1 /*	$NetBSD: if_ale.c,v 1.20 2016/02/09 08:32:11 ozaki-r Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30  */
31 
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.20 2016/02/09 08:32:11 ozaki-r Exp $");
36 
37 #include "vlan.h"
38 
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51 
52 #include <sys/bus.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59 
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #endif
66 
67 #include <net/if_types.h>
68 #include <net/if_vlanvar.h>
69 
70 #include <net/bpf.h>
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78 
79 #include <dev/pci/if_alereg.h>
80 
81 static int	ale_match(device_t, cfdata_t, void *);
82 static void	ale_attach(device_t, device_t, void *);
83 static int	ale_detach(device_t, int);
84 
85 static int	ale_miibus_readreg(device_t, int, int);
86 static void	ale_miibus_writereg(device_t, int, int, int);
87 static void	ale_miibus_statchg(struct ifnet *);
88 
89 static int	ale_init(struct ifnet *);
90 static void	ale_start(struct ifnet *);
91 static int	ale_ioctl(struct ifnet *, u_long, void *);
92 static void	ale_watchdog(struct ifnet *);
93 static int	ale_mediachange(struct ifnet *);
94 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
95 
96 static int	ale_intr(void *);
97 static int	ale_rxeof(struct ale_softc *sc);
98 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
99 		    uint32_t, uint32_t *);
100 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
101 static void	ale_txeof(struct ale_softc *);
102 
103 static int	ale_dma_alloc(struct ale_softc *);
104 static void	ale_dma_free(struct ale_softc *);
105 static int	ale_encap(struct ale_softc *, struct mbuf **);
106 static void	ale_init_rx_pages(struct ale_softc *);
107 static void	ale_init_tx_ring(struct ale_softc *);
108 
109 static void	ale_stop(struct ifnet *, int);
110 static void	ale_tick(void *);
111 static void	ale_get_macaddr(struct ale_softc *);
112 static void	ale_mac_config(struct ale_softc *);
113 static void	ale_phy_reset(struct ale_softc *);
114 static void	ale_reset(struct ale_softc *);
115 static void	ale_rxfilter(struct ale_softc *);
116 static void	ale_rxvlan(struct ale_softc *);
117 static void	ale_stats_clear(struct ale_softc *);
118 static void	ale_stats_update(struct ale_softc *);
119 static void	ale_stop_mac(struct ale_softc *);
120 
121 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
122 	ale_match, ale_attach, ale_detach, NULL);
123 
124 int aledebug = 0;
125 #define DPRINTF(x)	do { if (aledebug) printf x; } while (0)
126 
127 #define ETHER_ALIGN 2
128 #define ALE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
129 
130 static int
ale_miibus_readreg(device_t dev,int phy,int reg)131 ale_miibus_readreg(device_t dev, int phy, int reg)
132 {
133 	struct ale_softc *sc = device_private(dev);
134 	uint32_t v;
135 	int i;
136 
137 	if (phy != sc->ale_phyaddr)
138 		return 0;
139 
140 	if (sc->ale_flags & ALE_FLAG_FASTETHER) {
141 		switch (reg) {
142 		case MII_100T2CR:
143 		case MII_100T2SR:
144 		case MII_EXTSR:
145 			return 0;
146 		default:
147 			break;
148 		}
149 	}
150 
151 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
152 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
153 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
154 		DELAY(5);
155 		v = CSR_READ_4(sc, ALE_MDIO);
156 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
157 			break;
158 	}
159 
160 	if (i == 0) {
161 		printf("%s: phy read timeout: phy %d, reg %d\n",
162 		    device_xname(sc->sc_dev), phy, reg);
163 		return 0;
164 	}
165 
166 	return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
167 }
168 
169 static void
ale_miibus_writereg(device_t dev,int phy,int reg,int val)170 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
171 {
172 	struct ale_softc *sc = device_private(dev);
173 	uint32_t v;
174 	int i;
175 
176 	if (phy != sc->ale_phyaddr)
177 		return;
178 
179 	if (sc->ale_flags & ALE_FLAG_FASTETHER) {
180 		switch (reg) {
181 		case MII_100T2CR:
182 		case MII_100T2SR:
183 		case MII_EXTSR:
184 			return;
185 		default:
186 			break;
187 		}
188 	}
189 
190 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
191 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
192 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
193 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
194 		DELAY(5);
195 		v = CSR_READ_4(sc, ALE_MDIO);
196 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
197 			break;
198 	}
199 
200 	if (i == 0)
201 		printf("%s: phy write timeout: phy %d, reg %d\n",
202 		    device_xname(sc->sc_dev), phy, reg);
203 }
204 
205 static void
ale_miibus_statchg(struct ifnet * ifp)206 ale_miibus_statchg(struct ifnet *ifp)
207 {
208 	struct ale_softc *sc = ifp->if_softc;
209 	struct mii_data *mii = &sc->sc_miibus;
210 	uint32_t reg;
211 
212 	if ((ifp->if_flags & IFF_RUNNING) == 0)
213 		return;
214 
215 	sc->ale_flags &= ~ALE_FLAG_LINK;
216 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
217 	    (IFM_ACTIVE | IFM_AVALID)) {
218 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
219 		case IFM_10_T:
220 		case IFM_100_TX:
221 			sc->ale_flags |= ALE_FLAG_LINK;
222 			break;
223 
224 		case IFM_1000_T:
225 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
226 				sc->ale_flags |= ALE_FLAG_LINK;
227 			break;
228 
229 		default:
230 			break;
231 		}
232 	}
233 
234 	/* Stop Rx/Tx MACs. */
235 	ale_stop_mac(sc);
236 
237 	/* Program MACs with resolved speed/duplex/flow-control. */
238 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
239 		ale_mac_config(sc);
240 		/* Reenable Tx/Rx MACs. */
241 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
242 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
243 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
244 	}
245 }
246 
247 void
ale_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)248 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
249 {
250 	struct ale_softc *sc = ifp->if_softc;
251 	struct mii_data *mii = &sc->sc_miibus;
252 
253 	mii_pollstat(mii);
254 	ifmr->ifm_status = mii->mii_media_status;
255 	ifmr->ifm_active = mii->mii_media_active;
256 }
257 
258 int
ale_mediachange(struct ifnet * ifp)259 ale_mediachange(struct ifnet *ifp)
260 {
261 	struct ale_softc *sc = ifp->if_softc;
262 	struct mii_data *mii = &sc->sc_miibus;
263 	int error;
264 
265 	if (mii->mii_instance != 0) {
266 		struct mii_softc *miisc;
267 
268 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
269 			mii_phy_reset(miisc);
270 	}
271 	error = mii_mediachg(mii);
272 
273 	return error;
274 }
275 
276 int
ale_match(device_t dev,cfdata_t match,void * aux)277 ale_match(device_t dev, cfdata_t match, void *aux)
278 {
279 	struct pci_attach_args *pa = aux;
280 
281 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
282 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
283 }
284 
285 void
ale_get_macaddr(struct ale_softc * sc)286 ale_get_macaddr(struct ale_softc *sc)
287 {
288 	uint32_t ea[2], reg;
289 	int i, vpdc;
290 
291 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
292 	if ((reg & SPI_VPD_ENB) != 0) {
293 		reg &= ~SPI_VPD_ENB;
294 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
295 	}
296 
297 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
298 	    &vpdc, NULL)) {
299 		/*
300 		 * PCI VPD capability found, let TWSI reload EEPROM.
301 		 * This will set ethernet address of controller.
