1 /*	$NetBSD: if_bnx.c,v 1.59 2016/06/10 13:27:14 ozaki-r Exp $	*/
2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3 
4 /*-
5  * Copyright (c) 2006-2010 Broadcom Corporation
6  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.59 2016/06/10 13:27:14 ozaki-r Exp $");
39 
40 /*
41  * The following controllers are supported by this driver:
42  *   BCM5706C A2, A3
43  *   BCM5706S A2, A3
44  *   BCM5708C B1, B2
45  *   BCM5708S B1, B2
46  *   BCM5709C A1, C0
47  *   BCM5709S A1, C0
48  *   BCM5716  C0
49  *
50  * The following controllers are not supported by this driver:
51  *   BCM5706C A0, A1
52  *   BCM5706S A0, A1
53  *   BCM5708C A0, B0
54  *   BCM5708S A0, B0
55  *   BCM5709C A0  B0, B1, B2 (pre-production)
56  *   BCM5709S A0, B0, B1, B2 (pre-production)
57  */
58 
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61 
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64 
65 #include <dev/microcode/bnx/bnxfw.h>
66 
67 /****************************************************************************/
68 /* BNX Driver Version                                                       */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION	"v0.9.6"
71 
72 /****************************************************************************/
73 /* BNX Debug Options                                                        */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77 
78 	/*          0 = Never              */
79 	/*          1 = 1 in 2,147,483,648 */
80 	/*        256 = 1 in     8,388,608 */
81 	/*       2048 = 1 in     1,048,576 */
82 	/*      65536 = 1 in        32,768 */
83 	/*    1048576 = 1 in         2,048 */
84 	/*  268435456 =	1 in             8 */
85 	/*  536870912 = 1 in             4 */
86 	/* 1073741824 = 1 in             2 */
87 
88 	/* Controls how often the l2_fhdr frame error check will fail. */
89 	int bnx_debug_l2fhdr_status_check = 0;
90 
91 	/* Controls how often the unexpected attention check will fail. */
92 	int bnx_debug_unexpected_attention = 0;
93 
94 	/* Controls how often to simulate an mbuf allocation failure. */
95 	int bnx_debug_mbuf_allocation_failure = 0;
96 
97 	/* Controls how often to simulate a DMA mapping failure. */
98 	int bnx_debug_dma_map_addr_failure = 0;
99 
100 	/* Controls how often to simulate a bootcode failure. */
101 	int bnx_debug_bootcode_running_failure = 0;
102 #endif
103 
104 /****************************************************************************/
105 /* PCI Device ID Table                                                      */
106 /*                                                                          */
107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
108 /****************************************************************************/
109 static const struct bnx_product {
110 	pci_vendor_id_t		bp_vendor;
111 	pci_product_id_t	bp_product;
112 	pci_vendor_id_t		bp_subvendor;
113 	pci_product_id_t	bp_subproduct;
114 	const char		*bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 	{
118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 	  "HP NC370T Multifunction Gigabit Server Adapter"
121 	},
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 	{
125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 	  "HP NC370i Multifunction Gigabit Server Adapter"
128 	},
129 #endif
130 	{
131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 	  0, 0,
133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
134 	},
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 	{
137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 	  "HP NC370F Multifunction Gigabit Server Adapter"
140 	},
141 #endif
142 	{
143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 	  0, 0,
145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 	},
147 	{
148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 	  0, 0,
150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
151 	},
152 	{
153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 	  0, 0,
155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 	},
157 	{
158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 	  0, 0,
160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
161 	},
162 	{
163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 	  0, 0,
165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 	},
167 	{
168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 	  0, 0,
170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
171 	},
172 	{
173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 	  0, 0,
175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 	},
177 };
178 
179 /****************************************************************************/
180 /* Supported Flash NVRAM device data.                                       */
181 /****************************************************************************/
182 static struct flash_spec flash_table[] =
183 {
184 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
185 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
186 	/* Slow EEPROM */
187 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
188 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
189 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
190 	 "EEPROM - slow"},
191 	/* Expansion entry 0001 */
192 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 	 "Entry 0001"},
196 	/* Saifun SA25F010 (non-buffered flash) */
197 	/* strap, cfg1, & write1 need updates */
198 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
201 	 "Non-buffered flash (128kB)"},
202 	/* Saifun SA25F020 (non-buffered flash) */
203 	/* strap, cfg1, & write1 need updates */
204 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
205 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
206 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
207 	 "Non-buffered flash (256kB)"},
208 	/* Expansion entry 0100 */
209 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
210 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
211 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
212 	 "Entry 0100"},
213 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
214 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
215 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
216 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
217 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
218 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
219 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
220 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
221 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
222 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
223 	/* Saifun SA25F005 (non-buffered flash) */
224 	/* strap, cfg1, & write1 need updates */
225 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
228 	 "Non-buffered flash (64kB)"},
229 	/* Fast EEPROM */
230 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
231 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
232 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
233 	 "EEPROM - fast"},
234 	/* Expansion entry 1001 */
235 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
238 	 "Entry 1001"},
239 	/* Expansion entry 1010 */
240 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243 	 "Entry 1010"},
244 	/* ATMEL AT45DB011B (buffered flash) */
245 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
246 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
247 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
248 	 "Buffered flash (128kB)"},
249 	/* Expansion entry 1100 */
250 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
253 	 "Entry 1100"},
254 	/* Expansion entry 1101 */
255 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
256 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
257 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
258 	 "Entry 1101"},
259 	/* Ateml Expansion entry 1110 */
260 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
261 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
262 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
263 	 "Entry 1110 (Atmel)"},
264 	/* ATMEL AT45DB021B (buffered flash) */
265 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
266 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
267 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
268 	 "Buffered flash (256kB)"},
269 };
270 
271 /*
272  * The BCM5709 controllers transparently handle the
273  * differences between Atmel 264 byte pages and all
274  * flash devices which use 256 byte pages, so no
275  * logical-to-physical mapping is required in the
276  * driver.
277  */
278 static struct flash_spec flash_5709 = {
279 	.flags		= BNX_NV_BUFFERED,
280 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
281 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
282 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
283 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
284 	.name		= "5709 buffered flash (256kB)",
285 };
286 
287 /****************************************************************************/
288 /* OpenBSD device entry points.                                             */
289 /****************************************************************************/
290 static int	bnx_probe(device_t, cfdata_t, void *);
291 void	bnx_attach(device_t, device_t, void *);
292 int	bnx_detach(device_t, int);
293 
294 /****************************************************************************/
295 /* BNX Debug Data Structure Dump Routines                                   */
296 /****************************************************************************/
297 #ifdef BNX_DEBUG
298 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
299 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
300 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
301 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
302 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
303 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
304 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
305 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
306 void	bnx_dump_status_block(struct bnx_softc *);
307 void	bnx_dump_stats_block(struct bnx_softc *);
308 void	bnx_dump_driver_state(struct bnx_softc *);
309 void	bnx_dump_hw_state(struct bnx_softc *);
310 void	bnx_breakpoint(struct bnx_softc *);
311 #endif
312 
313 /****************************************************************************/
314 /* BNX Register/Memory Access Routines                                      */
315 /****************************************************************************/
316 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
317 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
318 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
319 int	bnx_miibus_read_reg(device_t, int, int);
320 void	bnx_miibus_write_reg(device_t, int, int, int);
321 void	bnx_miibus_statchg(struct ifnet *);
322 
323 /****************************************************************************/
324 /* BNX NVRAM Access Routines                                                */
325 /****************************************************************************/
326 int	bnx_acquire_nvram_lock(struct bnx_softc *);
327 int	bnx_release_nvram_lock(struct bnx_softc *);
328 void	bnx_enable_nvram_access(struct bnx_softc *);
329 void	bnx_disable_nvram_access(struct bnx_softc *);
330 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
331 	    uint32_t);
332 int	bnx_init_nvram(struct bnx_softc *);
333 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
334 int	bnx_nvram_test(struct bnx_softc *);
335 #ifdef BNX_NVRAM_WRITE_SUPPORT
336 int	bnx_enable_nvram_write(struct bnx_softc *);
337 void	bnx_disable_nvram_write(struct bnx_softc *);
338 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
339 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
340 	    uint32_t);
341 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
342 #endif
343 
344 /****************************************************************************/
345 /*                                                                          */
346 /****************************************************************************/
347 void	bnx_get_media(struct bnx_softc *);
348 void	bnx_init_media(struct bnx_softc *);
349 int	bnx_dma_alloc(struct bnx_softc *);
350 void	bnx_dma_free(struct bnx_softc *);
351 void	bnx_release_resources(struct bnx_softc *);
352 
353 /****************************************************************************/
354 /* BNX Firmware Synchronization and Load                                    */
355 /****************************************************************************/
356 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
357 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t,
358 	    uint32_t);
359 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
360 	    struct fw_info *);
361 void	bnx_init_cpus(struct bnx_softc *);
362 
363 static void bnx_print_adapter_info(struct bnx_softc *);
364 static void bnx_probe_pci_caps(struct bnx_softc *);
365 void	bnx_stop(struct ifnet *, int);
366 int	bnx_reset(struct bnx_softc *, uint32_t);
367 int	bnx_chipinit(struct bnx_softc *);
368 int	bnx_blockinit(struct bnx_softc *);
369 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
370 	    uint16_t *, uint32_t *);
371 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
372 
373 int	bnx_init_tx_chain(struct bnx_softc *);
374 void	bnx_init_tx_context(struct bnx_softc *);
375 int	bnx_init_rx_chain(struct bnx_softc *);
376 void	bnx_init_rx_context(struct bnx_softc *);
377 void	bnx_free_rx_chain(struct bnx_softc *);
378 void	bnx_free_tx_chain(struct bnx_softc *);
379 
380 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
381 void	bnx_start(struct ifnet *);
382 int	bnx_ioctl(struct ifnet *, u_long, void *);
383 void	bnx_watchdog(struct ifnet *);
384 int	bnx_init(struct ifnet *);
385 
386 void	bnx_init_context(struct bnx_softc *);
387 void	bnx_get_mac_addr(struct bnx_softc *);
388 void	bnx_set_mac_addr(struct bnx_softc *);
389 void	bnx_phy_intr(struct bnx_softc *);
390 void	bnx_rx_intr(struct bnx_softc *);
391 void	bnx_tx_intr(struct bnx_softc *);
392 void	bnx_disable_intr(struct bnx_softc *);
393 void	bnx_enable_intr(struct bnx_softc *);
394 
395 int	bnx_intr(void *);
396 void	bnx_iff(struct bnx_softc *);
397 void	bnx_stats_update(struct bnx_softc *);
398 void	bnx_tick(void *);
399 
400 struct pool *bnx_tx_pool = NULL;
401 void	bnx_alloc_pkts(struct work *, void *);
402 
403 /****************************************************************************/
404 /* OpenBSD device dispatch table.                                           */
405 /****************************************************************************/
406 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
407     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
408 
409 /****************************************************************************/
410 /* Device probe function.                                                   */
411 /*                                                                          */
412 /* Compares the device to the driver's list of supported devices and        */
413 /* reports back to the OS whether this is the right driver for the device.  */
414 /*                                                                          */
415 /* Returns:                                                                 */
416 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
417 /****************************************************************************/
418 static const struct bnx_product *
bnx_lookup(const struct pci_attach_args * pa)419 bnx_lookup(const struct pci_attach_args *pa)
420 {
421 	int i;
422 	pcireg_t subid;
423 
424 	for (i = 0; i < __arraycount(bnx_devices); i++) {
425 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
426 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
427 			continue;
428 		if (!bnx_devices[i].bp_subvendor)
429 			return &bnx_devices[i];
430 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
431 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
432 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
433 			return &bnx_devices[i];
434 	}
435 
436 	return NULL;
437 }
438 static int
bnx_probe(device_t parent,cfdata_t match,void * aux)439 bnx_probe(device_t parent, cfdata_t match, void *aux)
440 {
441 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
442 
443 	if (bnx_lookup(pa) != NULL)
444 		return 1;
445 
446 	return 0;
447 }
448 
449 /****************************************************************************/
450 /* PCI Capabilities Probe Function.                                         */
451 /*                                                                          */
452 /* Walks the PCI capabiites list for the device to find what features are   */
453 /* supported.                                                               */
454 /*                                                                          */
455 /* Returns:                                                                 */
456 /*   None.                                                                  */
457 /****************************************************************************/
458 static void
bnx_print_adapter_info(struct bnx_softc * sc)459 bnx_print_adapter_info(struct bnx_softc *sc)
460 {
461 
462 	aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
463 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
464 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
465 	    ? "Serdes " : "", sc->bnx_chipid);
466 
467 	/* Bus info. */
468 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
469 		aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
470 		    sc->link_width);
471 		switch (sc->link_speed) {
472 		case 1: aprint_normal("2.5Gbps\n"); break;
473 		case 2:	aprint_normal("5Gbps\n"); break;
474 		default: aprint_normal("Unknown link speed\n");
475 		}
476 	} else {
477 		aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
478 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
479 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
480 		    sc->bus_speed_mhz);
481 	}
482 
483 	aprint_normal_dev(sc->bnx_dev,
484 	    "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
485 	    sc->bnx_rx_quick_cons_trip_int,
486 	    sc->bnx_rx_quick_cons_trip,
487 	    sc->bnx_rx_ticks_int,
488 	    sc->bnx_rx_ticks,
489 	    sc->bnx_tx_quick_cons_trip_int,
490 	    sc->bnx_tx_quick_cons_trip,
491 	    sc->bnx_tx_ticks_int,
492 	    sc->bnx_tx_ticks);
493 }
494 
495 
496 /****************************************************************************/
497 /* PCI Capabilities Probe Function.                                         */
498 /*                                                                          */
499 /* Walks the PCI capabiites list for the device to find what features are   */
500 /* supported.                                                               */
501 /*                                                                          */
502 /* Returns:                                                                 */
503 /*   None.                                                                  */
504 /****************************************************************************/
505 static void
bnx_probe_pci_caps(struct bnx_softc * sc)506 bnx_probe_pci_caps(struct bnx_softc *sc)
507 {
508 	struct pci_attach_args *pa = &(sc->bnx_pa);
509 	pcireg_t reg;
510 
511 	/* Check if PCI-X capability is enabled. */
512 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
513 		NULL) != 0) {
514 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
515 	}
516 
517 	/* Check if PCIe capability is enabled. */
518 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
519 		NULL) != 0) {
520 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
521 		    reg + PCIE_LCSR);
522 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
523 		    "0x%08X\n",	link_status);
524 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
525 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
526 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
527 		sc->bnx_flags |= BNX_PCIE_FLAG;
528 	}
529 
530 	/* Check if MSI capability is enabled. */
531 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
532 		NULL) != 0)
533 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
534 
535 	/* Check if MSI-X capability is enabled. */
536 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
537 		NULL) != 0)
538 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
539 }
540 
541 
542 /****************************************************************************/
543 /* Device attach function.                                                  */
544 /*                                                                          */
545 /* Allocates device resources, performs secondary chip identification,      */
546 /* resets and initializes the hardware, and initializes driver instance     */
547 /* variables.                                                               */
548 /*                                                                          */
549 /* Returns:                                                                 */
550 /*   0 on success, positive value on failure.                               */
551 /****************************************************************************/
552 void
bnx_attach(device_t parent,device_t self,void * aux)553 bnx_attach(device_t parent, device_t self, void *aux)
554 {
555 	const struct bnx_product *bp;
556 	struct bnx_softc	*sc = device_private(self);
557 	prop_dictionary_t	dict;
558 	struct pci_attach_args	*pa = aux;
559 	pci_chipset_tag_t	pc = pa->pa_pc;
560 	pci_intr_handle_t	ih;
561 	const char 		*intrstr = NULL;
562 	uint32_t		command;
563 	struct ifnet		*ifp;
564 	uint32_t		val;
565 	int			mii_flags = MIIF_FORCEANEG;
566 	pcireg_t		memtype;
567 	char intrbuf[PCI_INTRSTR_LEN];
568 
569 	if (bnx_tx_pool == NULL) {
570 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
571 		if (bnx_tx_pool != NULL) {
572 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
573 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
574 		} else {
575 			aprint_error(": can't alloc bnx_tx_pool\n");
576 			return;
577 		}
578 	}
579 
580 	bp = bnx_lookup(pa);
581 	if (bp == NULL)
582 		panic("unknown device");
583 
584 	sc->bnx_dev = self;
585 
586 	aprint_naive("\n");
587 	aprint_normal(": %s\n", bp->bp_name);
588 
589 	sc->bnx_pa = *pa;
590 
591 	/*
592 	 * Map control/status registers.
593 	*/
594 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
595 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
596 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
597 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
598 
599 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
600 		aprint_error_dev(sc->bnx_dev,
601 		    "failed to enable memory mapping!\n");
602 		return;
603 	}
604 
605 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
606 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
607 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
608 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
609 		return;
610 	}
611 
612 	if (pci_intr_map(pa, &ih)) {
613 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
614 		goto bnx_attach_fail;
615 	}
616 
617 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
618 
619 	/*
620 	 * Configure byte swap and enable indirect register access.
621 	 * Rely on CPU to do target byte swapping on big endian systems.
622 	 * Access to registers outside of PCI configurtion space are not
623 	 * valid until this is done.
624 	 */
625 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
626 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
627 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
628 
629 	/* Save ASIC revsion info. */
630 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
631 
632 	/*
633 	 * Find the base address for shared memory access.
634 	 * Newer versions of bootcode use a signature and offset
635 	 * while older versions use a fixed address.
636 	 */
637 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
638 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
639 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
640 		    (sc->bnx_pa.pa_function << 2));
641 	else
642 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
643 
644 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
645 
646 	/* Set initial device and PHY flags */
647 	sc->bnx_flags = 0;
648 	sc->bnx_phy_flags = 0;
649 
650 	bnx_probe_pci_caps(sc);
651 
652 	/* Get PCI bus information (speed and type). */
653 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
654 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
655 		uint32_t clkreg;
656 
657 		sc->bnx_flags |= BNX_PCIX_FLAG;
658 
659 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
660 
661 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
662 		switch (clkreg) {
663 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
664 			sc->bus_speed_mhz = 133;
665 			break;
666 
667 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
668 			sc->bus_speed_mhz = 100;
669 			break;
670 
671 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
672 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
673 			sc->bus_speed_mhz = 66;
674 			break;
675 
676 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
677 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
678 			sc->bus_speed_mhz = 50;
679 			break;
680 
681 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
682 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
683 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
684 			sc->bus_speed_mhz = 33;
685 			break;
686 		}
687 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
688 			sc->bus_speed_mhz = 66;
689 		else
690 			sc->bus_speed_mhz = 33;
691 
692 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
693 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
694 
695 	/* Reset the controller. */
696 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
697 		goto bnx_attach_fail;
698 
699 	/* Initialize the controller. */
700 	if (bnx_chipinit(sc)) {
701 		aprint_error_dev(sc->bnx_dev,
702 		    "Controller initialization failed!\n");
703 		goto bnx_attach_fail;
704 	}
705 
706 	/* Perform NVRAM test. */
707 	if (bnx_nvram_test(sc)) {
708 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
709 		goto bnx_attach_fail;
710 	}
711 
712 	/* Fetch the permanent Ethernet MAC address. */
713 	bnx_get_mac_addr(sc);
714 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
715 	    ether_sprintf(sc->eaddr));
716 
717 	/*
718 	 * Trip points control how many BDs
719 	 * should be ready before generating an
720 	 * interrupt while ticks control how long
721 	 * a BD can sit in the chain before
722 	 * generating an interrupt.  Set the default
723 	 * values for the RX and TX rings.
