_cmb != NULL)
1830 		bus_dmamem_free(sc->sc_dmat,
1831 		    &sc->alc_rdata.alc_cmb_seg, 1);
1832 	sc->alc_rdata.alc_cmb = NULL;
1833 	sc->alc_cdata.alc_cmb_map = NULL;
1834 
1835 	/* SMB block */
1836 	if (sc->alc_cdata.alc_smb_map != NULL)
1837 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
1838 	if (sc->alc_cdata.alc_smb_map != NULL &&
1839 	    sc->alc_rdata.alc_smb != NULL)
1840 		bus_dmamem_free(sc->sc_dmat,
1841 		    &sc->alc_rdata.alc_smb_seg, 1);
1842 	sc->alc_rdata.alc_smb = NULL;
1843 	sc->alc_cdata.alc_smb_map = NULL;
1844 }
1845 
1846 static int
alc_encap(struct alc_softc * sc,struct mbuf ** m_head)1847 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1848 {
1849 	struct alc_txdesc *txd, *txd_last;
1850 	struct tx_desc *desc;
1851 	struct mbuf *m;
1852 	bus_dmamap_t map;
1853 	uint32_t cflags, poff, vtag;
1854 	int error, idx, nsegs, prod;
1855 #if NVLAN > 0
1856 	struct m_tag *mtag;
1857 #endif
1858 
1859 	m = *m_head;
1860 	cflags = vtag = 0;
1861 	poff = 0;
1862 
1863 	prod = sc->alc_cdata.alc_tx_prod;
1864 	txd = &sc->alc_cdata.alc_txdesc[prod];
1865 	txd_last = txd;
1866 	map = txd->tx_dmamap;
1867 
1868 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1869 
1870 	if (error == EFBIG) {
1871 		error = 0;
1872 
1873 		*m_head = m_pullup(*m_head, MHLEN);
1874 		if (*m_head == NULL) {
1875 			printf("%s: can't defrag TX mbuf\n",
1876 			    device_xname(sc->sc_dev));
1877 			return ENOBUFS;
1878 		}
1879 
1880 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1881 		    BUS_DMA_NOWAIT);
1882 
1883 		if (error != 0) {
1884 			printf("%s: could not load defragged TX mbuf\n",
1885 			    device_xname(sc->sc_dev));
1886 			m_freem(*m_head);
1887 			*m_head = NULL;
1888 			return error;
1889 		}
1890 	} else if (error) {
1891 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1892 		return (error);
1893 	}
1894 
1895 	nsegs = map->dm_nsegs;
1896 
1897 	if (nsegs == 0) {
1898 		m_freem(*m_head);
1899 		*m_head = NULL;
1900 		return (EIO);
1901 	}
1902 
1903 	/* Check descriptor overrun. */
1904 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1905 		bus_dmamap_unload(sc->sc_dmat, map);
1906 		return (ENOBUFS);
1907 	}
1908 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1909 	    BUS_DMASYNC_PREWRITE);
1910 
1911 	m = *m_head;
1912 	desc = NULL;
1913 	idx = 0;
1914 #if NVLAN > 0
1915 	/* Configure VLAN hardware tag insertion. */
1916 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1917 		vtag = htons(VLAN_TAG_VALUE(mtag));
1918 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1919 		cflags |= TD_INS_VLAN_TAG;
1920 	}
1921 #endif
1922 	/* Configure Tx checksum offload. */
1923 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1924 		cflags |= TD_CUSTOM_CSUM;
1925 		/* Set checksum start offset. */
1926 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1927 		    TD_PLOAD_OFFSET_MASK;
1928 	}
1929 	for (; idx < nsegs; idx++) {
1930 		desc = &sc->alc_rdata.alc_tx_ring[prod];
1931 		desc->len =
1932 		    htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
1933 		desc->flags = htole32(cflags);
1934 		desc->addr = htole64(map->dm_segs[idx].ds_addr);
1935 		sc->alc_cdata.alc_tx_cnt++;
1936 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1937 	}
1938 	/* Update producer index. */
1939 	sc->alc_cdata.alc_tx_prod = prod;
1940 
1941 	/* Finally set EOP on the last descriptor. */
1942 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
1943 	desc = &sc->alc_rdata.alc_tx_ring[prod];
1944 	desc->flags |= htole32(TD_EOP);
1945 
1946 	/* Swap dmamap of the first and the last. */
1947 	txd = &sc->alc_cdata.alc_txdesc[prod];
1948 	map = txd_last->tx_dmamap;
1949 	txd_last->tx_dmamap = txd->tx_dmamap;
1950 	txd->tx_dmamap = map;
1951 	txd->tx_m = m;
1952 
1953 	return (0);
1954 }
1955 
1956 static void
alc_start(struct ifnet * ifp)1957 alc_start(struct ifnet *ifp)
1958 {
1959 	struct alc_softc *sc = ifp->if_softc;
1960 	struct mbuf *m_head;
1961 	int enq;
1962 
1963 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1964 		return;
1965 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0)
1966 		return;
1967 	if (IFQ_IS_EMPTY(&ifp->if_snd))
1968 		return;
1969 
1970 	/* Reclaim transmitted frames. */
1971 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
1972 		alc_txeof(sc);
1973 
1974 	enq = 0;
1975 	for (;;) {
1976 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1977 		if (m_head == NULL)
1978 			break;
1979 
1980 		/*
1981 		 * Pack the data into the transmit ring. If we
1982 		 * don't have room, set the OACTIVE flag and wait
1983 		 * for the NIC to drain the ring.
1984 		 */
1985 		if (alc_encap(sc, &m_head)) {
1986 			if (m_head == NULL)
1987 				break;
1988 			ifp->if_flags |= IFF_OACTIVE;
1989 			break;
1990 		}
1991 		enq = 1;
1992 
1993 		/*
1994 		 * If there's a BPF listener, bounce a copy of this frame
1995 		 * to him.
