1 /*	$NetBSD: if_iwn.c,v 1.78 2016/06/10 13:27:14 ozaki-r Exp $	*/
2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
3 
4 /*-
5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22  * adapters.
23  */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.78 2016/06/10 13:27:14 ozaki-r Exp $");
26 
27 #define IWN_USE_RBUF	/* Use local storage for RX */
28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45 
46 #include <dev/sysmon/sysmonvar.h>
47 
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <dev/firmload.h>
74 
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77 
78 static const pci_product_id_t iwn_devices[] = {
79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
106 	PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
107 	PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
108 	PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
109 	PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
110 	PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
111 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
112 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
113 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
114 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
115 	PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
116 	PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
117 	PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
118 	PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
119 };
120 
121 /*
122  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
123  */
124 static const struct ieee80211_rateset iwn_rateset_11a =
125 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
126 
127 static const struct ieee80211_rateset iwn_rateset_11b =
128 	{ 4, { 2, 4, 11, 22 } };
129 
130 static const struct ieee80211_rateset iwn_rateset_11g =
131 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
132 
133 static int	iwn_match(device_t , struct cfdata *, void *);
134 static void	iwn_attach(device_t , device_t , void *);
135 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
136 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static int	iwn_detach(device_t , int);
139 #if 0
140 static void	iwn_power(int, void *);
141 #endif
142 static bool	iwn_resume(device_t, const pmf_qual_t *);
143 static int	iwn_nic_lock(struct iwn_softc *);
144 static int	iwn_eeprom_lock(struct iwn_softc *);
145 static int	iwn_init_otprom(struct iwn_softc *);
146 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
147 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
148 		    void **, bus_size_t, bus_size_t);
149 static void	iwn_dma_contig_free(struct iwn_dma_info *);
150 static int	iwn_alloc_sched(struct iwn_softc *);
151 static void	iwn_free_sched(struct iwn_softc *);
152 static int	iwn_alloc_kw(struct iwn_softc *);
153 static void	iwn_free_kw(struct iwn_softc *);
154 static int	iwn_alloc_ict(struct iwn_softc *);
155 static void	iwn_free_ict(struct iwn_softc *);
156 static int	iwn_alloc_fwmem(struct iwn_softc *);
157 static void	iwn_free_fwmem(struct iwn_softc *);
158 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
159 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
160 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
161 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
162 		    int);
163 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
164 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
165 static void	iwn5000_ict_reset(struct iwn_softc *);
166 static int	iwn_read_eeprom(struct iwn_softc *);
167 static void	iwn4965_read_eeprom(struct iwn_softc *);
168 
169 #ifdef IWN_DEBUG
170 static void	iwn4965_print_power_group(struct iwn_softc *, int);
171 #endif
172 static void	iwn5000_read_eeprom(struct iwn_softc *);
173 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
174 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
175 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
176 static void	iwn_newassoc(struct ieee80211_node *, int);
177 static int	iwn_media_change(struct ifnet *);
178 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
179 static void	iwn_iter_func(void *, struct ieee80211_node *);
180 static void	iwn_calib_timeout(void *);
181 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
182 		    struct iwn_rx_data *);
183 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
184 		    struct iwn_rx_data *);
185 #ifndef IEEE80211_NO_HT
186 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
187 		    struct iwn_rx_data *);
188 #endif
189 static void	iwn5000_rx_calib_results(struct iwn_softc *,
190 		    struct iwn_rx_desc *, struct iwn_rx_data *);
191 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
192 		    struct iwn_rx_data *);
193 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
194 		    struct iwn_rx_data *);
195 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
196 		    struct iwn_rx_data *);
197 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
198 		    uint8_t);
199 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
200 static void	iwn_notif_intr(struct iwn_softc *);
201 static void	iwn_wakeup_intr(struct iwn_softc *);
202 static void	iwn_fatal_intr(struct iwn_softc *);
203 static int	iwn_intr(void *);
204 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
205 		    uint16_t);
206 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
207 		    uint16_t);
208 #ifdef notyet
209 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
210 #endif
211 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
212 		    struct ieee80211_node *, int);
213 static void	iwn_start(struct ifnet *);
214 static void	iwn_watchdog(struct ifnet *);
215 static int	iwn_ioctl(struct ifnet *, u_long, void *);
216 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
217 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
218 		    int);
219 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
220 		    int);
221 static int	iwn_set_link_quality(struct iwn_softc *,
222 		    struct ieee80211_node *);
223 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
224 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
225 static int	iwn_set_critical_temp(struct iwn_softc *);
226 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
227 static void	iwn4965_power_calibration(struct iwn_softc *, int);
228 static int	iwn4965_set_txpower(struct iwn_softc *, int);
229 static int	iwn5000_set_txpower(struct iwn_softc *, int);
230 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