724 	 */
725 
726 #ifdef BNX_DEBUG
727 	/* Force more frequent interrupts. */
728 	sc->bnx_tx_quick_cons_trip_int = 1;
729 	sc->bnx_tx_quick_cons_trip     = 1;
730 	sc->bnx_tx_ticks_int           = 0;
731 	sc->bnx_tx_ticks               = 0;
732 
733 	sc->bnx_rx_quick_cons_trip_int = 1;
734 	sc->bnx_rx_quick_cons_trip     = 1;
735 	sc->bnx_rx_ticks_int           = 0;
736 	sc->bnx_rx_ticks               = 0;
737 #else
738 	sc->bnx_tx_quick_cons_trip_int = 20;
739 	sc->bnx_tx_quick_cons_trip     = 20;
740 	sc->bnx_tx_ticks_int           = 80;
741 	sc->bnx_tx_ticks               = 80;
742 
743 	sc->bnx_rx_quick_cons_trip_int = 6;
744 	sc->bnx_rx_quick_cons_trip     = 6;
745 	sc->bnx_rx_ticks_int           = 18;
746 	sc->bnx_rx_ticks               = 18;
747 #endif
748 
749 	/* Update statistics once every second. */
750 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
751 
752 	/* Find the media type for the adapter. */
753 	bnx_get_media(sc);
754 
755 	/*
756 	 * Store config data needed by the PHY driver for
757 	 * backplane applications
758 	 */
759 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
760 	    BNX_SHARED_HW_CFG_CONFIG);
761 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
762 	    BNX_PORT_HW_CFG_CONFIG);
763 
764 	/* Allocate DMA memory resources. */
765 	sc->bnx_dmatag = pa->pa_dmat;
766 	if (bnx_dma_alloc(sc)) {
767 		aprint_error_dev(sc->bnx_dev,
768 		    "DMA resource allocation failed!\n");
769 		goto bnx_attach_fail;
770 	}
771 
772 	/* Initialize the ifnet interface. */
773 	ifp = &sc->bnx_ec.ec_if;
774 	ifp->if_softc = sc;
775 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
776 	ifp->if_ioctl = bnx_ioctl;
777 	ifp->if_stop = bnx_stop;
778 	ifp->if_start = bnx_start;
779 	ifp->if_init = bnx_init;
780 	ifp->if_timer = 0;
781 	ifp->if_watchdog = bnx_watchdog;
782 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
783 	IFQ_SET_READY(&ifp->if_snd);
784 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
785 
786 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
787 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
788 
789 	ifp->if_capabilities |=
790 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
791 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
792 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
793 
794 	/* Hookup IRQ last. */
795 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
796 	if (sc->bnx_intrhand == NULL) {
797 		aprint_error_dev(self, "couldn't establish interrupt");
798 		if (intrstr != NULL)
799 			aprint_error(" at %s", intrstr);
800 		aprint_error("\n");
801 		goto bnx_attach_fail;
802 	}
803 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
804 
805 	/* create workqueue to handle packet allocations */
806 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
807 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
808 		aprint_error_dev(self, "failed to create workqueue\n");
809 		goto bnx_attach_fail;
810 	}
811 
812 	sc->bnx_mii.mii_ifp = ifp;
813 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
814 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
815 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
816 
817 	/* Handle any special PHY initialization for SerDes PHYs. */
818 	bnx_init_media(sc);
819 
820 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
821 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
822 	    ether_mediastatus);
823 
824 	/* set phyflags and chipid before mii_attach() */
825 	dict = device_properties(self);
826 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
827 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
828 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
829 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
830 
831 	/* Print some useful adapter info */
832 	bnx_print_adapter_info(sc);
833 
834 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
835 		mii_flags |= MIIF_HAVEFIBER;
836 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
837 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
838 
839 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
840 		aprint_error_dev(self, "no PHY found!\n");
841 		ifmedia_add(&sc->bnx_mii.mii_media,
842 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
843 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
844 	} else
845 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
846 
847 	/* Attach to the Ethernet interface list. */
848 	if_attach(ifp);
849 	ether_ifattach(ifp,sc->eaddr);
850 
851 	callout_init(&sc->bnx_timeout, 0);
852 
853 	if (pmf_device_register(self, NULL, NULL))
854 		pmf_class_network_register(self, ifp);
855 	else
856 		aprint_error_dev(self, "couldn't establish power handler\n");
857 
858 	/* Print some important debugging info. */
859 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
860 
861 	goto bnx_attach_exit;
862 
863 bnx_attach_fail:
864 	bnx_release_resources(sc);
865 
866 bnx_attach_exit:
867 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
868 }
869 
870 /****************************************************************************/
871 /* Device detach function.                                                  */
872 /*                                                                          */
873 /* Stops the controller, resets the controller, and releases resources.     */
874 /*                                                                          */
875 /* Returns:                                                                 */
876 /*   0 on success, positive value on failure.                               */
877 /****************************************************************************/
878 int
bnx_detach(device_t dev,int flags)879 bnx_detach(device_t dev, int flags)
880 {
881 	int s;
882 	struct bnx_softc *sc;
883 	struct ifnet *ifp;
884 
885 	sc = device_private(dev);
886 	ifp = &sc->bnx_ec.ec_if;
887 
888 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
889 
890 	/* Stop and reset the controller. */
891 	s = splnet();
892 	if (ifp->if_flags & IFF_RUNNING)
893 		bnx_stop(ifp, 1);
894 	else {
895 		/* Disable the transmit/receive blocks. */
896 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
897 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
898 		DELAY(20);
899 		bnx_disable_intr(sc);
900 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
901 	}
902 
903 	splx(s);
904 
905 	pmf_device_deregister(dev);
906 	callout_destroy(&sc->bnx_timeout);
907 	ether_ifdetach(ifp);
908 	workqueue_destroy(sc->bnx_wq);
909 
910 	/* Delete all remaining media. */
911 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
912 
913 	if_detach(ifp);
914 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
915 
916 	/* Release all remaining resources. */
917 	bnx_release_resources(sc);
918 
919 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
920 
921 	return 0;
922 }
923 
924 /****************************************************************************/
925 /* Indirect register read.                                                  */
926 /*                                                                          */
927 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
928 /* configuration space.  Using this mechanism avoids issues with posted     */
929 /* reads but is much slower than memory-mapped I/O.                         */
930 /*                                                                          */
931 /* Returns:                                                                 */
932 /*   The value of the register.                                             */
933 /****************************************************************************/
934 uint32_t
bnx_reg_rd_ind(struct bnx_softc * sc,uint32_t offset)935 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
936 {
937 	struct pci_attach_args	*pa = &(sc->bnx_pa);
938 
939 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
940 	    offset);
941 #ifdef BNX_DEBUG
942 	{
943 		uint32_t val;
944 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
945 		    BNX_PCICFG_REG_WINDOW);
946 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
947 		    "val = 0x%08X\n", __func__, offset, val);
948 		return val;
949 	}
950 #else
951 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
952 #endif
953 }
954 
955 /****************************************************************************/
956 /* Indirect register write.                                                 */
957 /*                                                                          */
958 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
959 /* configuration space.  Using this mechanism avoids issues with posted     */
960 /* writes but is muchh slower than memory-mapped I/O.                       */
961 /*                                                                          */
962 /* Returns:                                                                 */
963 /*   Nothing.                                                               */
964 /****************************************************************************/
965 void
bnx_reg_wr_ind(struct bnx_softc * sc,uint32_t offset,uint32_t val)966 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
967 {
968 	struct pci_attach_args  *pa = &(sc->bnx_pa);
969 
970 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
971 		__func__, offset, val);
972 
973 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
974 	    offset);
975 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
976 }
977 
978 /****************************************************************************/
979 /* Context memory write.                                                    */
980 /*                                                                          */
981 /* The NetXtreme II controller uses context memory to track connection      */
982 /* information for L2 and higher network protocols.                         */
983 /*                                                                          */
984 /* Returns:                                                                 */
985 /*   Nothing.                                                               */
986 /****************************************************************************/
987 void
bnx_ctx_wr(struct bnx_softc * sc,uint32_t cid_addr,uint32_t ctx_offset,uint32_t ctx_val)988 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
989     uint32_t ctx_val)
990 {
991 	uint32_t idx, offset = ctx_offset + cid_addr;
992 	uint32_t val, retry_cnt = 5;
993 
994 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
995 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
996 		REG_WR(sc, BNX_CTX_CTX_CTRL,
997 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
998 
999 		for (idx = 0; idx < retry_cnt; idx++) {
1000 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1001 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1002 				break;
1003 			DELAY(5);
1004 		}
1005 
1006 #if 0
1007 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1008 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1009 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
1010 				__FILE__, __LINE__, cid_addr, ctx_offset);
1011 #endif
1012 
1013 	} else {
1014 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1015 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
1016 	}
1017 }
1018 
1019 /****************************************************************************/
1020 /* PHY register read.                                                       */
1021 /*                                                                          */
1022 /* Implements register reads on the MII bus.                                */
1023 /*                                                                          */
1024 /* Returns:                                                                 */
1025 /*   The value of the register.                                             */
1026 /****************************************************************************/
1027 int
bnx_miibus_read_reg(device_t dev,int phy,int reg)1028 bnx_miibus_read_reg(device_t dev, int phy, int reg)
1029 {
1030 	struct bnx_softc	*sc = device_private(dev);
1031 	uint32_t		val;
1032 	int			i;
1033 
1034 	/* Make sure we are accessing the correct PHY address. */
1035 	if (phy != sc->bnx_phy_addr) {
1036 		DBPRINT(sc, BNX_VERBOSE,
1037 		    "Invalid PHY address %d for PHY read!\n", phy);
1038 		return 0;
1039 	}
1040 
1041 	/*
1042 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1043 	 * with special mappings to work with IEEE
1044 	 * Clause 22 register accesses.
1045 	 */
1046 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1047 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1048 			reg += 0x10;
1049 	}
1050 
1051 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1052 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1053 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1054 
1055 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1056 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1057 
1058 		DELAY(40);
1059 	}
1060 
1061 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1062 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1063 	    BNX_EMAC_MDIO_COMM_START_BUSY;
1064 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
1065 
1066 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1067 		DELAY(10);
1068 
1069 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1070 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1071 			DELAY(5);
1072 
1073 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1074 			val &= BNX_EMAC_MDIO_COMM_DATA;
1075 
1076 			break;
1077 		}
1078 	}
1079 
1080 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
1081 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1082 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1083 		val = 0x0;
1084 	} else
1085 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1086 
1087 	DBPRINT(sc, BNX_EXCESSIVE,
1088 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
1089 	    (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1090 
1091 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1092 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1093 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1094 
1095 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1096 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1097 
1098 		DELAY(40);
1099 	}
1100 
1101 	return (val & 0xffff);
1102 }
1103 
1104 /****************************************************************************/
1105 /* PHY register write.                                                      */
1106 /*                                                                          */
1107 /* Implements register writes on the MII bus.                               */
1108 /*                                                                          */
1109 /* Returns:                                                                 */
1110 /*   The value of the register.                                             */
1111 /****************************************************************************/
1112 void
bnx_miibus_write_reg(device_t dev,int phy,int reg,int val)1113 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1114 {
1115 	struct bnx_softc	*sc = device_private(dev);
1116 	uint32_t		val1;
1117 	int			i;
1118 
1119 	/* Make sure we are accessing the correct PHY address. */
1120 	if (phy != sc->bnx_phy_addr) {
1121 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1122 		    phy);
1123 		return;
1124 	}
1125 
1126 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1127 	    "val = 0x%04X\n", __func__,
1128 	    phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1129 
1130 	/*
1131 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1132 	 * with special mappings to work with IEEE
1133 	 * Clause 22 register accesses.
1134 	 */
1135 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1136 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1137 			reg += 0x10;
1138 	}
1139 
1140 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1141 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1142 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1143 
1144 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1145 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1146 
1147 		DELAY(40);
1148 	}
1149 
1150 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1151 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1152 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1153 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1154 
1155 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1156 		DELAY(10);
1157 
1158 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1159 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1160 			DELAY(5);
1161 			break;
1162 		}
1163 	}
1164 
1165 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1166 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1167 		    __LINE__);
1168 	}
1169 
1170 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1171 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1172 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1173 
1174 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1175 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1176 
1177 		DELAY(40);
1178 	}
1179 }
1180 
1181 /****************************************************************************/
1182 /* MII bus status change.                                                   */
1183 /*                                                                          */
1184 /* Called by the MII bus driver when the PHY establishes link to set the    */
1185 /* MAC interface registers.                                                 */
1186 /*                                                                          */
1187 /* Returns:                                                                 */
1188 /*   Nothing.                                                               */
1189 /****************************************************************************/
1190 void
bnx_miibus_statchg(struct ifnet * ifp)1191 bnx_miibus_statchg(struct ifnet *ifp)
1192 {
1193 	struct bnx_softc	*sc = ifp->if_softc;
1194 	struct mii_data		*mii = &sc->bnx_mii;
1195 	int			val;
1196 
1197 	val = REG_RD(sc, BNX_EMAC_MODE);
1198 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1199 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1200 	    BNX_EMAC_MODE_25G);
1201 
1202 	/* Set MII or GMII interface based on the speed
1203 	 * negotiated by the PHY.
1204 	 */
1205 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1206 	case IFM_10_T:
1207 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1208 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1209 			val |= BNX_EMAC_MODE_PORT_MII_10;
1210 			break;
1211 		}
1212 		/* FALLTHROUGH */
1213 	case IFM_100_TX:
1214 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1215 		val |= BNX_EMAC_MODE_PORT_MII;
1216 		break;
1217 	case IFM_2500_SX:
1218 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1219 		val |= BNX_EMAC_MODE_25G;
1220 		/* FALLTHROUGH */
1221 	case IFM_1000_T:
1222 	case IFM_1000_SX:
1223 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1224 		val |= BNX_EMAC_MODE_PORT_GMII;
1225 		break;
1226 	default:
1227 		val |= BNX_EMAC_MODE_PORT_GMII;
1228 		break;
1229 	}
1230 
1231 	/* Set half or full duplex based on the duplicity
1232 	 * negotiated by the PHY.
1233 	 */
1234 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1235 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1236 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
1237 	} else {
1238 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1239 	}
1240 
1241 	REG_WR(sc, BNX_EMAC_MODE, val);
1242 }
1243 
1244 /****************************************************************************/
1245 /* Acquire NVRAM lock.                                                      */
1246 /*                                                                          */
1247 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1248 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1249 /* for use by the driver.                                                   */
1250 /*                                                                          */
1251 /* Returns:                                                                 */
1252 /*   0 on success, positive value on failure.                               */
1253 /****************************************************************************/
1254 int
bnx_acquire_nvram_lock(struct bnx_softc * sc)1255 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1256 {
1257 	uint32_t		val;
1258 	int			j;
1259 
1260 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1261 
1262 	/* Request access to the flash interface. */
1263 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1264 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1265 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1266 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1267 			break;
1268 
1269 		DELAY(5);
1270 	}
1271 
1272 	if (j >= NVRAM_TIMEOUT_COUNT) {
1273 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1274 		return EBUSY;
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 /****************************************************************************/
1281 /* Release NVRAM lock.                                                      */
1282 /*                                                                          */
1283 /* When the caller is finished accessing NVRAM the lock must be released.   */
1284 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1285 /* for use by the driver.                                                   */
1286 /*                                                                          */
1287 /* Returns:                                                                 */
1288 /*   0 on success, positive value on failure.                               */
1289 /****************************************************************************/
1290 int
bnx_release_nvram_lock(struct bnx_softc * sc)1291 bnx_release_nvram_lock(struct bnx_softc *sc)
1292 {
1293 	int			j;
1294 	uint32_t		val;
1295 
1296 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1297 
1298 	/* Relinquish nvram interface. */
1299 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1300 
1301 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1302 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1303 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1304 			break;
1305 
1306 		DELAY(5);
1307 	}
1308 
1309 	if (j >= NVRAM_TIMEOUT_COUNT) {
1310 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1311 		return EBUSY;
1312 	}
1313 
1314 	return 0;
1315 }
1316 
1317 #ifdef BNX_NVRAM_WRITE_SUPPORT
1318 /****************************************************************************/
1319 /* Enable NVRAM write access.                                               */
1320 /*                                                                          */
1321 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1322 /*                                                                          */
1323 /* Returns:                                                                 */
1324 /*   0 on success, positive value on failure.                               */
1325 /****************************************************************************/
1326 int
bnx_enable_nvram_write(struct bnx_softc * sc)1327 bnx_enable_nvram_write(struct bnx_softc *sc)
1328 {
1329 	uint32_t		val;
1330 
1331 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1332 
1333 	val = REG_RD(sc, BNX_MISC_CFG);
1334 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1335 
1336 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1337 		int j;
1338 
1339 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1340 		REG_WR(sc, BNX_NVM_COMMAND,
1341 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1342 
1343 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1344 			DELAY(5);
1345 
1346 			val = REG_RD(sc, BNX_NVM_COMMAND);
1347 			if (val & BNX_NVM_COMMAND_DONE)
1348 				break;
1349 		}
1350 
1351 		if (j >= NVRAM_TIMEOUT_COUNT) {
1352 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1353 			return EBUSY;
1354 		}
1355 	}
1356 
1357 	return 0;
1358 }
1359 
1360 /****************************************************************************/
1361 /* Disable NVRAM write access.                                              */
1362 /*                                                                          */
1363 /* When the caller is finished writing to NVRAM write access must be        */
1364 /* disabled.                                                                */
1365 /*                                                                          */
1366 /* Returns:                                                                 */
1367 /*   Nothing.                                                               */
1368 /****************************************************************************/
1369 void
bnx_disable_nvram_write(struct bnx_softc * sc)1370 bnx_disable_nvram_write(struct bnx_softc *sc)
1371 {
1372 	uint32_t		val;
1373 
1374 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
1375 
1376 	val = REG_RD(sc, BNX_MISC_CFG);
1377 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1378 }
1379 #endif
1380 
1381 /****************************************************************************/
1382 /* Enable NVRAM access.                                                     */
1383 /*                                                                          */
1384 /* Before accessing NVRAM for read or write operations the caller must      */
1385 /* enabled NVRAM access.                                                    */
1386 /*                                                                          */
1387 /* Returns:                                                                 */
1388 /*   Nothing.                                                               */
1389 /****************************************************************************/
1390 void
bnx_enable_nvram_access(struct bnx_softc * sc)1391 bnx_enable_nvram_access(struct bnx_softc *sc)
1392 {
1393 	uint32_t		val;
1394 
1395 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1396 
1397 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1398 	/* Enable both bits, even on read. */
1399 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1400 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1401 }
1402 
1403 /****************************************************************************/
1404 /* Disable NVRAM access.                                                    */
1405 /*                                                                          */
1406 /* When the caller is finished accessing NVRAM access must be disabled.     */
1407 /*                                                                          */
1408 /* Returns:                                                                 */
1409 /*   Nothing.                                                               */
1410 /****************************************************************************/
1411 void
bnx_disable_nvram_access(struct bnx_softc * sc)1412 bnx_disable_nvram_access(struct bnx_softc *sc)
1413 {
1414 	uint32_t		val;
1415 
1416 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1417 
1418 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1419 
1420 	/* Disable both bits, even after read. */
1421 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1422 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1423 }
1424 
1425 #ifdef BNX_NVRAM_WRITE_SUPPORT
1426 /****************************************************************************/
1427 /* Erase NVRAM page before writing.                                         */
1428 /*                                                                          */
1429 /* Non-buffered flash parts require that a page be erased before it is      */
1430 /* written.                                                                 */
1431 /*                                                                          */
1432 /* Returns:                                                                 */
1433 /*   0 on success, positive value on failure.                               */
1434 /****************************************************************************/
1435 int
bnx_nvram_erase_page(struct bnx_softc * sc,uint32_t offset)1436 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1437 {
1438 	uint32_t		cmd;
1439 	int			j;
1440 
1441 	/* Buffered flash doesn't require an erase. */
1442 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1443 		return 0;
1444 
1445 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1446 
1447 	/* Build an erase command. */
1448 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1449 	    BNX_NVM_COMMAND_DOIT;
1450 
1451 	/*
1452 	 * Clear the DONE bit separately, set the NVRAM address to erase,
1453 	 * and issue the erase command.
1454 	 */
1455 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1456 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1457 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1458 
1459 	/* Wait for completion. */
1460 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1461 		uint32_t val;
1462 
1463 		DELAY(5);
1464 
1465 		val = REG_RD(sc, BNX_NVM_COMMAND);
1466 		if (val & BNX_NVM_COMMAND_DONE)
1467 			break;
1468 	}
1469 
1470 	if (j >= NVRAM_TIMEOUT_COUNT) {
1471 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1472 		return EBUSY;
1473 	}
1474 
1475 	return 0;
1476 }
1477 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1478 
1479 /****************************************************************************/
1480 /* Read a dword (32 bits) from NVRAM.                                       */
1481 /*                                                                          */
1482 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1483 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1484 /*                                                                          */
1485 /* Returns:                                                                 */
1486 /*   0 on success and the 32 bit value read, positive value on failure.     */
1487 /****************************************************************************/
1488 int
bnx_nvram_read_dword(struct bnx_softc * sc,uint32_t offset,uint8_t * ret_val,uint32_t cmd_flags)1489 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1490     uint8_t *ret_val, uint32_t cmd_flags)
1491 {
1492 	uint32_t		cmd;
1493 	int			i, rc = 0;
1494 
1495 	/* Build the command word. */
1496 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1497 
1498 	/* Calculate the offset for buffered flash if translation is used. */
1499 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1500 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1501 		    sc->bnx_flash_info->page_bits) +
1502 		    (offset % sc->bnx_flash_info->page_size);
1503 	}
1504 
1505 	/*
1506 	 * Clear the DONE bit separately, set the address to read,
1507 	 * and issue the read.
1508 	 */
1509 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1510 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1511 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1512 
1513 	/* Wait for completion. */
1514 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1515 		uint32_t val;
1516 
1517 		DELAY(5);
1518 
1519 		val = REG_RD(sc, BNX_NVM_COMMAND);
1520 		if (val & BNX_NVM_COMMAND_DONE) {
1521 			val = REG_RD(sc, BNX_NVM_READ);
1522 
1523 			val = bnx_be32toh(val);
1524 			memcpy(ret_val, &val, 4);
1525 			break;
1526 		}
1527 	}
1528 
1529 	/* Check for errors. */
1530 	if (i >= NVRAM_TIMEOUT_COUNT) {
1531 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1532 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1533 		rc = EBUSY;
1534 	}
1535 
1536 	return rc;
1537 }
1538 
1539 #ifdef BNX_NVRAM_WRITE_SUPPORT
1540 /****************************************************************************/
1541 /* Write a dword (32 bits) to NVRAM.                                        */
1542 /*                                                                          */
1543 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
1544 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
1545 /* enabled NVRAM write access.                                              */
1546 /*                                                                          */
1547 /* Returns:                                                                 */
1548 /*   0 on success, positive value on failure.                               */
1549 /****************************************************************************/
1550 int
bnx_nvram_write_dword(struct bnx_softc * sc,uint32_t offset,uint8_t * val,uint32_t cmd_flags)1551 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1552     uint32_t cmd_flags)
1553 {
1554 	uint32_t		cmd, val32;
1555 	int			j;
1556 
1557 	/* Build the command word. */
1558 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1559 
1560 	/* Calculate the offset for buffered flash if translation is used. */
1561 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1562 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1563 		    sc->bnx_flash_info->page_bits) +
1564 		    (offset % sc->bnx_flash_info->page_size);
1565 	}
1566 
1567 	/*
1568 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1569 	 * set the NVRAM address to write, and issue the write command
1570 	 */
1571 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1572 	memcpy(&val32, val, 4);
1573 	val32 = htobe32(val32);
1574 	REG_WR(sc, BNX_NVM_WRITE, val32);
1575 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1576 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1577 
1578 	/* Wait for completion. */
1579 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1580 		DELAY(5);
1581 
1582 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1583 			break;
1584 	}
1585 	if (j >= NVRAM_TIMEOUT_COUNT) {
1586 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1587 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
1588 		return EBUSY;
1589 	}
1590 
1591 	return 0;
1592 }
1593 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1594 
1595 /****************************************************************************/
1596 /* Initialize NVRAM access.                                                 */
1597 /*                                                                          */
1598 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1599 /* access that device.                                                      */
1600 /*                                                                          */
1601 /* Returns:                                                                 */
1602 /*   0 on success, positive value on failure.                               */
1603 /****************************************************************************/
1604 int
bnx_init_nvram(struct bnx_softc * sc)1605 bnx_init_nvram(struct bnx_softc *sc)
1606 {
1607 	uint32_t		val;
1608 	int			j, entry_count, rc = 0;
1609 	struct flash_spec	*flash;
1610 
1611 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1612 
1613 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1614 		sc->bnx_flash_info = &flash_5709;
1615 		goto bnx_init_nvram_get_flash_size;
1616 	}
1617 
1618 	/* Determine the selected interface. */
1619 	val = REG_RD(sc, BNX_NVM_CFG1);
1620 
1621 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1622 
1623 	/*
1624 	 * Flash reconfiguration is required to support additional
1625 	 * NVRAM devices not directly supported in hardware.
1626 	 * Check if the flash interface was reconfigured
1627 	 * by the bootcode.