1996 		 */
1997 		bpf_mtap(ifp, m_head);
1998 	}
1999 
2000 	if (enq) {
2001 		/* Sync descriptors. */
2002 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2003 		    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
2004 		    BUS_DMASYNC_PREWRITE);
2005 		/* Kick. Assume we're using normal Tx priority queue. */
2006 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2007 		    (sc->alc_cdata.alc_tx_prod <<
2008 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
2009 		    MBOX_TD_PROD_LO_IDX_MASK);
2010 		/* Set a timeout in case the chip goes out to lunch. */
2011 		ifp->if_timer = ALC_TX_TIMEOUT;
2012 	}
2013 }
2014 
2015 static void
alc_watchdog(struct ifnet * ifp)2016 alc_watchdog(struct ifnet *ifp)
2017 {
2018 	struct alc_softc *sc = ifp->if_softc;
2019 
2020 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2021 		printf("%s: watchdog timeout (missed link)\n",
2022 		    device_xname(sc->sc_dev));
2023 		ifp->if_oerrors++;
2024 		alc_init_backend(ifp, false);
2025 		return;
2026 	}
2027 
2028 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2029 	ifp->if_oerrors++;
2030 	alc_init_backend(ifp, false);
2031 	alc_start(ifp);
2032 }
2033 
2034 static int
alc_ioctl(struct ifnet * ifp,u_long cmd,void * data)2035 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2036 {
2037 	struct alc_softc *sc = ifp->if_softc;
2038 	struct mii_data *mii = &sc->sc_miibus;
2039 	struct ifreq *ifr = (struct ifreq *)data;
2040 	int s, error = 0;
2041 
2042 	s = splnet();
2043 
2044 	error = ether_ioctl(ifp, cmd, data);
2045 	switch (cmd) {
2046 	case SIOCSIFADDR:
2047 		ifp->if_flags |= IFF_UP;
2048 		if (!(ifp->if_flags & IFF_RUNNING))
2049 			alc_init(ifp);
2050 		break;
2051 
2052 	case SIOCSIFFLAGS:
2053 		if (ifp->if_flags & IFF_UP) {
2054 			if (ifp->if_flags & IFF_RUNNING)
2055 				error = ENETRESET;
2056 			else
2057 				alc_init(ifp);
2058 		} else {
2059 			if (ifp->if_flags & IFF_RUNNING)
2060 				alc_stop(ifp, 0);
2061 		}
2062 		break;
2063 
2064 	case SIOCSIFMEDIA:
2065 	case SIOCGIFMEDIA:
2066 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2067 		break;
2068 
2069 	default:
2070 		error = ether_ioctl(ifp, cmd, data);
2071 		break;
2072 	}
2073 
2074 	if (error == ENETRESET) {
2075 		if (ifp->if_flags & IFF_RUNNING)
2076 			alc_iff(sc);
2077 		error = 0;
2078 	}
2079 
2080 	splx(s);
2081 	return (error);
2082 }
2083 
2084 static void
alc_mac_config(struct alc_softc * sc)2085 alc_mac_config(struct alc_softc *sc)
2086 {
2087 	struct mii_data *mii;
2088 	uint32_t reg;
2089 
2090 	mii = &sc->sc_miibus;
2091 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2092 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2093 	    MAC_CFG_SPEED_MASK);
2094 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
2095 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
2096 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2097 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2098 	/* Reprogram MAC with resolved speed/duplex. */
2099 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2100 	case IFM_10_T:
2101 	case IFM_100_TX:
2102 		reg |= MAC_CFG_SPEED_10_100;
2103 		break;
2104 	case IFM_1000_T:
2105 		reg |= MAC_CFG_SPEED_1000;
2106 		break;
2107 	}
2108 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2109 		reg |= MAC_CFG_FULL_DUPLEX;
2110 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2111 			reg |= MAC_CFG_TX_FC;
2112 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2113 			reg |= MAC_CFG_RX_FC;
2114 	}
2115 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2116 }
2117 
2118 static void
alc_stats_clear(struct alc_softc * sc)2119 alc_stats_clear(struct alc_softc *sc)
2120 {
2121 	struct smb sb, *smb;
2122 	uint32_t *reg;
2123 	int i;
2124 
2125 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2126 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2127 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
2128 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2129 		smb = sc->alc_rdata.alc_smb;
2130 		/* Update done, clear. */
2131 		smb->updated = 0;
2132 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2133 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
2134 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2135 	} else {
2136 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2137 		    reg++) {
2138 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2139 			i += sizeof(uint32_t);
2140 		}
2141 		/* Read Tx statistics. */
2142 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2143 		    reg++) {
2144 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2145 			i += sizeof(uint32_t);
2146 		}
2147 	}
2148 }
2149 
2150 static void
alc_stats_update(struct alc_softc * sc)2151 alc_stats_update(struct alc_softc *sc)
2152 {
2153 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2154 	struct alc_hw_stats *stat;
2155 	struct smb sb, *smb;
2156 	uint32_t *reg;
2157 	int i;
2158 
2159 	stat = &sc->alc_stats;
2160 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2161 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2162 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
2163 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2164 		smb = sc->alc_rdata.alc_smb;
2165 		if (smb->updated == 0)
2166 			return;
2167 	} else {
2168 		smb = &sb;
2169 		/* Read Rx statistics. */
2170 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2171 		    reg++) {
2172 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2173 			i += sizeof(uint32_t);
2174 		}
2175 		/* Read Tx statistics. */
2176 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2177 		    reg++) {
2178 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2179 			i += sizeof(uint32_t);
2180 		}
2181 	}
2182 
2183 	/* Rx stats. */
2184 	stat->rx_frames += smb->rx_frames;
2185 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2186 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2187 	stat->rx_pause_frames += smb->rx_pause_frames;
2188 	stat->rx_control_frames += smb->rx_control_frames;
2189 	stat->rx_crcerrs += smb->rx_crcerrs;
2190 	stat->rx_lenerrs += smb->rx_lenerrs;
2191 	stat->rx_bytes += smb->rx_bytes;
2192 	stat->rx_runts += smb->rx_runts;
2193 	stat->rx_fragments += smb->rx_fragments;
2194 	stat->rx_pkts_64 += smb->rx_pkts_64;
2195 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2196 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2197 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2198 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2199 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2200 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2201 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2202 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2203 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2204 	stat->rx_alignerrs += smb->rx_alignerrs;
2205 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2206 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2207 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2208 
2209 	/* Tx stats. */
2210 	stat->tx_frames += smb->tx_frames;
2211 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2212 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2213 	stat->tx_pause_frames += smb->tx_pause_frames;
2214 	stat->tx_excess_defer += smb->tx_excess_defer;
2215 	stat->tx_control_frames += smb->tx_control_frames;
2216 	stat->tx_deferred += smb->tx_deferred;
2217 	stat->tx_bytes += smb->tx_bytes;
2218 	stat->tx_pkts_64 += smb->tx_pkts_64;
2219 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2220 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2221 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2222 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2223 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2224 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2225 	stat->tx_single_colls += smb->tx_single_colls;
2226 	stat->tx_multi_colls += smb->tx_multi_colls;
2227 	stat->tx_late_colls += smb->tx_late_colls;
2228 	stat->tx_excess_colls += smb->tx_excess_colls;
2229 	stat->tx_underrun += smb->tx_underrun;
2230 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2231 	stat->tx_lenerrs += smb->tx_lenerrs;