302 		 */
303 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
304 		    TWSI_CTRL_SW_LD_START);
305 		for (i = 100; i > 0; i--) {
306 			DELAY(1000);
307 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
308 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
309 				break;
310 		}
311 		if (i == 0)
312 			printf("%s: reloading EEPROM timeout!\n",
313 			    device_xname(sc->sc_dev));
314 	} else {
315 		if (aledebug)
316 			printf("%s: PCI VPD capability not found!\n",
317 			    device_xname(sc->sc_dev));
318 	}
319 
320 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
321 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
322 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
323 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
324 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
325 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
326 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
327 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
328 }
329 
330 void
ale_phy_reset(struct ale_softc * sc)331 ale_phy_reset(struct ale_softc *sc)
332 {
333 	/* Reset magic from Linux. */
334 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
335 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
336 	    GPHY_CTRL_PHY_PLL_ON);
337 	DELAY(1000);
338 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
339 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
340 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
341 	DELAY(1000);
342 
343 #define	ATPHY_DBG_ADDR		0x1D
344 #define	ATPHY_DBG_DATA		0x1E
345 
346 	/* Enable hibernation mode. */
347 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
348 	    ATPHY_DBG_ADDR, 0x0B);
349 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
350 	    ATPHY_DBG_DATA, 0xBC00);
351 	/* Set Class A/B for all modes. */
352 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
353 	    ATPHY_DBG_ADDR, 0x00);
354 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
355 	    ATPHY_DBG_DATA, 0x02EF);
356 	/* Enable 10BT power saving. */
357 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
358 	    ATPHY_DBG_ADDR, 0x12);
359 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
360 	    ATPHY_DBG_DATA, 0x4C04);
361 	/* Adjust 1000T power. */
362 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
363 	    ATPHY_DBG_ADDR, 0x04);
364 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
365 	    ATPHY_DBG_DATA, 0x8BBB);
366 	/* 10BT center tap voltage. */
367 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
368 	    ATPHY_DBG_ADDR, 0x05);
369 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
370 	    ATPHY_DBG_DATA, 0x2C46);
371 
372 #undef	ATPHY_DBG_ADDR
373 #undef	ATPHY_DBG_DATA
374 	DELAY(1000);
375 }
376 
377 void
ale_attach(device_t parent,device_t self,void * aux)378 ale_attach(device_t parent, device_t self, void *aux)
379 {
380 	struct ale_softc *sc = device_private(self);
381 	struct pci_attach_args *pa = aux;
382 	pci_chipset_tag_t pc = pa->pa_pc;
383 	pci_intr_handle_t ih;
384 	const char *intrstr;
385 	struct ifnet *ifp;
386 	pcireg_t memtype;
387 	int mii_flags, error = 0;
388 	uint32_t rxf_len, txf_len;
389 	const char *chipname;
390 	char intrbuf[PCI_INTRSTR_LEN];
391 
392 	aprint_naive("\n");
393 	aprint_normal(": Attansic/Atheros L1E Ethernet\n");
394 
395 	sc->sc_dev = self;
396 	sc->sc_dmat = pa->pa_dmat;
397 	sc->sc_pct = pa->pa_pc;
398 	sc->sc_pcitag = pa->pa_tag;
399 
400 	/*
401 	 * Allocate IO memory
402 	 */
403 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
404 	switch (memtype) {
405 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
406 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
407 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
408 		break;
409 	default:
410 		aprint_error_dev(self, "invalid base address register\n");
411 		break;
412 	}
413 
414 	if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
415 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
416 		aprint_error_dev(self, "could not map mem space\n");
417 		return;
418 	}
419 
420 	if (pci_intr_map(pa, &ih) != 0) {
421 		aprint_error_dev(self, "could not map interrupt\n");
422 		goto fail;
423 	}
424 
425 	/*
426 	 * Allocate IRQ
427 	 */
428 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
429 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
430 	if (sc->sc_irq_handle == NULL) {
431 		aprint_error_dev(self, "could not establish interrupt");
432 		if (intrstr != NULL)
433 			aprint_error(" at %s", intrstr);
434 		aprint_error("\n");
435 		goto fail;
436 	}
437 
438 	/* Set PHY address. */
439 	sc->ale_phyaddr = ALE_PHY_ADDR;
440 
441 	/* Reset PHY. */
442 	ale_phy_reset(sc);
443 
444 	/* Reset the ethernet controller. */
445 	ale_reset(sc);
446 
447 	/* Get PCI and chip id/revision. */
448 	sc->ale_rev = PCI_REVISION(pa->pa_class);
449 	if (sc->ale_rev >= 0xF0) {
450 		/* L2E Rev. B. AR8114 */
451 		sc->ale_flags |= ALE_FLAG_FASTETHER;
452 		chipname = "AR8114 (L2E RevB)";
453 	} else {
454 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
455 			/* L1E AR8121 */
456 			sc->ale_flags |= ALE_FLAG_JUMBO;
457 			chipname = "AR8121 (L1E)";
458 		} else {
459 			/* L2E Rev. A. AR8113 */
460 			sc->ale_flags |= ALE_FLAG_FASTETHER;
461 			chipname = "AR8113 (L2E RevA)";
462 		}
463 	}
464 	aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
465 
466 	/*
467 	 * All known controllers seems to require 4 bytes alignment
468 	 * of Tx buffers to make Tx checksum offload with custom
469 	 * checksum generation method work.
470 	 */
471 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
472 
473 	/*
474 	 * All known controllers seems to have issues on Rx checksum
475 	 * offload for fragmented IP datagrams.
476 	 */
477 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
478 
479 	/*
480 	 * Don't use Tx CMB. It is known to cause RRS update failure
481 	 * under certain circumstances. Typical phenomenon of the
482 	 * issue would be unexpected sequence number encountered in
483 	 * Rx handler.