1628 	 */
1629 
1630 	if (val & 0x40000000) {
1631 		/* Flash interface reconfigured by bootcode. */
1632 
1633 		DBPRINT(sc,BNX_INFO_LOAD,
1634 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
1635 
1636 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1637 		     j++, flash++) {
1638 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1639 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1640 				sc->bnx_flash_info = flash;
1641 				break;
1642 			}
1643 		}
1644 	} else {
1645 		/* Flash interface not yet reconfigured. */
1646 		uint32_t mask;
1647 
1648 		DBPRINT(sc,BNX_INFO_LOAD,
1649 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
1650 
1651 		if (val & (1 << 23))
1652 			mask = FLASH_BACKUP_STRAP_MASK;
1653 		else
1654 			mask = FLASH_STRAP_MASK;
1655 
1656 		/* Look for the matching NVRAM device configuration data. */
1657 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1658 		    j++, flash++) {
1659 			/* Check if the dev matches any of the known devices. */
1660 			if ((val & mask) == (flash->strapping & mask)) {
1661 				/* Found a device match. */
1662 				sc->bnx_flash_info = flash;
1663 
1664 				/* Request access to the flash interface. */
1665 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1666 					return rc;
1667 
1668 				/* Reconfigure the flash interface. */
1669 				bnx_enable_nvram_access(sc);
1670 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1671 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1672 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1673 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1674 				bnx_disable_nvram_access(sc);
1675 				bnx_release_nvram_lock(sc);
1676 
1677 				break;
1678 			}
1679 		}
1680 	}
1681 
1682 	/* Check if a matching device was found. */
1683 	if (j == entry_count) {
1684 		sc->bnx_flash_info = NULL;
1685 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1686 			__FILE__, __LINE__);
1687 		rc = ENODEV;
1688 	}
1689 
1690 bnx_init_nvram_get_flash_size:
1691 	/* Write the flash config data to the shared memory interface. */
1692 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1693 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1694 	if (val)
1695 		sc->bnx_flash_size = val;
1696 	else
1697 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1698 
1699 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1700 	    "0x%08X\n", sc->bnx_flash_info->total_size);
1701 
1702 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1703 
1704 	return rc;
1705 }
1706 
1707 /****************************************************************************/
1708 /* Read an arbitrary range of data from NVRAM.                              */
1709 /*                                                                          */
1710 /* Prepares the NVRAM interface for access and reads the requested data     */
1711 /* into the supplied buffer.                                                */
1712 /*                                                                          */
1713 /* Returns:                                                                 */
1714 /*   0 on success and the data read, positive value on failure.             */
1715 /****************************************************************************/
1716 int
bnx_nvram_read(struct bnx_softc * sc,uint32_t offset,uint8_t * ret_buf,int buf_size)1717 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1718     int buf_size)
1719 {
1720 	int			rc = 0;
1721 	uint32_t		cmd_flags, offset32, len32, extra;
1722 
1723 	if (buf_size == 0)
1724 		return 0;
1725 
1726 	/* Request access to the flash interface. */
1727 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1728 		return rc;
1729 
1730 	/* Enable access to flash interface */
1731 	bnx_enable_nvram_access(sc);
1732 
1733 	len32 = buf_size;
1734 	offset32 = offset;
1735 	extra = 0;
1736 
1737 	cmd_flags = 0;
1738 
1739 	if (offset32 & 3) {
1740 		uint8_t buf[4];
1741 		uint32_t pre_len;
1742 
1743 		offset32 &= ~3;
1744 		pre_len = 4 - (offset & 3);
1745 
1746 		if (pre_len >= len32) {
1747 			pre_len = len32;
1748 			cmd_flags =
1749 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1750 		} else
1751 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1752 
1753 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1754 
1755 		if (rc)
1756 			return rc;
1757 
1758 		memcpy(ret_buf, buf + (offset & 3), pre_len);
1759 
1760 		offset32 += 4;
1761 		ret_buf += pre_len;
1762 		len32 -= pre_len;
1763 	}
1764 
1765 	if (len32 & 3) {
1766 		extra = 4 - (len32 & 3);
1767 		len32 = (len32 + 4) & ~3;
1768 	}
1769 
1770 	if (len32 == 4) {
1771 		uint8_t buf[4];
1772 
1773 		if (cmd_flags)
1774 			cmd_flags = BNX_NVM_COMMAND_LAST;
1775 		else
1776 			cmd_flags =
1777 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1778 
1779 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1780 
1781 		memcpy(ret_buf, buf, 4 - extra);
1782 	} else if (len32 > 0) {
1783 		uint8_t buf[4];
1784 
1785 		/* Read the first word. */
1786 		if (cmd_flags)
1787 			cmd_flags = 0;
1788 		else
1789 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1790 
1791 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1792 
1793 		/* Advance to the next dword. */
1794 		offset32 += 4;
1795 		ret_buf += 4;
1796 		len32 -= 4;
1797 
1798 		while (len32 > 4 && rc == 0) {
1799 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1800 
1801 			/* Advance to the next dword. */
1802 			offset32 += 4;
1803 			ret_buf += 4;
1804 			len32 -= 4;
1805 		}
1806 
1807 		if (rc)
1808 			return rc;
1809 
1810 		cmd_flags = BNX_NVM_COMMAND_LAST;
1811 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1812 
1813 		memcpy(ret_buf, buf, 4 - extra);
1814 	}
1815 
1816 	/* Disable access to flash interface and release the lock. */
1817 	bnx_disable_nvram_access(sc);
1818 	bnx_release_nvram_lock(sc);
1819 
1820 	return rc;
1821 }
1822 
1823 #ifdef BNX_NVRAM_WRITE_SUPPORT
1824 /****************************************************************************/
1825 /* Write an arbitrary range of data from NVRAM.                             */
1826 /*                                                                          */
1827 /* Prepares the NVRAM interface for write access and writes the requested   */
1828 /* data from the supplied buffer.  The caller is responsible for            */
1829 /* calculating any appropriate CRCs.                                        */
1830 /*                                                                          */
1831 /* Returns:                                                                 */
1832 /*   0 on success, positive value on failure.                               */
1833 /****************************************************************************/
1834 int
bnx_nvram_write(struct bnx_softc * sc,uint32_t offset,uint8_t * data_buf,int buf_size)1835 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1836     int buf_size)
1837 {
1838 	uint32_t		written, offset32, len32;
1839 	uint8_t		*buf, start[4], end[4];
1840 	int			rc = 0;
1841 	int			align_start, align_end;
1842 
1843 	buf = data_buf;
1844 	offset32 = offset;
1845 	len32 = buf_size;
1846 	align_start = align_end = 0;
1847 
1848 	if ((align_start = (offset32 & 3))) {
1849 		offset32 &= ~3;
1850 		len32 += align_start;
1851 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1852 			return rc;
1853 	}
1854 
1855 	if (len32 & 3) {
1856 		if ((len32 > 4) || !align_start) {
1857 			align_end = 4 - (len32 & 3);
1858 			len32 += align_end;
1859 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1860 			    end, 4)))
1861 				return rc;
1862 		}
1863 	}
1864 
1865 	if (align_start || align_end) {
1866 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1867 		if (buf == 0)
1868 			return ENOMEM;
1869 
1870 		if (align_start)
1871 			memcpy(buf, start, 4);
1872 
1873 		if (align_end)
1874 			memcpy(buf + len32 - 4, end, 4);
1875 
1876 		memcpy(buf + align_start, data_buf, buf_size);
1877 	}
1878 
1879 	written = 0;
1880 	while ((written < len32) && (rc == 0)) {
1881 		uint32_t page_start, page_end, data_start, data_end;
1882 		uint32_t addr, cmd_flags;
1883 		int i;
1884 		uint8_t flash_buffer[264];
1885 
1886 	    /* Find the page_start addr */
1887 		page_start = offset32 + written;
1888 		page_start -= (page_start % sc->bnx_flash_info->page_size);
1889 		/* Find the page_end addr */
1890 		page_end = page_start + sc->bnx_flash_info->page_size;
1891 		/* Find the data_start addr */
1892 		data_start = (written == 0) ? offset32 : page_start;
1893 		/* Find the data_end addr */
1894 		data_end = (page_end > offset32 + len32) ?
1895 		    (offset32 + len32) : page_end;
1896 
1897 		/* Request access to the flash interface. */
1898 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1899 			goto nvram_write_end;
1900 
1901 		/* Enable access to flash interface */
1902 		bnx_enable_nvram_access(sc);
1903 
1904 		cmd_flags = BNX_NVM_COMMAND_FIRST;
1905 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1906 			int j;
1907 
1908 			/* Read the whole page into the buffer
1909 			 * (non-buffer flash only) */
1910 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1911 				if (j == (sc->bnx_flash_info->page_size - 4))
1912 					cmd_flags |= BNX_NVM_COMMAND_LAST;
1913 
1914 				rc = bnx_nvram_read_dword(sc,
1915 					page_start + j,
1916 					&flash_buffer[j],
1917 					cmd_flags);
1918 
1919 				if (rc)
1920 					goto nvram_write_end;
1921 
1922 				cmd_flags = 0;
1923 			}
1924 		}
1925 
1926 		/* Enable writes to flash interface (unlock write-protect) */
1927 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
1928 			goto nvram_write_end;
1929 
1930 		/* Erase the page */
1931 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1932 			goto nvram_write_end;
1933 
1934 		/* Re-enable the write again for the actual write */
1935 		bnx_enable_nvram_write(sc);
1936 
1937 		/* Loop to write back the buffer data from page_start to
1938 		 * data_start */
1939 		i = 0;
1940 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1941 			for (addr = page_start; addr < data_start;
1942 				addr += 4, i += 4) {
1943 
1944 				rc = bnx_nvram_write_dword(sc, addr,
1945 				    &flash_buffer[i], cmd_flags);
1946 
1947 				if (rc != 0)
1948 					goto nvram_write_end;
1949 
1950 				cmd_flags = 0;
1951 			}
1952 		}
1953 
1954 		/* Loop to write the new data from data_start to data_end */
1955 		for (addr = data_start; addr < data_end; addr += 4, i++) {
1956 			if ((addr == page_end - 4) ||
1957 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1958 			    && (addr == data_end - 4))) {
1959 
1960 				cmd_flags |= BNX_NVM_COMMAND_LAST;
1961 			}
1962 
1963 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1964 
1965 			if (rc != 0)
1966 				goto nvram_write_end;
1967 
1968 			cmd_flags = 0;
1969 			buf += 4;
1970 		}
1971 
1972 		/* Loop to write back the buffer data from data_end
1973 		 * to page_end */
1974 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1975 			for (addr = data_end; addr < page_end;
1976 			    addr += 4, i += 4) {
1977 
1978 				if (addr == page_end-4)
1979 					cmd_flags = BNX_NVM_COMMAND_LAST;
1980 
1981 				rc = bnx_nvram_write_dword(sc, addr,
1982 				    &flash_buffer[i], cmd_flags);
1983 
1984 				if (rc != 0)
1985 					goto nvram_write_end;
1986 
1987 				cmd_flags = 0;
1988 			}
1989 		}
1990 
1991 		/* Disable writes to flash interface (lock write-protect) */
1992 		bnx_disable_nvram_write(sc);
1993 
1994 		/* Disable access to flash interface */
1995 		bnx_disable_nvram_access(sc);
1996 		bnx_release_nvram_lock(sc);
1997 
1998 		/* Increment written */
1999 		written += data_end - data_start;
2000 	}
2001 
2002 nvram_write_end:
2003 	if (align_start || align_end)
2004 		free(buf, M_DEVBUF);
2005 
2006 	return rc;
2007 }
2008 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2009 
2010 /****************************************************************************/
2011 /* Verifies that NVRAM is accessible and contains valid data.               */
2012 /*                                                                          */
2013 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2014 /* correct.                                                                 */
2015 /*                                                                          */
2016 /* Returns:                                                                 */
2017 /*   0 on success, positive value on failure.                               */
2018 /****************************************************************************/
2019 int
bnx_nvram_test(struct bnx_softc * sc)2020 bnx_nvram_test(struct bnx_softc *sc)
2021 {
2022 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
2023 	uint8_t		*data = (uint8_t *) buf;
2024 	int			rc = 0;
2025 	uint32_t		magic, csum;
2026 
2027 	/*
2028 	 * Check that the device NVRAM is valid by reading
2029 	 * the magic value at offset 0.
2030 	 */
2031 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2032 		goto bnx_nvram_test_done;
2033 
2034 	magic = bnx_be32toh(buf[0]);
2035 	if (magic != BNX_NVRAM_MAGIC) {
2036 		rc = ENODEV;
2037 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2038 		    "Expected: 0x%08X, Found: 0x%08X\n",
2039 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2040 		goto bnx_nvram_test_done;
2041 	}
2042 
2043 	/*
2044 	 * Verify that the device NVRAM includes valid
2045 	 * configuration data.
2046 	 */
2047 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2048 		goto bnx_nvram_test_done;
2049 
2050 	csum = ether_crc32_le(data, 0x100);
2051 	if (csum != BNX_CRC32_RESIDUAL) {
2052 		rc = ENODEV;
2053 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2054 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2055 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2056 		goto bnx_nvram_test_done;
2057 	}
2058 
2059 	csum = ether_crc32_le(data + 0x100, 0x100);
2060 	if (csum != BNX_CRC32_RESIDUAL) {
2061 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2062 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2063 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2064 		rc = ENODEV;
2065 	}
2066 
2067 bnx_nvram_test_done:
2068 	return rc;
2069 }
2070 
2071 /****************************************************************************/
2072 /* Identifies the current media type of the controller and sets the PHY     */
2073 /* address.                                                                 */
2074 /*                                                                          */
2075 /* Returns:                                                                 */
2076 /*   Nothing.                                                               */
2077 /****************************************************************************/
2078 void
bnx_get_media(struct bnx_softc * sc)2079 bnx_get_media(struct bnx_softc *sc)
2080 {
2081 	sc->bnx_phy_addr = 1;
2082 
2083 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2084 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2085 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2086 		uint32_t strap;
2087 
2088 		/*
2089 		 * The BCM5709S is software configurable
2090 		 * for Copper or SerDes operation.
2091 		 */
2092 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2093 			DBPRINT(sc, BNX_INFO_LOAD,
2094 			    "5709 bonded for copper.\n");
2095 			goto bnx_get_media_exit;
2096 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2097 			DBPRINT(sc, BNX_INFO_LOAD,
2098 			    "5709 bonded for dual media.\n");
2099 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2100 			goto bnx_get_media_exit;
2101 		}
2102 
2103 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2104 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2105 		else {
2106 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2107 			    >> 8;
2108 		}
2109 
2110 		if (sc->bnx_pa.pa_function == 0) {
2111 			switch (strap) {
2112 			case 0x4:
2113 			case 0x5:
2114 			case 0x6:
2115 				DBPRINT(sc, BNX_INFO_LOAD,
2116 					"BCM5709 s/w configured for SerDes.\n");
2117 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2118 				break;
2119 			default:
2120 				DBPRINT(sc, BNX_INFO_LOAD,
2121 					"BCM5709 s/w configured for Copper.\n");
2122 			}
2123 		} else {
2124 			switch (strap) {
2125 			case 0x1:
2126 			case 0x2:
2127 			case 0x4:
2128 				DBPRINT(sc, BNX_INFO_LOAD,
2129 					"BCM5709 s/w configured for SerDes.\n");
2130 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2131 				break;
2132 			default:
2133 				DBPRINT(sc, BNX_INFO_LOAD,
2134 					"BCM5709 s/w configured for Copper.\n");
2135 			}
2136 		}
2137 
2138 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2139 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2140 
2141 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2142 		uint32_t val;
2143 
2144 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
2145 
2146 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2147 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2148 
2149 		/*
2150 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2151 		 * separate PHY for SerDes.
2152 		 */
2153 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2154 			sc->bnx_phy_addr = 2;
2155 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
2156 				 BNX_SHARED_HW_CFG_CONFIG);
2157 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2158 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2159 				DBPRINT(sc, BNX_INFO_LOAD,
2160 				    "Found 2.5Gb capable adapter\n");
2161 			}
2162 		}
2163 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2164 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2165 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2166 
2167 bnx_get_media_exit:
2168 	DBPRINT(sc, (BNX_INFO_LOAD),
2169 		"Using PHY address %d.\n", sc->bnx_phy_addr);
2170 }
2171 
2172 /****************************************************************************/
2173 /* Performs PHY initialization required before MII drivers access the       */
2174 /* device.                                                                  */
2175 /*                                                                          */
2176 /* Returns:                                                                 */
2177 /*   Nothing.                                                               */
2178 /****************************************************************************/
2179 void
bnx_init_media(struct bnx_softc * sc)2180 bnx_init_media(struct bnx_softc *sc)
2181 {
2182 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2183 		/*
2184 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2185 		 * IEEE Clause 22 method. Otherwise we have no way to attach
2186 		 * the PHY to the mii(4) layer. PHY specific configuration
2187 		 * is done by the mii(4) layer.
2188 		 */
2189 
2190 		/* Select auto-negotiation MMD of the PHY. */
2191 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2192 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2193 
2194 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2195 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2196 
2197 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2198 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2199 	}
2200 }
2201 
2202 /****************************************************************************/
2203 /* Free any DMA memory owned by the driver.                                 */
2204 /*                                                                          */
2205 /* Scans through each data structre that requires DMA memory and frees      */
2206 /* the memory if allocated.                                                 */
2207 /*                                                                          */
2208 /* Returns:                                                                 */
2209 /*   Nothing.                                                               */
2210 /****************************************************************************/
2211 void
bnx_dma_free(struct bnx_softc * sc)2212 bnx_dma_free(struct bnx_softc *sc)
2213 {
2214 	int			i;
2215 
2216 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2217 
2218 	/* Destroy the status block. */
2219 	if (sc->status_block != NULL && sc->status_map != NULL) {
2220 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2221 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2222 		    BNX_STATUS_BLK_SZ);
2223 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2224 		    sc->status_rseg);
2225 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2226 		sc->status_block = NULL;
2227 		sc->status_map = NULL;
2228 	}
2229 
2230 	/* Destroy the statistics block. */
2231 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
2232 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2233 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2234 		    BNX_STATS_BLK_SZ);
2235 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2236 		    sc->stats_rseg);
2237 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2238 		sc->stats_block = NULL;
2239 		sc->stats_map = NULL;
2240 	}
2241 
2242 	/* Free, unmap and destroy all context memory pages. */
2243 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2244 		for (i = 0; i < sc->ctx_pages; i++) {
2245 			if (sc->ctx_block[i] != NULL) {
2246 				bus_dmamap_unload(sc->bnx_dmatag,
2247 				    sc->ctx_map[i]);
2248 				bus_dmamem_unmap(sc->bnx_dmatag,
2249 				    (void *)sc->ctx_block[i],
2250 				    BCM_PAGE_SIZE);
2251 				bus_dmamem_free(sc->bnx_dmatag,
2252 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2253 				bus_dmamap_destroy(sc->bnx_dmatag,
2254 				    sc->ctx_map[i]);
2255 				sc->ctx_block[i] = NULL;
2256 			}
2257 		}
2258 	}
2259 
2260 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2261 	for (i = 0; i < TX_PAGES; i++ ) {
2262 		if (sc->tx_bd_chain[i] != NULL &&
2263 		    sc->tx_bd_chain_map[i] != NULL) {
2264 			bus_dmamap_unload(sc->bnx_dmatag,
2265 			    sc->tx_bd_chain_map[i]);
2266 			bus_dmamem_unmap(sc->bnx_dmatag,
2267 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2268 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2269 			    sc->tx_bd_chain_rseg[i]);
2270 			bus_dmamap_destroy(sc->bnx_dmatag,
2271 			    sc->tx_bd_chain_map[i]);
2272 			sc->tx_bd_chain[i] = NULL;
2273 			sc->tx_bd_chain_map[i] = NULL;
2274 		}
2275 	}
2276 
2277 	/* Destroy the TX dmamaps. */
2278 	/* This isn't necessary since we dont allocate them up front */
2279 
2280 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2281 	for (i = 0; i < RX_PAGES; i++ ) {
2282 		if (sc->rx_bd_chain[i] != NULL &&
2283 		    sc->rx_bd_chain_map[i] != NULL) {
2284 			bus_dmamap_unload(sc->bnx_dmatag,
2285 			    sc->rx_bd_chain_map[i]);
2286 			bus_dmamem_unmap(sc->bnx_dmatag,
2287 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2288 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2289 			    sc->rx_bd_chain_rseg[i]);
2290 
2291 			bus_dmamap_destroy(sc->bnx_dmatag,
2292 			    sc->rx_bd_chain_map[i]);
2293 			sc->rx_bd_chain[i] = NULL;
2294 			sc->rx_bd_chain_map[i] = NULL;
2295 		}
2296 	}
2297 
2298 	/* Unload and destroy the RX mbuf maps. */
2299 	for (i = 0; i < TOTAL_RX_BD; i++) {
2300 		if (sc->rx_mbuf_map[i] != NULL) {
2301 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2302 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2303 		}
2304 	}
2305 
2306 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2307 }
2308 
2309 /****************************************************************************/
2310 /* Allocate any DMA memory needed by the driver.                            */
2311 /*                                                                          */
2312 /* Allocates DMA memory needed for the various global structures needed by  */
2313 /* hardware.                                                                */
2314 /*                                                                          */
2315 /* Returns:                                                                 */
2316 /*   0 for success, positive value for failure.                             */
2317 /****************************************************************************/
2318 int
bnx_dma_alloc(struct bnx_softc * sc)2319 bnx_dma_alloc(struct bnx_softc *sc)
2320 {
2321 	int			i, rc = 0;
2322 
2323 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2324 
2325 	/*
2326 	 * Allocate DMA memory for the status block, map the memory into DMA
2327 	 * space, and fetch the physical address of the block.
2328 	 */
2329 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2330 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2331 		aprint_error_dev(sc->bnx_dev,
2332 		    "Could not create status block DMA map!\n");
2333 		rc = ENOMEM;
2334 		goto bnx_dma_alloc_exit;
2335 	}
2336 
2337 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2338 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2339 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
2340 		aprint_error_dev(sc->bnx_dev,
2341 		    "Could not allocate status block DMA memory!\n");
2342 		rc = ENOMEM;
2343 		goto bnx_dma_alloc_exit;
2344 	}
2345 
2346 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2347 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2348 		aprint_error_dev(sc->bnx_dev,
2349 		    "Could not map status block DMA memory!\n");
2350 		rc = ENOMEM;
2351 		goto bnx_dma_alloc_exit;
2352 	}
2353 
2354 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2355 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2356 		aprint_error_dev(sc->bnx_dev,
2357 		    "Could not load status block DMA memory!\n");
2358 		rc = ENOMEM;
2359 		goto bnx_dma_alloc_exit;
2360 	}
2361 
2362 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2363 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2364 
2365 	/* DRC - Fix for 64 bit addresses. */
2366 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2367 		(uint32_t) sc->status_block_paddr);
2368 
2369 	/* BCM5709 uses host memory as cache for context memory. */
2370 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2371 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2372 		if (sc->ctx_pages == 0)
2373 			sc->ctx_pages = 1;
2374 		if (sc->ctx_pages > 4) /* XXX */
2375 			sc->ctx_pages = 4;
2376 
2377 		DBRUNIF((sc->ctx_pages > 512),
2378 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2379 				__FILE__, __LINE__, sc->ctx_pages));
2380 
2381 
2382 		for (i = 0; i < sc->ctx_pages; i++) {
2383 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2384 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2385 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2386 			    &sc->ctx_map[i]) != 0) {
2387 				rc = ENOMEM;
2388 				goto bnx_dma_alloc_exit;
2389 			}
2390 
2391 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2392 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2393 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2394 				rc = ENOMEM;
2395 				goto bnx_dma_alloc_exit;
2396 			}
2397 
2398 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2399 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2400 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2401 				rc = ENOMEM;
2402 				goto bnx_dma_alloc_exit;
2403 			}
2404 
2405 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2406 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2407 			    BUS_DMA_NOWAIT) != 0) {
2408 				rc = ENOMEM;
2409 				goto bnx_dma_alloc_exit;
2410 			}
2411 
2412 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2413 		}
2414 	}
2415 
2416 	/*
2417 	 * Allocate DMA memory for the statistics block, map the memory into
2418 	 * DMA space, and fetch the physical address of the block.
2419 	 */
2420 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2421 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2422 		aprint_error_dev(sc->bnx_dev,
2423 		    "Could not create stats block DMA map!\n");
2424 		rc = ENOMEM;
2425 		goto bnx_dma_alloc_exit;
2426 	}
2427 
2428 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2429 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2430 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2431 		aprint_error_dev(sc->bnx_dev,
2432 		    "Could not allocate stats block DMA memory!\n");
2433 		rc = ENOMEM;
2434 		goto bnx_dma_alloc_exit;
2435 	}
2436 
2437 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2438 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2439 		aprint_error_dev(sc->bnx_dev,
2440 		    "Could not map stats block DMA memory!\n");
2441 		rc = ENOMEM;
2442 		goto bnx_dma_alloc_exit;
2443 	}
2444 
2445 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2446 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2447 		aprint_error_dev(sc->bnx_dev,
2448 		    "Could not load status block DMA memory!\n");
2449 		rc = ENOMEM;
2450 		goto bnx_dma_alloc_exit;
2451 	}
2452 
2453 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2454 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2455 
2456 	/* DRC - Fix for 64 bit address. */
2457 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2458 	    (uint32_t) sc->stats_block_paddr);
2459 
2460 	/*
2461 	 * Allocate DMA memory for the TX buffer descriptor chain,
2462 	 * and fetch the physical address of the block.
2463 	 */
2464 	for (i = 0; i < TX_PAGES; i++) {
2465 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2466 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2467 		    &sc->tx_bd_chain_map[i])) {
2468 			aprint_error_dev(sc->bnx_dev,
2469 			    "Could not create Tx desc %d DMA map!\n", i);
2470 			rc = ENOMEM;
2471 			goto bnx_dma_alloc_exit;
2472 		}
2473 
2474 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2475 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2476 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2477 			aprint_error_dev(sc->bnx_dev,
2478 			    "Could not allocate TX desc %d DMA memory!\n",
2479 			    i);
2480 			rc = ENOMEM;
2481 			goto bnx_dma_alloc_exit;
2482 		}
2483 
2484 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2485 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2486 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2487 			aprint_error_dev(sc->bnx_dev,
2488 			    "Could not map TX desc %d DMA memory!\n", i);
2489 			rc = ENOMEM;
2490 			goto bnx_dma_alloc_exit;
2491 		}
2492 
2493 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2494 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2495 		    BUS_DMA_NOWAIT)) {
2496 			aprint_error_dev(sc->bnx_dev,
2497 			    "Could not load TX desc %d DMA memory!\n", i);
2498 			rc = ENOMEM;
2499 			goto bnx_dma_alloc_exit;
2500 		}
2501 
2502 		sc->tx_bd_chain_paddr[i] =
2503 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2504 
2505 		/* DRC - Fix for 64 bit systems. */
2506 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2507 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2508 	}
2509 
2510 	/*
2511 	 * Create lists to hold TX mbufs.
2512 	 */
2513 	TAILQ_INIT(&sc->tx_free_pkts);
2514 	TAILQ_INIT(&sc->tx_used_pkts);
2515 	sc->tx_pkt_count = 0;
2516 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2517 
2518 	/*
2519 	 * Allocate DMA memory for the Rx buffer descriptor chain,
2520 	 * and fetch the physical address of the block.