2232 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2233 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2234 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2235 
2236 	/* Update counters in ifnet. */
2237 	ifp->if_opackets += smb->tx_frames;
2238 
2239 	ifp->if_collisions += smb->tx_single_colls +
2240 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2241 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2242 
2243 	ifp->if_oerrors += smb->tx_late_colls + smb->tx_excess_colls +
2244 	    smb->tx_underrun + smb->tx_pkts_truncated;
2245 
2246 	ifp->if_ipackets += smb->rx_frames;
2247 
2248 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2249 	    smb->rx_runts + smb->rx_pkts_truncated +
2250 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2251 	    smb->rx_alignerrs;
2252 
2253 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2254 		/* Update done, clear. */
2255 		smb->updated = 0;
2256 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2257 		sc->alc_cdata.alc_smb_map->dm_mapsize,
2258 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2259 	}
2260 }
2261 
2262 static int
alc_intr(void * arg)2263 alc_intr(void *arg)
2264 {
2265 	struct alc_softc *sc = arg;
2266 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2267 	uint32_t status;
2268 
2269 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2270 	if ((status & ALC_INTRS) == 0)
2271 		return (0);
2272 
2273 	/* Acknowledge and disable interrupts. */
2274 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2275 
2276 	if (ifp->if_flags & IFF_RUNNING) {
2277 		if (status & INTR_RX_PKT) {
2278 			int error;
2279 
2280 			error = alc_rxintr(sc);
2281 			if (error) {
2282 				alc_init_backend(ifp, false);
2283 				return (0);
2284 			}
2285 		}
2286 
2287 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2288 		    INTR_TXQ_TO_RST)) {
2289 			if (status & INTR_DMA_RD_TO_RST)
2290 				printf("%s: DMA read error! -- resetting\n",
2291 				    device_xname(sc->sc_dev));
2292 			if (status & INTR_DMA_WR_TO_RST)
2293 				printf("%s: DMA write error! -- resetting\n",
2294 				    device_xname(sc->sc_dev));
2295 			if (status & INTR_TXQ_TO_RST)
2296 				printf("%s: TxQ reset! -- resetting\n",
2297 				    device_xname(sc->sc_dev));
2298 			alc_init_backend(ifp, false);
2299 			return (0);
2300 		}
2301 
2302 		alc_txeof(sc);
2303 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
2304 			alc_start(ifp);
2305 	}
2306 
2307 	/* Re-enable interrupts. */
2308 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2309 	return (1);
2310 }
2311 
2312 static void
alc_txeof(struct alc_softc * sc)2313 alc_txeof(struct alc_softc *sc)
2314 {
2315 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2316 	struct alc_txdesc *txd;
2317 	uint32_t cons, prod;
2318 	int prog;
2319 
2320 	if (sc->alc_cdata.alc_tx_cnt == 0)
2321 		return;
2322 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2323 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
2324 	    BUS_DMASYNC_POSTREAD);
2325 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2326 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2327 		    sc->alc_cdata.alc_cmb_map->dm_mapsize,
2328 		    BUS_DMASYNC_POSTREAD);
2329 		prod = sc->alc_rdata.alc_cmb->cons;
2330 	} else
2331 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2332 	/* Assume we're using normal Tx priority queue. */
2333 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2334 	    MBOX_TD_CONS_LO_IDX_SHIFT;
2335 	cons = sc->alc_cdata.alc_tx_cons;
2336 	/*
2337 	 * Go through our Tx list and free mbufs for those
2338 	 * frames which have been transmitted.
2339 	 */
2340 	for (prog = 0; cons != prod; prog++,
2341 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2342 		if (sc->alc_cdata.alc_tx_cnt <= 0)
2343 			break;
2344 		prog++;
2345 		ifp->if_flags &= ~IFF_OACTIVE;
2346 		sc->alc_cdata.alc_tx_cnt--;
2347 		txd = &sc->alc_cdata.alc_txdesc[cons];
2348 		if (txd->tx_m != NULL) {
2349 			/* Reclaim transmitted mbufs. */
2350 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
2351 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2352 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
2353 			m_freem(txd->tx_m);
2354 			txd->tx_m = NULL;
2355 		}
2356 	}
2357 
2358 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2359 	    bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2360 	        sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2361 	sc->alc_cdata.alc_tx_cons = cons;
2362 	/*
2363 	 * Unarm watchdog timer only when there is no pending
2364 	 * frames in Tx queue.
2365 	 */
2366 	if (sc->alc_cdata.alc_tx_cnt == 0)
2367 		ifp->if_timer = 0;
2368 }
2369 
2370 static int
alc_newbuf(struct alc_softc * sc,struct alc_rxdesc * rxd,bool init)2371 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, bool init)
2372 {
2373 	struct mbuf *m;
2374 	bus_dmamap_t map;
2375 	int error;
2376 
2377 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2378 	if (m == NULL)
2379 		return (ENOBUFS);
2380 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2381 	if (!(m->m_flags & M_EXT)) {
2382 		m_freem(m);
2383 		return (ENOBUFS);
2384 	}
2385 
2386 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2387 
2388 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2389 	    sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
2390 
2391 	if (error != 0) {
2392 		m_freem(m);
2393 
2394 		if (init)
2395 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2396 
2397 		return (error);
2398 	}
2399 
2400 	if (rxd->rx_m != NULL) {
2401 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2402 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2403 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2404 	}
2405 	map = rxd->rx_dmamap;
2406 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2407 	sc->alc_cdata.alc_rx_sparemap = map;
2408 	bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
2409 	    BUS_DMASYNC_PREREAD);
2410 	rxd->rx_m = m;
2411 	rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2412 	return (0);
2413 }
2414 
2415 static int
alc_rxintr(struct alc_softc * sc)2416 alc_rxintr(struct alc_softc *sc)
2417 {
2418 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2419 	struct rx_rdesc *rrd;
2420 	uint32_t nsegs, status;
2421 	int rr_cons, prog;
2422 
2423 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2424 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
2425 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2426 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2427 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
2428 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2429 	rr_cons = sc->alc_cdata.alc_rr_cons;
2430 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
2431 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2432 		status = le32toh(rrd->status);
2433 		if ((status & RRD_VALID) == 0)
2434 			break;
2435 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2436 		if (nsegs == 0) {
2437 			/* This should not happen! */
2438 			if (alcdebug)
2439 				printf("%s: unexpected segment count -- "
2440 				    "resetting\n", device_xname(sc->sc_dev));
2441 			return (EIO);
2442 		}
2443 		alc_rxeof(sc, rrd);
2444 		/* Clear Rx return status. */
2445 		rrd->status = 0;
2446 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2447 		sc->alc_cdata.alc_rx_cons += nsegs;
2448 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2449 		prog += nsegs;
2450 	}
2451 
2452 	if (prog > 0) {
2453 		/* Update the consumer index. */
2454 		sc->alc_cdata.alc_rr_cons = rr_cons;
2455 		/* Sync Rx return descriptors. */
2456 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2457 		    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
2458 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2459 		/*
2460 		 * Sync updated Rx descriptors such that controller see
2461 		 * modified buffer addresses.
2462 		 */
2463 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2464 		    sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
2465 		    BUS_DMASYNC_PREWRITE);
2466 		/*
2467 		 * Let controller know availability of new Rx buffers.
