1 /*	$NetBSD: if_et.c,v 1.12 2016/06/10 13:27:14 ozaki-r Exp $	*/
2 /*	$OpenBSD: if_et.c,v 1.11 2008/06/08 06:18:07 jsg Exp $	*/
3 /*
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.12 2016/06/10 13:27:14 ozaki-r Exp $");
41 
42 #include "opt_inet.h"
43 #include "vlan.h"
44 
45 #include <sys/param.h>
46 #include <sys/endian.h>
47 #include <sys/systm.h>
48 #include <sys/types.h>
49 #include <sys/sockio.h>
50 #include <sys/mbuf.h>
51 #include <sys/queue.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/socket.h>
56 
57 #include <sys/bus.h>
58 
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 #include <net/if_arp.h>
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72 
73 #include <net/bpf.h>
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81 
82 #include <dev/pci/if_etreg.h>
83 
84 int	et_match(device_t, cfdata_t, void *);
85 void	et_attach(device_t, device_t, void *);
86 int	et_detach(device_t, int flags);
87 int	et_shutdown(device_t);
88 
89 int	et_miibus_readreg(device_t, int, int);
90 void	et_miibus_writereg(device_t, int, int, int);
91 void	et_miibus_statchg(struct ifnet *);
92 
93 int	et_init(struct ifnet *ifp);
94 int	et_ioctl(struct ifnet *, u_long, void *);
95 void	et_start(struct ifnet *);
96 void	et_watchdog(struct ifnet *);
97 
98 int	et_intr(void *);
99 void	et_enable_intrs(struct et_softc *, uint32_t);
100 void	et_disable_intrs(struct et_softc *);
101 void	et_rxeof(struct et_softc *);
102 void	et_txeof(struct et_softc *);
103 void	et_txtick(void *);
104 
105 int	et_dma_alloc(struct et_softc *);
106 void	et_dma_free(struct et_softc *);
107 int	et_dma_mem_create(struct et_softc *, bus_size_t,
108 	    void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
109 void	et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
110 int	et_dma_mbuf_create(struct et_softc *);
111 void	et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
112 
113 int	et_init_tx_ring(struct et_softc *);
114 int	et_init_rx_ring(struct et_softc *);
115 void	et_free_tx_ring(struct et_softc *);
116 void	et_free_rx_ring(struct et_softc *);
117 int	et_encap(struct et_softc *, struct mbuf **);
118 int	et_newbuf(struct et_rxbuf_data *, int, int, int);
119 int	et_newbuf_cluster(struct et_rxbuf_data *, int, int);
120 int	et_newbuf_hdr(struct et_rxbuf_data *, int, int);
121 
122 void	et_stop(struct et_softc *);
123 int	et_chip_init(struct et_softc *);
124 void	et_chip_attach(struct et_softc *);
125 void	et_init_mac(struct et_softc *);
126 void	et_init_rxmac(struct et_softc *);
127 void	et_init_txmac(struct et_softc *);
128 int	et_init_rxdma(struct et_softc *);
129 int	et_init_txdma(struct et_softc *);
130 int	et_start_rxdma(struct et_softc *);
131 int	et_start_txdma(struct et_softc *);
132 int	et_stop_rxdma(struct et_softc *);
133 int	et_stop_txdma(struct et_softc *);
134 int	et_enable_txrx(struct et_softc *);
135 void	et_reset(struct et_softc *);
136 int	et_bus_config(struct et_softc *);
137 void	et_get_eaddr(struct et_softc *, uint8_t[]);
138 void	et_setmulti(struct et_softc *);
139 void	et_tick(void *);
140 
141 static int	et_rx_intr_npkts = 32;
142 static int	et_rx_intr_delay = 20;		/* x10 usec */
143 static int	et_tx_intr_nsegs = 128;
144 static uint32_t	et_timer = 1000 * 1000 * 1000;	/* nanosec */
145 
146 struct et_bsize {
147 	int		bufsize;
148 	et_newbuf_t	newbuf;
149 };
150 
151 static const struct et_bsize	et_bufsize[ET_RX_NRING] = {
152 	{ .bufsize = 0,	.newbuf = et_newbuf_hdr },
153 	{ .bufsize = 0,	.newbuf = et_newbuf_cluster },
154 };
155 
156 const struct et_product {
157 	pci_vendor_id_t		vendor;
158 	pci_product_id_t	product;
159 } et_devices[] = {
160 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310 },
161 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301 }
162 };
163 
164 CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
165 	NULL);
166 
167 int
et_match(device_t dev,cfdata_t match,void * aux)168 et_match(device_t dev, cfdata_t match, void *aux)
169 {
170 	struct pci_attach_args *pa = aux;
171 	const struct et_product *ep;
172 	int i;
173 
174 	for (i = 0; i < __arraycount(et_devices); i++) {
175 		ep = &et_devices[i];
176 		if (PCI_VENDOR(pa->pa_id) == ep->vendor &&
177 		    PCI_PRODUCT(pa->pa_id) == ep->product)
178 			return 1;
179 	}
180 	return 0;
181 }
182 
183 void
et_attach(device_t parent,device_t self,void * aux)184 et_attach(device_t parent, device_t self, void *aux)
185 {
186 	struct et_softc *sc = device_private(self);
187 	struct pci_attach_args *pa = aux;
188 	pci_chipset_tag_t pc = pa->pa_pc;
189 	pci_intr_handle_t ih;
190 	const char *intrstr;
191 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
192 	pcireg_t memtype;
193 	int error;
194 	char intrbuf[PCI_INTRSTR_LEN];
195 
196 	pci_aprint_devinfo(pa, "Ethernet controller");
197 
198 	sc->sc_dev = self;
199 
200 	/*
201 	 * Initialize tunables
202 	 */
203 	sc->sc_rx_intr_npkts = et_rx_intr_npkts;
204 	sc->sc_rx_intr_delay = et_rx_intr_delay;
205 	sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
206 	sc->sc_timer = et_timer;
207 
208 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
209 	if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
210 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
211 		aprint_error_dev(self, "could not map mem space\n");
212 		return;
213 	}
214 
215 	if (pci_intr_map(pa, &ih) != 0) {
216 		aprint_error_dev(self, "could not map interrupt\n");
217 		goto fail;
218 	}
219 
220 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
221 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, et_intr, sc);
222 	if (sc->sc_irq_handle == NULL) {
223 		aprint_error_dev(self, "could not establish interrupt");
224 		if (intrstr != NULL)
225 			aprint_error(" at %s", intrstr);
226 		aprint_error("\n");
227 		goto fail;
228 	}
229 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
230 
231 	sc->sc_dmat = pa->pa_dmat;
232 	sc->sc_pct = pa->pa_pc;
233 	sc->sc_pcitag = pa->pa_tag;
234 
235 	error = et_bus_config(sc);
236 	if (error)
237 		goto fail;
238 
239 	et_get_eaddr(sc, sc->sc_enaddr);
240 
241 	aprint_normal_dev(self, "Ethernet address %s\n",
242 	    ether_sprintf(sc->sc_enaddr));
243 
244 	CSR_WRITE_4(sc, ET_PM,
245 		    ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
246 
247 	et_reset(sc);
248 
249 	et_disable_intrs(sc);
250 
251 	error = et_dma_alloc(sc);
252 	if (error)
253 		goto fail;
254 
255 	ifp->if_softc = sc;
256 	ifp->if_mtu = ETHERMTU;
257 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
258 	ifp->if_init = et_init;
259 	ifp->if_ioctl = et_ioctl;
260 	ifp->if_start = et_start;
261 	ifp->if_watchdog = et_watchdog;
262 	IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
263 	IFQ_SET_READY(&ifp->if_snd);
264 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
265 
266 	et_chip_attach(sc);
267 
268 	sc->sc_miibus.mii_ifp = ifp;
269 	sc->sc_miibus.mii_readreg = et_miibus_readreg;
270 	sc->sc_miibus.mii_writereg = et_miibus_writereg;
271 	sc->sc_miibus.mii_statchg = et_miibus_statchg;
272 
273 	sc->sc_ethercom.ec_mii = &sc->sc_miibus;
274 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ether_mediachange,
275 	    ether_mediastatus);
276 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