484 	 */
485 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
486 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
487 	    MASTER_CHIP_REV_SHIFT;
488 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
489 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
490 
491 	/*
492 	 * Uninitialized hardware returns an invalid chip id/revision
493 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
494 	 */
495 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
496 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
497 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
498 	    rxf_len == 0xFFFFFFF) {
499 		aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
500 		    "%u Rx FIFO -- not initialized?\n",
501 		    sc->ale_chip_rev, txf_len, rxf_len);
502 		goto fail;
503 	}
504 
505 	if (aledebug) {
506 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
507 		    txf_len, rxf_len);
508 	}
509 
510 	/* Set max allowable DMA size. */
511 	sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
512 	sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
513 
514 	callout_init(&sc->sc_tick_ch, 0);
515 	callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
516 
517 	error = ale_dma_alloc(sc);
518 	if (error)
519 		goto fail;
520 
521 	/* Load station address. */
522 	ale_get_macaddr(sc);
523 
524 	aprint_normal_dev(self, "Ethernet address %s\n",
525 	    ether_sprintf(sc->ale_eaddr));
526 
527 	ifp = &sc->sc_ec.ec_if;
528 	ifp->if_softc = sc;
529 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
530 	ifp->if_init = ale_init;
531 	ifp->if_ioctl = ale_ioctl;
532 	ifp->if_start = ale_start;
533 	ifp->if_stop = ale_stop;
534 	ifp->if_watchdog = ale_watchdog;
535 	IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
536 	IFQ_SET_READY(&ifp->if_snd);
537 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
538 
539 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
540 
541 #ifdef ALE_CHECKSUM
542 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
543 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
544 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
545 #endif
546 
547 #if NVLAN > 0
548 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
549 #endif
550 
551 	/* Set up MII bus. */
552 	sc->sc_miibus.mii_ifp = ifp;
553 	sc->sc_miibus.mii_readreg = ale_miibus_readreg;
554 	sc->sc_miibus.mii_writereg = ale_miibus_writereg;
555 	sc->sc_miibus.mii_statchg = ale_miibus_statchg;
556 
557 	sc->sc_ec.ec_mii = &sc->sc_miibus;
558 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
559 	    ale_mediastatus);
560 	mii_flags = 0;
561 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
562 		mii_flags |= MIIF_DOPAUSE;
563 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
564 	    MII_OFFSET_ANY, mii_flags);
565 
566 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
567 		aprint_error_dev(self, "no PHY found!\n");
568 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
569 		    0, NULL);
570 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
571 	} else
572 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
573 
574 	if_attach(ifp);
575 	ether_ifattach(ifp, sc->ale_eaddr);
576 
577 	if (pmf_device_register(self, NULL, NULL))
578 		pmf_class_network_register(self, ifp);
579 	else
580 		aprint_error_dev(self, "couldn't establish power handler\n");
581 
582 	return;
583 fail:
584 	ale_dma_free(sc);
585 	if (sc->sc_irq_handle != NULL) {
586 		pci_intr_disestablish(pc, sc->sc_irq_handle);
587 		sc->sc_irq_handle = NULL;
588 	}
589 	if (sc->sc_mem_size) {
590 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
591 		sc->sc_mem_size = 0;
592 	}
593 }
594 
595 static int
ale_detach(device_t self,int flags)596 ale_detach(device_t self, int flags)
597 {
598 	struct ale_softc *sc = device_private(self);
599 	struct ifnet *ifp = &sc->sc_ec.ec_if;
600 	int s;
601 
602 	pmf_device_deregister(self);
603 	s = splnet();
604 	ale_stop(ifp, 0);
605 	splx(s);
606 
607 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
608 
609 	/* Delete all remaining media. */
610 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
611 
612 	ether_ifdetach(ifp);
613 	if_detach(ifp);
614 	ale_dma_free(sc);
615 
616 	if (sc->sc_irq_handle != NULL) {
617 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
618 		sc->sc_irq_handle = NULL;
619 	}
620 	if (sc->sc_mem_size) {
621 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
622 		sc->sc_mem_size = 0;
623 	}
624 
625 	return 0;
626 }
627 
628 
629 static int
ale_dma_alloc(struct ale_softc * sc)630 ale_dma_alloc(struct ale_softc *sc)
631 {
632 	struct ale_txdesc *txd;
633 	int nsegs, error, guard_size, i;
634 
635 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
636 		guard_size = ALE_JUMBO_FRAMELEN;
637 	else
638 		guard_size = ALE_MAX_FRAMELEN;
639 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
640 	    ALE_RX_PAGE_ALIGN);
641 
642 	/*
643 	 * Create DMA stuffs for TX ring
644 	 */
645 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
646 	    ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
647 	if (error) {
648 		sc->ale_cdata.ale_tx_ring_map = NULL;
649 		return ENOBUFS;
650 	}
651 
652 	/* Allocate DMA'able memory for TX ring */
653 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
654 	    0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
655 	    &nsegs, BUS_DMA_WAITOK);
656 	if (error) {
657 		printf("%s: could not allocate DMA'able memory for Tx ring, "
658 		    "error = %i\n", device_xname(sc->sc_dev), error);
659 		return error;
660 	}
661 
662 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
663 	    nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
664 	    BUS_DMA_NOWAIT);
665 	if (error)
666 		return ENOBUFS;
667 
668 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
669 
670 	/* Load the DMA map for Tx ring. */
671 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
672 	    sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
673 	if (error) {
674 		printf("%s: could not load DMA'able memory for Tx ring.\n",
675 		    device_xname(sc->sc_dev));
676 		bus_dmamem_free(sc->sc_dmat,
677 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
678 		return error;
679 	}
680 	sc->ale_cdata.ale_tx_ring_paddr =
681 	    sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
682 
683 	for (i = 0; i < ALE_RX_PAGES; i++) {
684 		/*
685 		 * Create DMA stuffs for RX pages
686 		 */
687 		error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
688 		    sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
689 		    &sc->ale_cdata.ale_rx_page[i].page_map);
690 		if (error) {
691 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
692 			return ENOBUFS;
693 		}
694 
695 		/* Allocate DMA'able memory for RX pages */
696 		error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
697 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
698 		    1, &nsegs, BUS_DMA_WAITOK);
699 		if (error) {
700 			printf("%s: could not allocate DMA'able memory for "
701 			    "Rx ring.\n", device_xname(sc->sc_dev));
702 			return error;
703 		}
704 		error = bus_dmamem_map(sc->sc_dmat,
705 		    &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
706 		    sc->ale_pagesize,
707 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
708 		    BUS_DMA_NOWAIT);
709 		if (error)
710 			return ENOBUFS;
711 
712 		memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
713 		    sc->ale_pagesize);
714 
715 		/* Load the DMA map for Rx pages. */
716 		error = bus_dmamap_load(sc->sc_dmat,
717 		    sc->ale_cdata.ale_rx_page[i].page_map,
718 		    sc->ale_cdata.ale_rx_page[i].page_addr,
719 		    sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
720 		if (error) {
721 			printf("%s: could not load DMA'able memory for "
722 			    "Rx pages.\n", device_xname(sc->sc_dev));
723 			bus_dmamem_free(sc->sc_dmat,
724 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
725 			return error;
726 		}
727 		sc->ale_cdata.ale_rx_page[i].page_paddr =
728 		    sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
729 	}
730 
731 	/*
732 	 * Create DMA stuffs for Tx CMB.
733 	 */
734 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
735 	    ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
736 	if (error) {
737 		sc->ale_cdata.ale_tx_cmb_map = NULL;
738 		return ENOBUFS;
739 	}
740 
741 	/* Allocate DMA'able memory for Tx CMB. */
742 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
743 	    &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
744 
745 	if (error) {
746 		printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
747 		    device_xname(sc->sc_dev));
748 		return error;
749 	}
750 
751 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
752 	    nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
753 	    BUS_DMA_NOWAIT);
754 	if (error)
755 		return ENOBUFS;
756 
757 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
758 
759 	/* Load the DMA map for Tx CMB. */
760 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
761 	    sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
762 	if (error) {
763 		printf("%s: could not load DMA'able memory for Tx CMB.\n",
764 		    device_xname(sc->sc_dev));
765 		bus_dmamem_free(sc->sc_dmat,
766 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
767 		return error;
768 	}
769 
770 	sc->ale_cdata.ale_tx_cmb_paddr =
771 	    sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
772 
773 	for (i = 0; i < ALE_RX_PAGES; i++) {
774 		/*
775 		 * Create DMA stuffs for Rx CMB.