2521 	 */
2522 	for (i = 0; i < RX_PAGES; i++) {
2523 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2524 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2525 		    &sc->rx_bd_chain_map[i])) {
2526 			aprint_error_dev(sc->bnx_dev,
2527 			    "Could not create Rx desc %d DMA map!\n", i);
2528 			rc = ENOMEM;
2529 			goto bnx_dma_alloc_exit;
2530 		}
2531 
2532 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2533 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2534 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2535 			aprint_error_dev(sc->bnx_dev,
2536 			    "Could not allocate Rx desc %d DMA memory!\n", i);
2537 			rc = ENOMEM;
2538 			goto bnx_dma_alloc_exit;
2539 		}
2540 
2541 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2542 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2543 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2544 			aprint_error_dev(sc->bnx_dev,
2545 			    "Could not map Rx desc %d DMA memory!\n", i);
2546 			rc = ENOMEM;
2547 			goto bnx_dma_alloc_exit;
2548 		}
2549 
2550 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2551 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2552 		    BUS_DMA_NOWAIT)) {
2553 			aprint_error_dev(sc->bnx_dev,
2554 			    "Could not load Rx desc %d DMA memory!\n", i);
2555 			rc = ENOMEM;
2556 			goto bnx_dma_alloc_exit;
2557 		}
2558 
2559 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2560 		sc->rx_bd_chain_paddr[i] =
2561 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2562 
2563 		/* DRC - Fix for 64 bit systems. */
2564 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2565 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2566 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2567 		    0, BNX_RX_CHAIN_PAGE_SZ,
2568 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2569 	}
2570 
2571 	/*
2572 	 * Create DMA maps for the Rx buffer mbufs.
2573 	 */
2574 	for (i = 0; i < TOTAL_RX_BD; i++) {
2575 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2576 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2577 		    &sc->rx_mbuf_map[i])) {
2578 			aprint_error_dev(sc->bnx_dev,
2579 			    "Could not create Rx mbuf %d DMA map!\n", i);
2580 			rc = ENOMEM;
2581 			goto bnx_dma_alloc_exit;
2582 		}
2583 	}
2584 
2585  bnx_dma_alloc_exit:
2586 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2587 
2588 	return rc;
2589 }
2590 
2591 /****************************************************************************/
2592 /* Release all resources used by the driver.                                */
2593 /*                                                                          */
2594 /* Releases all resources acquired by the driver including interrupts,      */
2595 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
2596 /*                                                                          */
2597 /* Returns:                                                                 */
2598 /*   Nothing.                                                               */
2599 /****************************************************************************/
2600 void
bnx_release_resources(struct bnx_softc * sc)2601 bnx_release_resources(struct bnx_softc *sc)
2602 {
2603 	struct pci_attach_args	*pa = &(sc->bnx_pa);
2604 
2605 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2606 
2607 	bnx_dma_free(sc);
2608 
2609 	if (sc->bnx_intrhand != NULL)
2610 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2611 
2612 	if (sc->bnx_size)
2613 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2614 
2615 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2616 }
2617 
2618 /****************************************************************************/
2619 /* Firmware synchronization.                                                */
2620 /*                                                                          */
2621 /* Before performing certain events such as a chip reset, synchronize with  */
2622 /* the firmware first.                                                      */
2623 /*                                                                          */
2624 /* Returns:                                                                 */
2625 /*   0 for success, positive value for failure.                             */
2626 /****************************************************************************/
2627 int
bnx_fw_sync(struct bnx_softc * sc,uint32_t msg_data)2628 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2629 {
2630 	int			i, rc = 0;
2631 	uint32_t		val;
2632 
2633 	/* Don't waste any time if we've timed out before. */
2634 	if (sc->bnx_fw_timed_out) {
2635 		rc = EBUSY;
2636 		goto bnx_fw_sync_exit;
2637 	}
2638 
2639 	/* Increment the message sequence number. */
2640 	sc->bnx_fw_wr_seq++;
2641 	msg_data |= sc->bnx_fw_wr_seq;
2642 
2643  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2644 	    msg_data);
2645 
2646 	/* Send the message to the bootcode driver mailbox. */
2647 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2648 
2649 	/* Wait for the bootcode to acknowledge the message. */
2650 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2651 		/* Check for a response in the bootcode firmware mailbox. */
2652 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2653 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2654 			break;
2655 		DELAY(1000);
2656 	}
2657 
2658 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2659 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2660 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2661 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2662 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2663 
2664 		msg_data &= ~BNX_DRV_MSG_CODE;
2665 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2666 
2667 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2668 
2669 		sc->bnx_fw_timed_out = 1;
2670 		rc = EBUSY;
2671 	}
2672 
2673 bnx_fw_sync_exit:
2674 	return rc;
2675 }
2676 
2677 /****************************************************************************/
2678 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2679 /*                                                                          */
2680 /* Returns:                                                                 */
2681 /*   Nothing.                                                               */
2682 /****************************************************************************/
2683 void
bnx_load_rv2p_fw(struct bnx_softc * sc,uint32_t * rv2p_code,uint32_t rv2p_code_len,uint32_t rv2p_proc)2684 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2685     uint32_t rv2p_code_len, uint32_t rv2p_proc)
2686 {
2687 	int			i;
2688 	uint32_t		val;
2689 
2690 	/* Set the page size used by RV2P. */
2691 	if (rv2p_proc == RV2P_PROC2) {
2692 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2693 		    USABLE_RX_BD_PER_PAGE);
2694 	}
2695 
2696 	for (i = 0; i < rv2p_code_len; i += 8) {
2697 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2698 		rv2p_code++;
2699 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2700 		rv2p_code++;
2701 
2702 		if (rv2p_proc == RV2P_PROC1) {
2703 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2704 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2705 		} else {
2706 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2707 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2708 		}
2709 	}
2710 
2711 	/* Reset the processor, un-stall is done later. */
2712 	if (rv2p_proc == RV2P_PROC1)
2713 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2714 	else
2715 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2716 }
2717 
2718 /****************************************************************************/
2719 /* Load RISC processor firmware.                                            */
2720 /*                                                                          */
2721 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
2722 /* associated with a particular processor.                                  */
2723 /*                                                                          */
2724 /* Returns:                                                                 */
2725 /*   Nothing.                                                               */
2726 /****************************************************************************/
2727 void
bnx_load_cpu_fw(struct bnx_softc * sc,struct cpu_reg * cpu_reg,struct fw_info * fw)2728 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2729     struct fw_info *fw)
2730 {
2731 	uint32_t		offset;
2732 	uint32_t		val;
2733 
2734 	/* Halt the CPU. */
2735 	val = REG_RD_IND(sc, cpu_reg->mode);
2736 	val |= cpu_reg->mode_value_halt;
2737 	REG_WR_IND(sc, cpu_reg->mode, val);
2738 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2739 
2740 	/* Load the Text area. */
2741 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2742 	if (fw->text) {
2743 		int j;
2744 
2745 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2746 			REG_WR_IND(sc, offset, fw->text[j]);
2747 	}
2748 
2749 	/* Load the Data area. */
2750 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2751 	if (fw->data) {
2752 		int j;
2753 
2754 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2755 			REG_WR_IND(sc, offset, fw->data[j]);
2756 	}
2757 
2758 	/* Load the SBSS area. */
2759 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2760 	if (fw->sbss) {
2761 		int j;
2762 
2763 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2764 			REG_WR_IND(sc, offset, fw->sbss[j]);
2765 	}
2766 
2767 	/* Load the BSS area. */
2768 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2769 	if (fw->bss) {
2770 		int j;
2771 
2772 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2773 			REG_WR_IND(sc, offset, fw->bss[j]);
2774 	}
2775 
2776 	/* Load the Read-Only area. */
2777 	offset = cpu_reg->spad_base +
2778 	    (fw->rodata_addr - cpu_reg->mips_view_base);
2779 	if (fw->rodata) {
2780 		int j;
2781 
2782 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2783 			REG_WR_IND(sc, offset, fw->rodata[j]);
2784 	}
2785 
2786 	/* Clear the pre-fetch instruction. */
2787 	REG_WR_IND(sc, cpu_reg->inst, 0);
2788 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2789 
2790 	/* Start the CPU. */
2791 	val = REG_RD_IND(sc, cpu_reg->mode);
2792 	val &= ~cpu_reg->mode_value_halt;
2793 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2794 	REG_WR_IND(sc, cpu_reg->mode, val);
2795 }
2796 
2797 /****************************************************************************/
2798 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
2799 /*                                                                          */
2800 /* Loads the firmware for each CPU and starts the CPU.                      */
2801 /*                                                                          */
2802 /* Returns:                                                                 */
2803 /*   Nothing.                                                               */
2804 /****************************************************************************/
2805 void
bnx_init_cpus(struct bnx_softc * sc)2806 bnx_init_cpus(struct bnx_softc *sc)
2807 {
2808 	struct cpu_reg cpu_reg;
2809 	struct fw_info fw;
2810 
2811 	switch(BNX_CHIP_NUM(sc)) {
2812 	case BNX_CHIP_NUM_5709:
2813 		/* Initialize the RV2P processor. */
2814 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2815 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2816 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2817 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2818 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2819 		} else {
2820 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2821 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2822 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2823 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2824 		}
2825 
2826 		/* Initialize the RX Processor. */
2827 		cpu_reg.mode = BNX_RXP_CPU_MODE;
2828 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2829 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2830 		cpu_reg.state = BNX_RXP_CPU_STATE;
2831 		cpu_reg.state_value_clear = 0xffffff;
2832 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2833 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2834 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2835 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2836 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2837 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2838 		cpu_reg.mips_view_base = 0x8000000;
2839 
2840 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2841 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2842 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2843 		fw.start_addr = bnx_RXP_b09FwStartAddr;
2844 
2845 		fw.text_addr = bnx_RXP_b09FwTextAddr;
2846 		fw.text_len = bnx_RXP_b09FwTextLen;
2847 		fw.text_index = 0;
2848 		fw.text = bnx_RXP_b09FwText;
2849 
2850 		fw.data_addr = bnx_RXP_b09FwDataAddr;
2851 		fw.data_len = bnx_RXP_b09FwDataLen;
2852 		fw.data_index = 0;
2853 		fw.data = bnx_RXP_b09FwData;
2854 
2855 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2856 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
2857 		fw.sbss_index = 0;
2858 		fw.sbss = bnx_RXP_b09FwSbss;
2859 
2860 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
2861 		fw.bss_len = bnx_RXP_b09FwBssLen;
2862 		fw.bss_index = 0;
2863 		fw.bss = bnx_RXP_b09FwBss;
2864 
2865 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2866 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
2867 		fw.rodata_index = 0;
2868 		fw.rodata = bnx_RXP_b09FwRodata;
2869 
2870 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2871 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2872 
2873 		/* Initialize the TX Processor. */
2874 		cpu_reg.mode = BNX_TXP_CPU_MODE;
2875 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2876 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2877 		cpu_reg.state = BNX_TXP_CPU_STATE;
2878 		cpu_reg.state_value_clear = 0xffffff;
2879 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2880 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2881 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2882 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2883 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2884 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2885 		cpu_reg.mips_view_base = 0x8000000;
2886 
2887 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2888 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2889 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2890 		fw.start_addr = bnx_TXP_b09FwStartAddr;
2891 
2892 		fw.text_addr = bnx_TXP_b09FwTextAddr;
2893 		fw.text_len = bnx_TXP_b09FwTextLen;
2894 		fw.text_index = 0;
2895 		fw.text = bnx_TXP_b09FwText;
2896 
2897 		fw.data_addr = bnx_TXP_b09FwDataAddr;
2898 		fw.data_len = bnx_TXP_b09FwDataLen;
2899 		fw.data_index = 0;
2900 		fw.data = bnx_TXP_b09FwData;
2901 
2902 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2903 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
2904 		fw.sbss_index = 0;
2905 		fw.sbss = bnx_TXP_b09FwSbss;
2906 
2907 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
2908 		fw.bss_len = bnx_TXP_b09FwBssLen;
2909 		fw.bss_index = 0;
2910 		fw.bss = bnx_TXP_b09FwBss;
2911 
2912 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2913 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
2914 		fw.rodata_index = 0;
2915 		fw.rodata = bnx_TXP_b09FwRodata;
2916 
2917 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2918 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2919 
2920 		/* Initialize the TX Patch-up Processor. */
2921 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
2922 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2923 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2924 		cpu_reg.state = BNX_TPAT_CPU_STATE;
2925 		cpu_reg.state_value_clear = 0xffffff;
2926 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2927 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2928 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2929 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2930 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2931 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2932 		cpu_reg.mips_view_base = 0x8000000;
2933 
2934 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2935 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2936 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2937 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
2938 
2939 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
2940 		fw.text_len = bnx_TPAT_b09FwTextLen;
2941 		fw.text_index = 0;
2942 		fw.text = bnx_TPAT_b09FwText;
2943 
2944 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
2945 		fw.data_len = bnx_TPAT_b09FwDataLen;
2946 		fw.data_index = 0;
2947 		fw.data = bnx_TPAT_b09FwData;
2948 
2949 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2950 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2951 		fw.sbss_index = 0;
2952 		fw.sbss = bnx_TPAT_b09FwSbss;
2953 
2954 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2955 		fw.bss_len = bnx_TPAT_b09FwBssLen;
2956 		fw.bss_index = 0;
2957 		fw.bss = bnx_TPAT_b09FwBss;
2958 
2959 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2960 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2961 		fw.rodata_index = 0;
2962 		fw.rodata = bnx_TPAT_b09FwRodata;
2963 
2964 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2965 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2966 
2967 		/* Initialize the Completion Processor. */
2968 		cpu_reg.mode = BNX_COM_CPU_MODE;
2969 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2970 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2971 		cpu_reg.state = BNX_COM_CPU_STATE;
2972 		cpu_reg.state_value_clear = 0xffffff;
2973 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2974 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2975 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2976 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2977 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2978 		cpu_reg.spad_base = BNX_COM_SCRATCH;
2979 		cpu_reg.mips_view_base = 0x8000000;
2980 
2981 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
2982 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2983 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
2984 		fw.start_addr = bnx_COM_b09FwStartAddr;
2985 
2986 		fw.text_addr = bnx_COM_b09FwTextAddr;
2987 		fw.text_len = bnx_COM_b09FwTextLen;
2988 		fw.text_index = 0;
2989 		fw.text = bnx_COM_b09FwText;
2990 
2991 		fw.data_addr = bnx_COM_b09FwDataAddr;
2992 		fw.data_len = bnx_COM_b09FwDataLen;
2993 		fw.data_index = 0;
2994 		fw.data = bnx_COM_b09FwData;
2995 
2996 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2997 		fw.sbss_len = bnx_COM_b09FwSbssLen;
2998 		fw.sbss_index = 0;
2999 		fw.sbss = bnx_COM_b09FwSbss;
3000 
3001 		fw.bss_addr = bnx_COM_b09FwBssAddr;
3002 		fw.bss_len = bnx_COM_b09FwBssLen;
3003 		fw.bss_index = 0;
3004 		fw.bss = bnx_COM_b09FwBss;
3005 
3006 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3007 		fw.rodata_len = bnx_COM_b09FwRodataLen;
3008 		fw.rodata_index = 0;
3009 		fw.rodata = bnx_COM_b09FwRodata;
3010 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3011 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3012 		break;
3013 	default:
3014 		/* Initialize the RV2P processor. */
3015 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3016 		    RV2P_PROC1);
3017 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3018 		    RV2P_PROC2);
3019 
3020 		/* Initialize the RX Processor. */
3021 		cpu_reg.mode = BNX_RXP_CPU_MODE;
3022 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3023 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3024 		cpu_reg.state = BNX_RXP_CPU_STATE;
3025 		cpu_reg.state_value_clear = 0xffffff;
3026 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3027 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3028 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3029 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3030 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3031 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
3032 		cpu_reg.mips_view_base = 0x8000000;
3033 
3034 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3035 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3036 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3037 		fw.start_addr = bnx_RXP_b06FwStartAddr;
3038 
3039 		fw.text_addr = bnx_RXP_b06FwTextAddr;
3040 		fw.text_len = bnx_RXP_b06FwTextLen;
3041 		fw.text_index = 0;
3042 		fw.text = bnx_RXP_b06FwText;
3043 
3044 		fw.data_addr = bnx_RXP_b06FwDataAddr;
3045 		fw.data_len = bnx_RXP_b06FwDataLen;
3046 		fw.data_index = 0;
3047 		fw.data = bnx_RXP_b06FwData;
3048 
3049 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3050 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
3051 		fw.sbss_index = 0;
3052 		fw.sbss = bnx_RXP_b06FwSbss;
3053 
3054 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
3055 		fw.bss_len = bnx_RXP_b06FwBssLen;
3056 		fw.bss_index = 0;
3057 		fw.bss = bnx_RXP_b06FwBss;
3058 
3059 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3060 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
3061 		fw.rodata_index = 0;
3062 		fw.rodata = bnx_RXP_b06FwRodata;
3063 
3064 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3065 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3066 
3067 		/* Initialize the TX Processor. */
3068 		cpu_reg.mode = BNX_TXP_CPU_MODE;
3069 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3070 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3071 		cpu_reg.state = BNX_TXP_CPU_STATE;
3072 		cpu_reg.state_value_clear = 0xffffff;
3073 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3074 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3075 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3076 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3077 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3078 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
3079 		cpu_reg.mips_view_base = 0x8000000;
3080 
3081 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3082 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3083 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3084 		fw.start_addr = bnx_TXP_b06FwStartAddr;
3085 
3086 		fw.text_addr = bnx_TXP_b06FwTextAddr;
3087 		fw.text_len = bnx_TXP_b06FwTextLen;
3088 		fw.text_index = 0;
3089 		fw.text = bnx_TXP_b06FwText;
3090 
3091 		fw.data_addr = bnx_TXP_b06FwDataAddr;
3092 		fw.data_len = bnx_TXP_b06FwDataLen;
3093 		fw.data_index = 0;
3094 		fw.data = bnx_TXP_b06FwData;
3095 
3096 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3097 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
3098 		fw.sbss_index = 0;
3099 		fw.sbss = bnx_TXP_b06FwSbss;
3100 
3101 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
3102 		fw.bss_len = bnx_TXP_b06FwBssLen;
3103 		fw.bss_index = 0;
3104 		fw.bss = bnx_TXP_b06FwBss;
3105 
3106 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3107 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
3108 		fw.rodata_index = 0;
3109 		fw.rodata = bnx_TXP_b06FwRodata;
3110 
3111 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3112 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3113 
3114 		/* Initialize the TX Patch-up Processor. */
3115 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
3116 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3117 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3118 		cpu_reg.state = BNX_TPAT_CPU_STATE;
3119 		cpu_reg.state_value_clear = 0xffffff;
3120 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3121 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3122 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3123 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3124 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3125 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3126 		cpu_reg.mips_view_base = 0x8000000;
3127 
3128 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3129 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3130 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3131 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
3132 
3133 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
3134 		fw.text_len = bnx_TPAT_b06FwTextLen;
3135 		fw.text_index = 0;
3136 		fw.text = bnx_TPAT_b06FwText;
3137 
3138 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
3139 		fw.data_len = bnx_TPAT_b06FwDataLen;
3140 		fw.data_index = 0;
3141 		fw.data = bnx_TPAT_b06FwData;
3142 
3143 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3144 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3145 		fw.sbss_index = 0;
3146 		fw.sbss = bnx_TPAT_b06FwSbss;
3147 
3148 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3149 		fw.bss_len = bnx_TPAT_b06FwBssLen;
3150 		fw.bss_index = 0;
3151 		fw.bss = bnx_TPAT_b06FwBss;
3152 
3153 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3154 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3155 		fw.rodata_index = 0;
3156 		fw.rodata = bnx_TPAT_b06FwRodata;
3157 
3158 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3159 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3160 
3161 		/* Initialize the Completion Processor. */
3162 		cpu_reg.mode = BNX_COM_CPU_MODE;
3163 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3164 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3165 		cpu_reg.state = BNX_COM_CPU_STATE;
3166 		cpu_reg.state_value_clear = 0xffffff;
3167 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3168 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3169 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3170 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3171 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3172 		cpu_reg.spad_base = BNX_COM_SCRATCH;
3173 		cpu_reg.mips_view_base = 0x8000000;
3174 
3175 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
3176 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3177 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
3178 		fw.start_addr = bnx_COM_b06FwStartAddr;
3179 
3180 		fw.text_addr = bnx_COM_b06FwTextAddr;
3181 		fw.text_len = bnx_COM_b06FwTextLen;
3182 		fw.text_index = 0;
3183 		fw.text = bnx_COM_b06FwText;
3184 
3185 		fw.data_addr = bnx_COM_b06FwDataAddr;
3186 		fw.data_len = bnx_COM_b06FwDataLen;
3187 		fw.data_index = 0;
3188 		fw.data = bnx_COM_b06FwData;
3189 
3190 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3191 		fw.sbss_len = bnx_COM_b06FwSbssLen;
3192 		fw.sbss_index = 0;
3193 		fw.sbss = bnx_COM_b06FwSbss;
3194 
3195 		fw.bss_addr = bnx_COM_b06FwBssAddr;
3196 		fw.bss_len = bnx_COM_b06FwBssLen;
3197 		fw.bss_index = 0;
3198 		fw.bss = bnx_COM_b06FwBss;
3199 
3200 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3201 		fw.rodata_len = bnx_COM_b06FwRodataLen;
3202 		fw.rodata_index = 0;
3203 		fw.rodata = bnx_COM_b06FwRodata;
3204 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3205 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3206 		break;
3207 	}
3208 }
3209 
3210 /****************************************************************************/
3211 /* Initialize context memory.                                               */
3212 /*                                                                          */
3213 /* Clears the memory associated with each Context ID (CID).                 */
3214 /*                                                                          */
3215 /* Returns:                                                                 */
3216 /*   Nothing.                                                               */
3217 /****************************************************************************/
3218 void
bnx_init_context(struct bnx_softc * sc)3219 bnx_init_context(struct bnx_softc *sc)
3220 {
3221 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3222 		/* DRC: Replace this constant value with a #define. */
3223 		int i, retry_cnt = 10;
3224 		uint32_t val;
3225 
3226 		/*
3227 		 * BCM5709 context memory may be cached
3228 		 * in host memory so prepare the host memory
3229 		 * for access.
3230 		 */
3231 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3232 		    | (1 << 12);
3233 		val |= (BCM_PAGE_BITS - 8) << 16;
3234 		REG_WR(sc, BNX_CTX_COMMAND, val);
3235 
3236 		/* Wait for mem init command to complete. */
3237 		for (i = 0; i < retry_cnt; i++) {
3238 			val = REG_RD(sc, BNX_CTX_COMMAND);
3239 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3240 				break;
3241 			DELAY(2);
3242 		}
3243 
3244 		/* ToDo: Consider returning an error here. */
3245 
3246 		for (i = 0; i < sc->ctx_pages; i++) {
3247 			int j;
3248 
3249 			/* Set the physaddr of the context memory cache. */
3250 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3251 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3252 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3253 			val = (uint32_t)
3254 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3255 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3256 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3257 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3258 
3259 			/* Verify that the context memory write was successful. */
3260 			for (j = 0; j < retry_cnt; j++) {
3261 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3262 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3263 					break;
3264 				DELAY(5);
3265 			}
3266 
3267 			/* ToDo: Consider returning an error here. */
3268 		}
3269 	} else {
3270 		uint32_t vcid_addr, offset;
3271 
3272 		/*
3273 		 * For the 5706/5708, context memory is local to
3274 		 * the controller, so initialize the controller
3275 		 * context memory.
3276 		 */
3277 
3278 		vcid_addr = GET_CID_ADDR(96);
3279 		while (vcid_addr) {
3280 
3281 			vcid_addr -= BNX_PHY_CTX_SIZE;
3282 
3283 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3284 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3285 
3286 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3287 				CTX_WR(sc, 0x00, offset, 0);
3288 			}
3289 
3290 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3291 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3292 		}
3293 	}
3294 }
3295 
3296 /****************************************************************************/
3297 /* Fetch the permanent MAC address of the controller.                       */
3298 /*                                                                          */
3299 /* Returns:                                                                 */
3300 /*   Nothing.                                                               */
3301 /****************************************************************************/
3302 void
bnx_get_mac_addr(struct bnx_softc * sc)3303 bnx_get_mac_addr(struct bnx_softc *sc)
3304 {
3305 	uint32_t		mac_lo = 0, mac_hi = 0;
3306 
3307 	/*
3308 	 * The NetXtreme II bootcode populates various NIC
3309 	 * power-on and runtime configuration items in a
3310 	 * shared memory area.  The factory configured MAC
3311 	 * address is available from both NVRAM and the
3312 	 * shared memory area so we'll read the value from
3313 	 * shared memory for speed.