231 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
232 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
233 static int	iwn4965_get_temperature(struct iwn_softc *);
234 static int	iwn5000_get_temperature(struct iwn_softc *);
235 static int	iwn_init_sensitivity(struct iwn_softc *);
236 static void	iwn_collect_noise(struct iwn_softc *,
237 		    const struct iwn_rx_general_stats *);
238 static int	iwn4965_init_gains(struct iwn_softc *);
239 static int	iwn5000_init_gains(struct iwn_softc *);
240 static int	iwn4965_set_gains(struct iwn_softc *);
241 static int	iwn5000_set_gains(struct iwn_softc *);
242 static void	iwn_tune_sensitivity(struct iwn_softc *,
243 		    const struct iwn_rx_stats *);
244 static int	iwn_send_sensitivity(struct iwn_softc *);
245 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
246 static int	iwn5000_runtime_calib(struct iwn_softc *);
247 
248 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
249 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
250 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
251 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
252 
253 static int	iwn_config(struct iwn_softc *);
254 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
255 		    uint8_t);
256 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
257 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
258 static int	iwn_scan(struct iwn_softc *, uint16_t);
259 static int	iwn_auth(struct iwn_softc *);
260 static int	iwn_run(struct iwn_softc *);
261 #ifdef IWN_HWCRYPTO
262 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
263 		    struct ieee80211_key *);
264 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
265 		    struct ieee80211_key *);
266 #endif
267 static int	iwn_wme_update(struct ieee80211com *);
268 #ifndef IEEE80211_NO_HT
269 static int	iwn_ampdu_rx_start(struct ieee80211com *,
270 		    struct ieee80211_node *, uint8_t);
271 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
272 		    struct ieee80211_node *, uint8_t);
273 static int	iwn_ampdu_tx_start(struct ieee80211com *,
274 		    struct ieee80211_node *, uint8_t);
275 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
276 		    struct ieee80211_node *, uint8_t);
277 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
278 		    struct ieee80211_node *, uint8_t, uint16_t);
279 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
280 		    uint8_t, uint16_t);
281 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
282 		    struct ieee80211_node *, uint8_t, uint16_t);
283 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
284 		    uint8_t, uint16_t);
285 #endif
286 static int	iwn5000_query_calibration(struct iwn_softc *);
287 static int	iwn5000_send_calibration(struct iwn_softc *);
288 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
289 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
290 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
291 static int	iwn4965_post_alive(struct iwn_softc *);
292 static int	iwn5000_post_alive(struct iwn_softc *);
293 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
294 		    int);
295 static int	iwn4965_load_firmware(struct iwn_softc *);
296 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
297 		    const uint8_t *, int);
298 static int	iwn5000_load_firmware(struct iwn_softc *);
299 static int	iwn_read_firmware_leg(struct iwn_softc *,
300 		    struct iwn_fw_info *);
301 static int	iwn_read_firmware_tlv(struct iwn_softc *,
302 		    struct iwn_fw_info *, uint16_t);
303 static int	iwn_read_firmware(struct iwn_softc *);
304 static int	iwn_clock_wait(struct iwn_softc *);
305 static int	iwn_apm_init(struct iwn_softc *);
306 static void	iwn_apm_stop_master(struct iwn_softc *);
307 static void	iwn_apm_stop(struct iwn_softc *);
308 static int	iwn4965_nic_config(struct iwn_softc *);
309 static int	iwn5000_nic_config(struct iwn_softc *);
310 static int	iwn_hw_prepare(struct iwn_softc *);
311 static int	iwn_hw_init(struct iwn_softc *);
312 static void	iwn_hw_stop(struct iwn_softc *);
313 static int	iwn_init(struct ifnet *);
314 static void	iwn_stop(struct ifnet *, int);
315 
316 /* XXX MCLGETI alternative */
317 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
318 		    struct ifnet *, u_int);
319 #ifdef IWN_USE_RBUF
320 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
321 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
322 static int	iwn_alloc_rpool(struct iwn_softc *);
323 static void	iwn_free_rpool(struct iwn_softc *);
324 #endif
325 
326 /* XXX needed by iwn_scan */
327 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
328 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
329     const struct ieee80211_rateset *);
330 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
331     const struct ieee80211_rateset *);
332 
333 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
334 		    struct iwn_rx_stat *);
335 
336 #ifdef IWN_DEBUG
337 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
338 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
339 int iwn_debug = 0;
340 #else
341 #define DPRINTF(x)
342 #define DPRINTFN(n, x)
343 #endif
344 
345 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
346 	iwn_detach, NULL);
347 
348 static int
iwn_match(device_t parent,cfdata_t match __unused,void * aux)349 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
350 {
351 	struct pci_attach_args *pa = aux;
352 	size_t i;
353 
354 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
355 		return 0;
356 
357 	for (i = 0; i < __arraycount(iwn_devices); i++)
358 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
359 			return 1;
360 
361 	return 0;
362 }
363 
364 static void
iwn_attach(device_t parent __unused,device_t self,void * aux)365 iwn_attach(device_t parent __unused, device_t self, void *aux)
366 {
367 	struct iwn_softc *sc = device_private(self);
368 	struct ieee80211com *ic = &sc->sc_ic;
369 	struct ifnet *ifp = &sc->sc_ec.ec_if;
370 	struct pci_attach_args *pa = aux;
371 	const char *intrstr;
372 	pci_intr_handle_t ih;
373 	pcireg_t memtype, reg;
374 	int i, error;
375 	char intrbuf[PCI_INTRSTR_LEN];
376 
377 	sc->sc_dev = self;
378 	sc->sc_pct = pa->pa_pc;
379 	sc->sc_pcitag = pa->pa_tag;
380 	sc->sc_dmat = pa->pa_dmat;
381 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
382 
383 	callout_init(&sc->calib_to, 0);
384 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
385 
386 	pci_aprint_devinfo(pa, NULL);
387 
388 	/*
389 	 * Get the offset of the PCI Express Capability Structure in PCI
390 	 * Configuration Space.