776 		 */
777 		error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
778 		    ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
779 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
780 		if (error) {
781 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
782 			return ENOBUFS;
783 		}
784 
785 		/* Allocate DMA'able memory for Rx CMB */
786 		error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
787 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
788 		    &nsegs, BUS_DMA_WAITOK);
789 		if (error) {
790 			printf("%s: could not allocate DMA'able memory for "
791 			    "Rx CMB\n", device_xname(sc->sc_dev));
792 			return error;
793 		}
794 		error = bus_dmamem_map(sc->sc_dmat,
795 		    &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
796 		    ALE_RX_CMB_SZ,
797 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
798 		    BUS_DMA_NOWAIT);
799 		if (error)
800 			return ENOBUFS;
801 
802 		memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
803 
804 		/* Load the DMA map for Rx CMB */
805 		error = bus_dmamap_load(sc->sc_dmat,
806 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
807 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
808 		    ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
809 		if (error) {
810 			printf("%s: could not load DMA'able memory for Rx CMB"
811 			    "\n", device_xname(sc->sc_dev));
812 			bus_dmamem_free(sc->sc_dmat,
813 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
814 			return error;
815 		}
816 		sc->ale_cdata.ale_rx_page[i].cmb_paddr =
817 		    sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
818 	}
819 
820 
821 	/* Create DMA maps for Tx buffers. */
822 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
823 		txd = &sc->ale_cdata.ale_txdesc[i];
824 		txd->tx_m = NULL;
825 		txd->tx_dmamap = NULL;
826 		error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
827 		    ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
828 		    &txd->tx_dmamap);
829 		if (error) {
830 			txd->tx_dmamap = NULL;
831 			printf("%s: could not create Tx dmamap.\n",
832 			    device_xname(sc->sc_dev));
833 			return error;
834 		}
835 	}
836 
837 	return 0;
838 }
839 
840 static void
ale_dma_free(struct ale_softc * sc)841 ale_dma_free(struct ale_softc *sc)
842 {
843 	struct ale_txdesc *txd;
844 	int i;
845 
846 	/* Tx buffers. */
847 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
848 		txd = &sc->ale_cdata.ale_txdesc[i];
849 		if (txd->tx_dmamap != NULL) {
850 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
851 			txd->tx_dmamap = NULL;
852 		}
853 	}
854 
855 	/* Tx descriptor ring. */
856 	if (sc->ale_cdata.ale_tx_ring_map != NULL)
857 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
858 	if (sc->ale_cdata.ale_tx_ring_map != NULL &&
859 	    sc->ale_cdata.ale_tx_ring != NULL)
860 		bus_dmamem_free(sc->sc_dmat,
861 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
862 	sc->ale_cdata.ale_tx_ring = NULL;
863 	sc->ale_cdata.ale_tx_ring_map = NULL;
864 
865 	/* Rx page block. */
866 	for (i = 0; i < ALE_RX_PAGES; i++) {
867 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
868 			bus_dmamap_unload(sc->sc_dmat,
869 			    sc->ale_cdata.ale_rx_page[i].page_map);
870 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
871 		    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
872 			bus_dmamem_free(sc->sc_dmat,
873 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
874 		sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
875 		sc->ale_cdata.ale_rx_page[i].page_map = NULL;
876 	}
877 
878 	/* Rx CMB. */
879 	for (i = 0; i < ALE_RX_PAGES; i++) {
880 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
881 			bus_dmamap_unload(sc->sc_dmat,
882 			    sc->ale_cdata.ale_rx_page[i].cmb_map);
883 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
884 		    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
885 			bus_dmamem_free(sc->sc_dmat,
886 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
887 		sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
888 		sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
889 	}
890 
891 	/* Tx CMB. */
892 	if (sc->ale_cdata.ale_tx_cmb_map != NULL)
893 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
894 	if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
895 	    sc->ale_cdata.ale_tx_cmb != NULL)
896 		bus_dmamem_free(sc->sc_dmat,
897 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
898 	sc->ale_cdata.ale_tx_cmb = NULL;
899 	sc->ale_cdata.ale_tx_cmb_map = NULL;
900 
901 }
902 
903 static int
ale_encap(struct ale_softc * sc,struct mbuf ** m_head)904 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
905 {
906 	struct ale_txdesc *txd, *txd_last;
907 	struct tx_desc *desc;
908 	struct mbuf *m;
909 	bus_dmamap_t map;
910 	uint32_t cflags, poff, vtag;
911 	int error, i, nsegs, prod;
912 #if NVLAN > 0
913 	struct m_tag *mtag;
914 #endif
915 
916 	m = *m_head;
917 	cflags = vtag = 0;
918 	poff = 0;
919 
920 	prod = sc->ale_cdata.ale_tx_prod;
921 	txd = &sc->ale_cdata.ale_txdesc[prod];
922 	txd_last = txd;
923 	map = txd->tx_dmamap;
924 
925 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
926 	if (error == EFBIG) {
927 		error = 0;
928 
929 		*m_head = m_pullup(*m_head, MHLEN);
930 		if (*m_head == NULL) {
931 			printf("%s: can't defrag TX mbuf\n",
932 			    device_xname(sc->sc_dev));
933 			return ENOBUFS;
934 		}
935 
936 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
937 		    BUS_DMA_NOWAIT);
938 
939 		if (error != 0) {
940 			printf("%s: could not load defragged TX mbuf\n",
941 			    device_xname(sc->sc_dev));
942 			m_freem(*m_head);
943 			*m_head = NULL;
944 			return error;
945 		}
946 	} else if (error) {
947 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
948 		return error;
949 	}
950 
951 	nsegs = map->dm_nsegs;
952 
953 	if (nsegs == 0) {
954 		m_freem(*m_head);
955 		*m_head = NULL;
956 		return EIO;
957 	}
958 
959 	/* Check descriptor overrun. */
960 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
961 		bus_dmamap_unload(sc->sc_dmat, map);
962 		return ENOBUFS;
963 	}
964 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
965 	    BUS_DMASYNC_PREWRITE);
966 
967 	m = *m_head;
968 	/* Configure Tx checksum offload. */
969 	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
970 		/*
971 		 * AR81xx supports Tx custom checksum offload feature
972 		 * that offloads single 16bit checksum computation.
973 		 * So you can choose one among IP, TCP and UDP.
974 		 * Normally driver sets checksum start/insertion
975 		 * position from the information of TCP/UDP frame as
976 		 * TCP/UDP checksum takes more time than that of IP.
977 		 * However it seems that custom checksum offload
978 		 * requires 4 bytes aligned Tx buffers due to hardware
979 		 * bug.
980 		 * AR81xx also supports explicit Tx checksum computation
981 		 * if it is told that the size of IP header and TCP
982 		 * header(for UDP, the header size does not matter
983 		 * because it's fixed length). However with this scheme
984 		 * TSO does not work so you have to choose one either
985 		 * TSO or explicit Tx checksum offload. I chosen TSO
986 		 * plus custom checksum offload with work-around which
987 		 * will cover most common usage for this consumer
988 		 * ethernet controller. The work-around takes a lot of
989 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
990 		 * boundary, though.
991 		 */
992 		cflags |= ALE_TD_CXSUM;
993 		/* Set checksum start offset. */
994 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
995 	}
996 
997 #if NVLAN > 0
998 	/* Configure VLAN hardware tag insertion. */
999 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1000 		vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1001 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1002 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1003 	}
1004 #endif
1005 
1006 	desc = NULL;
1007 	for (i = 0; i < nsegs; i++) {
1008 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1009 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1010 		desc->len =
1011 		    htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1012 		desc->flags = htole32(cflags);
1013 		sc->ale_cdata.ale_tx_cnt++;
1014 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1015 	}
1016 	/* Update producer index. */
1017 	sc->ale_cdata.ale_tx_prod = prod;
1018 
1019 	/* Finally set EOP on the last descriptor. */
1020 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1021 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1022 	desc->flags |= htole32(ALE_TD_EOP);
1023 
1024 	/* Swap dmamap of the first and the last. */
1025 	txd = &sc->ale_cdata.ale_txdesc[prod];
1026 	map = txd_last->tx_dmamap;
1027 	txd_last->tx_dmamap = txd->tx_dmamap;
1028 	txd->tx_dmamap = map;
1029 	txd->tx_m = m;
1030 
1031 	/* Sync descriptors. */
1032 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1033 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1034 
1035 	return 0;
1036 }
1037 
1038 static void
ale_start(struct ifnet * ifp)1039 ale_start(struct ifnet *ifp)
1040 {
1041         struct ale_softc *sc = ifp->if_softc;
1042 	struct mbuf *m_head;
1043 	int enq;
1044 
1045 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1046 		return;
1047 
1048 	/* Reclaim transmitted frames. */
1049 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1050 		ale_txeof(sc);
1051 
1052 	enq = 0;
1053 	for (;;) {
1054 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1055 		if (m_head == NULL)
1056 			break;
1057 
1058 		/*
1059 		 * Pack the data into the transmit ring. If we
1060 		 * don't have room, set the OACTIVE flag and wait
1061 		 * for the NIC to drain the ring.