277 	    MII_OFFSET_ANY, 0);
278 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
279 		aprint_error_dev(self, "no PHY found!\n");
280 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
281 		    0, NULL);
282 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
283 	} else
284 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
285 
286 	if_attach(ifp);
287 	ether_ifattach(ifp, sc->sc_enaddr);
288 
289 	callout_init(&sc->sc_tick, 0);
290 	callout_setfunc(&sc->sc_tick, et_tick, sc);
291 	callout_init(&sc->sc_txtick, 0);
292 	callout_setfunc(&sc->sc_txtick, et_txtick, sc);
293 
294 	if (pmf_device_register(self, NULL, NULL))
295 		pmf_class_network_register(self, ifp);
296 	else
297 		aprint_error_dev(self, "couldn't establish power handler\n");
298 
299 	return;
300 
301 fail:
302 	et_dma_free(sc);
303 	if (sc->sc_irq_handle != NULL) {
304 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
305 		sc->sc_irq_handle = NULL;
306 	}
307 	if (sc->sc_mem_size) {
308 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
309 		sc->sc_mem_size = 0;
310 	}
311 }
312 
313 int
et_detach(device_t self,int flags)314 et_detach(device_t self, int flags)
315 {
316 	struct et_softc *sc = device_private(self);
317 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
318 	int s;
319 
320 	pmf_device_deregister(self);
321 	s = splnet();
322 	et_stop(sc);
323 	splx(s);
324 
325 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
326 
327 	/* Delete all remaining media. */
328 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
329 
330 	ether_ifdetach(ifp);
331 	if_detach(ifp);
332 	et_dma_free(sc);
333 
334 	if (sc->sc_irq_handle != NULL) {
335 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
336 		sc->sc_irq_handle = NULL;
337 	}
338 
339 	if (sc->sc_mem_size) {
340 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
341 		sc->sc_mem_size = 0;
342 	}
343 
344 	return 0;
345 }
346 
347 int
et_shutdown(device_t self)348 et_shutdown(device_t self)
349 {
350 	struct et_softc *sc = device_private(self);
351 	int s;
352 
353 	s = splnet();
354 	et_stop(sc);
355 	splx(s);
356 
357 	return 0;
358 }
359 
360 int
et_miibus_readreg(device_t dev,int phy,int reg)361 et_miibus_readreg(device_t dev, int phy, int reg)
362 {
363 	struct et_softc *sc = device_private(dev);
364 	uint32_t val;
365 	int i, ret;
366 
367 	/* Stop any pending operations */
368 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
369 
370 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
371 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
372 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
373 
374 	/* Start reading */
375 	CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
376 
377 #define NRETRY	50
378 
379 	for (i = 0; i < NRETRY; ++i) {
380 		val = CSR_READ_4(sc, ET_MII_IND);
381 		if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
382 			break;
383 		DELAY(50);
384 	}
385 	if (i == NRETRY) {
386 		aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
387 		    phy, reg);
388 		ret = 0;
389 		goto back;
390 	}
391 
392 #undef NRETRY
393 
394 	val = CSR_READ_4(sc, ET_MII_STAT);
395 	ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
396 
397 back:
398 	/* Make sure that the current operation is stopped */
399 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
400 	return ret;
401 }
402 
403 void
et_miibus_writereg(device_t dev,int phy,int reg,int val0)404 et_miibus_writereg(device_t dev, int phy, int reg, int val0)
405 {
406 	struct et_softc *sc = device_private(dev);
407 	uint32_t val;
408 	int i;
409 
410 	/* Stop any pending operations */
411 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
412 
413 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
414 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
415 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
416 
417 	/* Start writing */
418 	CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
419 
420 #define NRETRY 100
421 
422 	for (i = 0; i < NRETRY; ++i) {
423 		val = CSR_READ_4(sc, ET_MII_IND);
424 		if ((val & ET_MII_IND_BUSY) == 0)
425 			break;
426 		DELAY(50);
427 	}
428 	if (i == NRETRY) {
429 		aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
430 		    phy, reg);
431 		et_miibus_readreg(dev, phy, reg);
432 	}
433 
434 #undef NRETRY
435 
436 	/* Make sure that the current operation is stopped */
437 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
438 }
439 
440 void
et_miibus_statchg(struct ifnet * ifp)441 et_miibus_statchg(struct ifnet *ifp)
442 {
443 	struct et_softc *sc = ifp->if_softc;
444 	struct mii_data *mii = &sc->sc_miibus;
445 	uint32_t cfg2, ctrl;
446 
447 	cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
448 	cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
449 		  ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
450 	cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
451 		__SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
452 
453 	ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
454 	ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
455 
456 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
457 		cfg2 |= ET_MAC_CFG2_MODE_GMII;
458 	} else {
459 		cfg2 |= ET_MAC_CFG2_MODE_MII;
460 		ctrl |= ET_MAC_CTRL_MODE_MII;
461 	}
462 
463 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
464 		cfg2 |= ET_MAC_CFG2_FDX;
465 	else
466 		ctrl |= ET_MAC_CTRL_GHDX;
467 
468 	CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
469 	CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
470 }
471 
472 void
et_stop(struct et_softc * sc)473 et_stop(struct et_softc *sc)
474 {
475 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
476 
477 	callout_stop(&sc->sc_tick);
478 	callout_stop(&sc->sc_txtick);
479 
480 	et_stop_rxdma(sc);
481 	et_stop_txdma(sc);
482 
483 	et_disable_intrs(sc);
484 
485 	et_free_tx_ring(sc);
486 	et_free_rx_ring(sc);
487 
488 	et_reset(sc);
489 
490 	sc->sc_tx = 0;
491 	sc->sc_tx_intr = 0;
492 
493 	ifp->if_timer = 0;
494 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
495 }
496 
497 int
et_bus_config(struct et_softc * sc)498 et_bus_config(struct et_softc *sc)
499 {
500 	uint32_t val; //, max_plsz;
501 //	uint16_t ack_latency, replay_timer;
502 
503 	/*
504 	 * Test whether EEPROM is valid
505 	 * NOTE: Read twice to get the correct value
506 	 */
507 	pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
508 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
509 
510 	if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
511 		aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
512 		return ENXIO;
513 	}
514 
515 	/* TODO: LED */
516 #if 0
517 	/*
518 	 * Configure ACK latency and replay timer according to
519 	 * max playload size
520 	 */
521 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
522 	max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
523 
524 	switch (max_plsz) {
525 	case ET_PCIV_DEVICE_CAPS_PLSZ_128:
526 		ack_latency = ET_PCIV_ACK_LATENCY_128;
527 		replay_timer = ET_PCIV_REPLAY_TIMER_128;
528 		break;
529 
530 	case ET_PCIV_DEVICE_CAPS_PLSZ_256:
531 		ack_latency = ET_PCIV_ACK_LATENCY_256;
532 		replay_timer = ET_PCIV_REPLAY_TIMER_256;
533 		break;