2468 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2469 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2470 		 * only when Rx buffer pre-fetching is required. In
2471 		 * addition we already set ALC_RX_RD_FREE_THRESH to
2472 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2473 		 * it still seems that pre-fetching needs more
2474 		 * experimentation.
2475 		 */
2476 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2477 		    sc->alc_cdata.alc_rx_cons);
2478 	}
2479 
2480 	return (0);
2481 }
2482 
2483 /* Receive a frame. */
2484 static void
alc_rxeof(struct alc_softc * sc,struct rx_rdesc * rrd)2485 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2486 {
2487 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2488 	struct alc_rxdesc *rxd;
2489 	struct mbuf *mp, *m;
2490 	uint32_t rdinfo, status;
2491 	int count, nsegs, rx_cons;
2492 
2493 	status = le32toh(rrd->status);
2494 	rdinfo = le32toh(rrd->rdinfo);
2495 	rx_cons = RRD_RD_IDX(rdinfo);
2496 	nsegs = RRD_RD_CNT(rdinfo);
2497 
2498 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2499 	if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
2500 		/*
2501 		 * We want to pass the following frames to upper
2502 		 * layer regardless of error status of Rx return
2503 		 * ring.
2504 		 *
2505 		 *  o IP/TCP/UDP checksum is bad.
2506 		 *  o frame length and protocol specific length
2507 		 *     does not match.
2508 		 *
2509 		 *  Force network stack compute checksum for
2510 		 *  errored frames.
2511 		 */
2512 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2513 		if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
2514 		    RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
2515 			return;
2516 	}
2517 
2518 	for (count = 0; count < nsegs; count++,
2519 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2520 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2521 		mp = rxd->rx_m;
2522 		/* Add a new receive buffer to the ring. */
2523 		if (alc_newbuf(sc, rxd, false) != 0) {
2524 			ifp->if_iqdrops++;
2525 			/* Reuse Rx buffers. */
2526 			if (sc->alc_cdata.alc_rxhead != NULL)
2527 				m_freem(sc->alc_cdata.alc_rxhead);
2528 			break;
2529 		}
2530 
2531 		/*
2532 		 * Assume we've received a full sized frame.
2533 		 * Actual size is fixed when we encounter the end of
2534 		 * multi-segmented frame.
2535 		 */
2536 		mp->m_len = sc->alc_buf_size;
2537 
2538 		/* Chain received mbufs. */
2539 		if (sc->alc_cdata.alc_rxhead == NULL) {
2540 			sc->alc_cdata.alc_rxhead = mp;
2541 			sc->alc_cdata.alc_rxtail = mp;
2542 		} else {
2543 			mp->m_flags &= ~M_PKTHDR;
2544 			sc->alc_cdata.alc_rxprev_tail =
2545 			    sc->alc_cdata.alc_rxtail;
2546 			sc->alc_cdata.alc_rxtail->m_next = mp;
2547 			sc->alc_cdata.alc_rxtail = mp;
2548 		}
2549 
2550 		if (count == nsegs - 1) {
2551 			/* Last desc. for this frame. */
2552 			m = sc->alc_cdata.alc_rxhead;
2553 			m->m_flags |= M_PKTHDR;
2554 			/*
2555 			 * It seems that L1C/L2C controller has no way
2556 			 * to tell hardware to strip CRC bytes.
2557 			 */
2558 			m->m_pkthdr.len =
2559 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
2560 			if (nsegs > 1) {
2561 				/* Set last mbuf size. */
2562 				mp->m_len = sc->alc_cdata.alc_rxlen -
2563 				    (nsegs - 1) * sc->alc_buf_size;
2564 				/* Remove the CRC bytes in chained mbufs. */
2565 				if (mp->m_len <= ETHER_CRC_LEN) {
2566 					sc->alc_cdata.alc_rxtail =
2567 					    sc->alc_cdata.alc_rxprev_tail;
2568 					sc->alc_cdata.alc_rxtail->m_len -=
2569 					    (ETHER_CRC_LEN - mp->m_len);
2570 					sc->alc_cdata.alc_rxtail->m_next = NULL;
2571 					m_freem(mp);
2572 				} else {
2573 					mp->m_len -= ETHER_CRC_LEN;
2574 				}
2575 			} else
2576 				m->m_len = m->m_pkthdr.len;
2577 			m_set_rcvif(m, ifp);
2578 #if NVLAN > 0
2579 			/*
2580 			 * Due to hardware bugs, Rx checksum offloading
2581 			 * was intentionally disabled.
2582 			 */
2583 			if (status & RRD_VLAN_TAG) {
2584 				u_int32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
2585 				VLAN_INPUT_TAG(ifp, m, ntohs(vtag), );
2586 			}
2587 #endif
2588 
2589 			bpf_mtap(ifp, m);
2590 
2591 			/* Pass it on. */
2592 			if_percpuq_enqueue(ifp->if_percpuq, m);
2593 		}
2594 	}
2595 	/* Reset mbuf chains. */
2596 	ALC_RXCHAIN_RESET(sc);
2597 }
2598 
2599 static void
alc_tick(void * xsc)2600 alc_tick(void *xsc)
2601 {
2602 	struct alc_softc *sc = xsc;
2603 	struct mii_data *mii = &sc->sc_miibus;
2604 	int s;
2605 
2606 	s = splnet();
2607 	mii_tick(mii);
2608 	alc_stats_update(sc);
2609 	splx(s);
2610 
2611 	callout_schedule(&sc->sc_tick_ch, hz);
2612 }
2613 
2614 static void
alc_osc_reset(struct alc_softc * sc)2615 alc_osc_reset(struct alc_softc *sc)
2616 {
2617 	uint32_t reg;
2618 
2619 	reg = CSR_READ_4(sc, ALC_MISC3);
2620 	reg &= ~MISC3_25M_BY_SW;
2621 	reg |= MISC3_25M_NOTO_INTNL;
2622 	CSR_WRITE_4(sc, ALC_MISC3, reg);
2623 
2624 	reg = CSR_READ_4(sc, ALC_MISC);
2625 	if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0) {
2626 		/*
2627 		 * Restore over-current protection default value.
2628 		 * This value could be reset by MAC reset.