391 	 */
392 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
393 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
394 	if (error == 0) {
395 		aprint_error_dev(self,
396 		    "PCIe capability structure not found!\n");
397 		return;
398 	}
399 
400 	/* Clear device-specific "PCI retry timeout" register (41h). */
401 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
402 	if (reg & 0xff00)
403 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
404 
405 	/* Enable bus-mastering and hardware bug workaround. */
406 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
407 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
408 	reg |= PCI_COMMAND_MASTER_ENABLE;
409 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
410 		DPRINTF(("PCIe INTx Disable set\n"));
411 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
412 	}
413 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
414 
415 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
416 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
417 	    &sc->sc_sh, NULL, &sc->sc_sz);
418 	if (error != 0) {
419 		aprint_error_dev(self, "can't map mem space\n");
420 		return;
421 	}
422 
423 	/* Install interrupt handler. */
424 	if (pci_intr_map(pa, &ih) != 0) {
425 		aprint_error_dev(self, "can't map interrupt\n");
426 		return;
427 	}
428 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
429 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
430 	if (sc->sc_ih == NULL) {
431 		aprint_error_dev(self, "can't establish interrupt");
432 		if (intrstr != NULL)
433 			aprint_error(" at %s", intrstr);
434 		aprint_error("\n");
435 		return;
436 	}
437 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
438 
439 	/* Read hardware revision and attach. */
440 	sc->hw_type =
441 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
442 	      >> IWN_HW_REV_TYPE_SHIFT;
443 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
444 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
445 	else
446 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
447 	if (error != 0) {
448 		aprint_error_dev(self, "could not attach device\n");
449 		return;
450 	}
451 
452 	if ((error = iwn_hw_prepare(sc)) != 0) {
453 		aprint_error_dev(self, "hardware not ready\n");
454 		return;
455 	}
456 
457 	/* Read MAC address, channels, etc from EEPROM. */
458 	if ((error = iwn_read_eeprom(sc)) != 0) {
459 		aprint_error_dev(self, "could not read EEPROM\n");
460 		return;
461 	}
462 
463 	/* Allocate DMA memory for firmware transfers. */
464 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
465 		aprint_error_dev(self,
466 		    "could not allocate memory for firmware\n");
467 		return;
468 	}
469 
470 	/* Allocate "Keep Warm" page. */
471 	if ((error = iwn_alloc_kw(sc)) != 0) {
472 		aprint_error_dev(self, "could not allocate keep warm page\n");
473 		goto fail1;
474 	}
475 
476 	/* Allocate ICT table for 5000 Series. */
477 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
478 	    (error = iwn_alloc_ict(sc)) != 0) {
479 		aprint_error_dev(self, "could not allocate ICT table\n");
480 		goto fail2;
481 	}
482 
483 	/* Allocate TX scheduler "rings". */
484 	if ((error = iwn_alloc_sched(sc)) != 0) {
485 		aprint_error_dev(self,
486 		    "could not allocate TX scheduler rings\n");
487 		goto fail3;
488 	}
489 
490 #ifdef IWN_USE_RBUF
491 	/* Allocate RX buffers. */
492 	if ((error = iwn_alloc_rpool(sc)) != 0) {
493 		aprint_error_dev(self, "could not allocate RX buffers\n");
494 		goto fail3;
495 	}
496 #endif
497 
498 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
499 	for (i = 0; i < sc->ntxqs; i++) {
500 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
501 			aprint_error_dev(self,
502 			    "could not allocate TX ring %d\n", i);
503 			goto fail4;
504 		}
505 	}
506 
507 	/* Allocate RX ring. */
508 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
509 		aprint_error_dev(self, "could not allocate RX ring\n");
510 		goto fail4;
511 	}
512 
513 	/* Clear pending interrupts. */
514 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
515 
516 	/* Count the number of available chains. */
517 	sc->ntxchains =
518 	    ((sc->txchainmask >> 2) & 1) +
519 	    ((sc->txchainmask >> 1) & 1) +
520 	    ((sc->txchainmask >> 0) & 1);
521 	sc->nrxchains =
522 	    ((sc->rxchainmask >> 2) & 1) +
523 	    ((sc->rxchainmask >> 1) & 1) +
524 	    ((sc->rxchainmask >> 0) & 1);
525 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
526 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
527 	    ether_sprintf(ic->ic_myaddr));
528 
529 	ic->ic_ifp = ifp;
530 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
531 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
532 	ic->ic_state = IEEE80211_S_INIT;
533 
534 	/* Set device capabilities. */
535 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
536 	 * and IEEE80211_C_PMGT too. */
537 	ic->ic_caps =
538 	    IEEE80211_C_IBSS |		/* IBSS mode support */
539 	    IEEE80211_C_WPA |		/* 802.11i */
540 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
541 	    IEEE80211_C_TXPMGT |	/* tx power management */
542 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
543 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
544 	    IEEE80211_C_WME;		/* 802.11e */
545 
546 #ifndef IEEE80211_NO_HT
547 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
548 		/* Set HT capabilities. */
549 		ic->ic_htcaps =
550 #if IWN_RBUF_SIZE == 8192
551 		    IEEE80211_HTCAP_AMSDU7935 |
552 #endif
553 		    IEEE80211_HTCAP_CBW20_40 |
554 		    IEEE80211_HTCAP_SGI20 |
555 		    IEEE80211_HTCAP_SGI40;
556 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
557 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
558 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
559 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
560 		else
561 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
562 	}
563 #endif	/* !IEEE80211_NO_HT */
564 
565 	/* Set supported legacy rates. */
566 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
567 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
568 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
569 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
570 	}
571 #ifndef IEEE80211_NO_HT
572 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
573 		/* Set supported HT rates. */
574 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
575 		if (sc->nrxchains > 1)
576 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
577 		if (sc->nrxchains > 2)
578 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
579 	}
580 #endif
581 
582 	/* IBSS channel undefined for now. */
583 	ic->ic_ibss_chan = &ic->ic_channels[0];
584 
585 	ifp->if_softc = sc;
586 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
587 	ifp->if_init = iwn_init;
588 	ifp->if_ioctl = iwn_ioctl;
589 	ifp->if_start = iwn_start;
590 	ifp->if_stop = iwn_stop;
591 	ifp->if_watchdog = iwn_watchdog;
592 	IFQ_SET_READY(&ifp->if_snd);
593 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
594 
595 	if_attach(ifp);
596 	ieee80211_ifattach(ic);
597 	ic->ic_node_alloc = iwn_node_alloc;
598 	ic->ic_newassoc = iwn_newassoc;
599 #ifdef IWN_HWCRYPTO
600 	ic->ic_crypto.cs_key_set = iwn_set_key;
601 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
602 #endif
603 	ic->ic_wme.wme_update = iwn_wme_update;
604 #ifndef IEEE80211_NO_HT
605 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
606 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
607 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
608 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
609 #endif
610 
611 	/* Override 802.11 state transition machine. */
612 	sc->sc_newstate = ic->ic_newstate;
613 	ic->ic_newstate = iwn_newstate;
614 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
615 
616 	sc->amrr.amrr_min_success_threshold =  1;
617 	sc->amrr.amrr_max_success_threshold = 15;
618 
619 	iwn_radiotap_attach(sc);
620 
621 	/*
622 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
623 	 * callout_init and callout_setfunc, above.