3314 	 */
3315 
3316 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3317 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3318 
3319 	if ((mac_lo == 0) && (mac_hi == 0)) {
3320 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3321 		    __FILE__, __LINE__);
3322 	} else {
3323 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
3324 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
3325 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
3326 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
3327 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
3328 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
3329 	}
3330 
3331 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3332 	    "%s\n", ether_sprintf(sc->eaddr));
3333 }
3334 
3335 /****************************************************************************/
3336 /* Program the MAC address.                                                 */
3337 /*                                                                          */
3338 /* Returns:                                                                 */
3339 /*   Nothing.                                                               */
3340 /****************************************************************************/
3341 void
bnx_set_mac_addr(struct bnx_softc * sc)3342 bnx_set_mac_addr(struct bnx_softc *sc)
3343 {
3344 	uint32_t		val;
3345 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3346 
3347 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3348 	    "%s\n", ether_sprintf(sc->eaddr));
3349 
3350 	val = (mac_addr[0] << 8) | mac_addr[1];
3351 
3352 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3353 
3354 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3355 		(mac_addr[4] << 8) | mac_addr[5];
3356 
3357 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3358 }
3359 
3360 /****************************************************************************/
3361 /* Stop the controller.                                                     */
3362 /*                                                                          */
3363 /* Returns:                                                                 */
3364 /*   Nothing.                                                               */
3365 /****************************************************************************/
3366 void
bnx_stop(struct ifnet * ifp,int disable)3367 bnx_stop(struct ifnet *ifp, int disable)
3368 {
3369 	struct bnx_softc *sc = ifp->if_softc;
3370 
3371 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3372 
3373 	if ((ifp->if_flags & IFF_RUNNING) == 0)
3374 		return;
3375 
3376 	callout_stop(&sc->bnx_timeout);
3377 
3378 	mii_down(&sc->bnx_mii);
3379 
3380 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3381 
3382 	/* Disable the transmit/receive blocks. */
3383 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3384 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3385 	DELAY(20);
3386 
3387 	bnx_disable_intr(sc);
3388 
3389 	/* Tell firmware that the driver is going away. */
3390 	if (disable)
3391 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3392 	else
3393 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3394 
3395 	/* Free RX buffers. */
3396 	bnx_free_rx_chain(sc);
3397 
3398 	/* Free TX buffers. */
3399 	bnx_free_tx_chain(sc);
3400 
3401 	ifp->if_timer = 0;
3402 
3403 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3404 
3405 }
3406 
3407 int
bnx_reset(struct bnx_softc * sc,uint32_t reset_code)3408 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3409 {
3410 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3411 	uint32_t		val;
3412 	int			i, rc = 0;
3413 
3414 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3415 
3416 	/* Wait for pending PCI transactions to complete. */
3417 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3418 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3419 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3420 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3421 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3422 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3423 	DELAY(5);
3424 
3425 	/* Disable DMA */
3426 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3427 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3428 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3429 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3430 	}
3431 
3432 	/* Assume bootcode is running. */
3433 	sc->bnx_fw_timed_out = 0;
3434 
3435 	/* Give the firmware a chance to prepare for the reset. */
3436 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3437 	if (rc)
3438 		goto bnx_reset_exit;
3439 
3440 	/* Set a firmware reminder that this is a soft reset. */
3441 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3442 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
3443 
3444 	/* Dummy read to force the chip to complete all current transactions. */
3445 	val = REG_RD(sc, BNX_MISC_ID);
3446 
3447 	/* Chip reset. */
3448 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3449 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3450 		REG_RD(sc, BNX_MISC_COMMAND);
3451 		DELAY(5);
3452 
3453 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3454 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3455 
3456 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3457 		    val);
3458 	} else {
3459 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3460 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3461 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3462 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3463 
3464 		/* Allow up to 30us for reset to complete. */
3465 		for (i = 0; i < 10; i++) {
3466 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3467 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3468 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3469 				break;
3470 			}
3471 			DELAY(10);
3472 		}
3473 
3474 		/* Check that reset completed successfully. */
3475 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3476 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3477 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3478 			    __FILE__, __LINE__);
3479 			rc = EBUSY;
3480 			goto bnx_reset_exit;
3481 		}
3482 	}
3483 
3484 	/* Make sure byte swapping is properly configured. */
3485 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3486 	if (val != 0x01020304) {
3487 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3488 		    __FILE__, __LINE__);
3489 		rc = ENODEV;
3490 		goto bnx_reset_exit;
3491 	}
3492 
3493 	/* Just completed a reset, assume that firmware is running again. */
3494 	sc->bnx_fw_timed_out = 0;
3495 
3496 	/* Wait for the firmware to finish its initialization. */
3497 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3498 	if (rc)
3499 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3500 		    "initialization!\n", __FILE__, __LINE__);
3501 
3502 bnx_reset_exit:
3503 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3504 
3505 	return rc;
3506 }
3507 
3508 int
bnx_chipinit(struct bnx_softc * sc)3509 bnx_chipinit(struct bnx_softc *sc)
3510 {
3511 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3512 	uint32_t		val;
3513 	int			rc = 0;
3514 
3515 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3516 
3517 	/* Make sure the interrupt is not active. */
3518 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3519 
3520 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
3521 	/* channels and PCI clock compensation delay.                      */
3522 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3523 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
3524 #if BYTE_ORDER == BIG_ENDIAN
3525 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3526 #endif
3527 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3528 	    DMA_READ_CHANS << 12 |
3529 	    DMA_WRITE_CHANS << 16;
3530 
3531 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3532 
3533 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3534 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3535 
3536 	/*
3537 	 * This setting resolves a problem observed on certain Intel PCI
3538 	 * chipsets that cannot handle multiple outstanding DMA operations.
3539 	 * See errata E9_5706A1_65.
3540 	 */
3541 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3542 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3543 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
3544 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3545 
3546 	REG_WR(sc, BNX_DMA_CONFIG, val);
3547 
3548 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3549 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
3550 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3551 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3552 		    val & ~0x20000);
3553 	}
3554 
3555 	/* Enable the RX_V2P and Context state machines before access. */
3556 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3557 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3558 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3559 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3560 
3561 	/* Initialize context mapping and zero out the quick contexts. */
3562 	bnx_init_context(sc);
3563 
3564 	/* Initialize the on-boards CPUs */
3565 	bnx_init_cpus(sc);
3566 
3567 	/* Prepare NVRAM for access. */
3568 	if (bnx_init_nvram(sc)) {
3569 		rc = ENODEV;
3570 		goto bnx_chipinit_exit;
3571 	}
3572 
3573 	/* Set the kernel bypass block size */
3574 	val = REG_RD(sc, BNX_MQ_CONFIG);
3575 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3576 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3577 
3578 	/* Enable bins used on the 5709. */
3579 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3580 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3581 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3582 			val |= BNX_MQ_CONFIG_HALT_DIS;
3583 	}
3584 
3585 	REG_WR(sc, BNX_MQ_CONFIG, val);
3586 
3587 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3588 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3589 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3590 
3591 	val = (BCM_PAGE_BITS - 8) << 24;
3592 	REG_WR(sc, BNX_RV2P_CONFIG, val);
3593 
3594 	/* Configure page size. */
3595 	val = REG_RD(sc, BNX_TBDR_CONFIG);
3596 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3597 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3598 	REG_WR(sc, BNX_TBDR_CONFIG, val);
3599 
3600 #if 0
3601 	/* Set the perfect match control register to default. */
3602 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3603 #endif
3604 
3605 bnx_chipinit_exit:
3606 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3607 
3608 	return rc;
3609 }
3610 
3611 /****************************************************************************/
3612 /* Initialize the controller in preparation to send/receive traffic.        */
3613 /*                                                                          */
3614 /* Returns:                                                                 */
3615 /*   0 for success, positive value for failure.                             */
3616 /****************************************************************************/
3617 int
bnx_blockinit(struct bnx_softc * sc)3618 bnx_blockinit(struct bnx_softc *sc)
3619 {
3620 	uint32_t		reg, val;
3621 	int 			rc = 0;
3622 
3623 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3624 
3625 	/* Load the hardware default MAC address. */
3626 	bnx_set_mac_addr(sc);
3627 
3628 	/* Set the Ethernet backoff seed value */
3629 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3630 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3631 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3632 
3633 	sc->last_status_idx = 0;
3634 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3635 
3636 	/* Set up link change interrupt generation. */
3637 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3638 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3639 
3640 	/* Program the physical address of the status block. */
3641 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3642 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3643 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3644 
3645 	/* Program the physical address of the statistics block. */
3646 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3647 	    (uint32_t)(sc->stats_block_paddr));
3648 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3649 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3650 
3651 	/* Program various host coalescing parameters. */
3652 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3653 	    << 16) | sc->bnx_tx_quick_cons_trip);
3654 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3655 	    << 16) | sc->bnx_rx_quick_cons_trip);
3656 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3657 	    sc->bnx_comp_prod_trip);
3658 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3659 	    sc->bnx_tx_ticks);
3660 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3661 	    sc->bnx_rx_ticks);
3662 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3663 	    sc->bnx_com_ticks);
3664 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3665 	    sc->bnx_cmd_ticks);
3666 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3667 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
3668 	REG_WR(sc, BNX_HC_CONFIG,
3669 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3670 	    BNX_HC_CONFIG_COLLECT_STATS));
3671 
3672 	/* Clear the internal statistics counters. */
3673 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3674 
3675 	/* Verify that bootcode is running. */
3676 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3677 
3678 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3679 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3680 	    __FILE__, __LINE__); reg = 0);
3681 
3682 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3683 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
3684 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3685 		    "Expected: 08%08X\n", __FILE__, __LINE__,
3686 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3687 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
3688 		rc = ENODEV;
3689 		goto bnx_blockinit_exit;
3690 	}
3691 
3692 	/* Check if any management firmware is running. */
3693 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3694 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3695 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
3696 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3697 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3698 	}
3699 
3700 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3701 	    BNX_DEV_INFO_BC_REV);
3702 
3703 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3704 
3705 	/* Enable DMA */
3706 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3707 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3708 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3709 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3710 	}
3711 
3712 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3713 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3714 
3715 	/* Enable link state change interrupt generation. */
3716 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3717 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3718 		    BNX_MISC_ENABLE_DEFAULT_XI);
3719 	} else
3720 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3721 
3722 	/* Enable all remaining blocks in the MAC. */
3723 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3724 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3725 	DELAY(20);
3726 
3727 bnx_blockinit_exit:
3728 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3729 
3730 	return rc;
3731 }
3732 
3733 static int
bnx_add_buf(struct bnx_softc * sc,struct mbuf * m_new,uint16_t * prod,uint16_t * chain_prod,uint32_t * prod_bseq)3734 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3735     uint16_t *chain_prod, uint32_t *prod_bseq)
3736 {
3737 	bus_dmamap_t		map;
3738 	struct rx_bd		*rxbd;
3739 	uint32_t		addr;
3740 	int i;
3741 #ifdef BNX_DEBUG
3742 	uint16_t debug_chain_prod =	*chain_prod;
3743 #endif
3744 	uint16_t first_chain_prod;
3745 
3746 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3747 
3748 	/* Map the mbuf cluster into device memory. */
3749 	map = sc->rx_mbuf_map[*chain_prod];
3750 	first_chain_prod = *chain_prod;
3751 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3752 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3753 		    __FILE__, __LINE__);
3754 
3755 		m_freem(m_new);
3756 
3757 		DBRUNIF(1, sc->rx_mbuf_alloc--);
3758 
3759 		return ENOBUFS;
3760 	}
3761 	/* Make sure there is room in the receive chain. */
3762 	if (map->dm_nsegs > sc->free_rx_bd) {
3763 		bus_dmamap_unload(sc->bnx_dmatag, map);
3764 		m_freem(m_new);
3765 		return EFBIG;
3766 	}
3767 #ifdef BNX_DEBUG
3768 	/* Track the distribution of buffer segments. */
3769 	sc->rx_mbuf_segs[map->dm_nsegs]++;
3770 #endif
3771 
3772 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3773 	    BUS_DMASYNC_PREREAD);
3774 
3775 	/* Update some debug statistics counters */
3776 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3777 	    sc->rx_low_watermark = sc->free_rx_bd);
3778 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3779 
3780 	/*
3781 	 * Setup the rx_bd for the first segment
3782 	 */
3783 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3784 
3785 	addr = (uint32_t)map->dm_segs[0].ds_addr;
3786 	rxbd->rx_bd_haddr_lo = addr;
3787 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3788 	rxbd->rx_bd_haddr_hi = addr;
3789 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3790 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3791 	*prod_bseq += map->dm_segs[0].ds_len;
3792 	bus_dmamap_sync(sc->bnx_dmatag,
3793 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3794 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3795 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3796 
3797 	for (i = 1; i < map->dm_nsegs; i++) {
3798 		*prod = NEXT_RX_BD(*prod);
3799 		*chain_prod = RX_CHAIN_IDX(*prod);
3800 
3801 		rxbd =
3802 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3803 
3804 		addr = (uint32_t)map->dm_segs[i].ds_addr;
3805 		rxbd->rx_bd_haddr_lo = addr;
3806 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3807 		rxbd->rx_bd_haddr_hi = addr;
3808 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3809 		rxbd->rx_bd_flags = 0;
3810 		*prod_bseq += map->dm_segs[i].ds_len;
3811 		bus_dmamap_sync(sc->bnx_dmatag,
3812 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3813 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3814 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3815 	}
3816 
3817 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3818 	bus_dmamap_sync(sc->bnx_dmatag,
3819 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3820 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3821 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3822 
3823 	/*
3824 	 * Save the mbuf, adjust the map pointer (swap map for first and
3825 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3826 	 * and update our counter.
3827 	 */
3828 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
3829 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3830 	sc->rx_mbuf_map[*chain_prod] = map;
3831 	sc->free_rx_bd -= map->dm_nsegs;
3832 
3833 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3834 	    map->dm_nsegs));
3835 	*prod = NEXT_RX_BD(*prod);
3836 	*chain_prod = RX_CHAIN_IDX(*prod);
3837 
3838 	return 0;
3839 }
3840 
3841 /****************************************************************************/
3842 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3843 /*                                                                          */
3844 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3845 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3846 /* necessary.                                                               */
3847 /*                                                                          */
3848 /* Returns:                                                                 */
3849 /*   0 for success, positive value for failure.                             */
3850 /****************************************************************************/
3851 int
bnx_get_buf(struct bnx_softc * sc,uint16_t * prod,uint16_t * chain_prod,uint32_t * prod_bseq)3852 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3853     uint16_t *chain_prod, uint32_t *prod_bseq)
3854 {
3855 	struct mbuf 		*m_new = NULL;
3856 	int			rc = 0;
3857 	uint16_t min_free_bd;
3858 
3859 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3860 	    __func__);
3861 
3862 	/* Make sure the inputs are valid. */
3863 	DBRUNIF((*chain_prod > MAX_RX_BD),
3864 	    aprint_error_dev(sc->bnx_dev,
3865 	        "RX producer out of range: 0x%04X > 0x%04X\n",
3866 		*chain_prod, (uint16_t)MAX_RX_BD));
3867 
3868 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3869 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3870 	    *prod_bseq);
3871 
3872 	/* try to get in as many mbufs as possible */
3873 	if (sc->mbuf_alloc_size == MCLBYTES)
3874 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3875 	else
3876 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3877 	while (sc->free_rx_bd >= min_free_bd) {
3878 		/* Simulate an mbuf allocation failure. */
3879 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3880 		    aprint_error_dev(sc->bnx_dev,
3881 		    "Simulating mbuf allocation failure.\n");
3882 			sc->mbuf_sim_alloc_failed++;
3883 			rc = ENOBUFS;
3884 			goto bnx_get_buf_exit);
3885 
3886 		/* This is a new mbuf allocation. */
3887 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3888 		if (m_new == NULL) {
3889 			DBPRINT(sc, BNX_WARN,
3890 			    "%s(%d): RX mbuf header allocation failed!\n",
3891 			    __FILE__, __LINE__);
3892 
3893 			sc->mbuf_alloc_failed++;
3894 
3895 			rc = ENOBUFS;
3896 			goto bnx_get_buf_exit;
3897 		}
3898 
3899 		DBRUNIF(1, sc->rx_mbuf_alloc++);
3900 
3901 		/* Simulate an mbuf cluster allocation failure. */
3902 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3903 			m_freem(m_new);
3904 			sc->rx_mbuf_alloc--;
3905 			sc->mbuf_alloc_failed++;
3906 			sc->mbuf_sim_alloc_failed++;
3907 			rc = ENOBUFS;
3908 			goto bnx_get_buf_exit);
3909 
3910 		if (sc->mbuf_alloc_size == MCLBYTES)
3911 			MCLGET(m_new, M_DONTWAIT);
3912 		else
3913 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3914 			    M_DONTWAIT);
3915 		if (!(m_new->m_flags & M_EXT)) {
3916 			DBPRINT(sc, BNX_WARN,
3917 			    "%s(%d): RX mbuf chain allocation failed!\n",
3918 			    __FILE__, __LINE__);
3919 
3920 			m_freem(m_new);
3921 
3922 			DBRUNIF(1, sc->rx_mbuf_alloc--);
3923 			sc->mbuf_alloc_failed++;
3924 
3925 			rc = ENOBUFS;
3926 			goto bnx_get_buf_exit;
3927 		}
3928 
3929 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3930 		if (rc != 0)
3931 			goto bnx_get_buf_exit;
3932 	}
3933 
3934 bnx_get_buf_exit:
3935 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3936 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3937 	    *chain_prod, *prod_bseq);
3938 
3939 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3940 	    __func__);
3941 
3942 	return rc;
3943 }
3944 
3945 void
bnx_alloc_pkts(struct work * unused,void * arg)3946 bnx_alloc_pkts(struct work * unused, void * arg)
3947 {
3948 	struct bnx_softc *sc = arg;
3949 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
3950 	struct bnx_pkt *pkt;
3951 	int i, s;
3952 
3953 	for (i = 0; i < 4; i++) { /* magic! */
3954 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3955 		if (pkt == NULL)
3956 			break;
3957 
3958 		if (bus_dmamap_create(sc->bnx_dmatag,
3959 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3960 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3961 		    &pkt->pkt_dmamap) != 0)
3962 			goto put;
3963 
3964 		if (!ISSET(ifp->if_flags, IFF_UP))
3965 			goto stopping;
3966 
3967 		mutex_enter(&sc->tx_pkt_mtx);
3968 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3969 		sc->tx_pkt_count++;
3970 		mutex_exit(&sc->tx_pkt_mtx);
3971 	}
3972 
3973 	mutex_enter(&sc->tx_pkt_mtx);
3974 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
3975 	mutex_exit(&sc->tx_pkt_mtx);
3976 
3977 	/* fire-up TX now that allocations have been done */
3978 	s = splnet();
3979 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
3980 		bnx_start(ifp);
3981 	splx(s);
3982 
3983 	return;
3984 
3985 stopping:
3986 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3987 put:
3988 	pool_put(bnx_tx_pool, pkt);
3989 	return;
3990 }
3991 
3992 /****************************************************************************/
3993 /* Initialize the TX context memory.                                        */
3994 /*                                                                          */
3995 /* Returns:                                                                 */
3996 /*   Nothing                                                                */
3997 /****************************************************************************/
3998 void
bnx_init_tx_context(struct bnx_softc * sc)3999 bnx_init_tx_context(struct bnx_softc *sc)
4000 {
4001 	uint32_t val;
4002 
4003 	/* Initialize the context ID for an L2 TX chain. */
4004 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4005 		/* Set the CID type to support an L2 connection. */
4006 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4007 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4008 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4009 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4010 
4011 		/* Point the hardware to the first page in the chain. */
4012 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4013 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
4014 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4015 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4016 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
4017 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4018 	} else {
4019 		/* Set the CID type to support an L2 connection. */
4020 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4021 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4022 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4023 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4024 
4025 		/* Point the hardware to the first page in the chain. */
4026 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4027 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4028 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4029 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4030 	}
4031 }
4032 
4033 
4034 /****************************************************************************/
4035 /* Allocate memory and initialize the TX data structures.                   */
4036 /*                                                                          */
4037 /* Returns:                                                                 */
4038 /*   0 for success, positive value for failure.                             */
4039 /****************************************************************************/
4040 int
bnx_init_tx_chain(struct bnx_softc * sc)4041 bnx_init_tx_chain(struct bnx_softc *sc)
4042 {
4043 	struct tx_bd		*txbd;
4044 	uint32_t		addr;
4045 	int			i, rc = 0;
4046 
4047 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4048 
4049 	/* Force an allocation of some dmamaps for tx up front */
4050 	bnx_alloc_pkts(NULL, sc);
4051 
4052 	/* Set the initial TX producer/consumer indices. */
4053 	sc->tx_prod = 0;
4054 	sc->tx_cons = 0;
4055 	sc->tx_prod_bseq = 0;
4056 	sc->used_tx_bd = 0;
4057 	sc->max_tx_bd = USABLE_TX_BD;
4058 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4059 	DBRUNIF(1, sc->tx_full_count = 0);
4060 
4061 	/*
4062 	 * The NetXtreme II supports a linked-list structure called
4063 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
4064 	 * consists of a series of 1 or more chain pages, each of which
4065 	 * consists of a fixed number of BD entries.
4066 	 * The last BD entry on each page is a pointer to the next page
4067 	 * in the chain, and the last pointer in the BD chain
4068 	 * points back to the beginning of the chain.
4069 	 */
4070 
4071 	/* Set the TX next pointer chain entries. */
4072 	for (i = 0; i < TX_PAGES; i++) {
4073 		int j;
4074 
4075 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4076 
4077 		/* Check if we've reached the last page. */
4078 		if (i == (TX_PAGES - 1))
4079 			j = 0;
4080 		else
4081 			j = i + 1;
4082 
4083 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4084 		txbd->tx_bd_haddr_lo = addr;
4085 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4086 		txbd->tx_bd_haddr_hi = addr;
4087 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4088 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4089 	}
4090 
4091 	/*
4092 	 * Initialize the context ID for an L2 TX chain.