2629 		 */
2630 		reg &= ~MISC_PSW_OCP_MASK;
2631 		reg |= (MISC_PSW_OCP_DEFAULT << MISC_PSW_OCP_SHIFT);
2632 		reg &= ~MISC_INTNLOSC_OPEN;
2633 		CSR_WRITE_4(sc, ALC_MISC, reg);
2634 		CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2635 		reg = CSR_READ_4(sc, ALC_MISC2);
2636 		reg &= ~MISC2_CALB_START;
2637 		CSR_WRITE_4(sc, ALC_MISC2, reg);
2638 		CSR_WRITE_4(sc, ALC_MISC2, reg | MISC2_CALB_START);
2639 
2640 	} else {
2641 		reg &= ~MISC_INTNLOSC_OPEN;
2642 		/* Disable isolate for revision A devices. */
2643 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2644 			reg &= ~MISC_ISO_ENB;
2645 		CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2646 		CSR_WRITE_4(sc, ALC_MISC, reg);
2647 	}
2648 
2649 	DELAY(20);
2650 }
2651 
2652 static void
alc_reset(struct alc_softc * sc)2653 alc_reset(struct alc_softc *sc)
2654 {
2655 	uint32_t pmcfg, reg;
2656 	int i;
2657 
2658 	pmcfg = 0;
2659 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2660 		/* Reset workaround. */
2661 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, 1);
2662 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2663 		    (sc->alc_rev & 0x01) != 0) {
2664 			/* Disable L0s/L1s before reset. */
2665 			pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
2666 			if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2667 			    != 0) {
2668 				pmcfg &= ~(PM_CFG_ASPM_L0S_ENB |
2669 				    PM_CFG_ASPM_L1_ENB);
2670 				CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2671 			}
2672 		}
2673 	}
2674 	reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2675 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2676 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2677 
2678 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2679 		for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2680 			DELAY(10);
2681 			if (CSR_READ_4(sc, ALC_MBOX_RD0_PROD_IDX) == 0)
2682 				break;
2683 		}
2684 		if (i == 0)
2685 			printf("%s: MAC reset timeout!\n", device_xname(sc->sc_dev));
2686 	}
2687 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2688 		DELAY(10);
2689 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2690 			break;
2691 	}
2692 	if (i == 0)
2693 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
2694 
2695 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2696 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2697 		if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC |
2698 		    IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
2699 			break;
2700 		DELAY(10);
2701 	}
2702 	if (i == 0)
2703 		printf("%s: reset timeout(0x%08x)!\n",
2704 		    device_xname(sc->sc_dev), reg);
2705 
2706 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2707 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2708 		    (sc->alc_rev & 0x01) != 0) {
2709 			reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2710 			reg |= MASTER_CLK_SEL_DIS;
2711 			CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2712 			/* Restore L0s/L1s config. */
2713 			if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2714 			    != 0)
2715 				CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2716 		}
2717 
2718 		alc_osc_reset(sc);
2719 		reg = CSR_READ_4(sc, ALC_MISC3);
2720 		reg &= ~MISC3_25M_BY_SW;
2721 		reg |= MISC3_25M_NOTO_INTNL;
2722 		CSR_WRITE_4(sc, ALC_MISC3, reg);
2723 		reg = CSR_READ_4(sc, ALC_MISC);
2724 		reg &= ~MISC_INTNLOSC_OPEN;
2725 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2726 			reg &= ~MISC_ISO_ENB;
2727 		CSR_WRITE_4(sc, ALC_MISC, reg);
2728 		DELAY(20);
2729 	}
2730 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
2731 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2732 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
2733 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
2734 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
2735 		    SERDES_PHY_CLK_SLOWDOWN);
2736 }
2737 
2738 static int
alc_init(struct ifnet * ifp)2739 alc_init(struct ifnet *ifp)
2740 {
2741 
2742 	return alc_init_backend(ifp, true);
2743 }
2744 
2745 static int
alc_init_backend(struct ifnet * ifp,bool init)2746 alc_init_backend(struct ifnet *ifp, bool init)
2747 {
2748 	struct alc_softc *sc = ifp->if_softc;
2749 	struct mii_data *mii;
2750 	uint8_t eaddr[ETHER_ADDR_LEN];
2751 	bus_addr_t paddr;
2752 	uint32_t reg, rxf_hi, rxf_lo;
2753 	int error;
2754 
2755 	/*
2756 	 * Cancel any pending I/O.
2757 	 */
2758 	alc_stop(ifp, 0);
2759 	/*
2760 	 * Reset the chip to a known state.
2761 	 */
2762 	alc_reset(sc);
2763 
2764 	/* Initialize Rx descriptors. */
2765 	error = alc_init_rx_ring(sc, init);
2766 	if (error != 0) {
2767 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
2768 		alc_stop(ifp, 0);
2769 		return (error);
2770 	}
2771 	alc_init_rr_ring(sc);
2772 	alc_init_tx_ring(sc);
2773 	alc_init_cmb(sc);
2774 	alc_init_smb(sc);
2775 
2776 	/* Enable all clocks. */
2777 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2778 		CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, CLK_GATING_DMAW_ENB |
2779 		    CLK_GATING_DMAR_ENB | CLK_GATING_TXQ_ENB |
2780 		    CLK_GATING_RXQ_ENB | CLK_GATING_TXMAC_ENB |
2781 		    CLK_GATING_RXMAC_ENB);
2782 		if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0)
2783 			CSR_WRITE_4(sc, ALC_IDLE_DECISN_TIMER,
2784 			    IDLE_DECISN_TIMER_DEFAULT_1MS);
2785 	} else
2786 		CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
2787 
2788 
2789 	/* Reprogram the station address. */
2790 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
2791 	CSR_WRITE_4(sc, ALC_PAR0,
2792 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2793 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2794 	/*
2795 	 * Clear WOL status and disable all WOL feature as WOL
2796 	 * would interfere Rx operation under normal environments.
2797 	 */
2798 	CSR_READ_4(sc, ALC_WOL_CFG);
2799 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2800 	/* Set Tx descriptor base addresses. */
2801 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
2802 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2803 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2804 	/* We don't use high priority ring. */
2805 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2806 	/* Set Tx descriptor counter. */
2807 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2808 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2809 	/* Set Rx descriptor base addresses. */
2810 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
2811 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2812 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2813 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2814 		/* We use one Rx ring. */
2815 		CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2816 		CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2817 		CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2818 	}
2819 	/* Set Rx descriptor counter. */
2820 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2821 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2822 
2823 	/*
2824 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2825 	 * if it do not fit the buffer size. Rx return descriptor holds
2826 	 * a counter that indicates how many fragments were made by the
2827 	 * hardware. The buffer size should be multiple of 8 bytes.
2828 	 * Since hardware has limit on the size of buffer size, always
2829 	 * use the maximum value.
2830 	 * For strict-alignment architectures make sure to reduce buffer
2831 	 * size by 8 bytes to make room for alignment fixup.
2832 	 */
2833 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
2834 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2835 
2836 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
2837 	/* Set Rx return descriptor base addresses. */
2838 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2839 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2840 		/* We use one Rx return ring. */
2841 		CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2842 		CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2843 		CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2844 	}\
2845 	/* Set Rx return descriptor counter. */
2846 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2847 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2848 	paddr = sc->alc_rdata.alc_cmb_paddr;
2849 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2850 	paddr = sc->alc_rdata.alc_smb_paddr;
2851 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2852 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2853 
2854 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
2855 		/* Reconfigure SRAM - Vendor magic. */
2856 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
2857 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
2858 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
2859 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
2860 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
2861 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
2862 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
2863 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
2864 	}
2865 
2866 	/* Tell hardware that we're ready to load DMA blocks. */
2867 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2868 
2869 	/* Configure interrupt moderation timer. */
2870 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
2871 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
2872 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2873 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0)
2874 		reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2875 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
2876 	/*
2877 	 * We don't want to automatic interrupt clear as task queue
2878 	 * for the interrupt should know interrupt status.