534 
535 	default:
536 		ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
537 		    ET_PCIR_ACK_LATENCY) >> 16;
538 		replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
539 		    ET_PCIR_REPLAY_TIMER) >> 16;
540 		aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
541 		    ack_latency, replay_timer);
542 		break;
543 	}
544 	if (ack_latency != 0) {
545 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
546 		    ET_PCIR_ACK_LATENCY, ack_latency << 16);
547 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
548 		    ET_PCIR_REPLAY_TIMER, replay_timer << 16);
549 	}
550 
551 	/*
552 	 * Set L0s and L1 latency timer to 2us
553 	 */
554 	val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
555 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
556 	    val << 24);
557 
558 	/*
559 	 * Set max read request size to 2048 bytes
560 	 */
561 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
562 	    ET_PCIR_DEVICE_CTRL) >> 16;
563 	val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
564 	val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
565 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
566 	    val << 16);
567 #endif
568 
569 	return 0;
570 }
571 
572 void
et_get_eaddr(struct et_softc * sc,uint8_t eaddr[])573 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
574 {
575 	uint32_t r;
576 
577 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
578 	eaddr[0] = r & 0xff;
579 	eaddr[1] = (r >> 8) & 0xff;
580 	eaddr[2] = (r >> 16) & 0xff;
581 	eaddr[3] = (r >> 24) & 0xff;
582 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
583 	eaddr[4] = r & 0xff;
584 	eaddr[5] = (r >> 8) & 0xff;
585 }
586 
587 void
et_reset(struct et_softc * sc)588 et_reset(struct et_softc *sc)
589 {
590 	CSR_WRITE_4(sc, ET_MAC_CFG1,
591 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
592 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
593 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
594 
595 	CSR_WRITE_4(sc, ET_SWRST,
596 		    ET_SWRST_TXDMA | ET_SWRST_RXDMA |
597 		    ET_SWRST_TXMAC | ET_SWRST_RXMAC |
598 		    ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
599 
600 	CSR_WRITE_4(sc, ET_MAC_CFG1,
601 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
602 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
603 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
604 }
605 
606 void
et_disable_intrs(struct et_softc * sc)607 et_disable_intrs(struct et_softc *sc)
608 {
609 	CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
610 }
611 
612 void
et_enable_intrs(struct et_softc * sc,uint32_t intrs)613 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
614 {
615 	CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
616 }
617 
618 int
et_dma_alloc(struct et_softc * sc)619 et_dma_alloc(struct et_softc *sc)
620 {
621 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
622 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
623 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
624 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
625 	int i, error;
626 
627 	/*
628 	 * Create TX ring DMA stuffs
629 	 */
630 	error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
631 	    (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
632 	    &tx_ring->tr_seg);
633 	if (error) {
634 		aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
635 		return error;
636 	}
637 
638 	/*
639 	 * Create TX status DMA stuffs
640 	 */
641 	error = et_dma_mem_create(sc, sizeof(uint32_t),
642 	    (void **)&txsd->txsd_status,
643 	    &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
644 	if (error) {
645 		aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
646 		return error;
647 	}
648 
649 	/*
650 	 * Create DMA stuffs for RX rings
651 	 */
652 	for (i = 0; i < ET_RX_NRING; ++i) {
653 		static const uint32_t rx_ring_posreg[ET_RX_NRING] =
654 		{ ET_RX_RING0_POS, ET_RX_RING1_POS };
655 
656 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
657 
658 		error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
659 		    (void **)&rx_ring->rr_desc,
660 		    &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
661 		if (error) {
662 			aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
663 			    "the %d RX ring\n", i);
664 			return error;
665 		}
666 		rx_ring->rr_posreg = rx_ring_posreg[i];
667 	}
668 
669 	/*
670 	 * Create RX stat ring DMA stuffs
671 	 */
672 	error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
673 	    (void **)&rxst_ring->rsr_stat,
674 	    &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
675 	if (error) {
676 		aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
677 		return error;
678 	}
679 
680 	/*
681 	 * Create RX status DMA stuffs
682 	 */
683 	error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
684 	    (void **)&rxsd->rxsd_status,
685 	    &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
686 	if (error) {
687 		aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
688 		return error;
689 	}
690 
691 	/*
692 	 * Create mbuf DMA stuffs
693 	 */
694 	error = et_dma_mbuf_create(sc);
695 	if (error)
696 		return error;
697 
698 	return 0;
699 }
700 
701 void
et_dma_free(struct et_softc * sc)702 et_dma_free(struct et_softc *sc)
703 {
704 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
705 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
706 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
707 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
708 	int i, rx_done[ET_RX_NRING];
709 
710 	/*
711 	 * Destroy TX ring DMA stuffs
712 	 */
713 	et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
714 
715 	/*
716 	 * Destroy TX status DMA stuffs
717 	 */
718 	et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
719 
720 	/*
721 	 * Destroy DMA stuffs for RX rings
722 	 */
723 	for (i = 0; i < ET_RX_NRING; ++i) {
724 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
725 
726 		et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
727 	}
728 
729 	/*
730 	 * Destroy RX stat ring DMA stuffs
731 	 */
732 	et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
733 
734 	/*
735 	 * Destroy RX status DMA stuffs
736 	 */
737 	et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
738 
739 	/*
740 	 * Destroy mbuf DMA stuffs
741 	 */
742 	for (i = 0; i < ET_RX_NRING; ++i)
743 		rx_done[i] = ET_RX_NDESC;
744 	et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
745 }
746 
747 int
et_dma_mbuf_create(struct et_softc * sc)748 et_dma_mbuf_create(struct et_softc *sc)
749 {
750 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
751 	int i, error, rx_done[ET_RX_NRING];
752 
753 	/*
754 	 * Create spare DMA map for RX mbufs
755 	 */
756 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
757 	    BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
758 	if (error) {
759 		aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
760 		return error;
761 	}
762 
763 	/*
764 	 * Create DMA maps for RX mbufs
765 	 */
766 	bzero(rx_done, sizeof(rx_done));
767 	for (i = 0; i < ET_RX_NRING; ++i) {
768 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
769 		int j;
770 
771 		for (j = 0; j < ET_RX_NDESC; ++j) {