624 	*/
625 
626 	if (pmf_device_register(self, NULL, iwn_resume))
627 		pmf_class_network_register(self, ifp);
628 	else
629 		aprint_error_dev(self, "couldn't establish power handler\n");
630 
631 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
632 	ieee80211_announce(ic);
633 
634 	return;
635 
636 	/* Free allocated memory if something failed during attachment. */
637 fail4:	while (--i >= 0)
638 		iwn_free_tx_ring(sc, &sc->txq[i]);
639 #ifdef IWN_USE_RBUF
640 	iwn_free_rpool(sc);
641 #endif
642 	iwn_free_sched(sc);
643 fail3:	if (sc->ict != NULL)
644 		iwn_free_ict(sc);
645 fail2:	iwn_free_kw(sc);
646 fail1:	iwn_free_fwmem(sc);
647 }
648 
649 int
iwn4965_attach(struct iwn_softc * sc,pci_product_id_t pid)650 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
651 {
652 	struct iwn_ops *ops = &sc->ops;
653 
654 	ops->load_firmware = iwn4965_load_firmware;
655 	ops->read_eeprom = iwn4965_read_eeprom;
656 	ops->post_alive = iwn4965_post_alive;
657 	ops->nic_config = iwn4965_nic_config;
658 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
659 	ops->update_sched = iwn4965_update_sched;
660 	ops->get_temperature = iwn4965_get_temperature;
661 	ops->get_rssi = iwn4965_get_rssi;
662 	ops->set_txpower = iwn4965_set_txpower;
663 	ops->init_gains = iwn4965_init_gains;
664 	ops->set_gains = iwn4965_set_gains;
665 	ops->add_node = iwn4965_add_node;
666 	ops->tx_done = iwn4965_tx_done;
667 #ifndef IEEE80211_NO_HT
668 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
669 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
670 #endif
671 	sc->ntxqs = IWN4965_NTXQUEUES;
672 	sc->ndmachnls = IWN4965_NDMACHNLS;
673 	sc->broadcast_id = IWN4965_ID_BROADCAST;
674 	sc->rxonsz = IWN4965_RXONSZ;
675 	sc->schedsz = IWN4965_SCHEDSZ;
676 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
677 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
678 	sc->fwsz = IWN4965_FWSZ;
679 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
680 	sc->limits = &iwn4965_sensitivity_limits;
681 	sc->fwname = "iwlwifi-4965-2.ucode";
682 	/* Override chains masks, ROM is known to be broken. */
683 	sc->txchainmask = IWN_ANT_AB;
684 	sc->rxchainmask = IWN_ANT_ABC;
685 
686 	return 0;
687 }
688 
689 int
iwn5000_attach(struct iwn_softc * sc,pci_product_id_t pid)690 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
691 {
692 	struct iwn_ops *ops = &sc->ops;
693 
694 	ops->load_firmware = iwn5000_load_firmware;
695 	ops->read_eeprom = iwn5000_read_eeprom;
696 	ops->post_alive = iwn5000_post_alive;
697 	ops->nic_config = iwn5000_nic_config;
698 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
699 	ops->update_sched = iwn5000_update_sched;
700 	ops->get_temperature = iwn5000_get_temperature;
701 	ops->get_rssi = iwn5000_get_rssi;
702 	ops->set_txpower = iwn5000_set_txpower;
703 	ops->init_gains = iwn5000_init_gains;
704 	ops->set_gains = iwn5000_set_gains;
705 	ops->add_node = iwn5000_add_node;
706 	ops->tx_done = iwn5000_tx_done;
707 #ifndef IEEE80211_NO_HT
708 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
709 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
710 #endif
711 	sc->ntxqs = IWN5000_NTXQUEUES;
712 	sc->ndmachnls = IWN5000_NDMACHNLS;
713 	sc->broadcast_id = IWN5000_ID_BROADCAST;
714 	sc->rxonsz = IWN5000_RXONSZ;
715 	sc->schedsz = IWN5000_SCHEDSZ;
716 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
717 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
718 	sc->fwsz = IWN5000_FWSZ;
719 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
720 
721 	switch (sc->hw_type) {
722 	case IWN_HW_REV_TYPE_5100:
723 		sc->limits = &iwn5000_sensitivity_limits;
724 		sc->fwname = "iwlwifi-5000-2.ucode";
725 		/* Override chains masks, ROM is known to be broken. */
726 		sc->txchainmask = IWN_ANT_B;
727 		sc->rxchainmask = IWN_ANT_AB;
728 		break;
729 	case IWN_HW_REV_TYPE_5150:
730 		sc->limits = &iwn5150_sensitivity_limits;
731 		sc->fwname = "iwlwifi-5150-2.ucode";
732 		break;
733 	case IWN_HW_REV_TYPE_5300:
734 	case IWN_HW_REV_TYPE_5350:
735 		sc->limits = &iwn5000_sensitivity_limits;
736 		sc->fwname = "iwlwifi-5000-2.ucode";
737 		break;
738 	case IWN_HW_REV_TYPE_1000:
739 		sc->limits = &iwn1000_sensitivity_limits;
740 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
741 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
742 			sc->fwname = "iwlwifi-100-5.ucode";
743 		else
744 			sc->fwname = "iwlwifi-1000-3.ucode";
745 		break;
746 	case IWN_HW_REV_TYPE_6000:
747 		sc->limits = &iwn6000_sensitivity_limits;
748 		sc->fwname = "iwlwifi-6000-4.ucode";
749 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
750 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
751 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
752 			/* Override chains masks, ROM is known to be broken. */
753 			sc->txchainmask = IWN_ANT_BC;
754 			sc->rxchainmask = IWN_ANT_BC;
755 		}
756 		break;
757 	case IWN_HW_REV_TYPE_6050:
758 		sc->limits = &iwn6000_sensitivity_limits;
759 		sc->fwname = "iwlwifi-6050-5.ucode";
760 		break;
761 	case IWN_HW_REV_TYPE_6005:
762 		sc->limits = &iwn6000_sensitivity_limits;
763 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
764 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
765 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
766 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
767 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
768 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
769 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
770 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
771 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
772 		}
773 		else
774 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
775 		break;
776 	case IWN_HW_REV_TYPE_2030:
777 		sc->limits = &iwn2000_sensitivity_limits;
778 		sc->fwname = "iwlwifi-2030-6.ucode";
779 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
780 		break;
781 	case IWN_HW_REV_TYPE_2000:
782 		sc->limits = &iwn2000_sensitivity_limits;
783 		sc->fwname = "iwlwifi-2000-6.ucode";
784 		break;
785 	case IWN_HW_REV_TYPE_135:
786 		sc->limits = &iwn2000_sensitivity_limits;
787 		sc->fwname = "iwlwifi-135-6.ucode";
788 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
789 		break;
790 	case IWN_HW_REV_TYPE_105:
791 		sc->limits = &iwn2000_sensitivity_limits;
792 		sc->fwname = "iwlwifi-105-6.ucode";
793 		break;
794 	default:
795 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
796 		return ENOTSUP;
797 	}
798 	return 0;
799 }
800 
801 /*
802  * Attach the interface to 802.11 radiotap.