1062 		 */
1063 		if (ale_encap(sc, &m_head)) {
1064 			if (m_head == NULL)
1065 				break;
1066 			IF_PREPEND(&ifp->if_snd, m_head);
1067 			ifp->if_flags |= IFF_OACTIVE;
1068 			break;
1069 		}
1070 		enq = 1;
1071 
1072 		/*
1073 		 * If there's a BPF listener, bounce a copy of this frame
1074 		 * to him.
1075 		 */
1076 		bpf_mtap(ifp, m_head);
1077 	}
1078 
1079 	if (enq) {
1080 		/* Kick. */
1081 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1082 		    sc->ale_cdata.ale_tx_prod);
1083 
1084 		/* Set a timeout in case the chip goes out to lunch. */
1085 		ifp->if_timer = ALE_TX_TIMEOUT;
1086 	}
1087 }
1088 
1089 static void
ale_watchdog(struct ifnet * ifp)1090 ale_watchdog(struct ifnet *ifp)
1091 {
1092 	struct ale_softc *sc = ifp->if_softc;
1093 
1094 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1095 		printf("%s: watchdog timeout (missed link)\n",
1096 		    device_xname(sc->sc_dev));
1097 		ifp->if_oerrors++;
1098 		ale_init(ifp);
1099 		return;
1100 	}
1101 
1102 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1103 	ifp->if_oerrors++;
1104 	ale_init(ifp);
1105 
1106 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1107 		ale_start(ifp);
1108 }
1109 
1110 static int
ale_ioctl(struct ifnet * ifp,u_long cmd,void * data)1111 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1112 {
1113 	struct ale_softc *sc = ifp->if_softc;
1114 	int s, error;
1115 
1116 	s = splnet();
1117 
1118 	error = ether_ioctl(ifp, cmd, data);
1119 	if (error == ENETRESET) {
1120 		if (ifp->if_flags & IFF_RUNNING)
1121 			ale_rxfilter(sc);
1122 		error = 0;
1123 	}
1124 
1125 	splx(s);
1126 	return error;
1127 }
1128 
1129 static void
ale_mac_config(struct ale_softc * sc)1130 ale_mac_config(struct ale_softc *sc)
1131 {
1132 	struct mii_data *mii;
1133 	uint32_t reg;
1134 
1135 	mii = &sc->sc_miibus;
1136 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1137 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1138 	    MAC_CFG_SPEED_MASK);
1139 
1140 	/* Reprogram MAC with resolved speed/duplex. */
1141 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1142 	case IFM_10_T:
1143 	case IFM_100_TX:
1144 		reg |= MAC_CFG_SPEED_10_100;
1145 		break;
1146 	case IFM_1000_T:
1147 		reg |= MAC_CFG_SPEED_1000;
1148 		break;
1149 	}
1150 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1151 		reg |= MAC_CFG_FULL_DUPLEX;
1152 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1153 			reg |= MAC_CFG_TX_FC;
1154 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1155 			reg |= MAC_CFG_RX_FC;
1156 	}
1157 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1158 }
1159 
1160 static void
ale_stats_clear(struct ale_softc * sc)1161 ale_stats_clear(struct ale_softc *sc)
1162 {
1163 	struct smb sb;
1164 	uint32_t *reg;
1165 	int i;
1166 
1167 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1168 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1169 		i += sizeof(uint32_t);
1170 	}
1171 	/* Read Tx statistics. */
1172 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1173 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1174 		i += sizeof(uint32_t);
1175 	}
1176 }
1177 
1178 static void
ale_stats_update(struct ale_softc * sc)1179 ale_stats_update(struct ale_softc *sc)
1180 {
1181 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1182 	struct ale_hw_stats *stat;
1183 	struct smb sb, *smb;
1184 	uint32_t *reg;
1185 	int i;
1186 
1187 	stat = &sc->ale_stats;
1188 	smb = &sb;
1189 
1190 	/* Read Rx statistics. */
1191 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1192 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1193 		i += sizeof(uint32_t);
1194 	}
1195 	/* Read Tx statistics. */
1196 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1197 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1198 		i += sizeof(uint32_t);
1199 	}
1200 
1201 	/* Rx stats. */
1202 	stat->rx_frames += smb->rx_frames;
1203 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1204 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1205 	stat->rx_pause_frames += smb->rx_pause_frames;
1206 	stat->rx_control_frames += smb->rx_control_frames;
1207 	stat->rx_crcerrs += smb->rx_crcerrs;
1208 	stat->rx_lenerrs += smb->rx_lenerrs;
1209 	stat->rx_bytes += smb->rx_bytes;
1210 	stat->rx_runts += smb->rx_runts;
1211 	stat->rx_fragments += smb->rx_fragments;
1212 	stat->rx_pkts_64 += smb->rx_pkts_64;
1213 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1214 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1215 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1216 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1217 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1218 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1219 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1220 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1221 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1222 	stat->rx_alignerrs += smb->rx_alignerrs;
1223 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1224 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1225 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1226 
1227 	/* Tx stats. */
1228 	stat->tx_frames += smb->tx_frames;
1229 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1230 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1231 	stat->tx_pause_frames += smb->tx_pause_frames;
1232 	stat->tx_excess_defer += smb->tx_excess_defer;
1233 	stat->tx_control_frames += smb->tx_control_frames;
1234 	stat->tx_deferred += smb->tx_deferred;
1235 	stat->tx_bytes += smb->tx_bytes;
1236 	stat->tx_pkts_64 += smb->tx_pkts_64;
1237 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1238 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1239 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1240 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1241 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1242 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1243 	stat->tx_single_colls += smb->tx_single_colls;
1244 	stat->tx_multi_colls += smb->tx_multi_colls;
1245 	stat->tx_late_colls += smb->tx_late_colls;
1246 	stat->tx_excess_colls += smb->tx_excess_colls;
1247 	stat->tx_abort += smb->tx_abort;
1248 	stat->tx_underrun += smb->tx_underrun;
1249 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1250 	stat->tx_lenerrs += smb->tx_lenerrs;
1251 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1252 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1253 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1254 
1255 	/* Update counters in ifnet. */
1256 	ifp->if_opackets += smb->tx_frames;
1257 
1258 	ifp->if_collisions += smb->tx_single_colls +
1259 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1260 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1261 
1262 	/*
1263 	 * XXX
1264 	 * tx_pkts_truncated counter looks suspicious. It constantly
1265 	 * increments with no sign of Tx errors. This may indicate
1266 	 * the counter name is not correct one so I've removed the
1267 	 * counter in output errors.