2879 	 */
2880 	reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2881 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2882 	reg |= MASTER_SA_TIMER_ENB;
2883 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
2884 		reg |= MASTER_IM_RX_TIMER_ENB;
2885 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0 &&
2886 	    ALC_USECS(sc->alc_int_tx_mod) != 0)
2887 		reg |= MASTER_IM_TX_TIMER_ENB;
2888 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2889 	/*
2890 	 * Disable interrupt re-trigger timer. We don't want automatic
2891 	 * re-triggering of un-ACKed interrupts.
2892 	 */
2893 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
2894 	/* Configure CMB. */
2895 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2896 		CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, ALC_TX_RING_CNT / 3);
2897 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER,
2898 		    ALC_USECS(sc->alc_int_tx_mod));
2899 	} else {
2900 		if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2901 			CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
2902 			CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
2903 		} else
2904 			CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
2905 	}
2906 	/*
2907 	 * Hardware can be configured to issue SMB interrupt based
2908 	 * on programmed interval. Since there is a callout that is
2909 	 * invoked for every hz in driver we use that instead of
2910 	 * relying on periodic SMB interrupt.
2911 	 */
2912 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
2913 	/* Clear MAC statistics. */
2914 	alc_stats_clear(sc);
2915 
2916 	/*
2917 	 * Always use maximum frame size that controller can support.
2918 	 * Otherwise received frames that has larger frame length
2919 	 * than alc(4) MTU would be silently dropped in hardware. This
2920 	 * would make path-MTU discovery hard as sender wouldn't get
2921 	 * any responses from receiver. alc(4) supports
2922 	 * multi-fragmented frames on Rx path so it has no issue on
2923 	 * assembling fragmented frames. Using maximum frame size also
2924 	 * removes the need to reinitialize hardware when interface
2925 	 * MTU configuration was changed.
2926 	 *
2927 	 * Be conservative in what you do, be liberal in what you
2928 	 * accept from others - RFC 793.
2929 	 */
2930 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
2931 
2932 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2933 		/* Disable header split(?) */
2934 		CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
2935 
2936 		/* Configure IPG/IFG parameters. */
2937 		CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
2938 		    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) &
2939 		    IPG_IFG_IPGT_MASK) |
2940 		    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) &
2941 		    IPG_IFG_MIFG_MASK) |
2942 		    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) &
2943 		    IPG_IFG_IPG1_MASK) |
2944 		    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) &
2945 		    IPG_IFG_IPG2_MASK));
2946 		/* Set parameters for half-duplex media. */
2947 		CSR_WRITE_4(sc, ALC_HDPX_CFG,
2948 		    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2949 		    HDPX_CFG_LCOL_MASK) |
2950 		    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2951 		    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2952 		    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2953 		    HDPX_CFG_ABEBT_MASK) |
2954 		    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2955 		    HDPX_CFG_JAMIPG_MASK));
2956 	}
2957 
2958 	/*
2959 	 * Set TSO/checksum offload threshold. For frames that is
2960 	 * larger than this threshold, hardware wouldn't do
2961 	 * TSO/checksum offloading.
2962 	 */
2963 	reg = (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
2964 	    TSO_OFFLOAD_THRESH_MASK;
2965 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
2966 		reg |= TSO_OFFLOAD_ERRLGPKT_DROP_ENB;
2967 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH, reg);
2968 	/* Configure TxQ. */
2969 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
2970 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
2971 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2972 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2973 		reg >>= 1;
2974 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
2975 	    TXQ_CFG_TD_BURST_MASK;
2976 	reg |= TXQ_CFG_IP_OPTION_ENB | TXQ_CFG_8023_ENB;
2977 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
2978 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2979 		reg = (TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q1_BURST_SHIFT |
2980 		    TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q2_BURST_SHIFT |
2981 		    TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q3_BURST_SHIFT |
2982 		    HQTD_CFG_BURST_ENB);
2983 		CSR_WRITE_4(sc, ALC_HQTD_CFG, reg);
2984 		reg = WRR_PRI_RESTRICT_NONE;
2985 		reg |= (WRR_PRI_DEFAULT << WRR_PRI0_SHIFT |
2986 		    WRR_PRI_DEFAULT << WRR_PRI1_SHIFT |
2987 		    WRR_PRI_DEFAULT << WRR_PRI2_SHIFT |
2988 		    WRR_PRI_DEFAULT << WRR_PRI3_SHIFT);
2989 		CSR_WRITE_4(sc, ALC_WRR, reg);
2990 	} else {
2991 		/* Configure Rx free descriptor pre-fetching. */
2992 		CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
2993 		    ((RX_RD_FREE_THRESH_HI_DEFAULT <<
2994 		    RX_RD_FREE_THRESH_HI_SHIFT) & RX_RD_FREE_THRESH_HI_MASK) |
2995 		    ((RX_RD_FREE_THRESH_LO_DEFAULT <<
2996 		    RX_RD_FREE_THRESH_LO_SHIFT) & RX_RD_FREE_THRESH_LO_MASK));
2997 	}
2998 
2999 	/*
3000 	 * Configure flow control parameters.