803  */
804 static void
iwn_radiotap_attach(struct iwn_softc * sc)805 iwn_radiotap_attach(struct iwn_softc *sc)
806 {
807 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
808 
809 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
810 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
811 	    &sc->sc_drvbpf);
812 
813 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
814 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
815 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
816 
817 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
818 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
819 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
820 }
821 
822 static int
iwn_detach(device_t self,int flags __unused)823 iwn_detach(device_t self, int flags __unused)
824 {
825 	struct iwn_softc *sc = device_private(self);
826 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
827 	int qid;
828 
829 	callout_stop(&sc->calib_to);
830 
831 	/* Uninstall interrupt handler. */
832 	if (sc->sc_ih != NULL)
833 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
834 
835 	/* Free DMA resources. */
836 	iwn_free_rx_ring(sc, &sc->rxq);
837 	for (qid = 0; qid < sc->ntxqs; qid++)
838 		iwn_free_tx_ring(sc, &sc->txq[qid]);
839 #ifdef IWN_USE_RBUF
840 	iwn_free_rpool(sc);
841 #endif
842 	iwn_free_sched(sc);
843 	iwn_free_kw(sc);
844 	if (sc->ict != NULL)
845 		iwn_free_ict(sc);
846 	iwn_free_fwmem(sc);
847 
848 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
849 
850 	ieee80211_ifdetach(&sc->sc_ic);
851 	if_detach(ifp);
852 
853 	return 0;
854 }
855 
856 #if 0
857 /*
858  * XXX Investigate if clearing the PCI retry timeout could eliminate
859  * the repeated scan calls.  Also the calls to if_init and if_start
860  * are similar to the effect of adding the call to ifioctl_common .
861  */
862 static void
863 iwn_power(int why, void *arg)
864 {
865 	struct iwn_softc *sc = arg;
866 	struct ifnet *ifp;
867 	pcireg_t reg;
868 	int s;
869 
870 	if (why != PWR_RESUME)
871 		return;
872 
873 	/* Clear device-specific "PCI retry timeout" register (41h). */
874 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
875 	if (reg & 0xff00)
876 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
877 
878 	s = splnet();
879 	ifp = &sc->sc_ic.ic_if;
880 	if (ifp->if_flags & IFF_UP) {
881 		ifp->if_init(ifp);
882 		if (ifp->if_flags & IFF_RUNNING)
883 			ifp->if_start(ifp);
884 	}
885 	splx(s);
886 }
887 #endif
888 
889 static bool
iwn_resume(device_t dv,const pmf_qual_t * qual)890 iwn_resume(device_t dv, const pmf_qual_t *qual)
891 {
892 	return true;
893 }
894 
895 static int
iwn_nic_lock(struct iwn_softc * sc)896 iwn_nic_lock(struct iwn_softc *sc)
897 {
898 	int ntries;
899 
900 	/* Request exclusive access to NIC. */
901 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
902 
903 	/* Spin until we actually get the lock. */
904 	for (ntries = 0; ntries < 1000; ntries++) {
905 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
906 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
907 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
908 			return 0;
909 		DELAY(10);
910 	}
911 	return ETIMEDOUT;
912 }
913 
914 static __inline void
iwn_nic_unlock(struct iwn_softc * sc)915 iwn_nic_unlock(struct iwn_softc *sc)
916 {
917 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
918 }
919 
920 static __inline uint32_t
iwn_prph_read(struct iwn_softc * sc,uint32_t addr)921 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
922 {
923 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
924 	IWN_BARRIER_READ_WRITE(sc);
925 	return IWN_READ(sc, IWN_PRPH_RDATA);
926 }
927 
928 static __inline void
iwn_prph_write(struct iwn_softc * sc,uint32_t addr,uint32_t data)929 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
930 {
931 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
932 	IWN_BARRIER_WRITE(sc);
933 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
934 }
935 
936 static __inline void
iwn_prph_setbits(struct iwn_softc * sc,uint32_t addr,uint32_t mask)937 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
938 {
939 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
940 }
941 
942 static __inline void
iwn_prph_clrbits(struct iwn_softc * sc,uint32_t addr,uint32_t mask)943 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
944 {
945 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
946 }
947 
948 static __inline void
iwn_prph_write_region_4(struct iwn_softc * sc,uint32_t addr,const uint32_t * data,int count)949 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
950     const uint32_t *data, int count)
951 {
952 	for (; count > 0; count--, data++, addr += 4)
953 		iwn_prph_write(sc, addr, *data);
954 }
955 
956 static __inline uint32_t
iwn_mem_read(struct iwn_softc * sc,uint32_t addr)957 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
958 {
959 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
960 	IWN_BARRIER_READ_WRITE(sc);