1268 	 */
1269 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1270 	    smb->tx_underrun;
1271 
1272 	ifp->if_ipackets += smb->rx_frames;
1273 
1274 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1275 	    smb->rx_runts + smb->rx_pkts_truncated +
1276 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1277 	    smb->rx_alignerrs;
1278 }
1279 
1280 static int
ale_intr(void * xsc)1281 ale_intr(void *xsc)
1282 {
1283 	struct ale_softc *sc = xsc;
1284 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1285 	uint32_t status;
1286 
1287 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
1288 	if ((status & ALE_INTRS) == 0)
1289 		return 0;
1290 
1291 	/* Acknowledge and disable interrupts. */
1292 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1293 
1294 	if (ifp->if_flags & IFF_RUNNING) {
1295 		int error;
1296 
1297 		error = ale_rxeof(sc);
1298 		if (error) {
1299 			sc->ale_stats.reset_brk_seq++;
1300 			ale_init(ifp);
1301 			return 0;
1302 		}
1303 
1304 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1305 			if (status & INTR_DMA_RD_TO_RST)
1306 				printf("%s: DMA read error! -- resetting\n",
1307 				    device_xname(sc->sc_dev));
1308 			if (status & INTR_DMA_WR_TO_RST)
1309 				printf("%s: DMA write error! -- resetting\n",
1310 				    device_xname(sc->sc_dev));
1311 			ale_init(ifp);
1312 			return 0;
1313 		}
1314 
1315 		ale_txeof(sc);
1316 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1317 			ale_start(ifp);
1318 	}
1319 
1320 	/* Re-enable interrupts. */
1321 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1322 	return 1;
1323 }
1324 
1325 static void
ale_txeof(struct ale_softc * sc)1326 ale_txeof(struct ale_softc *sc)
1327 {
1328 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1329 	struct ale_txdesc *txd;
1330 	uint32_t cons, prod;
1331 	int prog;
1332 
1333 	if (sc->ale_cdata.ale_tx_cnt == 0)
1334 		return;
1335 
1336 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1337 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1338 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1339 		bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1340 		    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1341 		    BUS_DMASYNC_POSTREAD);
1342 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1343 	} else
1344 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1345 	cons = sc->ale_cdata.ale_tx_cons;
1346 	/*
1347 	 * Go through our Tx list and free mbufs for those
1348 	 * frames which have been transmitted.
1349 	 */
1350 	for (prog = 0; cons != prod; prog++,
1351 	     ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1352 		if (sc->ale_cdata.ale_tx_cnt <= 0)
1353 			break;
1354 		prog++;
1355 		ifp->if_flags &= ~IFF_OACTIVE;
1356 		sc->ale_cdata.ale_tx_cnt--;
1357 		txd = &sc->ale_cdata.ale_txdesc[cons];
1358 		if (txd->tx_m != NULL) {
1359 			/* Reclaim transmitted mbufs. */
1360 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1361 			m_freem(txd->tx_m);
1362 			txd->tx_m = NULL;
1363 		}
1364 	}
1365 
1366 	if (prog > 0) {
1367 		sc->ale_cdata.ale_tx_cons = cons;
1368 		/*
1369 		 * Unarm watchdog timer only when there is no pending
1370 		 * Tx descriptors in queue.
1371 		 */
1372 		if (sc->ale_cdata.ale_tx_cnt == 0)
1373 			ifp->if_timer = 0;
1374 	}
1375 }
1376 
1377 static void
ale_rx_update_page(struct ale_softc * sc,struct ale_rx_page ** page,uint32_t length,uint32_t * prod)1378 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1379     uint32_t length, uint32_t *prod)
1380 {
1381 	struct ale_rx_page *rx_page;
1382 
1383 	rx_page = *page;
1384 	/* Update consumer position. */
1385 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
1386 	    ALE_RX_PAGE_ALIGN);
1387 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1388 		/*
1389 		 * End of Rx page reached, let hardware reuse
1390 		 * this page.
1391 		 */
1392 		rx_page->cons = 0;
1393 		*rx_page->cmb_addr = 0;
1394 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1395 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1396 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1397 		    RXF_VALID);
1398 		/* Switch to alternate Rx page. */
1399 		sc->ale_cdata.ale_rx_curp ^= 1;
1400 		rx_page = *page =
1401 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1402 		/* Page flipped, sync CMB and Rx page. */
1403 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1404 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1405 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1406 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1407 		/* Sync completed, cache updated producer index. */
1408 		*prod = *rx_page->cmb_addr;
1409 	}
1410 }
1411 
1412 
1413 /*
1414  * It seems that AR81xx controller can compute partial checksum.
1415  * The partial checksum value can be used to accelerate checksum
1416  * computation for fragmented TCP/UDP packets. Upper network stack
1417  * already takes advantage of the partial checksum value in IP
1418  * reassembly stage. But I'm not sure the correctness of the
1419  * partial hardware checksum assistance due to lack of data sheet.
1420  * In addition, the Rx feature of controller that requires copying
1421  * for every frames effectively nullifies one of most nice offload
1422  * capability of controller.
1423  */
1424 static void
ale_rxcsum(struct ale_softc * sc,struct mbuf * m,uint32_t status)1425 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1426 {
1427 	if (status & ALE_RD_IPCSUM_NOK)
1428 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1429 
1430 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1431 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1432 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1433 		    (status & ALE_RD_TCP_UDPCSUM_NOK))
1434 		{
1435 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1436 		}
1437 	} else {
1438 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1439 			if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1440 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1441 			}
1442 		}
1443 	}
1444 	/*
1445 	 * Don't mark bad checksum for TCP/UDP frames
1446 	 * as fragmented frames may always have set
1447 	 * bad checksummed bit of frame status.
1448 	 */
1449 }
1450 
1451 /* Process received frames. */
1452 static int
ale_rxeof(struct ale_softc * sc)1453 ale_rxeof(struct ale_softc *sc)
1454 {
1455 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1456 	struct ale_rx_page *rx_page;
1457 	struct rx_rs *rs;
1458 	struct mbuf *m;
1459 	uint32_t length, prod, seqno, status;
1460 	int prog;
1461 
1462 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1463 	bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1464 	    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1465 	bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1466 	    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1467 	/*
1468 	 * Don't directly access producer index as hardware may
1469 	 * update it while Rx handler is in progress. It would
1470 	 * be even better if there is a way to let hardware
1471 	 * know how far driver processed its received frames.
1472 	 * Alternatively, hardware could provide a way to disable
1473 	 * CMB updates until driver acknowledges the end of CMB
1474 	 * access.
1475 	 */
1476 	prod = *rx_page->cmb_addr;
1477 	for (prog = 0; ; prog++) {
1478 		if (rx_page->cons >= prod)
1479 			break;
1480 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1481 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1482 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
1483 			/*
1484 			 * Normally I believe this should not happen unless
1485 			 * severe driver bug or corrupted memory. However
1486 			 * it seems to happen under certain conditions which
1487 			 * is triggered by abrupt Rx events such as initiation
1488 			 * of bulk transfer of remote host. It's not easy to
1489 			 * reproduce this and I doubt it could be related
1490 			 * with FIFO overflow of hardware or activity of Tx
1491 			 * CMB updates. I also remember similar behaviour
1492 			 * seen on RealTek 8139 which uses resembling Rx
1493 			 * scheme.
1494 			 */
1495 			if (aledebug)
1496 				printf("%s: garbled seq: %u, expected: %u -- "
1497 				    "resetting!\n", device_xname(sc->sc_dev),
1498 				    seqno, sc->ale_cdata.ale_rx_seqno);
1499 			return EIO;
1500 		}
1501 		/* Frame received. */
1502 		sc->ale_cdata.ale_rx_seqno++;
1503 		length = ALE_RX_BYTES(le32toh(rs->length));
1504 		status = le32toh(rs->flags);
1505 		if (status & ALE_RD_ERROR) {
1506 			/*
1507 			 * We want to pass the following frames to upper
1508 			 * layer regardless of error status of Rx return
1509 			 * status.