4093 	 */
4094 	bnx_init_tx_context(sc);
4095 
4096 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4097 
4098 	return rc;
4099 }
4100 
4101 /****************************************************************************/
4102 /* Free memory and clear the TX data structures.                            */
4103 /*                                                                          */
4104 /* Returns:                                                                 */
4105 /*   Nothing.                                                               */
4106 /****************************************************************************/
4107 void
bnx_free_tx_chain(struct bnx_softc * sc)4108 bnx_free_tx_chain(struct bnx_softc *sc)
4109 {
4110 	struct bnx_pkt		*pkt;
4111 	int			i;
4112 
4113 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4114 
4115 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4116 	mutex_enter(&sc->tx_pkt_mtx);
4117 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4118 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4119 		mutex_exit(&sc->tx_pkt_mtx);
4120 
4121 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4122 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4123 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4124 
4125 		m_freem(pkt->pkt_mbuf);
4126 		DBRUNIF(1, sc->tx_mbuf_alloc--);
4127 
4128 		mutex_enter(&sc->tx_pkt_mtx);
4129 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4130 	}
4131 
4132 	/* Destroy all the dmamaps we allocated for TX */
4133 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4134 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4135 		sc->tx_pkt_count--;
4136 		mutex_exit(&sc->tx_pkt_mtx);
4137 
4138 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4139 		pool_put(bnx_tx_pool, pkt);
4140 
4141 		mutex_enter(&sc->tx_pkt_mtx);
4142 	}
4143 	mutex_exit(&sc->tx_pkt_mtx);
4144 
4145 
4146 
4147 	/* Clear each TX chain page. */
4148 	for (i = 0; i < TX_PAGES; i++) {
4149 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4150 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4151 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4152 	}
4153 
4154 	sc->used_tx_bd = 0;
4155 
4156 	/* Check if we lost any mbufs in the process. */
4157 	DBRUNIF((sc->tx_mbuf_alloc),
4158 	    aprint_error_dev(sc->bnx_dev,
4159 	        "Memory leak! Lost %d mbufs from tx chain!\n",
4160 		sc->tx_mbuf_alloc));
4161 
4162 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4163 }
4164 
4165 /****************************************************************************/
4166 /* Initialize the RX context memory.                                        */
4167 /*                                                                          */
4168 /* Returns:                                                                 */
4169 /*   Nothing                                                                */
4170 /****************************************************************************/
4171 void
bnx_init_rx_context(struct bnx_softc * sc)4172 bnx_init_rx_context(struct bnx_softc *sc)
4173 {
4174 	uint32_t val;
4175 
4176 	/* Initialize the context ID for an L2 RX chain. */
4177 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4178 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4179 
4180 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4181 		uint32_t lo_water, hi_water;
4182 
4183 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4184 		hi_water = USABLE_RX_BD / 4;
4185 
4186 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4187 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4188 
4189 		if (hi_water > 0xf)
4190 			hi_water = 0xf;
4191 		else if (hi_water == 0)
4192 			lo_water = 0;
4193 		val |= lo_water |
4194 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4195 	}
4196 
4197  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4198 
4199 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4200 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4201 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4202 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4203 	}
4204 
4205 	/* Point the hardware to the first page in the chain. */
4206 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4207 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4208 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4209 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4210 }
4211 
4212 /****************************************************************************/
4213 /* Allocate memory and initialize the RX data structures.                   */
4214 /*                                                                          */
4215 /* Returns:                                                                 */
4216 /*   0 for success, positive value for failure.                             */
4217 /****************************************************************************/
4218 int
bnx_init_rx_chain(struct bnx_softc * sc)4219 bnx_init_rx_chain(struct bnx_softc *sc)
4220 {
4221 	struct rx_bd		*rxbd;
4222 	int			i, rc = 0;
4223 	uint16_t		prod, chain_prod;
4224 	uint32_t		prod_bseq, addr;
4225 
4226 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4227 
4228 	/* Initialize the RX producer and consumer indices. */
4229 	sc->rx_prod = 0;
4230 	sc->rx_cons = 0;
4231 	sc->rx_prod_bseq = 0;
4232 	sc->free_rx_bd = USABLE_RX_BD;
4233 	sc->max_rx_bd = USABLE_RX_BD;
4234 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4235 	DBRUNIF(1, sc->rx_empty_count = 0);
4236 
4237 	/* Initialize the RX next pointer chain entries. */
4238 	for (i = 0; i < RX_PAGES; i++) {
4239 		int j;
4240 
4241 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4242 
4243 		/* Check if we've reached the last page. */
4244 		if (i == (RX_PAGES - 1))
4245 			j = 0;
4246 		else
4247 			j = i + 1;
4248 
4249 		/* Setup the chain page pointers. */
4250 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4251 		rxbd->rx_bd_haddr_hi = addr;
4252 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4253 		rxbd->rx_bd_haddr_lo = addr;
4254 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4255 		    0, BNX_RX_CHAIN_PAGE_SZ,
4256 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4257 	}
4258 
4259 	/* Allocate mbuf clusters for the rx_bd chain. */
4260 	prod = prod_bseq = 0;
4261 	chain_prod = RX_CHAIN_IDX(prod);
4262 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4263 		BNX_PRINTF(sc,
4264 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4265 	}
4266 
4267 	/* Save the RX chain producer index. */
4268 	sc->rx_prod = prod;
4269 	sc->rx_prod_bseq = prod_bseq;
4270 
4271 	for (i = 0; i < RX_PAGES; i++)
4272 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4273 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4274 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4275 
4276 	/* Tell the chip about the waiting rx_bd's. */
4277 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4278 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4279 
4280 	bnx_init_rx_context(sc);
4281 
4282 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4283 
4284 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4285 
4286 	return rc;
4287 }
4288 
4289 /****************************************************************************/
4290 /* Free memory and clear the RX data structures.                            */
4291 /*                                                                          */
4292 /* Returns:                                                                 */
4293 /*   Nothing.                                                               */
4294 /****************************************************************************/
4295 void
bnx_free_rx_chain(struct bnx_softc * sc)4296 bnx_free_rx_chain(struct bnx_softc *sc)
4297 {
4298 	int			i;
4299 
4300 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4301 
4302 	/* Free any mbufs still in the RX mbuf chain. */
4303 	for (i = 0; i < TOTAL_RX_BD; i++) {
4304 		if (sc->rx_mbuf_ptr[i] != NULL) {
4305 			if (sc->rx_mbuf_map[i] != NULL) {
4306 				bus_dmamap_sync(sc->bnx_dmatag,
4307 				    sc->rx_mbuf_map[i],	0,
4308 				    sc->rx_mbuf_map[i]->dm_mapsize,
4309 				    BUS_DMASYNC_POSTREAD);
4310 				bus_dmamap_unload(sc->bnx_dmatag,
4311 				    sc->rx_mbuf_map[i]);
4312 			}
4313 			m_freem(sc->rx_mbuf_ptr[i]);
4314 			sc->rx_mbuf_ptr[i] = NULL;
4315 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4316 		}
4317 	}
4318 
4319 	/* Clear each RX chain page. */
4320 	for (i = 0; i < RX_PAGES; i++)
4321 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4322 
4323 	sc->free_rx_bd = sc->max_rx_bd;
4324 
4325 	/* Check if we lost any mbufs in the process. */
4326 	DBRUNIF((sc->rx_mbuf_alloc),
4327 	    aprint_error_dev(sc->bnx_dev,
4328 	        "Memory leak! Lost %d mbufs from rx chain!\n",
4329 		sc->rx_mbuf_alloc));
4330 
4331 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4332 }
4333 
4334 /****************************************************************************/
4335 /* Handles PHY generated interrupt events.                                  */
4336 /*                                                                          */
4337 /* Returns:                                                                 */
4338 /*   Nothing.                                                               */
4339 /****************************************************************************/
4340 void
bnx_phy_intr(struct bnx_softc * sc)4341 bnx_phy_intr(struct bnx_softc *sc)
4342 {
4343 	uint32_t		new_link_state, old_link_state;
4344 
4345 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4346 	    BUS_DMASYNC_POSTREAD);
4347 	new_link_state = sc->status_block->status_attn_bits &
4348 	    STATUS_ATTN_BITS_LINK_STATE;
4349 	old_link_state = sc->status_block->status_attn_bits_ack &
4350 	    STATUS_ATTN_BITS_LINK_STATE;
4351 
4352 	/* Handle any changes if the link state has changed. */
4353 	if (new_link_state != old_link_state) {
4354 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4355 
4356 		callout_stop(&sc->bnx_timeout);
4357 		bnx_tick(sc);
4358 
4359 		/* Update the status_attn_bits_ack field in the status block. */
4360 		if (new_link_state) {
4361 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4362 			    STATUS_ATTN_BITS_LINK_STATE);
4363 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4364 		} else {
4365 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4366 			    STATUS_ATTN_BITS_LINK_STATE);
4367 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4368 		}
4369 	}
4370 
4371 	/* Acknowledge the link change interrupt. */
4372 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4373 }
4374 
4375 /****************************************************************************/
4376 /* Handles received frame interrupt events.                                 */
4377 /*                                                                          */
4378 /* Returns:                                                                 */
4379 /*   Nothing.                                                               */
4380 /****************************************************************************/
4381 void
bnx_rx_intr(struct bnx_softc * sc)4382 bnx_rx_intr(struct bnx_softc *sc)
4383 {
4384 	struct status_block	*sblk = sc->status_block;
4385 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4386 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
4387 	uint16_t		sw_prod, sw_chain_prod;
4388 	uint32_t		sw_prod_bseq;
4389 	struct l2_fhdr		*l2fhdr;
4390 	int			i;
4391 
4392 	DBRUNIF(1, sc->rx_interrupts++);
4393 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4394 	    BUS_DMASYNC_POSTREAD);
4395 
4396 	/* Prepare the RX chain pages to be accessed by the host CPU. */
4397 	for (i = 0; i < RX_PAGES; i++)
4398 		bus_dmamap_sync(sc->bnx_dmatag,
4399 		    sc->rx_bd_chain_map[i], 0,
4400 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4401 		    BUS_DMASYNC_POSTWRITE);
4402 
4403 	/* Get the hardware's view of the RX consumer index. */
4404 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4405 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4406 		hw_cons++;
4407 
4408 	/* Get working copies of the driver's view of the RX indices. */
4409 	sw_cons = sc->rx_cons;
4410 	sw_prod = sc->rx_prod;
4411 	sw_prod_bseq = sc->rx_prod_bseq;
4412 
4413 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4414 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4415 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
4416 
4417 	/* Prevent speculative reads from getting ahead of the status block. */
4418 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4419 	    BUS_SPACE_BARRIER_READ);
4420 
4421 	/* Update some debug statistics counters */
4422 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4423 	    sc->rx_low_watermark = sc->free_rx_bd);
4424 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4425 
4426 	/*
4427 	 * Scan through the receive chain as long
4428 	 * as there is work to do.
4429 	 */
4430 	while (sw_cons != hw_cons) {
4431 		struct mbuf *m;
4432 		struct rx_bd *rxbd __diagused;
4433 		unsigned int len;
4434 		uint32_t status;
4435 
4436 		/* Convert the producer/consumer indices to an actual
4437 		 * rx_bd index.
4438 		 */
4439 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4440 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4441 
4442 		/* Get the used rx_bd. */
4443 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4444 		sc->free_rx_bd++;
4445 
4446 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4447 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4448 
4449 		/* The mbuf is stored with the last rx_bd entry of a packet. */
4450 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4451 #ifdef DIAGNOSTIC
4452 			/* Validate that this is the last rx_bd. */
4453 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4454 			    printf("%s: Unexpected mbuf found in "
4455 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4456 			        sw_chain_cons);
4457 			}
4458 #endif
4459 
4460 			/* DRC - ToDo: If the received packet is small, say less
4461 			 *             than 128 bytes, allocate a new mbuf here,
4462 			 *             copy the data to that mbuf, and recycle
4463 			 *             the mapped jumbo frame.
4464 			 */
4465 
4466 			/* Unmap the mbuf from DMA space. */
4467 #ifdef DIAGNOSTIC
4468 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4469 				printf("invalid map sw_cons 0x%x "
4470 				"sw_prod 0x%x "
4471 				"sw_chain_cons 0x%x "
4472 				"sw_chain_prod 0x%x "
4473 				"hw_cons 0x%x "
4474 				"TOTAL_RX_BD_PER_PAGE 0x%x "
4475 				"TOTAL_RX_BD 0x%x\n",
4476 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4477 				hw_cons,
4478 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4479 			}
4480 #endif
4481 			bus_dmamap_sync(sc->bnx_dmatag,
4482 			    sc->rx_mbuf_map[sw_chain_cons], 0,
4483 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4484 			    BUS_DMASYNC_POSTREAD);
4485 			bus_dmamap_unload(sc->bnx_dmatag,
4486 			    sc->rx_mbuf_map[sw_chain_cons]);
4487 
4488 			/* Remove the mbuf from the driver's chain. */
4489 			m = sc->rx_mbuf_ptr[sw_chain_cons];
4490 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4491 
4492 			/*
4493 			 * Frames received on the NetXteme II are prepended
4494 			 * with the l2_fhdr structure which provides status
4495 			 * information about the received frame (including
4496 			 * VLAN tags and checksum info) and are also
4497 			 * automatically adjusted to align the IP header
4498 			 * (i.e. two null bytes are inserted before the
4499 			 * Ethernet header).
4500 			 */
4501 			l2fhdr = mtod(m, struct l2_fhdr *);
4502 
4503 			len    = l2fhdr->l2_fhdr_pkt_len;
4504 			status = l2fhdr->l2_fhdr_status;
4505 
4506 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4507 			    aprint_error("Simulating l2_fhdr status error.\n");
4508 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
4509 
4510 			/* Watch for unusual sized frames. */
4511 			DBRUNIF(((len < BNX_MIN_MTU) ||
4512 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4513 			    aprint_error_dev(sc->bnx_dev,
4514 			        "Unusual frame size found. "
4515 				"Min(%d), Actual(%d), Max(%d)\n",
4516 				(int)BNX_MIN_MTU, len,
4517 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4518 
4519 			bnx_dump_mbuf(sc, m);
4520 			bnx_breakpoint(sc));
4521 
4522 			len -= ETHER_CRC_LEN;
4523 
4524 			/* Check the received frame for errors. */
4525 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
4526 			    L2_FHDR_ERRORS_PHY_DECODE |
4527 			    L2_FHDR_ERRORS_ALIGNMENT |
4528 			    L2_FHDR_ERRORS_TOO_SHORT |
4529 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
4530 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4531 			    len >
4532 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4533 				ifp->if_ierrors++;
4534 				DBRUNIF(1, sc->l2fhdr_status_errors++);
4535 
4536 				/* Reuse the mbuf for a new frame. */
4537 				if (bnx_add_buf(sc, m, &sw_prod,
4538 				    &sw_chain_prod, &sw_prod_bseq)) {
4539 					DBRUNIF(1, bnx_breakpoint(sc));
4540 					panic("%s: Can't reuse RX mbuf!\n",
4541 					    device_xname(sc->bnx_dev));
4542 				}
4543 				continue;
4544 			}
4545 
4546 			/*
4547 			 * Get a new mbuf for the rx_bd.   If no new
4548 			 * mbufs are available then reuse the current mbuf,
4549 			 * log an ierror on the interface, and generate
4550 			 * an error in the system log.
4551 			 */
4552 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4553 			    &sw_prod_bseq)) {
4554 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4555 				    "Failed to allocate "
4556 				    "new mbuf, incoming frame dropped!\n"));
4557 
4558 				ifp->if_ierrors++;
4559 
4560 				/* Try and reuse the exisitng mbuf. */
4561 				if (bnx_add_buf(sc, m, &sw_prod,
4562 				    &sw_chain_prod, &sw_prod_bseq)) {
4563 					DBRUNIF(1, bnx_breakpoint(sc));
4564 					panic("%s: Double mbuf allocation "
4565 					    "failure!",
4566 					    device_xname(sc->bnx_dev));
4567 				}
4568 				continue;
4569 			}
4570 
4571 			/* Skip over the l2_fhdr when passing the data up
4572 			 * the stack.
4573 			 */
4574 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4575 
4576 			/* Adjust the pckt length to match the received data. */
4577 			m->m_pkthdr.len = m->m_len = len;
4578 
4579 			/* Send the packet to the appropriate interface. */
4580 			m_set_rcvif(m, ifp);
4581 
4582 			DBRUN(BNX_VERBOSE_RECV,
4583 			    struct ether_header *eh;
4584 			    eh = mtod(m, struct ether_header *);
4585 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4586 			    __func__, ether_sprintf(eh->ether_dhost),
4587 			    ether_sprintf(eh->ether_shost),
4588 			    htons(eh->ether_type)));
4589 
4590 			/* Validate the checksum. */
4591 
4592 			/* Check for an IP datagram. */
4593 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4594 				/* Check if the IP checksum is valid. */
4595 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4596 				    == 0)
4597 					m->m_pkthdr.csum_flags |=
4598 					    M_CSUM_IPv4;
4599 #ifdef BNX_DEBUG
4600 				else
4601 					DBPRINT(sc, BNX_WARN_SEND,
4602 					    "%s(): Invalid IP checksum "
4603 					        "= 0x%04X!\n",
4604 						__func__,
4605 						l2fhdr->l2_fhdr_ip_xsum
4606 						);
4607 #endif
4608 			}
4609 
4610 			/* Check for a valid TCP/UDP frame. */
4611 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4612 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
4613 				/* Check for a good TCP/UDP checksum. */
4614 				if ((status &
4615 				    (L2_FHDR_ERRORS_TCP_XSUM |
4616 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4617 					m->m_pkthdr.csum_flags |=
4618 					    M_CSUM_TCPv4 |
4619 					    M_CSUM_UDPv4;
4620 				} else {
4621 					DBPRINT(sc, BNX_WARN_SEND,
4622 					    "%s(): Invalid TCP/UDP "
4623 					    "checksum = 0x%04X!\n",
4624 					    __func__,
4625 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
4626 				}
4627 			}
4628 
4629 			/*
4630 			 * If we received a packet with a vlan tag,
4631 			 * attach that information to the packet.
4632 			 */
4633 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4634 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4635 				VLAN_INPUT_TAG(ifp, m,
4636 				    l2fhdr->l2_fhdr_vlan_tag,
4637 				    continue);
4638 			}
4639 
4640 			/*
4641 			 * Handle BPF listeners. Let the BPF
4642 			 * user see the packet.
4643 			 */
4644 			bpf_mtap(ifp, m);
4645 
4646 			/* Pass the mbuf off to the upper layers. */
4647 			ifp->if_ipackets++;
4648 			DBPRINT(sc, BNX_VERBOSE_RECV,
4649 			    "%s(): Passing received frame up.\n", __func__);
4650 			if_percpuq_enqueue(ifp->if_percpuq, m);
4651 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4652 
4653 		}
4654 
4655 		sw_cons = NEXT_RX_BD(sw_cons);
4656 
4657 		/* Refresh hw_cons to see if there's new work */
4658 		if (sw_cons == hw_cons) {
4659 			hw_cons = sc->hw_rx_cons =
4660 			    sblk->status_rx_quick_consumer_index0;
4661 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4662 			    USABLE_RX_BD_PER_PAGE)
4663 				hw_cons++;
4664 		}
4665 
4666 		/* Prevent speculative reads from getting ahead of
4667 		 * the status block.
4668 		 */
4669 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4670 		    BUS_SPACE_BARRIER_READ);
4671 	}
4672 
4673 	for (i = 0; i < RX_PAGES; i++)
4674 		bus_dmamap_sync(sc->bnx_dmatag,
4675 		    sc->rx_bd_chain_map[i], 0,
4676 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4677 		    BUS_DMASYNC_PREWRITE);
4678 
4679 	sc->rx_cons = sw_cons;
4680 	sc->rx_prod = sw_prod;
4681 	sc->rx_prod_bseq = sw_prod_bseq;
4682 
4683 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4684 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4685 
4686 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4687 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4688 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4689 }
4690 
4691 /****************************************************************************/
4692 /* Handles transmit completion interrupt events.                            */
4693 /*                                                                          */
4694 /* Returns:                                                                 */
4695 /*   Nothing.                                                               */
4696 /****************************************************************************/
4697 void
bnx_tx_intr(struct bnx_softc * sc)4698 bnx_tx_intr(struct bnx_softc *sc)
4699 {
4700 	struct status_block	*sblk = sc->status_block;
4701 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4702 	struct bnx_pkt		*pkt;
4703 	bus_dmamap_t		map;
4704 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4705 
4706 	DBRUNIF(1, sc->tx_interrupts++);
4707 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4708 	    BUS_DMASYNC_POSTREAD);
4709 
4710 	/* Get the hardware's view of the TX consumer index. */
4711 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4712 
4713 	/* Skip to the next entry if this is a chain page pointer. */
4714 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4715 		hw_tx_cons++;
4716 
4717 	sw_tx_cons = sc->tx_cons;
4718 
4719 	/* Prevent speculative reads from getting ahead of the status block. */
4720 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4721 	    BUS_SPACE_BARRIER_READ);
4722 
4723 	/* Cycle through any completed TX chain page entries. */
4724 	while (sw_tx_cons != hw_tx_cons) {
4725 #ifdef BNX_DEBUG
4726 		struct tx_bd *txbd = NULL;
4727 #endif
4728 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4729 
4730 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4731 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4732 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4733 
4734 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4735 		    aprint_error_dev(sc->bnx_dev,
4736 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4737 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4738 
4739 		DBRUNIF(1, txbd = &sc->tx_bd_chain
4740 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4741 
4742 		DBRUNIF((txbd == NULL),
4743 		    aprint_error_dev(sc->bnx_dev,
4744 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4745 		    bnx_breakpoint(sc));
4746 
4747 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4748 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4749 
4750 
4751 		mutex_enter(&sc->tx_pkt_mtx);
4752 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4753 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4754 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4755 			mutex_exit(&sc->tx_pkt_mtx);
4756 			/*
4757 			 * Free the associated mbuf. Remember
4758 			 * that only the last tx_bd of a packet
4759 			 * has an mbuf pointer and DMA map.
4760 			 */
4761 			map = pkt->pkt_dmamap;
4762 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4763 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4764 			bus_dmamap_unload(sc->bnx_dmatag, map);
4765 
4766 			m_freem(pkt->pkt_mbuf);
4767 			DBRUNIF(1, sc->tx_mbuf_alloc--);
4768 
4769 			ifp->if_opackets++;
4770 
4771 			mutex_enter(&sc->tx_pkt_mtx);
4772 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4773 		}
4774 		mutex_exit(&sc->tx_pkt_mtx);
4775 
4776 		sc->used_tx_bd--;
4777 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4778 			__FILE__, __LINE__, sc->used_tx_bd);
4779 
4780 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4781 
4782 		/* Refresh hw_cons to see if there's new work. */
4783 		hw_tx_cons = sc->hw_tx_cons =
4784 		    sblk->status_tx_quick_consumer_index0;
4785 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4786 		    USABLE_TX_BD_PER_PAGE)
4787 			hw_tx_cons++;
4788 
4789 		/* Prevent speculative reads from getting ahead of
4790 		 * the status block.
4791 		 */
4792 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4793 		    BUS_SPACE_BARRIER_READ);
4794 	}
4795 
4796 	/* Clear the TX timeout timer. */
4797 	ifp->if_timer = 0;
4798 
4799 	/* Clear the tx hardware queue full flag. */
4800 	if (sc->used_tx_bd < sc->max_tx_bd) {
4801 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4802 		    aprint_debug_dev(sc->bnx_dev,
4803 		        "Open TX chain! %d/%d (used/total)\n",
4804 			sc->used_tx_bd, sc->max_tx_bd));
4805 		ifp->if_flags &= ~IFF_OACTIVE;
4806 	}
4807 
4808 	sc->tx_cons = sw_tx_cons;
4809 }
4810 
4811 /****************************************************************************/
4812 /* Disables interrupt generation.                                           */
4813 /*                                                                          */
4814 /* Returns:                                                                 */
4815 /*   Nothing.                                                               */
4816 /****************************************************************************/
4817 void
bnx_disable_intr(struct bnx_softc * sc)4818 bnx_disable_intr(struct bnx_softc *sc)
4819 {
4820 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4821 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4822 }
4823 
4824 /****************************************************************************/
4825 /* Enables interrupt generation.                                            */
4826 /*                                                                          */
4827 /* Returns:                                                                 */
4828 /*   Nothing.                                                               */
4829 /****************************************************************************/
4830 void
bnx_enable_intr(struct bnx_softc * sc)4831 bnx_enable_intr(struct bnx_softc *sc)
4832 {
4833 	uint32_t		val;
4834 
4835 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4836 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4837 
4838 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4839 	    sc->last_status_idx);
4840 
4841 	val = REG_RD(sc, BNX_HC_COMMAND);
4842 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4843 }
4844 
4845 /****************************************************************************/
4846 /* Handles controller initialization.                                       */
4847 /*                                                                          */
4848 /****************************************************************************/
4849 int
bnx_init(struct ifnet * ifp)4850 bnx_init(struct ifnet *ifp)
4851 {
4852 	struct bnx_softc	*sc = ifp->if_softc;
4853 	uint32_t		ether_mtu;
4854 	int			s, error = 0;
4855 
4856 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4857 
4858 	s = splnet();
4859 
4860 	bnx_stop(ifp, 0);
4861 
4862 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4863 		aprint_error_dev(sc->bnx_dev,
4864 		    "Controller reset failed!\n");
4865 		goto bnx_init_exit;
4866 	}
4867 
4868 	if ((error = bnx_chipinit(sc)) != 0) {
4869 		aprint_error_dev(sc->bnx_dev,
4870 		    "Controller initialization failed!\n");
4871 		goto bnx_init_exit;
4872 	}
4873 
4874 	if ((error = bnx_blockinit(sc)) != 0) {
4875 		aprint_error_dev(sc->bnx_dev,
4876 		    "Block initialization failed!\n");
4877 		goto bnx_init_exit;
4878 	}
4879 
4880 	/* Calculate and program the Ethernet MRU size. */
4881 	if (ifp->if_mtu <= ETHERMTU) {
4882 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4883 		sc->mbuf_alloc_size = MCLBYTES;
4884 	} else {
4885 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4886 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4887 	}
4888 
4889 
4890 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4891 	    __func__, ether_mtu);
4892 
4893 	/*
4894 	 * Program the MRU and enable Jumbo frame
4895 	 * support.