772 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
773 			    MCLBYTES, 0, BUS_DMA_NOWAIT,
774 			    &rbd->rbd_buf[j].rb_dmap);
775 			if (error) {
776 				aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
777 				    "for %d RX ring\n", j, i);
778 				rx_done[i] = j;
779 				et_dma_mbuf_destroy(sc, 0, rx_done);
780 				return error;
781 			}
782 		}
783 		rx_done[i] = ET_RX_NDESC;
784 
785 		rbd->rbd_softc = sc;
786 		rbd->rbd_ring = &sc->sc_rx_ring[i];
787 	}
788 
789 	/*
790 	 * Create DMA maps for TX mbufs
791 	 */
792 	for (i = 0; i < ET_TX_NDESC; ++i) {
793 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
794 		    0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
795 		if (error) {
796 			aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
797 			    "DMA map\n", i);
798 			et_dma_mbuf_destroy(sc, i, rx_done);
799 			return error;
800 		}
801 	}
802 
803 	return 0;
804 }
805 
806 void
et_dma_mbuf_destroy(struct et_softc * sc,int tx_done,const int rx_done[])807 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
808 {
809 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
810 	int i;
811 
812 	/*
813 	 * Destroy DMA maps for RX mbufs
814 	 */
815 	for (i = 0; i < ET_RX_NRING; ++i) {
816 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
817 		int j;
818 
819 		for (j = 0; j < rx_done[i]; ++j) {
820 			struct et_rxbuf *rb = &rbd->rbd_buf[j];
821 
822 			KASSERTMSG(rb->rb_mbuf == NULL,
823 			    "RX mbuf in %d RX ring is not freed yet\n", i);
824 			bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
825 		}
826 	}
827 
828 	/*
829 	 * Destroy DMA maps for TX mbufs
830 	 */
831 	for (i = 0; i < tx_done; ++i) {
832 		struct et_txbuf *tb = &tbd->tbd_buf[i];
833 
834 		KASSERTMSG(tb->tb_mbuf == NULL, "TX mbuf is not freed yet\n");
835 		bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
836 	}
837 
838 	/*
839 	 * Destroy spare mbuf DMA map
840 	 */
841 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
842 }
843 
844 int
et_dma_mem_create(struct et_softc * sc,bus_size_t size,void ** addr,bus_addr_t * paddr,bus_dmamap_t * dmap,bus_dma_segment_t * seg)845 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
846     void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
847 {
848 	int error, nsegs;
849 
850 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
851 	    dmap);
852 	if (error) {
853 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
854 		return error;
855 	}
856 
857 	error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
858 	    1, &nsegs, BUS_DMA_WAITOK);
859 	if (error) {
860 		aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
861 		return error;
862 	}
863 
864 	error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
865 	    size, (void **)addr, BUS_DMA_NOWAIT);
866 	if (error) {
867 		aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
868 		return (error);
869 	}
870 
871 	error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
872 	    BUS_DMA_WAITOK);
873 	if (error) {
874 		aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
875 		bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
876 		return error;
877 	}
878 
879 	memset(*addr, 0, size);
880 
881 	*paddr = (*dmap)->dm_segs[0].ds_addr;
882 
883 	return 0;
884 }
885 
886 void
et_dma_mem_destroy(struct et_softc * sc,void * addr,bus_dmamap_t dmap)887 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
888 {
889 	bus_dmamap_unload(sc->sc_dmat, dmap);
890 	bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
891 }
892 
893 void
et_chip_attach(struct et_softc * sc)894 et_chip_attach(struct et_softc *sc)
895 {
896 	uint32_t val;
897 
898 	/*
899 	 * Perform minimal initialization
900 	 */
901 
902 	/* Disable loopback */
903 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
904 
905 	/* Reset MAC */
906 	CSR_WRITE_4(sc, ET_MAC_CFG1,
907 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
908 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
909 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
910 
911 	/*
912 	 * Setup half duplex mode
913 	 */
914 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
915 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
916 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
917 	      ET_MAC_HDX_EXC_DEFER;
918 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
919 
920 	/* Clear MAC control */
921 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
922 
923 	/* Reset MII */
924 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
925 
926 	/* Bring MAC out of reset state */
927 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
928 
929 	/* Enable memory controllers */
930 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
931 }
932 
933 int
et_intr(void * xsc)934 et_intr(void *xsc)
935 {
936 	struct et_softc *sc = xsc;
937 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
938 	uint32_t intrs;
939 
940 	if ((ifp->if_flags & IFF_RUNNING) == 0)
941 		return (0);
942 
943 	intrs = CSR_READ_4(sc, ET_INTR_STATUS);
944 	if (intrs == 0 || intrs == 0xffffffff)
945 		return (0);
946 
947 	et_disable_intrs(sc);
948 	intrs &= ET_INTRS;
949 	if (intrs == 0)	/* Not interested */
950 		goto back;
951 
952 	if (intrs & ET_INTR_RXEOF)
953 		et_rxeof(sc);
954 	if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
955 		et_txeof(sc);
956 	if (intrs & ET_INTR_TIMER)
957 		CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
958 back:
959 	et_enable_intrs(sc, ET_INTRS);
960 
961 	return (1);
962 }
963 
964 int
et_init(struct ifnet * ifp)965 et_init(struct ifnet *ifp)
966 {
967 	struct et_softc *sc = ifp->if_softc;
968 	int error, i, s;
969 
970 	if (ifp->if_flags & IFF_RUNNING)
971 		return 0;
972 
973 	s = splnet();
974 
975 	et_stop(sc);
976 
977 	for (i = 0; i < ET_RX_NRING; ++i) {
978 		sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
979 		sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
980 	}
981 
982 	error = et_init_tx_ring(sc);
983 	if (error)
984 		goto back;
985 
986 	error = et_init_rx_ring(sc);
987 	if (error)
988 		goto back;
989 
990 	error = et_chip_init(sc);
991 	if (error)
992 		goto back;
993 
994 	error = et_enable_txrx(sc);
995 	if (error)
996 		goto back;
997 
998 	error = et_start_rxdma(sc);
999 	if (error)
1000 		goto back;
1001 
1002 	error = et_start_txdma(sc);
1003 	if (error)
1004 		goto back;
1005 
1006 	et_enable_intrs(sc, ET_INTRS);
1007 
1008 	callout_schedule(&sc->sc_tick, hz);
1009 
1010 	CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1011 
1012 	ifp->if_flags |= IFF_RUNNING;
1013 	ifp->if_flags &= ~IFF_OACTIVE;
1014 back:
1015 	if (error)
1016 		et_stop(sc);
1017 
1018 	splx(s);
1019 
1020 	return (0);
1021 }
1022 
1023 int
et_ioctl(struct ifnet * ifp,u_long cmd,void * data)1024 et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1025 {
1026 	struct et_softc *sc = ifp->if_softc;
1027 	struct ifreq *ifr = (struct ifreq *)data;
1028 	int s, error = 0;
1029 
1030 	s = splnet();
1031 
1032 	switch (cmd) {
1033 	case SIOCSIFFLAGS:
1034 		if (ifp->if_flags & IFF_UP) {
1035 			/*
1036 			 * If only the PROMISC or ALLMULTI flag changes, then
1037 			 * don't do a full re-init of the chip, just update
1038 			 * the Rx filter.