961 	return IWN_READ(sc, IWN_MEM_RDATA);
962 }
963 
964 static __inline void
iwn_mem_write(struct iwn_softc * sc,uint32_t addr,uint32_t data)965 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
966 {
967 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
968 	IWN_BARRIER_WRITE(sc);
969 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
970 }
971 
972 #ifndef IEEE80211_NO_HT
973 static __inline void
iwn_mem_write_2(struct iwn_softc * sc,uint32_t addr,uint16_t data)974 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
975 {
976 	uint32_t tmp;
977 
978 	tmp = iwn_mem_read(sc, addr & ~3);
979 	if (addr & 3)
980 		tmp = (tmp & 0x0000ffff) | data << 16;
981 	else
982 		tmp = (tmp & 0xffff0000) | data;
983 	iwn_mem_write(sc, addr & ~3, tmp);
984 }
985 #endif
986 
987 static __inline void
iwn_mem_read_region_4(struct iwn_softc * sc,uint32_t addr,uint32_t * data,int count)988 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
989     int count)
990 {
991 	for (; count > 0; count--, addr += 4)
992 		*data++ = iwn_mem_read(sc, addr);
993 }
994 
995 static __inline void
iwn_mem_set_region_4(struct iwn_softc * sc,uint32_t addr,uint32_t val,int count)996 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
997     int count)
998 {
999 	for (; count > 0; count--, addr += 4)
1000 		iwn_mem_write(sc, addr, val);
1001 }
1002 
1003 static int
iwn_eeprom_lock(struct iwn_softc * sc)1004 iwn_eeprom_lock(struct iwn_softc *sc)
1005 {
1006 	int i, ntries;
1007 
1008 	for (i = 0; i < 100; i++) {
1009 		/* Request exclusive access to EEPROM. */
1010 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1011 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1012 
1013 		/* Spin until we actually get the lock. */
1014 		for (ntries = 0; ntries < 100; ntries++) {
1015 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1016 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1017 				return 0;
1018 			DELAY(10);
1019 		}
1020 	}
1021 	return ETIMEDOUT;
1022 }
1023 
1024 static __inline void
iwn_eeprom_unlock(struct iwn_softc * sc)1025 iwn_eeprom_unlock(struct iwn_softc *sc)
1026 {
1027 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1028 }
1029 
1030 /*
1031  * Initialize access by host to One Time Programmable ROM.
1032  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1033  */
1034 static int
iwn_init_otprom(struct iwn_softc * sc)1035 iwn_init_otprom(struct iwn_softc *sc)
1036 {
1037 	uint16_t prev = 0, base, next;
1038 	int count, error;
1039 
1040 	/* Wait for clock stabilization before accessing prph. */
1041 	if ((error = iwn_clock_wait(sc)) != 0)
1042 		return error;
1043 
1044 	if ((error = iwn_nic_lock(sc)) != 0)
1045 		return error;
1046 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1047 	DELAY(5);
1048 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1049 	iwn_nic_unlock(sc);
1050 
1051 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1052 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1053 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1054 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1055 	}
1056 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1057 	/* Clear ECC status. */
1058 	IWN_SETBITS(sc, IWN_OTP_GP,
1059 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1060 
1061 	/*
1062 	 * Find the block before last block (contains the EEPROM image)
1063 	 * for HW without OTP shadow RAM.
1064 	 */
1065 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1066 		/* Switch to absolute addressing mode. */
1067 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1068 		base = 0;
1069 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1070 			error = iwn_read_prom_data(sc, base, &next, 2);
1071 			if (error != 0)
1072 				return error;
1073 			if (next == 0)	/* End of linked-list. */
1074 				break;
1075 			prev = base;
1076 			base = le16toh(next);
1077 		}
1078 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1079 			return EIO;
1080 		/* Skip "next" word. */
1081 		sc->prom_base = prev + 1;
1082 	}
1083 	return 0;
1084 }
1085 
1086 static int
iwn_read_prom_data(struct iwn_softc * sc,uint32_t addr,void * data,int count)1087 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1088 {
1089 	uint8_t *out = data;
1090 	uint32_t val, tmp;
1091 	int ntries;
1092 
1093 	addr += sc->prom_base;
1094 	for (; count > 0; count -= 2, addr++) {
1095 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1096 		for (ntries = 0; ntries < 10; ntries++) {
1097 			val = IWN_READ(sc, IWN_EEPROM);
1098 			if (val & IWN_EEPROM_READ_VALID)
1099 				break;
1100 			DELAY(5);
1101 		}
1102 		if (ntries == 10) {
1103 			aprint_error_dev(sc->sc_dev,
1104 			    "timeout reading ROM at 0x%x\n", addr);
1105 			return ETIMEDOUT;
1106 		}
1107 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1108 			/* OTPROM, check for ECC errors. */
1109 			tmp = IWN_READ(sc, IWN_OTP_GP);