4896 	 */
4897 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4898 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4899 
4900 	/* Calculate the RX Ethernet frame size for rx_bd's. */
4901 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4902 
4903 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4904 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4905 	    sc->mbuf_alloc_size, sc->max_frame_size);
4906 
4907 	/* Program appropriate promiscuous/multicast filtering. */
4908 	bnx_iff(sc);
4909 
4910 	/* Init RX buffer descriptor chain. */
4911 	bnx_init_rx_chain(sc);
4912 
4913 	/* Init TX buffer descriptor chain. */
4914 	bnx_init_tx_chain(sc);
4915 
4916 	/* Enable host interrupts. */
4917 	bnx_enable_intr(sc);
4918 
4919 	if ((error = ether_mediachange(ifp)) != 0)
4920 		goto bnx_init_exit;
4921 
4922 	SET(ifp->if_flags, IFF_RUNNING);
4923 	CLR(ifp->if_flags, IFF_OACTIVE);
4924 
4925 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4926 
4927 bnx_init_exit:
4928 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4929 
4930 	splx(s);
4931 
4932 	return error;
4933 }
4934 
4935 /****************************************************************************/
4936 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4937 /* memory visible to the controller.                                        */
4938 /*                                                                          */
4939 /* Returns:                                                                 */
4940 /*   0 for success, positive value for failure.                             */
4941 /****************************************************************************/
4942 int
bnx_tx_encap(struct bnx_softc * sc,struct mbuf * m)4943 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4944 {
4945 	struct bnx_pkt		*pkt;
4946 	bus_dmamap_t		map;
4947 	struct tx_bd		*txbd = NULL;
4948 	uint16_t		vlan_tag = 0, flags = 0;
4949 	uint16_t		chain_prod, prod;
4950 #ifdef BNX_DEBUG
4951 	uint16_t		debug_prod;
4952 #endif
4953 	uint32_t		addr, prod_bseq;
4954 	int			i, error;
4955 	struct m_tag		*mtag;
4956 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
4957 
4958 	mutex_enter(&sc->tx_pkt_mtx);
4959 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4960 	if (pkt == NULL) {
4961 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4962 			mutex_exit(&sc->tx_pkt_mtx);
4963 			return ENETDOWN;
4964 		}
4965 
4966 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
4967 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
4968 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
4969 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4970 		}
4971 
4972 		mutex_exit(&sc->tx_pkt_mtx);
4973 		return ENOMEM;
4974 	}
4975 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4976 	mutex_exit(&sc->tx_pkt_mtx);
4977 
4978 	/* Transfer any checksum offload flags to the bd. */
4979 	if (m->m_pkthdr.csum_flags) {
4980 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4981 			flags |= TX_BD_FLAGS_IP_CKSUM;
4982 		if (m->m_pkthdr.csum_flags &
4983 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4984 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4985 	}
4986 
4987 	/* Transfer any VLAN tags to the bd. */
4988 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4989 	if (mtag != NULL) {
4990 		flags |= TX_BD_FLAGS_VLAN_TAG;
4991 		vlan_tag = VLAN_TAG_VALUE(mtag);
4992 	}
4993 
4994 	/* Map the mbuf into DMAable memory. */
4995 	prod = sc->tx_prod;
4996 	chain_prod = TX_CHAIN_IDX(prod);
4997 	map = pkt->pkt_dmamap;
4998 
4999 	/* Map the mbuf into our DMA address space. */
5000 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
5001 	if (error != 0) {
5002 		aprint_error_dev(sc->bnx_dev,
5003 		    "Error mapping mbuf into TX chain!\n");
5004 		sc->tx_dma_map_failures++;
5005 		goto maperr;
5006 	}
5007 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5008 	    BUS_DMASYNC_PREWRITE);
5009         /* Make sure there's room in the chain */
5010 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
5011                 goto nospace;
5012 
5013 	/* prod points to an empty tx_bd at this point. */
5014 	prod_bseq = sc->tx_prod_bseq;
5015 #ifdef BNX_DEBUG
5016 	debug_prod = chain_prod;
5017 #endif
5018 	DBPRINT(sc, BNX_INFO_SEND,
5019 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5020 		"prod_bseq = 0x%08X\n",
5021 		__func__, prod, chain_prod, prod_bseq);
5022 
5023 	/*
5024 	 * Cycle through each mbuf segment that makes up
5025 	 * the outgoing frame, gathering the mapping info
5026 	 * for that segment and creating a tx_bd for the
5027 	 * mbuf.
5028 	 */
5029 	for (i = 0; i < map->dm_nsegs ; i++) {
5030 		chain_prod = TX_CHAIN_IDX(prod);
5031 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5032 
5033 		addr = (uint32_t)map->dm_segs[i].ds_addr;
5034 		txbd->tx_bd_haddr_lo = addr;
5035 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5036 		txbd->tx_bd_haddr_hi = addr;
5037 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5038 		txbd->tx_bd_vlan_tag = vlan_tag;
5039 		txbd->tx_bd_flags = flags;
5040 		prod_bseq += map->dm_segs[i].ds_len;
5041 		if (i == 0)
5042 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5043 		prod = NEXT_TX_BD(prod);
5044 	}
5045 	/* Set the END flag on the last TX buffer descriptor. */
5046 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5047 
5048 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5049 
5050 	DBPRINT(sc, BNX_INFO_SEND,
5051 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
5052 		"prod_bseq = 0x%08X\n",
5053 		__func__, prod, chain_prod, prod_bseq);
5054 
5055 	pkt->pkt_mbuf = m;
5056 	pkt->pkt_end_desc = chain_prod;
5057 
5058 	mutex_enter(&sc->tx_pkt_mtx);
5059 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5060 	mutex_exit(&sc->tx_pkt_mtx);
5061 
5062 	sc->used_tx_bd += map->dm_nsegs;
5063 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5064 		__FILE__, __LINE__, sc->used_tx_bd);
5065 
5066 	/* Update some debug statistics counters */
5067 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5068 	    sc->tx_hi_watermark = sc->used_tx_bd);
5069 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5070 	DBRUNIF(1, sc->tx_mbuf_alloc++);
5071 
5072 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5073 	    map->dm_nsegs));
5074 
5075 	/* prod points to the next free tx_bd at this point. */
5076 	sc->tx_prod = prod;
5077 	sc->tx_prod_bseq = prod_bseq;
5078 
5079 	return 0;
5080 
5081 
5082 nospace:
5083 	bus_dmamap_unload(sc->bnx_dmatag, map);
5084 maperr:
5085 	mutex_enter(&sc->tx_pkt_mtx);
5086 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5087 	mutex_exit(&sc->tx_pkt_mtx);
5088 
5089 	return ENOMEM;
5090 }
5091 
5092 /****************************************************************************/
5093 /* Main transmit routine.                                                   */
5094 /*                                                                          */
5095 /* Returns:                                                                 */
5096 /*   Nothing.                                                               */
5097 /****************************************************************************/
5098 void
bnx_start(struct ifnet * ifp)5099 bnx_start(struct ifnet *ifp)
5100 {
5101 	struct bnx_softc	*sc = ifp->if_softc;
5102 	struct mbuf		*m_head = NULL;
5103 	int			count = 0;
5104 #ifdef BNX_DEBUG
5105 	uint16_t		tx_chain_prod;
5106 #endif
5107 
5108 	/* If there's no link or the transmit queue is empty then just exit. */
5109 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5110 		DBPRINT(sc, BNX_INFO_SEND,
5111 		    "%s(): output active or device not running.\n", __func__);
5112 		goto bnx_start_exit;
5113 	}
5114 
5115 	/* prod points to the next free tx_bd. */
5116 #ifdef BNX_DEBUG
5117 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5118 #endif
5119 
5120 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5121 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5122 	    "used_tx %d max_tx %d\n",
5123 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5124 	    sc->used_tx_bd, sc->max_tx_bd);
5125 
5126 	/*
5127 	 * Keep adding entries while there is space in the ring.
5128 	 */
5129 	while (sc->used_tx_bd < sc->max_tx_bd) {
5130 		/* Check for any frames to send. */
5131 		IFQ_POLL(&ifp->if_snd, m_head);
5132 		if (m_head == NULL)
5133 			break;
5134 
5135 		/*
5136 		 * Pack the data into the transmit ring. If we
5137 		 * don't have room, set the OACTIVE flag to wait
5138 		 * for the NIC to drain the chain.
5139 		 */
5140 		if (bnx_tx_encap(sc, m_head)) {
5141 			ifp->if_flags |= IFF_OACTIVE;
5142 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5143 			    "business! Total tx_bd used = %d\n",
5144 			    sc->used_tx_bd);
5145 			break;
5146 		}
5147 
5148 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
5149 		count++;
5150 
5151 		/* Send a copy of the frame to any BPF listeners. */
5152 		bpf_mtap(ifp, m_head);
5153 	}
5154 
5155 	if (count == 0) {
5156 		/* no packets were dequeued */
5157 		DBPRINT(sc, BNX_VERBOSE_SEND,
5158 		    "%s(): No packets were dequeued\n", __func__);
5159 		goto bnx_start_exit;
5160 	}
5161 
5162 	/* Update the driver's counters. */
5163 #ifdef BNX_DEBUG
5164 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5165 #endif
5166 
5167 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5168 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
5169 	    tx_chain_prod, sc->tx_prod_bseq);
5170 
5171 	/* Start the transmit. */
5172 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5173 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5174 
5175 	/* Set the tx timeout. */
5176 	ifp->if_timer = BNX_TX_TIMEOUT;
5177 
5178 bnx_start_exit:
5179 	return;
5180 }
5181 
5182 /****************************************************************************/
5183 /* Handles any IOCTL calls from the operating system.                       */
5184 /*                                                                          */
5185 /* Returns:                                                                 */
5186 /*   0 for success, positive value for failure.                             */
5187 /****************************************************************************/
5188 int
bnx_ioctl(struct ifnet * ifp,u_long command,void * data)5189 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5190 {
5191 	struct bnx_softc	*sc = ifp->if_softc;
5192 	struct ifreq		*ifr = (struct ifreq *) data;
5193 	struct mii_data		*mii = &sc->bnx_mii;
5194 	int			s, error = 0;
5195 
5196 	s = splnet();
5197 
5198 	switch (command) {
5199 	case SIOCSIFFLAGS:
5200 		if ((error = ifioctl_common(ifp, command, data)) != 0)
5201 			break;
5202 		/* XXX set an ifflags callback and let ether_ioctl
5203 		 * handle all of this.
5204 		 */
5205 		if (ISSET(ifp->if_flags, IFF_UP)) {
5206 			if (ifp->if_flags & IFF_RUNNING)
5207 				error = ENETRESET;
5208 			else
5209 				bnx_init(ifp);
5210 		} else if (ifp->if_flags & IFF_RUNNING)
5211 			bnx_stop(ifp, 1);
5212 		break;
5213 
5214 	case SIOCSIFMEDIA:
5215 	case SIOCGIFMEDIA:
5216 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5217 		    sc->bnx_phy_flags);
5218 
5219 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5220 		break;
5221 
5222 	default:
5223 		error = ether_ioctl(ifp, command, data);
5224 	}
5225 
5226 	if (error == ENETRESET) {
5227 		if (ifp->if_flags & IFF_RUNNING)
5228 			bnx_iff(sc);
5229 		error = 0;
5230 	}
5231 
5232 	splx(s);
5233 	return error;
5234 }
5235 
5236 /****************************************************************************/
5237 /* Transmit timeout handler.                                                */
5238 /*                                                                          */
5239 /* Returns:                                                                 */
5240 /*   Nothing.                                                               */
5241 /****************************************************************************/
5242 void
bnx_watchdog(struct ifnet * ifp)5243 bnx_watchdog(struct ifnet *ifp)
5244 {
5245 	struct bnx_softc	*sc = ifp->if_softc;
5246 
5247 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5248 	    bnx_dump_status_block(sc));
5249 	/*
5250 	 * If we are in this routine because of pause frames, then
5251 	 * don't reset the hardware.
5252 	 */
5253 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5254 		return;
5255 
5256 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5257 
5258 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5259 
5260 	bnx_init(ifp);
5261 
5262 	ifp->if_oerrors++;
5263 }
5264 
5265 /*
5266  * Interrupt handler.
5267  */
5268 /****************************************************************************/
5269 /* Main interrupt entry point.  Verifies that the controller generated the  */
5270 /* interrupt and then calls a separate routine for handle the various       */
5271 /* interrupt causes (PHY, TX, RX).                                          */
5272 /*                                                                          */
5273 /* Returns:                                                                 */
5274 /*   0 for success, positive value for failure.                             */
5275 /****************************************************************************/
5276 int
bnx_intr(void * xsc)5277 bnx_intr(void *xsc)
5278 {
5279 	struct bnx_softc	*sc;
5280 	struct ifnet		*ifp;
5281 	uint32_t		status_attn_bits;
5282 	const struct status_block *sblk;
5283 
5284 	sc = xsc;
5285 
5286 	ifp = &sc->bnx_ec.ec_if;
5287 
5288 	if (!device_is_active(sc->bnx_dev) ||
5289 	    (ifp->if_flags & IFF_RUNNING) == 0)
5290 		return 0;
5291 
5292 	DBRUNIF(1, sc->interrupts_generated++);
5293 
5294 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5295 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5296 
5297 	/*
5298 	 * If the hardware status block index
5299 	 * matches the last value read by the
5300 	 * driver and we haven't asserted our
5301 	 * interrupt then there's nothing to do.
5302 	 */
5303 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
5304 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5305 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5306 		return 0;
5307 
5308 	/* Ack the interrupt and stop others from occuring. */
5309 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5310 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5311 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5312 
5313 	/* Keep processing data as long as there is work to do. */
5314 	for (;;) {
5315 		sblk = sc->status_block;
5316 		status_attn_bits = sblk->status_attn_bits;
5317 
5318 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5319 		    aprint_debug("Simulating unexpected status attention bit set.");
5320 		    status_attn_bits = status_attn_bits |
5321 		    STATUS_ATTN_BITS_PARITY_ERROR);
5322 
5323 		/* Was it a link change interrupt? */
5324 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5325 		    (sblk->status_attn_bits_ack &
5326 		    STATUS_ATTN_BITS_LINK_STATE))
5327 			bnx_phy_intr(sc);
5328 
5329 		/* If any other attention is asserted then the chip is toast. */
5330 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5331 		    (sblk->status_attn_bits_ack &
5332 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
5333 			DBRUN(1, sc->unexpected_attentions++);
5334 
5335 			BNX_PRINTF(sc,
5336 			    "Fatal attention detected: 0x%08X\n",
5337 			    sblk->status_attn_bits);
5338 
5339 			DBRUN(BNX_FATAL,
5340 			    if (bnx_debug_unexpected_attention == 0)
5341 			    bnx_breakpoint(sc));
5342 
5343 			bnx_init(ifp);
5344 			return 1;
5345 		}
5346 
5347 		/* Check for any completed RX frames. */
5348 		if (sblk->status_rx_quick_consumer_index0 !=
5349 		    sc->hw_rx_cons)
5350 			bnx_rx_intr(sc);
5351 
5352 		/* Check for any completed TX frames. */
5353 		if (sblk->status_tx_quick_consumer_index0 !=
5354 		    sc->hw_tx_cons)
5355 			bnx_tx_intr(sc);
5356 
5357 		/*
5358 		 * Save the status block index value for use during the
5359 		 * next interrupt.
5360 		 */
5361 		sc->last_status_idx = sblk->status_idx;
5362 
5363 		/* Prevent speculative reads from getting ahead of the
5364 		 * status block.
5365 		 */
5366 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5367 		    BUS_SPACE_BARRIER_READ);
5368 
5369 		/* If there's no work left then exit the isr. */
5370 		if ((sblk->status_rx_quick_consumer_index0 ==
5371 			sc->hw_rx_cons) &&
5372 		    (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
5373 			break;
5374 	}
5375 
5376 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5377 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5378 
5379 	/* Re-enable interrupts. */
5380 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5381 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5382 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5383 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5384 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5385 
5386 	/* Handle any frames that arrived while handling the interrupt. */
5387 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
5388 		bnx_start(ifp);
5389 
5390 	return 1;
5391 }
5392 
5393 /****************************************************************************/
5394 /* Programs the various packet receive modes (broadcast and multicast).     */
5395 /*                                                                          */
5396 /* Returns:                                                                 */
5397 /*   Nothing.                                                               */
5398 /****************************************************************************/
5399 void
bnx_iff(struct bnx_softc * sc)5400 bnx_iff(struct bnx_softc *sc)
5401 {
5402 	struct ethercom		*ec = &sc->bnx_ec;
5403 	struct ifnet		*ifp = &ec->ec_if;
5404 	struct ether_multi	*enm;
5405 	struct ether_multistep	step;
5406 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5407 	uint32_t		rx_mode, sort_mode;
5408 	int			h, i;
5409 
5410 	/* Initialize receive mode default settings. */
5411 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5412 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5413 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5414 	ifp->if_flags &= ~IFF_ALLMULTI;
5415 
5416 	/*
5417 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5418 	 * be enbled.
5419 	 */
5420 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5421 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5422 
5423 	/*
5424 	 * Check for promiscuous, all multicast, or selected
5425 	 * multicast address filtering.
5426 	 */
5427 	if (ifp->if_flags & IFF_PROMISC) {
5428 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5429 
5430 		ifp->if_flags |= IFF_ALLMULTI;
5431 		/* Enable promiscuous mode. */
5432 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5433 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5434 	} else if (ifp->if_flags & IFF_ALLMULTI) {
5435 allmulti:
5436 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5437 
5438 		ifp->if_flags |= IFF_ALLMULTI;
5439 		/* Enable all multicast addresses. */
5440 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5441 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5442 			    0xffffffff);
5443 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5444 	} else {
5445 		/* Accept one or more multicast(s). */
5446 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5447 
5448 		ETHER_FIRST_MULTI(step, ec, enm);
5449 		while (enm != NULL) {
5450 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5451 			    ETHER_ADDR_LEN)) {
5452 				goto allmulti;
5453 			}
5454 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5455 			    0xFF;
5456 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5457 			ETHER_NEXT_MULTI(step, enm);
5458 		}
5459 
5460 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5461 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5462 			    hashes[i]);
5463 
5464 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5465 	}
5466 
5467 	/* Only make changes if the recive mode has actually changed. */
5468 	if (rx_mode != sc->rx_mode) {
5469 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5470 		    rx_mode);
5471 
5472 		sc->rx_mode = rx_mode;
5473 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5474 	}
5475 
5476 	/* Disable and clear the exisitng sort before enabling a new sort. */
5477 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5478 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5479 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5480 }
5481 
5482 /****************************************************************************/
5483 /* Called periodically to updates statistics from the controllers           */
5484 /* statistics block.                                                        */
5485 /*                                                                          */
5486 /* Returns:                                                                 */
5487 /*   Nothing.                                                               */
5488 /****************************************************************************/
5489 void
bnx_stats_update(struct bnx_softc * sc)5490 bnx_stats_update(struct bnx_softc *sc)
5491 {
5492 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
5493 	struct statistics_block	*stats;
5494 
5495 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5496 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5497 	    BUS_DMASYNC_POSTREAD);
5498 
5499 	stats = (struct statistics_block *)sc->stats_block;
5500 
5501 	/*
5502 	 * Update the interface statistics from the
5503 	 * hardware statistics.
5504 	 */
5505 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5506 
5507 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5508 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
5509 	    (u_long)stats->stat_IfInMBUFDiscards +
5510 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
5511 	    (u_long)stats->stat_Dot3StatsFCSErrors;
5512 
5513 	ifp->if_oerrors = (u_long)
5514 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5515 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5516 	    (u_long)stats->stat_Dot3StatsLateCollisions;
5517 
5518 	/*
5519 	 * Certain controllers don't report
5520 	 * carrier sense errors correctly.
5521 	 * See errata E11_5708CA0_1165.
5522 	 */
5523 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5524 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5525 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5526 
5527 	/*
5528 	 * Update the sysctl statistics from the
5529 	 * hardware statistics.
5530 	 */
5531 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5532 	    (uint64_t) stats->stat_IfHCInOctets_lo;
5533 
5534 	sc->stat_IfHCInBadOctets =
5535 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5536 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
5537 
5538 	sc->stat_IfHCOutOctets =
5539 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5540 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
5541 
5542 	sc->stat_IfHCOutBadOctets =
5543 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5544 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5545 
5546 	sc->stat_IfHCInUcastPkts =
5547 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5548 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5549 
5550 	sc->stat_IfHCInMulticastPkts =
5551 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5552 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5553 
5554 	sc->stat_IfHCInBroadcastPkts =
5555 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5556 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5557 
5558 	sc->stat_IfHCOutUcastPkts =
5559 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5560 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5561 
5562 	sc->stat_IfHCOutMulticastPkts =
5563 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5564 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5565 
5566 	sc->stat_IfHCOutBroadcastPkts =
5567 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5568 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5569 
5570 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5571 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5572 
5573 	sc->stat_Dot3StatsCarrierSenseErrors =
5574 	    stats->stat_Dot3StatsCarrierSenseErrors;
5575 
5576 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5577 
5578 	sc->stat_Dot3StatsAlignmentErrors =
5579 	    stats->stat_Dot3StatsAlignmentErrors;
5580 
5581 	sc->stat_Dot3StatsSingleCollisionFrames =
5582 	    stats->stat_Dot3StatsSingleCollisionFrames;
5583 
5584 	sc->stat_Dot3StatsMultipleCollisionFrames =
5585 	    stats->stat_Dot3StatsMultipleCollisionFrames;
5586 
5587 	sc->stat_Dot3StatsDeferredTransmissions =
5588 	    stats->stat_Dot3StatsDeferredTransmissions;
5589 
5590 	sc->stat_Dot3StatsExcessiveCollisions =
5591 	    stats->stat_Dot3StatsExcessiveCollisions;
5592 
5593 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5594 
5595 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5596 
5597 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5598 
5599 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5600 
5601 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5602 
5603 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5604 
5605 	sc->stat_EtherStatsPktsRx64Octets =
5606 	    stats->stat_EtherStatsPktsRx64Octets;
5607 
5608 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5609 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5610 
5611 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5612 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5613 
5614 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5615 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5616 
5617 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5618 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5619 
5620 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5621 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5622 
5623 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5624 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5625 
5626 	sc->stat_EtherStatsPktsTx64Octets =
5627 	    stats->stat_EtherStatsPktsTx64Octets;
5628 
5629 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5630 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5631 
5632 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5633 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5634 
5635 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5636 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5637 
5638 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5639 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5640 
5641 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5642 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5643 
5644 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5645 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5646 
5647 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5648 
5649 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5650 
5651 	sc->stat_OutXonSent = stats->stat_OutXonSent;
5652 
5653 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5654 
5655 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5656 
5657 	sc->stat_MacControlFramesReceived =
5658 	    stats->stat_MacControlFramesReceived;
5659 
5660 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5661 
5662 	sc->stat_IfInFramesL2FilterDiscards =
5663 	    stats->stat_IfInFramesL2FilterDiscards;
5664 
5665 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5666 
5667 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5668 
5669 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5670 
5671 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5672 
5673 	sc->stat_CatchupInRuleCheckerDiscards =
5674 	    stats->stat_CatchupInRuleCheckerDiscards;
5675 
5676 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5677 
5678 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5679 
5680 	sc->stat_CatchupInRuleCheckerP4Hit =
5681 	    stats->stat_CatchupInRuleCheckerP4Hit;
5682 
5683 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5684 }
5685 
5686 void
bnx_tick(void * xsc)5687 bnx_tick(void *xsc)
5688 {
5689 	struct bnx_softc	*sc = xsc;
5690 	struct mii_data		*mii;
5691 	uint32_t		msg;
5692 	uint16_t		prod, chain_prod;
5693 	uint32_t		prod_bseq;
5694 	int s = splnet();
5695 
5696 	/* Tell the firmware that the driver is still running. */
5697 #ifdef BNX_DEBUG
5698 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5699 #else
5700 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5701 #endif
5702 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5703 
5704 	/* Update the statistics from the hardware statistics block. */
5705 	bnx_stats_update(sc);
5706 
5707 	/* Schedule the next tick. */
5708 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5709 
5710 	mii = &sc->bnx_mii;
5711 	mii_tick(mii);
5712 
5713 	/* try to get more RX buffers, just in case */
5714 	prod = sc->rx_prod;
5715 	prod_bseq = sc->rx_prod_bseq;
5716 	chain_prod = RX_CHAIN_IDX(prod);
5717 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5718 	sc->rx_prod = prod;
5719 	sc->rx_prod_bseq = prod_bseq;
5720 	splx(s);
5721 	return;
5722 }
5723 
5724 /****************************************************************************/
5725 /* BNX Debug Routines                                                       */
5726 /****************************************************************************/
5727 #ifdef BNX_DEBUG
5728 
5729 /****************************************************************************/
5730 /* Prints out information about an mbuf.                                    */
5731 /*                                                                          */
5732 /* Returns:                                                                 */
5733 /*   Nothing.                                                               */
5734 /****************************************************************************/
5735 void
bnx_dump_mbuf(struct bnx_softc * sc,struct mbuf * m)5736 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5737 {
5738 	struct mbuf		*mp = m;
5739 
5740 	if (m == NULL) {
5741 		/* Index out of range. */
5742 		aprint_error("mbuf ptr is null!\n");
5743 		return;
5744 	}
5745 
5746 	while (mp) {
5747 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5748 		    mp, mp->m_len);
5749 
5750 		if (mp->m_flags & M_EXT)
5751 			aprint_debug("M_EXT ");
5752 		if (mp->m_flags & M_PKTHDR)
5753 			aprint_debug("M_PKTHDR ");
5754 		aprint_debug("\n");
5755 
5756 		if (mp->m_flags & M_EXT)
5757 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5758 			    mp, mp->m_ext.ext_size);
5759 
5760 		mp = mp->m_next;
5761 	}
5762 }
5763 
5764 /****************************************************************************/
5765 /* Prints out the mbufs in the TX mbuf chain.                               */
5766 /*                                                                          */
5767 /* Returns:                                                                 */
5768 /*   Nothing.                                                               */
5769 /****************************************************************************/
5770 void
bnx_dump_tx_mbuf_chain(struct bnx_softc * sc,int chain_prod,int count)5771 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5772 {
5773 #if 0
5774 	struct mbuf		*m;
5775 	int			i;
5776 
5777 	aprint_debug_dev(sc->bnx_dev,
5778 	    "----------------------------"
5779 	    "  tx mbuf data  "
5780 	    "----------------------------\n");
5781 
5782 	for (i = 0; i < count; i++) {
5783 	 	m = sc->tx_mbuf_ptr[chain_prod];
5784 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5785 		bnx_dump_mbuf(sc, m);
5786 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5787 	}
5788 
5789 	aprint_debug_dev(sc->bnx_dev,
5790 	    "--------------------------------------------"
5791 	    "----------------------------\n");
5792 #endif
5793 }
5794 
5795 /*
5796  * This routine prints the RX mbuf chain.