1510 			 *
1511 			 *  o IP/TCP/UDP checksum is bad.
1512 			 *  o frame length and protocol specific length
1513 			 *     does not match.
1514 			 */
1515 			if (status & (ALE_RD_CRC | ALE_RD_CODE |
1516 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1517 			    ALE_RD_TRUNC)) {
1518 				ale_rx_update_page(sc, &rx_page, length, &prod);
1519 				continue;
1520 			}
1521 		}
1522 		/*
1523 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
1524 		 * from hardware limitation). For jumbo frames we could
1525 		 * get a slightly better performance if driver use
1526 		 * m_getjcl(9) with proper buffer size argument. However
1527 		 * that would make code more complicated and I don't
1528 		 * think users would expect good Rx performance numbers
1529 		 * on these low-end consumer ethernet controller.
1530 		 */
1531 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1532 		    0, ifp, NULL);
1533 		if (m == NULL) {
1534 			ifp->if_iqdrops++;
1535 			ale_rx_update_page(sc, &rx_page, length, &prod);
1536 			continue;
1537 		}
1538 		if (status & ALE_RD_IPV4)
1539 			ale_rxcsum(sc, m, status);
1540 #if NVLAN > 0
1541 		if (status & ALE_RD_VLAN) {
1542 			uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1543 			VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1544 		}
1545 #endif
1546 
1547 
1548 		bpf_mtap(ifp, m);
1549 
1550 		/* Pass it to upper layer. */
1551 		if_percpuq_enqueue(ifp->if_percpuq, m);
1552 
1553 		ale_rx_update_page(sc, &rx_page, length, &prod);
1554 	}
1555 
1556 	return 0;
1557 }
1558 
1559 static void
ale_tick(void * xsc)1560 ale_tick(void *xsc)
1561 {
1562 	struct ale_softc *sc = xsc;
1563 	struct mii_data *mii = &sc->sc_miibus;
1564 	int s;
1565 
1566 	s = splnet();
1567 	mii_tick(mii);
1568 	ale_stats_update(sc);
1569 	splx(s);
1570 
1571 	callout_schedule(&sc->sc_tick_ch, hz);
1572 }
1573 
1574 static void
ale_reset(struct ale_softc * sc)1575 ale_reset(struct ale_softc *sc)
1576 {
1577 	uint32_t reg;
1578 	int i;
1579 
1580 	/* Initialize PCIe module. From Linux. */
1581 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1582 
1583 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1584 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1585 		DELAY(10);
1586 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1587 			break;
1588 	}
1589 	if (i == 0)
1590 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1591 
1592 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1593 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1594 			break;
1595 		DELAY(10);
1596 	}
1597 
1598 	if (i == 0)
1599 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1600 		    reg);
1601 }
1602 
1603 static int
ale_init(struct ifnet * ifp)1604 ale_init(struct ifnet *ifp)
1605 {
1606 	struct ale_softc *sc = ifp->if_softc;
1607 	struct mii_data *mii;
1608 	uint8_t eaddr[ETHER_ADDR_LEN];
1609 	bus_addr_t paddr;
1610 	uint32_t reg, rxf_hi, rxf_lo;
1611 
1612 	/*
1613 	 * Cancel any pending I/O.
1614 	 */
1615 	ale_stop(ifp, 0);
1616 
1617 	/*
1618 	 * Reset the chip to a known state.
1619 	 */
1620 	ale_reset(sc);
1621 
1622 	/* Initialize Tx descriptors, DMA memory blocks. */
1623 	ale_init_rx_pages(sc);
1624 	ale_init_tx_ring(sc);
1625 
1626 	/* Reprogram the station address. */
1627 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1628 	CSR_WRITE_4(sc, ALE_PAR0,
1629 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1630 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1631 
1632 	/*
1633 	 * Clear WOL status and disable all WOL feature as WOL
1634 	 * would interfere Rx operation under normal environments.
1635 	 */
1636 	CSR_READ_4(sc, ALE_WOL_CFG);
1637 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1638 
1639 	/*
1640 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
1641 	 * the same high address part of DMAable region.
1642 	 */
1643 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
1644 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1645 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1646 	CSR_WRITE_4(sc, ALE_TPD_CNT,
1647 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1648 
1649 	/* Set Rx page base address, note we use single queue. */
1650 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1651 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1652 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1653 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1654 
1655 	/* Set Tx/Rx CMB addresses. */
1656 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1657 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1658 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1659 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1660 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1661 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1662 
1663 	/* Mark RXF0 is valid. */
1664 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1665 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1666 	/*
1667 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
1668 	 * multi-queue yet.
1669 	 */
1670 
1671 	/* Set Rx page size, excluding guard frame size. */
1672 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1673 
1674 	/* Tell hardware that we're ready to load DMA blocks. */
1675 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1676 
1677 	/* Set Rx/Tx interrupt trigger threshold. */
1678 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1679 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
1680 	/*
1681 	 * XXX
1682 	 * Set interrupt trigger timer, its purpose and relation
1683 	 * with interrupt moderation mechanism is not clear yet.
1684 	 */
1685 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1686 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1687 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1688 
1689 	/* Configure interrupt moderation timer. */
1690 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1691 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1692 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1693 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1694 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1695 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1696 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1697 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1698 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1699 		reg |= MASTER_IM_RX_TIMER_ENB;
1700 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1701 		reg |= MASTER_IM_TX_TIMER_ENB;
1702 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1703 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1704 
1705 	/* Set Maximum frame size of controller. */
1706 	if (ifp->if_mtu < ETHERMTU)
1707 		sc->ale_max_frame_size = ETHERMTU;
1708 	else
1709 		sc->ale_max_frame_size = ifp->if_mtu;
1710 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1711 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1712 
1713 	/* Configure IPG/IFG parameters. */
1714 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1715 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1716 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1717 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1718 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1719 
1720 	/* Set parameters for half-duplex media. */
1721 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
1722 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1723 	    HDPX_CFG_LCOL_MASK) |
1724 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1725 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1726 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1727 	    HDPX_CFG_ABEBT_MASK) |
1728 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1729 	    HDPX_CFG_JAMIPG_MASK));
1730 
1731 	/* Configure Tx jumbo frame parameters. */
1732 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1733 		if (ifp->if_mtu < ETHERMTU)
1734 			reg = sc->ale_max_frame_size;
1735 		else if (ifp->if_mtu < 6 * 1024)
1736 			reg = (sc->ale_max_frame_size * 2) / 3;
1737 		else
1738 			reg = sc->ale_max_frame_size / 2;
1739 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1740 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1741 		    TX_JUMBO_THRESH_UNIT_SHIFT);
1742 	}
1743 
1744 	/* Configure TxQ. */
1745 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1746 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1747 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1748 	    TXQ_CFG_TPD_BURST_MASK;
1749 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1750 
1751 	/* Configure Rx jumbo frame & flow control parameters. */
1752 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1753 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1754 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1755 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1756 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1757 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1758 		    RX_JUMBO_LKAH_MASK));
1759 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1760 		rxf_hi = (reg * 7) / 10;
1761 		rxf_lo = (reg * 3)/ 10;
1762 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1763 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1764 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
1765 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1766 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
1767 	}
1768 
1769 	/* Disable RSS. */
1770 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1771 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1772 
1773 	/* Configure RxQ. */
1774 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
1775 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1776 
1777 	/* Configure DMA parameters. */
1778 	reg = 0;
1779 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1780 		reg |= DMA_CFG_TXCMB_ENB;
1781 	CSR_WRITE_4(sc, ALE_DMA_CFG,
1782 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1783 	    sc->ale_dma_rd_burst | reg |
1784 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1785 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1786 	    DMA_CFG_RD_DELAY_CNT_MASK) |
1787 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1788 	    DMA_CFG_WR_DELAY_CNT_MASK));
1789 
1790 	/*
1791 	 * Hardware can be configured to issue SMB interrupt based
1792 	 * on programmed interval. Since there is a callout that is
1793 	 * invoked for every hz in driver we use that instead of
1794 	 * relying on periodic SMB interrupt.