1110 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1111 				aprint_error_dev(sc->sc_dev,
1112 				    "OTPROM ECC error at 0x%x\n", addr);
1113 				return EIO;
1114 			}
1115 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1116 				/* Correctable ECC error, clear bit. */
1117 				IWN_SETBITS(sc, IWN_OTP_GP,
1118 				    IWN_OTP_GP_ECC_CORR_STTS);
1119 			}
1120 		}
1121 		*out++ = val >> 16;
1122 		if (count > 1)
1123 			*out++ = val >> 24;
1124 	}
1125 	return 0;
1126 }
1127 
1128 static int
iwn_dma_contig_alloc(bus_dma_tag_t tag,struct iwn_dma_info * dma,void ** kvap,bus_size_t size,bus_size_t alignment)1129 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1130     bus_size_t size, bus_size_t alignment)
1131 {
1132 	int nsegs, error;
1133 
1134 	dma->tag = tag;
1135 	dma->size = size;
1136 
1137 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1138 	    &dma->map);
1139 	if (error != 0)
1140 		goto fail;
1141 
1142 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1143 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1144 	if (error != 0)
1145 		goto fail;
1146 
1147 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1148 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1149 	if (error != 0)
1150 		goto fail;
1151 
1152 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1153 	    BUS_DMA_NOWAIT);
1154 	if (error != 0)
1155 		goto fail;
1156 
1157 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1158 	memset(dma->vaddr, 0, size);
1159 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1160 
1161 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1162 	if (kvap != NULL)
1163 		*kvap = dma->vaddr;
1164 
1165 	return 0;
1166 
1167 fail:	iwn_dma_contig_free(dma);
1168 	return error;
1169 }
1170 
1171 static void
iwn_dma_contig_free(struct iwn_dma_info * dma)1172 iwn_dma_contig_free(struct iwn_dma_info *dma)
1173 {
1174 	if (dma->map != NULL) {
1175 		if (dma->vaddr != NULL) {
1176 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1177 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1178 			bus_dmamap_unload(dma->tag, dma->map);
1179 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1180 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1181 			dma->vaddr = NULL;
1182 		}
1183 		bus_dmamap_destroy(dma->tag, dma->map);
1184 		dma->map = NULL;
1185 	}
1186 }
1187 
1188 static int
iwn_alloc_sched(struct iwn_softc * sc)1189 iwn_alloc_sched(struct iwn_softc *sc)
1190 {
1191 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1192 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1193 	    (void **)&sc->sched, sc->schedsz, 1024);
1194 }
1195 
1196 static void
iwn_free_sched(struct iwn_softc * sc)1197 iwn_free_sched(struct iwn_softc *sc)
1198 {
1199 	iwn_dma_contig_free(&sc->sched_dma);
1200 }
1201 
1202 static int
iwn_alloc_kw(struct iwn_softc * sc)1203 iwn_alloc_kw(struct iwn_softc *sc)
1204 {
1205 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1206 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1207 	    4096);
1208 }
1209 
1210 static void
iwn_free_kw(struct iwn_softc * sc)1211 iwn_free_kw(struct iwn_softc *sc)
1212 {
1213 	iwn_dma_contig_free(&sc->kw_dma);
1214 }
1215 
1216 static int
iwn_alloc_ict(struct iwn_softc * sc)1217 iwn_alloc_ict(struct iwn_softc *sc)
1218 {
1219 	/* ICT table must be aligned on a 4KB boundary. */
1220 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1221 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1222 }
1223 
1224 static void
iwn_free_ict(struct iwn_softc * sc)1225 iwn_free_ict(struct iwn_softc *sc)
1226 {
1227 	iwn_dma_contig_free(&sc->ict_dma);
1228 }
1229 
1230 static int
iwn_alloc_fwmem(struct iwn_softc * sc)1231 iwn_alloc_fwmem(struct iwn_softc *sc)
1232 {
1233 	/* Must be aligned on a 16-byte boundary. */
1234 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1235 	    sc->fwsz, 16);
1236 }
1237 
1238 static void
iwn_free_fwmem(struct iwn_softc * sc)1239 iwn_free_fwmem(struct iwn_softc *sc)
1240 {
1241 	iwn_dma_contig_free(&sc->fw_dma);
1242 }
1243 
1244 static int
iwn_alloc_rx_ring(struct iwn_softc * sc,struct iwn_rx_ring * ring)1245 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1246 {
1247 	bus_size_t size;
1248 	int i, error;
1249 
1250 	ring->cur = 0;
1251 
1252 	/* Allocate RX descriptors (256-byte aligned). */
1253 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1254 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1255 	    (void **)&ring->desc, size, 256);
1256 	if (error != 0) {
1257 		aprint_error_dev(sc->sc_dev,
1258 		    "could not allocate RX ring DMA memory\n");
1259 		goto fail;
1260 	}
1261 
1262 	/* Allocate RX status area (16-byte aligned). */
1263 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1264 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1265 	if (error != 0) {
1266 		aprint_error_dev(sc->sc_dev,
1267 		    "could not allocate RX status DMA memory\n");
1268 		goto fail;
1269 	}
1270 
1271 	/*
1272 	 * Allocate and map RX buffers.