5797  */
5798 void
bnx_dump_rx_mbuf_chain(struct bnx_softc * sc,int chain_prod,int count)5799 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5800 {
5801 	struct mbuf		*m;
5802 	int			i;
5803 
5804 	aprint_debug_dev(sc->bnx_dev,
5805 	    "----------------------------"
5806 	    "  rx mbuf data  "
5807 	    "----------------------------\n");
5808 
5809 	for (i = 0; i < count; i++) {
5810 	 	m = sc->rx_mbuf_ptr[chain_prod];
5811 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5812 		bnx_dump_mbuf(sc, m);
5813 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5814 	}
5815 
5816 
5817 	aprint_debug_dev(sc->bnx_dev,
5818 	    "--------------------------------------------"
5819 	    "----------------------------\n");
5820 }
5821 
5822 void
bnx_dump_txbd(struct bnx_softc * sc,int idx,struct tx_bd * txbd)5823 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5824 {
5825 	if (idx > MAX_TX_BD)
5826 		/* Index out of range. */
5827 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5828 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5829 		/* TX Chain page pointer. */
5830 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5831 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5832 		    txbd->tx_bd_haddr_lo);
5833 	else
5834 		/* Normal tx_bd entry. */
5835 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5836 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5837 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5838 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5839 		    txbd->tx_bd_flags);
5840 }
5841 
5842 void
bnx_dump_rxbd(struct bnx_softc * sc,int idx,struct rx_bd * rxbd)5843 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5844 {
5845 	if (idx > MAX_RX_BD)
5846 		/* Index out of range. */
5847 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5848 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5849 		/* TX Chain page pointer. */
5850 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5851 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5852 		    rxbd->rx_bd_haddr_lo);
5853 	else
5854 		/* Normal tx_bd entry. */
5855 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5856 		    "0x%08X, flags = 0x%08X\n", idx,
5857 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5858 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
5859 }
5860 
5861 void
bnx_dump_l2fhdr(struct bnx_softc * sc,int idx,struct l2_fhdr * l2fhdr)5862 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5863 {
5864 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5865 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5866 	    "tcp_udp_xsum = 0x%04X\n", idx,
5867 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5868 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5869 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
5870 }
5871 
5872 /*
5873  * This routine prints the TX chain.
5874  */
5875 void
bnx_dump_tx_chain(struct bnx_softc * sc,int tx_prod,int count)5876 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5877 {
5878 	struct tx_bd		*txbd;
5879 	int			i;
5880 
5881 	/* First some info about the tx_bd chain structure. */
5882 	aprint_debug_dev(sc->bnx_dev,
5883 	    "----------------------------"
5884 	    "  tx_bd  chain  "
5885 	    "----------------------------\n");
5886 
5887 	BNX_PRINTF(sc,
5888 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
5889 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
5890 
5891 	BNX_PRINTF(sc,
5892 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5893 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
5894 
5895 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
5896 
5897 	aprint_error_dev(sc->bnx_dev, ""
5898 	    "-----------------------------"
5899 	    "   tx_bd data   "
5900 	    "-----------------------------\n");
5901 
5902 	/* Now print out the tx_bd's themselves. */
5903 	for (i = 0; i < count; i++) {
5904 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5905 		bnx_dump_txbd(sc, tx_prod, txbd);
5906 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5907 	}
5908 
5909 	aprint_debug_dev(sc->bnx_dev,
5910 	    "-----------------------------"
5911 	    "--------------"
5912 	    "-----------------------------\n");
5913 }
5914 
5915 /*
5916  * This routine prints the RX chain.
5917  */
5918 void
bnx_dump_rx_chain(struct bnx_softc * sc,int rx_prod,int count)5919 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5920 {
5921 	struct rx_bd		*rxbd;
5922 	int			i;
5923 
5924 	/* First some info about the tx_bd chain structure. */
5925 	aprint_debug_dev(sc->bnx_dev,
5926 	    "----------------------------"
5927 	    "  rx_bd  chain  "
5928 	    "----------------------------\n");
5929 
5930 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5931 
5932 	BNX_PRINTF(sc,
5933 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
5934 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
5935 
5936 	BNX_PRINTF(sc,
5937 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5938 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
5939 
5940 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
5941 
5942 	aprint_error_dev(sc->bnx_dev,
5943 	    "----------------------------"
5944 	    "   rx_bd data   "
5945 	    "----------------------------\n");
5946 
5947 	/* Now print out the rx_bd's themselves. */
5948 	for (i = 0; i < count; i++) {
5949 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5950 		bnx_dump_rxbd(sc, rx_prod, rxbd);
5951 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5952 	}
5953 
5954 	aprint_debug_dev(sc->bnx_dev,
5955 	    "----------------------------"
5956 	    "--------------"
5957 	    "----------------------------\n");
5958 }
5959 
5960 /*
5961  * This routine prints the status block.
5962  */
5963 void
bnx_dump_status_block(struct bnx_softc * sc)5964 bnx_dump_status_block(struct bnx_softc *sc)
5965 {
5966 	struct status_block	*sblk;
5967 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5968 	    BUS_DMASYNC_POSTREAD);
5969 
5970 	sblk = sc->status_block;
5971 
5972    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5973 	    "-----------------------------\n");
5974 
5975 	BNX_PRINTF(sc,
5976 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5977 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
5978 	    sblk->status_idx);
5979 
5980 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
5981 	    sblk->status_rx_quick_consumer_index0,
5982 	    sblk->status_tx_quick_consumer_index0);
5983 
5984 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5985 
5986 	/* Theses indices are not used for normal L2 drivers. */
5987 	if (sblk->status_rx_quick_consumer_index1 ||
5988 		sblk->status_tx_quick_consumer_index1)
5989 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
5990 		    sblk->status_rx_quick_consumer_index1,
5991 		    sblk->status_tx_quick_consumer_index1);
5992 
5993 	if (sblk->status_rx_quick_consumer_index2 ||
5994 		sblk->status_tx_quick_consumer_index2)
5995 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
5996 		    sblk->status_rx_quick_consumer_index2,
5997 		    sblk->status_tx_quick_consumer_index2);
5998 
5999 	if (sblk->status_rx_quick_consumer_index3 ||
6000 		sblk->status_tx_quick_consumer_index3)
6001 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
6002 		    sblk->status_rx_quick_consumer_index3,
6003 		    sblk->status_tx_quick_consumer_index3);
6004 
6005 	if (sblk->status_rx_quick_consumer_index4 ||
6006 		sblk->status_rx_quick_consumer_index5)
6007 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
6008 		    sblk->status_rx_quick_consumer_index4,
6009 		    sblk->status_rx_quick_consumer_index5);
6010 
6011 	if (sblk->status_rx_quick_consumer_index6 ||
6012 		sblk->status_rx_quick_consumer_index7)
6013 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
6014 		    sblk->status_rx_quick_consumer_index6,
6015 		    sblk->status_rx_quick_consumer_index7);
6016 
6017 	if (sblk->status_rx_quick_consumer_index8 ||
6018 		sblk->status_rx_quick_consumer_index9)
6019 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
6020 		    sblk->status_rx_quick_consumer_index8,
6021 		    sblk->status_rx_quick_consumer_index9);
6022 
6023 	if (sblk->status_rx_quick_consumer_index10 ||
6024 		sblk->status_rx_quick_consumer_index11)
6025 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
6026 		    sblk->status_rx_quick_consumer_index10,
6027 		    sblk->status_rx_quick_consumer_index11);
6028 
6029 	if (sblk->status_rx_quick_consumer_index12 ||
6030 		sblk->status_rx_quick_consumer_index13)
6031 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
6032 		    sblk->status_rx_quick_consumer_index12,
6033 		    sblk->status_rx_quick_consumer_index13);
6034 
6035 	if (sblk->status_rx_quick_consumer_index14 ||
6036 		sblk->status_rx_quick_consumer_index15)
6037 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
6038 		    sblk->status_rx_quick_consumer_index14,
6039 		    sblk->status_rx_quick_consumer_index15);
6040 
6041 	if (sblk->status_completion_producer_index ||
6042 		sblk->status_cmd_consumer_index)
6043 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
6044 		    sblk->status_completion_producer_index,
6045 		    sblk->status_cmd_consumer_index);
6046 
6047 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6048 	    "-----------------------------\n");
6049 }
6050 
6051 /*
6052  * This routine prints the statistics block.
6053  */
6054 void
bnx_dump_stats_block(struct bnx_softc * sc)6055 bnx_dump_stats_block(struct bnx_softc *sc)
6056 {
6057 	struct statistics_block	*sblk;
6058 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6059 	    BUS_DMASYNC_POSTREAD);
6060 
6061 	sblk = sc->stats_block;
6062 
6063 	aprint_debug_dev(sc->bnx_dev, ""
6064 	    "-----------------------------"
6065 	    " Stats  Block "
6066 	    "-----------------------------\n");
6067 
6068 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
6069 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
6070 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6071 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6072 
6073 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
6074 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
6075 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6076 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6077 
6078 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
6079 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
6080 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6081 	    sblk->stat_IfHCInMulticastPkts_hi,
6082 	    sblk->stat_IfHCInMulticastPkts_lo);
6083 
6084 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
6085 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
6086 	    sblk->stat_IfHCInBroadcastPkts_hi,
6087 	    sblk->stat_IfHCInBroadcastPkts_lo,
6088 	    sblk->stat_IfHCOutUcastPkts_hi,
6089 	    sblk->stat_IfHCOutUcastPkts_lo);
6090 
6091 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6092 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6093 	    sblk->stat_IfHCOutMulticastPkts_hi,
6094 	    sblk->stat_IfHCOutMulticastPkts_lo,
6095 	    sblk->stat_IfHCOutBroadcastPkts_hi,
6096 	    sblk->stat_IfHCOutBroadcastPkts_lo);
6097 
6098 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6099 		BNX_PRINTF(sc, "0x%08X : "
6100 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6101 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6102 
6103 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
6104 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6105 		    sblk->stat_Dot3StatsCarrierSenseErrors);
6106 
6107 	if (sblk->stat_Dot3StatsFCSErrors)
6108 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6109 		    sblk->stat_Dot3StatsFCSErrors);
6110 
6111 	if (sblk->stat_Dot3StatsAlignmentErrors)
6112 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6113 		    sblk->stat_Dot3StatsAlignmentErrors);
6114 
6115 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
6116 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6117 		    sblk->stat_Dot3StatsSingleCollisionFrames);
6118 
6119 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6120 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6121 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
6122 
6123 	if (sblk->stat_Dot3StatsDeferredTransmissions)
6124 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6125 		    sblk->stat_Dot3StatsDeferredTransmissions);
6126 
6127 	if (sblk->stat_Dot3StatsExcessiveCollisions)
6128 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6129 		    sblk->stat_Dot3StatsExcessiveCollisions);
6130 
6131 	if (sblk->stat_Dot3StatsLateCollisions)
6132 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6133 		    sblk->stat_Dot3StatsLateCollisions);
6134 
6135 	if (sblk->stat_EtherStatsCollisions)
6136 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6137 		    sblk->stat_EtherStatsCollisions);
6138 
6139 	if (sblk->stat_EtherStatsFragments)
6140 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6141 		    sblk->stat_EtherStatsFragments);
6142 
6143 	if (sblk->stat_EtherStatsJabbers)
6144 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6145 		    sblk->stat_EtherStatsJabbers);
6146 
6147 	if (sblk->stat_EtherStatsUndersizePkts)
6148 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6149 		    sblk->stat_EtherStatsUndersizePkts);
6150 
6151 	if (sblk->stat_EtherStatsOverrsizePkts)
6152 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6153 		    sblk->stat_EtherStatsOverrsizePkts);
6154 
6155 	if (sblk->stat_EtherStatsPktsRx64Octets)
6156 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6157 		    sblk->stat_EtherStatsPktsRx64Octets);
6158 
6159 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6160 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6161 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6162 
6163 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6164 		BNX_PRINTF(sc, "0x%08X : "
6165 		    "EtherStatsPktsRx128Octetsto255Octets\n",
6166 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6167 
6168 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6169 		BNX_PRINTF(sc, "0x%08X : "
6170 		    "EtherStatsPktsRx256Octetsto511Octets\n",
6171 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6172 
6173 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6174 		BNX_PRINTF(sc, "0x%08X : "
6175 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
6176 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6177 
6178 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6179 		BNX_PRINTF(sc, "0x%08X : "
6180 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
6181 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6182 
6183 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6184 		BNX_PRINTF(sc, "0x%08X : "
6185 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
6186 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6187 
6188 	if (sblk->stat_EtherStatsPktsTx64Octets)
6189 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6190 		    sblk->stat_EtherStatsPktsTx64Octets);
6191 
6192 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6193 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6194 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6195 
6196 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6197 		BNX_PRINTF(sc, "0x%08X : "
6198 		    "EtherStatsPktsTx128Octetsto255Octets\n",
6199 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6200 
6201 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6202 		BNX_PRINTF(sc, "0x%08X : "
6203 		    "EtherStatsPktsTx256Octetsto511Octets\n",
6204 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6205 
6206 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6207 		BNX_PRINTF(sc, "0x%08X : "
6208 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
6209 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6210 
6211 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6212 		BNX_PRINTF(sc, "0x%08X : "
6213 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
6214 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6215 
6216 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6217 		BNX_PRINTF(sc, "0x%08X : "
6218 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
6219 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6220 
6221 	if (sblk->stat_XonPauseFramesReceived)
6222 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6223 		    sblk->stat_XonPauseFramesReceived);
6224 
6225 	if (sblk->stat_XoffPauseFramesReceived)
6226 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6227 		    sblk->stat_XoffPauseFramesReceived);
6228 
6229 	if (sblk->stat_OutXonSent)
6230 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6231 		    sblk->stat_OutXonSent);
6232 
6233 	if (sblk->stat_OutXoffSent)
6234 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6235 		    sblk->stat_OutXoffSent);
6236 
6237 	if (sblk->stat_FlowControlDone)
6238 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6239 		    sblk->stat_FlowControlDone);
6240 
6241 	if (sblk->stat_MacControlFramesReceived)
6242 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6243 		    sblk->stat_MacControlFramesReceived);
6244 
6245 	if (sblk->stat_XoffStateEntered)
6246 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6247 		    sblk->stat_XoffStateEntered);
6248 
6249 	if (sblk->stat_IfInFramesL2FilterDiscards)
6250 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6251 		    sblk->stat_IfInFramesL2FilterDiscards);
6252 
6253 	if (sblk->stat_IfInRuleCheckerDiscards)
6254 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6255 		    sblk->stat_IfInRuleCheckerDiscards);
6256 
6257 	if (sblk->stat_IfInFTQDiscards)
6258 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6259 		    sblk->stat_IfInFTQDiscards);
6260 
6261 	if (sblk->stat_IfInMBUFDiscards)
6262 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6263 		    sblk->stat_IfInMBUFDiscards);
6264 
6265 	if (sblk->stat_IfInRuleCheckerP4Hit)
6266 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6267 		    sblk->stat_IfInRuleCheckerP4Hit);
6268 
6269 	if (sblk->stat_CatchupInRuleCheckerDiscards)
6270 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6271 		    sblk->stat_CatchupInRuleCheckerDiscards);
6272 
6273 	if (sblk->stat_CatchupInFTQDiscards)
6274 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6275 		    sblk->stat_CatchupInFTQDiscards);
6276 
6277 	if (sblk->stat_CatchupInMBUFDiscards)
6278 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6279 		    sblk->stat_CatchupInMBUFDiscards);
6280 
6281 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
6282 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6283 		    sblk->stat_CatchupInRuleCheckerP4Hit);
6284 
6285 	aprint_debug_dev(sc->bnx_dev,
6286 	    "-----------------------------"
6287 	    "--------------"
6288 	    "-----------------------------\n");
6289 }
6290 
6291 void
bnx_dump_driver_state(struct bnx_softc * sc)6292 bnx_dump_driver_state(struct bnx_softc *sc)
6293 {
6294 	aprint_debug_dev(sc->bnx_dev,
6295 	    "-----------------------------"
6296 	    " Driver State "
6297 	    "-----------------------------\n");
6298 
6299 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6300 	    "address\n", sc);
6301 
6302 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6303 	    sc->status_block);
6304 
6305 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6306 	    "address\n", sc->stats_block);
6307 
6308 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6309 	    "adddress\n", sc->tx_bd_chain);
6310 
6311 #if 0
6312 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6313 	    sc->rx_bd_chain);
6314 
6315 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6316 	    sc->tx_mbuf_ptr);
6317 #endif
6318 
6319 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6320 	    sc->rx_mbuf_ptr);
6321 
6322 	BNX_PRINTF(sc,
6323 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
6324 	    sc->interrupts_generated);
6325 
6326 	BNX_PRINTF(sc,
6327 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6328 	    sc->rx_interrupts);
6329 
6330 	BNX_PRINTF(sc,
6331 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6332 	    sc->tx_interrupts);
6333 
6334 	BNX_PRINTF(sc,
6335 	    "         0x%08X - (sc->last_status_idx) status block index\n",
6336 	    sc->last_status_idx);
6337 
6338 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
6339 	    sc->tx_prod);
6340 
6341 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
6342 	    sc->tx_cons);
6343 
6344 	BNX_PRINTF(sc,
6345 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6346 	    sc->tx_prod_bseq);
6347 	BNX_PRINTF(sc,
6348 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6349 	    sc->tx_mbuf_alloc);
6350 
6351 	BNX_PRINTF(sc,
6352 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6353 	    sc->used_tx_bd);
6354 
6355 	BNX_PRINTF(sc,
6356 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6357 	    sc->tx_hi_watermark, sc->max_tx_bd);
6358 
6359 
6360 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
6361 	    sc->rx_prod);
6362 
6363 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
6364 	    sc->rx_cons);
6365 
6366 	BNX_PRINTF(sc,
6367 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6368 	    sc->rx_prod_bseq);
6369 
6370 	BNX_PRINTF(sc,
6371 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6372 	    sc->rx_mbuf_alloc);
6373 
6374 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6375 	    sc->free_rx_bd);
6376 
6377 	BNX_PRINTF(sc,
6378 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6379 	    sc->rx_low_watermark, sc->max_rx_bd);
6380 
6381 	BNX_PRINTF(sc,
6382 	    "         0x%08X - (sc->mbuf_alloc_failed) "
6383 	    "mbuf alloc failures\n",
6384 	    sc->mbuf_alloc_failed);
6385 
6386 	BNX_PRINTF(sc,
6387 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
6388 	    "simulated mbuf alloc failures\n",
6389 	    sc->mbuf_sim_alloc_failed);
6390 
6391 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6392 	    "-----------------------------\n");
6393 }
6394 
6395 void
bnx_dump_hw_state(struct bnx_softc * sc)6396 bnx_dump_hw_state(struct bnx_softc *sc)
6397 {
6398 	uint32_t		val1;
6399 	int			i;
6400 
6401 	aprint_debug_dev(sc->bnx_dev,
6402 	    "----------------------------"
6403 	    " Hardware State "
6404 	    "----------------------------\n");
6405 
6406 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6407 
6408 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6409 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6410 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
6411 
6412 	val1 = REG_RD(sc, BNX_DMA_STATUS);
6413 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6414 
6415 	val1 = REG_RD(sc, BNX_CTX_STATUS);
6416 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6417 
6418 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
6419 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6420 	    BNX_EMAC_STATUS);
6421 
6422 	val1 = REG_RD(sc, BNX_RPM_STATUS);
6423 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6424 
6425 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
6426 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6427 	    BNX_TBDR_STATUS);
6428 
6429 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
6430 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6431 	    BNX_TDMA_STATUS);
6432 
6433 	val1 = REG_RD(sc, BNX_HC_STATUS);
6434 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6435 
6436 	aprint_debug_dev(sc->bnx_dev,
6437 	    "----------------------------"
6438 	    "----------------"
6439 	    "----------------------------\n");
6440 
6441 	aprint_debug_dev(sc->bnx_dev,
6442 	    "----------------------------"
6443 	    " Register  Dump "
6444 	    "----------------------------\n");
6445 
6446 	for (i = 0x400; i < 0x8000; i += 0x10)
6447 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6448 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6449 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6450 
6451 	aprint_debug_dev(sc->bnx_dev,
6452 	    "----------------------------"
6453 	    "----------------"
6454 	    "----------------------------\n");
6455 }
6456 
6457 void
bnx_breakpoint(struct bnx_softc * sc)6458 bnx_breakpoint(struct bnx_softc *sc)
6459 {
6460 	/* Unreachable code to shut the compiler up about unused functions. */
6461 	if (0) {
6462    		bnx_dump_txbd(sc, 0, NULL);
6463 		bnx_dump_rxbd(sc, 0, NULL);
6464 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6465 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6466 		bnx_dump_l2fhdr(sc, 0, NULL);
6467 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6468 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6469 		bnx_dump_status_block(sc);
6470 		bnx_dump_stats_block(sc);
6471 		bnx_dump_driver_state(sc);
6472 		bnx_dump_hw_state(sc);
6473 	}
6474 
6475 	bnx_dump_driver_state(sc);
6476 	/* Print the important status block fields. */
6477 	bnx_dump_status_block(sc);
6478 
6479 #if 0
6480 	/* Call the debugger. */
6481 	breakpoint();
6482 #endif
6483 
6484 	return;
6485 }
6486 #endif
6487