1795 	 */
1796 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1797 
1798 	/* Clear MAC statistics. */
1799 	ale_stats_clear(sc);
1800 
1801 	/*
1802 	 * Configure Tx/Rx MACs.
1803 	 *  - Auto-padding for short frames.
1804 	 *  - Enable CRC generation.
1805 	 *  Actual reconfiguration of MAC for resolved speed/duplex
1806 	 *  is followed after detection of link establishment.
1807 	 *  AR81xx always does checksum computation regardless of
1808 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1809 	 *  cause Rx handling issue for fragmented IP datagrams due
1810 	 *  to silicon bug.
1811 	 */
1812 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1813 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1814 	    MAC_CFG_PREAMBLE_MASK);
1815 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1816 		reg |= MAC_CFG_SPEED_10_100;
1817 	else
1818 		reg |= MAC_CFG_SPEED_1000;
1819 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1820 
1821 	/* Set up the receive filter. */
1822 	ale_rxfilter(sc);
1823 	ale_rxvlan(sc);
1824 
1825 	/* Acknowledge all pending interrupts and clear it. */
1826 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1827 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1828 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1829 
1830 	sc->ale_flags &= ~ALE_FLAG_LINK;
1831 
1832 	/* Switch to the current media. */
1833 	mii = &sc->sc_miibus;
1834 	mii_mediachg(mii);
1835 
1836 	callout_schedule(&sc->sc_tick_ch, hz);
1837 
1838 	ifp->if_flags |= IFF_RUNNING;
1839 	ifp->if_flags &= ~IFF_OACTIVE;
1840 
1841 	return 0;
1842 }
1843 
1844 static void
ale_stop(struct ifnet * ifp,int disable)1845 ale_stop(struct ifnet *ifp, int disable)
1846 {
1847 	struct ale_softc *sc = ifp->if_softc;
1848 	struct ale_txdesc *txd;
1849 	uint32_t reg;
1850 	int i;
1851 
1852 	callout_stop(&sc->sc_tick_ch);
1853 
1854 	/*
1855 	 * Mark the interface down and cancel the watchdog timer.
1856 	 */
1857 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1858 	ifp->if_timer = 0;
1859 
1860 	sc->ale_flags &= ~ALE_FLAG_LINK;
1861 
1862 	ale_stats_update(sc);
1863 
1864 	mii_down(&sc->sc_miibus);
1865 
1866 	/* Disable interrupts. */
1867 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1868 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1869 
1870 	/* Disable queue processing and DMA. */
1871 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1872 	reg &= ~TXQ_CFG_ENB;
1873 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1874 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1875 	reg &= ~RXQ_CFG_ENB;
1876 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1877 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
1878 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1879 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1880 	DELAY(1000);
1881 
1882 	/* Stop Rx/Tx MACs. */
1883 	ale_stop_mac(sc);
1884 
1885 	/* Disable interrupts again? XXX */
1886 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1887 
1888 	/*
1889 	 * Free TX mbufs still in the queues.
1890 	 */
1891 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1892 		txd = &sc->ale_cdata.ale_txdesc[i];
1893 		if (txd->tx_m != NULL) {
1894 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1895 			m_freem(txd->tx_m);
1896 			txd->tx_m = NULL;
1897 		}
1898         }
1899 }
1900 
1901 static void
ale_stop_mac(struct ale_softc * sc)1902 ale_stop_mac(struct ale_softc *sc)
1903 {
1904 	uint32_t reg;
1905 	int i;
1906 
1907 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1908 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1909 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1910 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1911 	}
1912 
1913 	for (i = ALE_TIMEOUT; i > 0; i--) {
1914 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1915 		if (reg == 0)
1916 			break;
1917 		DELAY(10);
1918 	}
1919 	if (i == 0)
1920 		printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1921 		    device_xname(sc->sc_dev), reg);
1922 }
1923 
1924 static void
ale_init_tx_ring(struct ale_softc * sc)1925 ale_init_tx_ring(struct ale_softc *sc)
1926 {
1927 	struct ale_txdesc *txd;
1928 	int i;
1929 
1930 	sc->ale_cdata.ale_tx_prod = 0;
1931 	sc->ale_cdata.ale_tx_cons = 0;
1932 	sc->ale_cdata.ale_tx_cnt = 0;
1933 
1934 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1935 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1936 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1937 		txd = &sc->ale_cdata.ale_txdesc[i];
1938 		txd->tx_m = NULL;
1939 	}
1940 	*sc->ale_cdata.ale_tx_cmb = 0;
1941 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1942 	    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1943 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1944 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1945 }
1946 
1947 static void
ale_init_rx_pages(struct ale_softc * sc)1948 ale_init_rx_pages(struct ale_softc *sc)
1949 {
1950 	struct ale_rx_page *rx_page;
1951 	int i;
1952 
1953 	sc->ale_cdata.ale_rx_seqno = 0;
1954 	sc->ale_cdata.ale_rx_curp = 0;
1955 
1956 	for (i = 0; i < ALE_RX_PAGES; i++) {
1957 		rx_page = &sc->ale_cdata.ale_rx_page[i];
1958 		memset(rx_page->page_addr, 0, sc->ale_pagesize);
1959 		memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1960 		rx_page->cons = 0;
1961 		*rx_page->cmb_addr = 0;
1962 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1963 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1964 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1965 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1966 	}
1967 }
1968 
1969 static void
ale_rxvlan(struct ale_softc * sc)1970 ale_rxvlan(struct ale_softc *sc)
1971 {
1972 	uint32_t reg;
1973 
1974 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1975 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1976 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
1977 		reg |= MAC_CFG_VLAN_TAG_STRIP;
1978 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1979 }
1980 
1981 static void
ale_rxfilter(struct ale_softc * sc)1982 ale_rxfilter(struct ale_softc *sc)
1983 {
1984 	struct ethercom *ec = &sc->sc_ec;
1985 	struct ifnet *ifp = &ec->ec_if;
1986 	struct ether_multi *enm;
1987 	struct ether_multistep step;
1988 	uint32_t crc;
1989 	uint32_t mchash[2];
1990 	uint32_t rxcfg;
1991 
1992 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
1993 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
1994 	ifp->if_flags &= ~IFF_ALLMULTI;
1995 
1996 	/*
1997 	 * Always accept broadcast frames.
1998 	 */
1999 	rxcfg |= MAC_CFG_BCAST;
2000 
2001 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2002 		ifp->if_flags |= IFF_ALLMULTI;
2003 		if (ifp->if_flags & IFF_PROMISC)
2004 			rxcfg |= MAC_CFG_PROMISC;
2005 		else
2006 			rxcfg |= MAC_CFG_ALLMULTI;
2007 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2008 	} else {
2009 		/* Program new filter. */
2010 		memset(mchash, 0, sizeof(mchash));
2011 
2012 		ETHER_FIRST_MULTI(step, ec, enm);
2013 		while (enm != NULL) {
2014 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2015 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2016 			ETHER_NEXT_MULTI(step, enm);
2017 		}
2018 	}
2019 
2020 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2021 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2022 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2023 }
2024