1039 			 */
1040 			if ((ifp->if_flags & IFF_RUNNING) &&
1041 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1042 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1043 				et_setmulti(sc);
1044 			} else {
1045 				if (!(ifp->if_flags & IFF_RUNNING))
1046 					et_init(ifp);
1047 			}
1048 		} else {
1049 			if (ifp->if_flags & IFF_RUNNING)
1050 				et_stop(sc);
1051 		}
1052 		sc->sc_if_flags = ifp->if_flags;
1053 		break;
1054 	case SIOCSIFMEDIA:
1055 	case SIOCGIFMEDIA:
1056 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_miibus.mii_media, cmd);
1057 		break;
1058 	default:
1059 		error = ether_ioctl(ifp, cmd, data);
1060 		if (error == ENETRESET) {
1061 			if (ifp->if_flags & IFF_RUNNING)
1062 				et_setmulti(sc);
1063 			error = 0;
1064 		}
1065 		break;
1066 
1067 	}
1068 
1069 	splx(s);
1070 
1071 	return error;
1072 }
1073 
1074 void
et_start(struct ifnet * ifp)1075 et_start(struct ifnet *ifp)
1076 {
1077 	struct et_softc *sc = ifp->if_softc;
1078 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1079 	int trans;
1080 	struct mbuf *m;
1081 
1082 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1083 		return;
1084 
1085 	trans = 0;
1086 	for (;;) {
1087 		IFQ_DEQUEUE(&ifp->if_snd, m);
1088 		if (m == NULL)
1089 			break;
1090 
1091 		if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1092 			ifp->if_flags |= IFF_OACTIVE;
1093 			break;
1094 		}
1095 
1096 		if (et_encap(sc, &m)) {
1097 			ifp->if_oerrors++;
1098 			ifp->if_flags |= IFF_OACTIVE;
1099 			break;
1100 		}
1101 
1102 		trans = 1;
1103 
1104 		bpf_mtap(ifp, m);
1105 	}
1106 
1107 	if (trans) {
1108 		callout_schedule(&sc->sc_txtick, hz);
1109 		ifp->if_timer = 5;
1110 	}
1111 }
1112 
1113 void
et_watchdog(struct ifnet * ifp)1114 et_watchdog(struct ifnet *ifp)
1115 {
1116 	struct et_softc *sc = ifp->if_softc;
1117 	aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
1118 
1119 	ifp->if_flags &= ~IFF_RUNNING;
1120 	et_init(ifp);
1121 	et_start(ifp);
1122 }
1123 
1124 int
et_stop_rxdma(struct et_softc * sc)1125 et_stop_rxdma(struct et_softc *sc)
1126 {
1127 	CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1128 		    ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1129 
1130 	DELAY(5);
1131 	if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1132 		aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
1133 		return ETIMEDOUT;
1134 	}
1135 	return 0;
1136 }
1137 
1138 int
et_stop_txdma(struct et_softc * sc)1139 et_stop_txdma(struct et_softc *sc)
1140 {
1141 	CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1142 		    ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1143 	return 0;
1144 }
1145 
1146 void
et_free_tx_ring(struct et_softc * sc)1147 et_free_tx_ring(struct et_softc *sc)
1148 {
1149 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1150 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1151 	int i;
1152 
1153 	for (i = 0; i < ET_TX_NDESC; ++i) {
1154 		struct et_txbuf *tb = &tbd->tbd_buf[i];
1155 
1156 		if (tb->tb_mbuf != NULL) {
1157 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1158 			m_freem(tb->tb_mbuf);
1159 			tb->tb_mbuf = NULL;
1160 		}
1161 	}
1162 
1163 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1164 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1165 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1166 }
1167 
1168 void
et_free_rx_ring(struct et_softc * sc)1169 et_free_rx_ring(struct et_softc *sc)
1170 {
1171 	int n;
1172 
1173 	for (n = 0; n < ET_RX_NRING; ++n) {
1174 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1175 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1176 		int i;
1177 
1178 		for (i = 0; i < ET_RX_NDESC; ++i) {
1179 			struct et_rxbuf *rb = &rbd->rbd_buf[i];
1180 
1181 			if (rb->rb_mbuf != NULL) {
1182 				bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1183 				m_freem(rb->rb_mbuf);
1184 				rb->rb_mbuf = NULL;
1185 			}
1186 		}
1187 
1188 		bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1189 		bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1190 		    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1191 	}
1192 }
1193 
1194 void
et_setmulti(struct et_softc * sc)1195 et_setmulti(struct et_softc *sc)
1196 {
1197 	struct ethercom *ec = &sc->sc_ethercom;
1198 	struct ifnet *ifp = &ec->ec_if;
1199 	uint32_t hash[4] = { 0, 0, 0, 0 };
1200 	uint32_t rxmac_ctrl, pktfilt;
1201 	struct ether_multi *enm;
1202 	struct ether_multistep step;
1203 	uint8_t addr[ETHER_ADDR_LEN];
1204 	int i, count;
1205 
1206 	pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1207 	rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1208 
1209 	pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1210 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1211 		rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1212 		goto back;
1213 	}
1214 
1215 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1216 
1217 	count = 0;
1218 	ETHER_FIRST_MULTI(step, ec, enm);
1219 	while (enm != NULL) {
1220 		uint32_t *hp, h;
1221 
1222 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1223 			addr[i] &=  enm->enm_addrlo[i];
1224 		}
1225 
1226 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)addr),
1227 		    ETHER_ADDR_LEN);
1228 		h = (h & 0x3f800000) >> 23;
1229 
1230 		hp = &hash[0];
1231 		if (h >= 32 && h < 64) {
1232 			h -= 32;
1233 			hp = &hash[1];
1234 		} else if (h >= 64 && h < 96) {
1235 			h -= 64;
1236 			hp = &hash[2];
1237 		} else if (h >= 96) {
1238 			h -= 96;
1239 			hp = &hash[3];
1240 		}
1241 		*hp |= (1 << h);
1242 
1243 		++count;
1244 		ETHER_NEXT_MULTI(step, enm);
1245 	}
1246 
1247 	for (i = 0; i < 4; ++i)
1248 		CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1249 
1250 	if (count > 0)
1251 		pktfilt |= ET_PKTFILT_MCAST;
1252 	rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1253 back:
1254 	CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1255 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1256 }
1257 
1258 int
et_chip_init(struct et_softc * sc)1259 et_chip_init(struct et_softc *sc)
1260 {
1261 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1262 	uint32_t rxq_end;
1263 	int error;
1264 
1265 	/*
1266 	 * Split internal memory between TX and RX according to MTU
1267 	 */
1268 	if (ifp->if_mtu < 2048)
1269 		rxq_end = 0x2bc;
1270 	else if (ifp->if_mtu < 8192)
1271 		rxq_end = 0x1ff;
1272 	else
1273 		rxq_end = 0x1b3;
1274 	CSR_WRITE_4(sc, ET_RXQ_START, 0);
1275 	CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1276 	CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1277 	CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1278 
1279 	/* No loopback */
1280 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1281 
1282 	/* Clear MSI configure */
1283 	CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1284 
1285 	/* Disable timer */
1286 	CSR_WRITE_4(sc, ET_TIMER, 0);
1287 
1288 	/* Initialize MAC */
1289 	et_init_mac(sc);
1290 
1291 	/* Enable memory controllers */
1292 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1293 
1294 	/* Initialize RX MAC */
1295 	et_init_rxmac(sc);
1296 
1297 	/* Initialize TX MAC */
1298 	et_init_txmac(sc);
1299 
1300 	/* Initialize RX DMA engine */
1301 	error = et_init_rxdma(sc);
1302 	if (error)
1303 		return error;
1304 
1305 	/* Initialize TX DMA engine */
1306 	error = et_init_txdma(sc);
1307 	if (error)
1308 		return error;
1309 
1310 	return 0;
1311 }
1312 
1313 int
et_init_tx_ring(struct et_softc * sc)1314 et_init_tx_ring(struct et_softc *sc)
1315 {
1316 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1317 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1318 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1319 
1320 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1321 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1322 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1323 
1324 	tbd->tbd_start_index = 0;
1325 	tbd->tbd_start_wrap = 0;
1326 	tbd->tbd_used = 0;
1327 