3001 	 * XON  : 80% of Rx FIFO
3002 	 * XOFF : 30% of Rx FIFO
3003 	 */
3004 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3005 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3006 		reg &= SRAM_RX_FIFO_LEN_MASK;
3007 		reg *= 8;
3008 		if (reg > 8 * 1024)
3009 			reg -= RX_FIFO_PAUSE_816X_RSVD;
3010 		else
3011 			reg -= RX_BUF_SIZE_MAX;
3012 		reg /= 8;
3013 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3014 		    ((reg << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3015 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
3016 		    (((RX_FIFO_PAUSE_816X_RSVD / 8) <<
3017 		    RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3018 		    RX_FIFO_PAUSE_THRESH_HI_MASK));
3019 	} else if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
3020 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
3021 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3022 		rxf_hi = (reg * 8) / 10;
3023 		rxf_lo = (reg * 3) / 10;
3024 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3025 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3026 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
3027 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3028 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
3029 	}
3030 
3031 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3032 		/* Disable RSS until I understand L1C/L2C's RSS logic. */
3033 		CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3034 		CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3035 	}
3036 
3037 	/* Configure RxQ. */
3038 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3039 	    RXQ_CFG_RD_BURST_MASK;
3040 	reg |= RXQ_CFG_RSS_MODE_DIS;
3041 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
3042 		reg |= (RXQ_CFG_816X_IDT_TBL_SIZE_DEFAULT <<
3043 		    RXQ_CFG_816X_IDT_TBL_SIZE_SHIFT) &
3044 		    RXQ_CFG_816X_IDT_TBL_SIZE_MASK;
3045 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0 &&
3046 	    sc->alc_ident->deviceid != PCI_PRODUCT_ATTANSIC_AR8151_V2)
3047  		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
3048 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3049 
3050 	/* Configure DMA parameters. */
3051 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3052 	reg |= sc->alc_rcb;
3053 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3054 		reg |= DMA_CFG_CMB_ENB;
3055 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3056 		reg |= DMA_CFG_SMB_ENB;
3057 	else
3058 		reg |= DMA_CFG_SMB_DIS;
3059 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3060 	    DMA_CFG_RD_BURST_SHIFT;
3061 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3062 	    DMA_CFG_WR_BURST_SHIFT;
3063 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3064 	    DMA_CFG_RD_DELAY_CNT_MASK;
3065 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3066 	    DMA_CFG_WR_DELAY_CNT_MASK;
3067 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3068 		switch (AR816X_REV(sc->alc_rev)) {
3069 		case AR816X_REV_A0:
3070 		case AR816X_REV_A1:
3071 			reg |= DMA_CFG_RD_CHNL_SEL_1;
3072 			break;
3073 		case AR816X_REV_B0:
3074 			/* FALLTHROUGH */
3075 		default:
3076 			reg |= DMA_CFG_RD_CHNL_SEL_3;
3077 			break;
3078 		}
3079 	}
3080 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3081 
3082 	/*
3083 	 * Configure Tx/Rx MACs.
3084 	 *  - Auto-padding for short frames.
3085 	 *  - Enable CRC generation.
3086 	 *  Actual reconfiguration of MAC for resolved speed/duplex
3087 	 *  is followed after detection of link establishment.
3088 	 *  AR813x/AR815x always does checksum computation regardless
3089 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3090 	 *  have bug in protocol field in Rx return structure so
3091 	 *  these controllers can't handle fragmented frames. Disable
3092 	 *  Rx checksum offloading until there is a newer controller
3093 	 *  that has sane implementation.
3094 	 */
3095 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3096 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3097 	    MAC_CFG_PREAMBLE_MASK);
3098 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
3099 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
3100 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
3101 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
3102 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3103 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3104 		reg |= MAC_CFG_SPEED_10_100;
3105 	else
3106 		reg |= MAC_CFG_SPEED_1000;
3107 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3108 
3109 	/* Set up the receive filter. */
3110 	alc_iff(sc);
3111 	alc_rxvlan(sc);
3112 
3113 	/* Acknowledge all pending interrupts and clear it. */
3114 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3115 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3116 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3117 
3118 	sc->alc_flags &= ~ALC_FLAG_LINK;
3119 	/* Switch to the current media. */
3120 	mii = &sc->sc_miibus;
3121 	mii_mediachg(mii);
3122 
3123 	callout_schedule(&sc->sc_tick_ch, hz);
3124 
3125 	ifp->if_flags |= IFF_RUNNING;
3126 	ifp->if_flags &= ~IFF_OACTIVE;
3127 
3128 	return (0);
3129 }
3130 
3131 static void
alc_stop(struct ifnet * ifp,int disable)3132 alc_stop(struct ifnet *ifp, int disable)
3133 {
3134 	struct alc_softc *sc = ifp->if_softc;
3135 	struct alc_txdesc *txd;
3136 	struct alc_rxdesc *rxd;
3137 	uint32_t reg;
3138 	int i;
3139 
3140 	callout_stop(&sc->sc_tick_ch);
3141 
3142 	/*
3143 	 * Mark the interface down and cancel the watchdog timer.
3144 	 */
3145 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3146 	ifp->if_timer = 0;
3147 
3148 	sc->alc_flags &= ~ALC_FLAG_LINK;
3149 
3150 	alc_stats_update(sc);
3151 
3152 	mii_down(&sc->sc_miibus);
3153 
3154 	/* Disable interrupts. */
3155 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3156 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3157 
3158 	/* Disable DMA. */
3159 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
3160 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3161 	reg |= DMA_CFG_SMB_DIS;
3162 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3163 	DELAY(1000);
3164 
3165 	/* Stop Rx/Tx MACs. */
3166 	alc_stop_mac(sc);
3167 
3168 	/* Disable interrupts which might be touched in taskq handler. */
3169 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3170 
3171 	/* Disable L0s/L1s */
3172 	alc_aspm(sc, 0, IFM_UNKNOWN);
3173 
3174 	/* Reclaim Rx buffers that have been processed. */
3175 	if (sc->alc_cdata.alc_rxhead != NULL)
3176 		m_freem(sc->alc_cdata.alc_rxhead);
3177 	ALC_RXCHAIN_RESET(sc);
3178 	/*
3179 	 * Free Tx/Rx mbufs still in the queues.