1328 	bzero(txsd->txsd_status, sizeof(uint32_t));
1329 	bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1330 	    txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1331 	return 0;
1332 }
1333 
1334 int
et_init_rx_ring(struct et_softc * sc)1335 et_init_rx_ring(struct et_softc *sc)
1336 {
1337 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1338 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1339 	int n;
1340 
1341 	for (n = 0; n < ET_RX_NRING; ++n) {
1342 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1343 		int i, error;
1344 
1345 		for (i = 0; i < ET_RX_NDESC; ++i) {
1346 			error = rbd->rbd_newbuf(rbd, i, 1);
1347 			if (error) {
1348 				aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
1349 				    "%d\n", n, i, error);
1350 				return error;
1351 			}
1352 		}
1353 	}
1354 
1355 	bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1356 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1357 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1358 
1359 	bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1360 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1361 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1362 
1363 	return 0;
1364 }
1365 
1366 int
et_init_rxdma(struct et_softc * sc)1367 et_init_rxdma(struct et_softc *sc)
1368 {
1369 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1370 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1371 	struct et_rxdesc_ring *rx_ring;
1372 	int error;
1373 
1374 	error = et_stop_rxdma(sc);
1375 	if (error) {
1376 		aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
1377 		return error;
1378 	}
1379 
1380 	/*
1381 	 * Install RX status
1382 	 */
1383 	CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1384 	CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1385 
1386 	/*
1387 	 * Install RX stat ring
1388 	 */
1389 	CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1390 	CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1391 	CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1392 	CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1393 	CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1394 
1395 	/* Match ET_RXSTAT_POS */
1396 	rxst_ring->rsr_index = 0;
1397 	rxst_ring->rsr_wrap = 0;
1398 
1399 	/*
1400 	 * Install the 2nd RX descriptor ring
1401 	 */
1402 	rx_ring = &sc->sc_rx_ring[1];
1403 	CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1404 	CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1405 	CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1406 	CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1407 	CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1408 
1409 	/* Match ET_RX_RING1_POS */
1410 	rx_ring->rr_index = 0;
1411 	rx_ring->rr_wrap = 1;
1412 
1413 	/*
1414 	 * Install the 1st RX descriptor ring
1415 	 */
1416 	rx_ring = &sc->sc_rx_ring[0];
1417 	CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1418 	CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1419 	CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1420 	CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1421 	CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1422 
1423 	/* Match ET_RX_RING0_POS */
1424 	rx_ring->rr_index = 0;
1425 	rx_ring->rr_wrap = 1;
1426 
1427 	/*
1428 	 * RX intr moderation
1429 	 */
1430 	CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1431 	CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1432 
1433 	return 0;
1434 }
1435 
1436 int
et_init_txdma(struct et_softc * sc)1437 et_init_txdma(struct et_softc *sc)
1438 {
1439 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1440 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1441 	int error;
1442 
1443 	error = et_stop_txdma(sc);
1444 	if (error) {
1445 		aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
1446 		return error;
1447 	}
1448 
1449 	/*
1450 	 * Install TX descriptor ring
1451 	 */
1452 	CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1453 	CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1454 	CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1455 
1456 	/*
1457 	 * Install TX status
1458 	 */
1459 	CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1460 	CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1461 
1462 	CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1463 
1464 	/* Match ET_TX_READY_POS */
1465 	tx_ring->tr_ready_index = 0;
1466 	tx_ring->tr_ready_wrap = 0;
1467 
1468 	return 0;
1469 }
1470 
1471 void
et_init_mac(struct et_softc * sc)1472 et_init_mac(struct et_softc *sc)
1473 {
1474 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1475 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1476 	uint32_t val;
1477 
1478 	/* Reset MAC */
1479 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1480 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1481 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1482 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1483 
1484 	/*
1485 	 * Setup inter packet gap
1486 	 */
1487 	val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1488 	      __SHIFTIN(88, ET_IPG_NONB2B_2) |
1489 	      __SHIFTIN(80, ET_IPG_MINIFG) |
1490 	      __SHIFTIN(96, ET_IPG_B2B);
1491 	CSR_WRITE_4(sc, ET_IPG, val);
1492 
1493 	/*
1494 	 * Setup half duplex mode
1495 	 */
1496 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1497 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1498 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1499 	      ET_MAC_HDX_EXC_DEFER;
1500 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1501 
1502 	/* Clear MAC control */
1503 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1504 
1505 	/* Reset MII */
1506 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1507 
1508 	/*
1509 	 * Set MAC address
1510 	 */
1511 	val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1512 	CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1513 	val = (eaddr[0] << 16) | (eaddr[1] << 24);
1514 	CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1515 
1516 	/* Set max frame length */
1517 	CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1518 		    ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
1519 
1520 	/* Bring MAC out of reset state */
1521 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1522 }
1523 
1524 void
et_init_rxmac(struct et_softc * sc)1525 et_init_rxmac(struct et_softc *sc)
1526 {
1527 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1528 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1529 	uint32_t val;
1530 	int i;
1531 
1532 	/* Disable RX MAC and WOL */
1533 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1534 
1535 	/*
1536 	 * Clear all WOL related registers
1537 	 */
1538 	for (i = 0; i < 3; ++i)
1539 		CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1540 	for (i = 0; i < 20; ++i)
1541 		CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1542 
1543 	/*
1544 	 * Set WOL source address.  XXX is this necessary?
1545 	 */
1546 	val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1547 	CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1548 	val = (eaddr[0] << 8) | eaddr[1];
1549 	CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1550 
1551 	/* Clear packet filters */
1552 	CSR_WRITE_4(sc, ET_PKTFILT, 0);
1553 
1554 	/* No ucast filtering */
1555 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1556 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1557 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1558 
1559 	if (ifp->if_mtu > 8192) {
1560 		/*
1561 		 * In order to transmit jumbo packets greater than 8k,
1562 		 * the FIFO between RX MAC and RX DMA needs to be reduced
1563 		 * in size to (16k - MTU).  In order to implement this, we
1564 		 * must use "cut through" mode in the RX MAC, which chops
1565 		 * packets down into segments which are (max_size * 16).
1566 		 * In this case we selected 256 bytes, since this is the
1567 		 * size of the PCI-Express TLP's that the 1310 uses.
1568 		 */
1569 		val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1570 		      ET_RXMAC_MC_SEGSZ_ENABLE;
1571 	} else {
1572 		val = 0;
1573 	}
1574 	CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1575 
1576 	CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1577 
1578 	/* Initialize RX MAC management register */
1579 	CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1580 
1581 	CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1582 
1583 	CSR_WRITE_4(sc, ET_RXMAC_MGT,
1584 		    ET_RXMAC_MGT_PASS_ECRC |
1585 		    ET_RXMAC_MGT_PASS_ELEN |
1586 		    ET_RXMAC_MGT_PASS_ETRUNC |
1587 		    ET_RXMAC_MGT_CHECK_PKT);
1588 
1589 	/*
1590 	 * Configure runt filtering (may not work on certain chip generation)
1591 	 */
1592 	val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1593 	CSR_WRITE_4(sc, ET_PKTFILT, val);
1594 
1595 	/* Enable RX MAC but leave WOL disabled */
1596 	CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1597 		    ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1598 
1599 	/*
1600 	 * Setup multicast hash and allmulti/promisc mode
1601 	 */
1602 	et_setmulti(sc);
1603 }
1604 
1605 void
et_init_txmac(struct et_softc * sc)1606 et_init_txmac(struct et_softc *sc)
1607 {
1608 	/* Disable TX MAC and FC(?) */
1609 	CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1610 
1611 	/* No flow control yet */
1612 	CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1613 
1614 	/* Enable TX MAC but leave FC(?) diabled */
1615 	CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1616 		    ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1617 }
1618 
1619 int
et_start_rxdma(struct et_softc * sc)1620 et_start_rxdma(struct et_softc *sc)
1621 {
1622 	uint32_t val = 0;
1623 
1624 	val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1625 			 ET_RXDMA_CTRL_RING0_SIZE) |
1626 	       ET_RXDMA_CTRL_RING0_ENABLE;
1627 	val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1628 			 ET_RXDMA_CTRL_RING1_SIZE) |
1629 	       ET_RXDMA_CTRL_RING1_ENABLE;
1630 
1631 	CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1632 
1633 	DELAY(5);
1634 
1635 	if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1636 		aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
1637 		return ETIMEDOUT;
1638 	}
1639 	return 0;
1640 }
1641 
1642 int
et_start_txdma(struct et_softc * sc)1643 et_start_txdma(struct et_softc *sc)
1644 {
1645 	CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1646 	return 0;
1647 }
1648 
1649 int
et_enable_txrx(struct et_softc * sc)1650 et_enable_txrx(struct et_softc *sc)
1651 {
1652 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1653 	uint32_t val;
1654 	int i, rc = 0;
1655 
1656 	val = CSR_READ_4(sc, ET_MAC_CFG1);
1657 	val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1658 	val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1659 		 ET_MAC_CFG1_LOOPBACK);
1660 	CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1661 
1662 	if ((rc = ether_mediachange(ifp)) != 0)
1663 		goto out;
1664 
1665 #define NRETRY	100
1666 
1667 	for (i = 0; i < NRETRY; ++i) {
1668 		val = CSR_READ_4(sc, ET_MAC_CFG1);
1669 		if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1670 		    (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1671 			break;
1672 
1673 		DELAY(10);
1674 	}
1675 	if (i == NRETRY) {
1676 		aprint_error_dev(sc->sc_dev, "can't enable RX/TX\n");
1677 		return ETIMEDOUT;
1678 	}
1679 
1680 #undef NRETRY
1681 	return 0;
1682 out:
1683 	return rc;
1684 }
1685 
1686 void
et_rxeof(struct et_softc * sc)1687 et_rxeof(struct et_softc *sc)
1688 {
1689 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1690 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1691 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1692 	uint32_t rxs_stat_ring;
1693 	int rxst_wrap, rxst_index;
1694 
1695 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1696 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1697 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1698 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1699 
1700 	rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1701 	rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1702 	rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1703 
1704 	while (rxst_index != rxst_ring->rsr_index ||
1705 	       rxst_wrap != rxst_ring->rsr_wrap) {
1706 		struct et_rxbuf_data *rbd;
1707 		struct et_rxdesc_ring *rx_ring;
1708 		struct et_rxstat *st;
1709 		struct et_rxbuf *rb;
1710 		struct mbuf *m;
1711 		int buflen, buf_idx, ring_idx;
1712 		uint32_t rxstat_pos, rxring_pos;
1713 
1714 		KASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1715 		st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1716 
1717 		buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1718 		buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1719 		ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1720 
1721 		if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1722 			rxst_ring->rsr_index = 0;
1723 			rxst_ring->rsr_wrap ^= 1;
1724 		}
1725 		rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1726 				       ET_RXSTAT_POS_INDEX);
1727 		if (rxst_ring->rsr_wrap)
1728 			rxstat_pos |= ET_RXSTAT_POS_WRAP;
1729 		CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1730 
1731 		if (ring_idx >= ET_RX_NRING) {
1732 			ifp->if_ierrors++;
1733 			aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
1734 			    ring_idx);
1735 			continue;
1736 		}
1737 		if (buf_idx >= ET_RX_NDESC) {
1738 			ifp->if_ierrors++;
1739 			aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
1740 			    buf_idx);
1741 			continue;
1742 		}
1743 
1744 		rbd = &sc->sc_rx_data[ring_idx];
1745 		rb = &rbd->rbd_buf[buf_idx];
1746 		m = rb->rb_mbuf;
1747 		bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1748 		    rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1749 
1750 		if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1751 			if (buflen < ETHER_CRC_LEN) {
1752 				m_freem(m);
1753 				ifp->if_ierrors++;
1754 			} else {
1755 				m->m_pkthdr.len = m->m_len = buflen -
1756 				    ETHER_CRC_LEN;
1757 				m_set_rcvif(m, ifp);
1758 
1759 				bpf_mtap(ifp, m);
1760 
1761 				ifp->if_ipackets++;
1762 				if_percpuq_enqueue(ifp->if_percpuq, m);
1763 			}
1764 		} else {
1765 			ifp->if_ierrors++;
1766 		}
1767 
1768 		rx_ring = &sc->sc_rx_ring[ring_idx];
1769 
1770 		if (buf_idx != rx_ring->rr_index) {
1771 			aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
1772 			    "buf_idx %d, rr_idx %d\n",
1773 			    ring_idx, buf_idx, rx_ring->rr_index);
1774 		}
1775 
1776 		KASSERT(rx_ring->rr_index < ET_RX_NDESC);
1777 		if (++rx_ring->rr_index == ET_RX_NDESC) {
1778 			rx_ring->rr_index = 0;
1779 			rx_ring->rr_wrap ^= 1;
1780 		}
1781 		rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1782 		if (rx_ring->rr_wrap)
1783 			rxring_pos |= ET_RX_RING_POS_WRAP;
1784 		CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1785 	}
1786 }
1787 
1788 int
et_encap(struct et_softc * sc,struct mbuf ** m0)1789 et_encap(struct et_softc *sc, struct mbuf **m0)
1790 {
1791 	struct mbuf *m = *m0;
1792 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1793 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1794 	struct et_txdesc *td;
1795 	bus_dmamap_t map;
1796 	int error, maxsegs, first_idx, last_idx, i;
1797 	uint32_t tx_ready_pos, last_td_ctrl2;
1798 
1799 	maxsegs = ET_TX_NDESC - tbd->tbd_used;
1800 	if (maxsegs > ET_NSEG_MAX)
1801 		maxsegs = ET_NSEG_MAX;
1802 	KASSERTMSG(maxsegs >= ET_NSEG_SPARE,
1803 		"not enough spare TX desc (%d)\n", maxsegs);
1804 
1805 	KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1806 	first_idx = tx_ring->tr_ready_index;
1807 	map = tbd->tbd_buf[first_idx].tb_dmap;
1808 
1809 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1810 	    BUS_DMA_NOWAIT);
1811 	if (!error && map->dm_nsegs == 0) {
1812 		bus_dmamap_unload(sc->sc_dmat, map);
1813 		error = EFBIG;
1814 	}
1815 	if (error && error != EFBIG) {