3180 	 */
3181 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3182 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3183 		if (rxd->rx_m != NULL) {
3184 			bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
3185 			    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3186 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
3187 			m_freem(rxd->rx_m);
3188 			rxd->rx_m = NULL;
3189 		}
3190 	}
3191 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3192 		txd = &sc->alc_cdata.alc_txdesc[i];
3193 		if (txd->tx_m != NULL) {
3194 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
3195 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3196 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
3197 			m_freem(txd->tx_m);
3198 			txd->tx_m = NULL;
3199 		}
3200 	}
3201 }
3202 
3203 static void
alc_stop_mac(struct alc_softc * sc)3204 alc_stop_mac(struct alc_softc *sc)
3205 {
3206 	uint32_t reg;
3207 	int i;
3208 
3209 	alc_stop_queue(sc);
3210 	/* Disable Rx/Tx MAC. */
3211 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3212 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3213 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
3214 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3215 	}
3216 	for (i = ALC_TIMEOUT; i > 0; i--) {
3217 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3218 		if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC)) == 0)
3219 			break;
3220 		DELAY(10);
3221 	}
3222 	if (i == 0)
3223 		printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
3224 		    device_xname(sc->sc_dev), reg);
3225 }
3226 
3227 static void
alc_start_queue(struct alc_softc * sc)3228 alc_start_queue(struct alc_softc *sc)
3229 {
3230 	uint32_t qcfg[] = {
3231 		0,
3232 		RXQ_CFG_QUEUE0_ENB,
3233 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3234 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3235 		RXQ_CFG_ENB
3236 	};
3237 	uint32_t cfg;
3238 
3239 	/* Enable RxQ. */
3240 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3241 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3242 		cfg &= ~RXQ_CFG_ENB;
3243 		cfg |= qcfg[1];
3244 	} else
3245 		cfg |= RXQ_CFG_QUEUE0_ENB;
3246 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3247 	/* Enable TxQ. */
3248 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3249 	cfg |= TXQ_CFG_ENB;
3250 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3251 }
3252 
3253 static void
alc_stop_queue(struct alc_softc * sc)3254 alc_stop_queue(struct alc_softc *sc)
3255 {
3256 	uint32_t reg;
3257 	int i;
3258 
3259 	/* Disable RxQ. */
3260 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3261 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3262 		if ((reg & RXQ_CFG_ENB) != 0) {
3263 			reg &= ~RXQ_CFG_ENB;
3264 			CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3265 		}
3266 	} else {
3267 		if ((reg & RXQ_CFG_QUEUE0_ENB) != 0) {
3268 			reg &= ~RXQ_CFG_QUEUE0_ENB;
3269 			CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3270 		}
3271  	}
3272 	/* Disable TxQ. */
3273 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3274 	if ((reg & TXQ_CFG_ENB) != 0) {
3275 		reg &= ~TXQ_CFG_ENB;
3276 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3277 	}
3278 	DELAY(40);
3279 	for (i = ALC_TIMEOUT; i > 0; i--) {
3280 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3281 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3282 			break;
3283 		DELAY(10);
3284 	}
3285 	if (i == 0)
3286 		printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
3287 		    device_xname(sc->sc_dev), reg);
3288 }
3289 
3290 static void
alc_init_tx_ring(struct alc_softc * sc)3291 alc_init_tx_ring(struct alc_softc *sc)
3292 {
3293 	struct alc_ring_data *rd;
3294 	struct alc_txdesc *txd;
3295 	int i;
3296 
3297 	sc->alc_cdata.alc_tx_prod = 0;
3298 	sc->alc_cdata.alc_tx_cons = 0;
3299 	sc->alc_cdata.alc_tx_cnt = 0;
3300 
3301 	rd = &sc->alc_rdata;
3302 	memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
3303 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3304 		txd = &sc->alc_cdata.alc_txdesc[i];
3305 		txd->tx_m = NULL;
3306 	}
3307 
3308 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
3309 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3310 }
3311 
3312 static int
alc_init_rx_ring(struct alc_softc * sc,bool init)3313 alc_init_rx_ring(struct alc_softc *sc, bool init)
3314 {
3315 	struct alc_ring_data *rd;
3316 	struct alc_rxdesc *rxd;
3317 	int i;
3318 
3319 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3320 	rd = &sc->alc_rdata;
3321 	memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
3322 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3323 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3324 		rxd->rx_m = NULL;
3325 		rxd->rx_desc = &rd->alc_rx_ring[i];
3326 		if (alc_newbuf(sc, rxd, init) != 0)
3327 			return (ENOBUFS);
3328 	}
3329 
3330 	/*
3331 	 * Since controller does not update Rx descriptors, driver
3332 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3333 	 * is enough to ensure coherence.
3334 	 */
3335 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
3336 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3337 	/* Let controller know availability of new Rx buffers. */
3338 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3339 
3340 	return (0);
3341 }
3342 
3343 static void
alc_init_rr_ring(struct alc_softc * sc)3344 alc_init_rr_ring(struct alc_softc *sc)
3345 {
3346 	struct alc_ring_data *rd;
3347 
3348 	sc->alc_cdata.alc_rr_cons = 0;
3349 	ALC_RXCHAIN_RESET(sc);
3350 
3351 	rd = &sc->alc_rdata;
3352 	memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
3353 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
3354 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
3355 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3356 }
3357 
3358 static void
alc_init_cmb(struct alc_softc * sc)3359 alc_init_cmb(struct alc_softc *sc)
3360 {
3361 	struct alc_ring_data *rd;
3362 
3363 	rd = &sc->alc_rdata;
3364 	memset(rd->alc_cmb, 0, ALC_CMB_SZ);
3365 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
3366 	    sc->alc_cdata.alc_cmb_map->dm_mapsize,
3367 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3368 }
3369 
3370 static void
alc_init_smb(struct alc_softc * sc)3371 alc_init_smb(struct alc_softc *sc)
3372 {
3373 	struct alc_ring_data *rd;
3374 
3375 	rd = &sc->alc_rdata;
3376 	memset(rd->alc_smb, 0, ALC_SMB_SZ);
3377 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
3378 	    sc->alc_cdata.alc_smb_map->dm_mapsize,
3379 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3380 }
3381 
3382 static void
alc_rxvlan(struct alc_softc * sc)3383 alc_rxvlan(struct alc_softc *sc)
3384 {
3385 	uint32_t reg;
3386 
3387 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3388 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
3389 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3390 	else
3391 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3392 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3393 }
3394 
3395 static void
alc_iff(struct alc_softc * sc)3396 alc_iff(struct alc_softc *sc)
3397 {
3398 	struct ethercom *ec = &sc->sc_ec;
3399 	struct ifnet *ifp = &ec->ec_if;
3400 	struct ether_multi *enm;
3401 	struct ether_multistep step;
3402 	uint32_t crc;
3403 	uint32_t mchash[2];
3404 	uint32_t rxcfg;
3405 
3406 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3407 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3408 	ifp->if_flags &= ~IFF_ALLMULTI;
3409 
3410 	/*
3411 	 * Always accept broadcast frames.
3412 	 */
3413 	rxcfg |= MAC_CFG_BCAST;
3414 
3415 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
3416 		ifp->if_flags |= IFF_ALLMULTI;
3417 		if (ifp->if_flags & IFF_PROMISC)
3418 			rxcfg |= MAC_CFG_PROMISC;
3419 		else
3420 			rxcfg |= MAC_CFG_ALLMULTI;
3421 		mchash[0] = mchash[1] = 0xFFFFFFFF;
3422 	} else {
3423 		/* Program new filter. */
3424 		memset(mchash, 0, sizeof(mchash));
3425 
3426 		ETHER_FIRST_MULTI(step, ec, enm);
3427 		while (enm != NULL) {
3428 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3429 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3430 			ETHER_NEXT_MULTI(step, enm);
3431 		}
3432 	}
3433 
3434 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3435 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3436 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3437 }
3438 
3439 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
3440 
3441 #ifdef _MODULE
3442 #include "ioconf.c"
3443 #endif
3444 
3445 static int
if_alc_modcmd(modcmd_t cmd,void * opaque)3446 if_alc_modcmd(modcmd_t cmd, void *opaque)
3447 {
3448 	int error = 0;
3449 
3450 	switch (cmd) {
3451 	case MODULE_CMD_INIT:
3452 #ifdef _MODULE
3453 		error = config_init_component(cfdriver_ioconf_if_alc,
3454 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3455 #endif
3456 		return error;
3457 	case MODULE_CMD_FINI:
3458 #ifdef _MODULE
3459 		error = config_fini_component(cfdriver_ioconf_if_alc,
3460 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3461 #endif
3462 		return error;
3463 	default:
3464 		return ENOTTY;
3465 	}
3466 }
3467