1816 		aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
1817 		goto back;
1818 	}
1819 	if (error) {	/* error == EFBIG */
1820 		struct mbuf *m_new;
1821 
1822 		error = 0;
1823 
1824 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1825 		if (m_new == NULL) {
1826 			aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
1827 			error = ENOBUFS;
1828 			goto back;
1829 		}
1830 
1831 		M_COPY_PKTHDR(m_new, m);
1832 		if (m->m_pkthdr.len > MHLEN) {
1833 			MCLGET(m_new, M_DONTWAIT);
1834 			if (!(m_new->m_flags & M_EXT)) {
1835 				m_freem(m_new);
1836 				error = ENOBUFS;
1837 			}
1838 		}
1839 
1840 		if (error) {
1841 			aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
1842 			goto back;
1843 		}
1844 
1845 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
1846 		m_freem(m);
1847 		m_new->m_len = m_new->m_pkthdr.len;
1848 		*m0 = m = m_new;
1849 
1850 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1851 					     BUS_DMA_NOWAIT);
1852 		if (error || map->dm_nsegs == 0) {
1853 			if (map->dm_nsegs == 0) {
1854 				bus_dmamap_unload(sc->sc_dmat, map);
1855 				error = EFBIG;
1856 			}
1857 			aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
1858 			goto back;
1859 		}
1860 	}
1861 
1862 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1863 	    BUS_DMASYNC_PREWRITE);
1864 
1865 	last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1866 	sc->sc_tx += map->dm_nsegs;
1867 	if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1868 		sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1869 		last_td_ctrl2 |= ET_TDCTRL2_INTR;
1870 	}
1871 
1872 	last_idx = -1;
1873 	for (i = 0; i < map->dm_nsegs; ++i) {
1874 		int idx;
1875 
1876 		idx = (first_idx + i) % ET_TX_NDESC;
1877 		td = &tx_ring->tr_desc[idx];
1878 		td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1879 		td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1880 		td->td_ctrl1 =
1881 		    __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1882 
1883 		if (i == map->dm_nsegs - 1) {	/* Last frag */
1884 			td->td_ctrl2 = last_td_ctrl2;
1885 			last_idx = idx;
1886 		}
1887 
1888 		KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1889 		if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1890 			tx_ring->tr_ready_index = 0;
1891 			tx_ring->tr_ready_wrap ^= 1;
1892 		}
1893 	}
1894 	td = &tx_ring->tr_desc[first_idx];
1895 	td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG;	/* First frag */
1896 
1897 	KASSERT(last_idx >= 0);
1898 	tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1899 	tbd->tbd_buf[last_idx].tb_dmap = map;
1900 	tbd->tbd_buf[last_idx].tb_mbuf = m;
1901 
1902 	tbd->tbd_used += map->dm_nsegs;
1903 	KASSERT(tbd->tbd_used <= ET_TX_NDESC);
1904 
1905 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1906 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1907 
1908 
1909 	tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1910 		       ET_TX_READY_POS_INDEX);
1911 	if (tx_ring->tr_ready_wrap)
1912 		tx_ready_pos |= ET_TX_READY_POS_WRAP;
1913 	CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1914 
1915 	error = 0;
1916 back:
1917 	if (error) {
1918 		m_freem(m);
1919 		*m0 = NULL;
1920 	}
1921 	return error;
1922 }
1923 
1924 void
et_txeof(struct et_softc * sc)1925 et_txeof(struct et_softc *sc)
1926 {
1927 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1928 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1929 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1930 	uint32_t tx_done;
1931 	int end, wrap;
1932 
1933 	if (tbd->tbd_used == 0)
1934 		return;
1935 
1936 	tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
1937 	end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
1938 	wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
1939 
1940 	while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
1941 		struct et_txbuf *tb;
1942 
1943 		KASSERT(tbd->tbd_start_index < ET_TX_NDESC);
1944 		tb = &tbd->tbd_buf[tbd->tbd_start_index];
1945 
1946 		bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
1947 		      sizeof(struct et_txdesc));
1948 		bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1949 		    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1950 
1951 		if (tb->tb_mbuf != NULL) {
1952 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1953 			m_freem(tb->tb_mbuf);
1954 			tb->tb_mbuf = NULL;
1955 			ifp->if_opackets++;
1956 		}
1957 
1958 		if (++tbd->tbd_start_index == ET_TX_NDESC) {
1959 			tbd->tbd_start_index = 0;
1960 			tbd->tbd_start_wrap ^= 1;
1961 		}
1962 
1963 		KASSERT(tbd->tbd_used > 0);
1964 		tbd->tbd_used--;
1965 	}
1966 
1967 	if (tbd->tbd_used == 0) {
1968 		callout_stop(&sc->sc_txtick);
1969 		ifp->if_timer = 0;
1970 	}
1971 	if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
1972 		ifp->if_flags &= ~IFF_OACTIVE;
1973 
1974 	et_start(ifp);
1975 }
1976 
1977 void
et_txtick(void * xsc)1978 et_txtick(void *xsc)
1979 {
1980 	struct et_softc *sc = xsc;
1981 	int s;
1982 
1983 	s = splnet();
1984 	et_txeof(sc);
1985 	splx(s);
1986 }
1987 
1988 void
et_tick(void * xsc)1989 et_tick(void *xsc)
1990 {
1991 	struct et_softc *sc = xsc;
1992 	int s;
1993 
1994 	s = splnet();
1995 	mii_tick(&sc->sc_miibus);
1996 	callout_schedule(&sc->sc_tick, hz);
1997 	splx(s);
1998 }
1999 
2000 int
et_newbuf_cluster(struct et_rxbuf_data * rbd,int buf_idx,int init)2001 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2002 {
2003 	return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2004 }
2005 
2006 int
et_newbuf_hdr(struct et_rxbuf_data * rbd,int buf_idx,int init)2007 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2008 {
2009 	return et_newbuf(rbd, buf_idx, init, MHLEN);
2010 }
2011 
2012 int
et_newbuf(struct et_rxbuf_data * rbd,int buf_idx,int init,int len0)2013 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2014 {
2015 	struct et_softc *sc = rbd->rbd_softc;
2016 	struct et_rxdesc_ring *rx_ring;
2017 	struct et_rxdesc *desc;
2018 	struct et_rxbuf *rb;
2019 	struct mbuf *m;
2020 	bus_dmamap_t dmap;
2021 	int error, len;
2022 
2023 	KASSERT(buf_idx < ET_RX_NDESC);
2024 	rb = &rbd->rbd_buf[buf_idx];
2025 
2026 	if (len0 >= MINCLSIZE) {
2027 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2028 		if (m == NULL)
2029 			return (ENOBUFS);
2030 		MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2031 		len = MCLBYTES;
2032 	} else {
2033 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2034 		len = MHLEN;
2035 	}
2036 
2037 	if (m == NULL) {
2038 		error = ENOBUFS;
2039 
2040 		/* XXX for debug */
2041 		aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
2042 		if (init) {
2043 			return error;
2044 		} else {
2045 			goto back;
2046 		}
2047 	}
2048 	m->m_len = m->m_pkthdr.len = len;
2049 
2050 	/*
2051 	 * Try load RX mbuf into temporary DMA tag
2052 	 */
2053 	error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2054 				     init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2055 	if (error) {
2056 		m_freem(m);
2057 
2058 		/* XXX for debug */
2059 		aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
2060 		if (init) {
2061 			return error;
2062 		} else {
2063 			goto back;
2064 		}
2065 	}
2066 
2067 	if (!init)
2068 		bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2069 	rb->rb_mbuf = m;
2070 
2071 	/*
2072 	 * Swap RX buf's DMA map with the loaded temporary one
2073 	 */
2074 	dmap = rb->rb_dmap;
2075 	rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2076 	rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2077 	sc->sc_mbuf_tmp_dmap = dmap;
2078 
2079 	error = 0;
2080 back:
2081 	rx_ring = rbd->rbd_ring;
2082 	desc = &rx_ring->rr_desc[buf_idx];
2083 
2084 	desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2085 	desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2086 	desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2087 
2088 	bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2089 	    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2090 	return error;
2091 }
2092