1273 	 */
1274 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1275 		struct iwn_rx_data *data = &ring->data[i];
1276 
1277 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1278 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1279 		    &data->map);
1280 		if (error != 0) {
1281 			aprint_error_dev(sc->sc_dev,
1282 			    "could not create RX buf DMA map\n");
1283 			goto fail;
1284 		}
1285 
1286 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1287 		if (data->m == NULL) {
1288 			aprint_error_dev(sc->sc_dev,
1289 			    "could not allocate RX mbuf\n");
1290 			error = ENOBUFS;
1291 			goto fail;
1292 		}
1293 
1294 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1295 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1296 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1297 		if (error != 0) {
1298 			aprint_error_dev(sc->sc_dev,
1299 			    "can't not map mbuf (error %d)\n", error);
1300 			goto fail;
1301 		}
1302 
1303 		/* Set physical address of RX buffer (256-byte aligned). */
1304 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1305 	}
1306 
1307 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1308 	    BUS_DMASYNC_PREWRITE);
1309 
1310 	return 0;
1311 
1312 fail:	iwn_free_rx_ring(sc, ring);
1313 	return error;
1314 }
1315 
1316 static void
iwn_reset_rx_ring(struct iwn_softc * sc,struct iwn_rx_ring * ring)1317 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1318 {
1319 	int ntries;
1320 
1321 	if (iwn_nic_lock(sc) == 0) {
1322 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1323 		for (ntries = 0; ntries < 1000; ntries++) {
1324 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1325 			    IWN_FH_RX_STATUS_IDLE)
1326 				break;
1327 			DELAY(10);
1328 		}
1329 		iwn_nic_unlock(sc);
1330 	}
1331 	ring->cur = 0;
1332 	sc->last_rx_valid = 0;
1333 }
1334 
1335 static void
iwn_free_rx_ring(struct iwn_softc * sc,struct iwn_rx_ring * ring)1336 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1337 {
1338 	int i;
1339 
1340 	iwn_dma_contig_free(&ring->desc_dma);
1341 	iwn_dma_contig_free(&ring->stat_dma);
1342 
1343 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1344 		struct iwn_rx_data *data = &ring->data[i];
1345 
1346 		if (data->m != NULL) {
1347 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1348 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1349 			bus_dmamap_unload(sc->sc_dmat, data->map);
1350 			m_freem(data->m);
1351 		}
1352 		if (data->map != NULL)
1353 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1354 	}
1355 }
1356 
1357 static int
iwn_alloc_tx_ring(struct iwn_softc * sc,struct iwn_tx_ring * ring,int qid)1358 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1359 {
1360 	bus_addr_t paddr;
1361 	bus_size_t size;
1362 	int i, error;
1363 
1364 	ring->qid = qid;
1365 	ring->queued = 0;
1366 	ring->cur = 0;
1367 
1368 	/* Allocate TX descriptors (256-byte aligned). */
1369 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1370 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1371 	    (void **)&ring->desc, size, 256);
1372 	if (error != 0) {
1373 		aprint_error_dev(sc->sc_dev,
1374 		    "could not allocate TX ring DMA memory\n");
1375 		goto fail;
1376 	}
1377 	/*
1378 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1379 	 * to allocate commands space for other rings.
1380 	 * XXX Do we really need to allocate descriptors for other rings?
1381 	 */
1382 	if (qid > 4)
1383 		return 0;
1384 
1385 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1386 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1387 	    (void **)&ring->cmd, size, 4);
1388 	if (error != 0) {
1389 		aprint_error_dev(sc->sc_dev,
1390 		    "could not allocate TX cmd DMA memory\n");
1391 		goto fail;
1392 	}
1393 
1394 	paddr = ring->cmd_dma.paddr;
1395 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1396 		struct iwn_tx_data *data = &ring->data[i];
1397 
1398 		data->cmd_paddr = paddr;
1399 		data->scratch_paddr = paddr + 12;
1400 		paddr += sizeof (struct iwn_tx_cmd);
1401 
1402 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1403 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1404 		    &data->map);
1405 		if (error != 0) {
1406 			aprint_error_dev(sc->sc_dev,
1407 			    "could not create TX buf DMA map\n");
1408 			goto fail;
1409 		}
1410 	}
1411 	return 0;
1412 
1413 fail:	iwn_free_tx_ring(sc, ring);
1414 	return error;
1415 }
1416 
1417 static void
iwn_reset_tx_ring(struct iwn_softc * sc,struct iwn_tx_ring * ring)1418 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1419 {
1420 	int i;
1421 
1422 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1423 		struct iwn_tx_data *data = &ring->data[i];
1424 
1425 		if (data->m != NULL) {
1426 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1427 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1428 			bus_dmamap_unload(sc->sc_dmat, data->map);
1429 			m_freem(data->m);
1430 			data->m = NULL;
1431 		}
1432 	}
1433 	/* Clear TX descriptors. */
1434 	memset(ring->desc, 0, ring->desc_dma.size);
1435 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1436 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1437 	sc->qfullmsk &= ~(1 << ring->qid);
1438 	ring->queued = 0;
1439 	ring->cur = 0;
1440 }
1441 
1442 static void
iwn_free_tx_ring(struct iwn_softc * sc,struct iwn_tx_ring * ring)1443 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1444 {
1445 	int i;
1446 
1447 	iwn_dma_contig_free(&ring->desc_dma);
1448 	iwn_dma_contig_free(&ring->cmd_dma);
1449 
1450 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1451 		struct iwn_tx_data *data = &ring->data[i];
1452 
1453 		if (data->m != NULL) {
1454 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1455 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1456 			bus_dmamap_unload(sc->sc_dmat, data->map);
1457 			m_freem(data->m);
1458 		}
1459 		if (data->map != NULL)
1460 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1461 	}
1462 }
1463 
1464 static void
iwn5000_ict_reset(struct iwn_softc * sc)1465 iwn5000_ict_reset(struct iwn_softc *sc)
1466 {
1467 	/* Disable interrupts. */
1468 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1469 
1470 	/* Reset ICT table. */
1471 	memset(sc->ict, 0, IWN_ICT_SIZE);
1472 	sc->ict_cur = 0;
1473 
1474 	/* Set physical address of ICT table (4KB aligned). */
1475 	DPRINTF(("enabling ICT\n"));
1476 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1477 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1478 
1479 	/* Enable periodic RX interrupt. */
1480 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1481 	/* Switch to ICT interrupt mode in driver. */
1482 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1483 
1484 	/* Re-enable interrupts. */
1485 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1486 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1487 }
1488 
1489 static int
iwn_read_eeprom(struct iwn_softc * sc)1490 iwn_read_eeprom(struct iwn_softc *sc)
1491 {
1492 	struct iwn_ops *ops = &sc->ops;
1493 	struct ieee80211com *ic = &sc->sc_ic;
1494 	uint16_t val;
1495 	int error;
1496 
1497 	/* Check whether adapter has an EEPROM or an OTPROM. */
1498 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1499 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1500 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1501 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1502 	    "OTPROM" : "EEPROM"));
1503 
1504 	/* Adapter has to be powered on for EEPROM access to work. */
1505 	if ((error = iwn_apm_init(sc)) != 0) {
1506 		aprint_error_dev(sc->sc_dev,
1507 		    "could not power ON adapter\n");
1508 		return error;
1509 	}
1510 
1511 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1512 		aprint_error_dev(sc->sc_dev,
1513 		    "bad ROM signature\n");
1514 		return EIO;
1515 	}
1516 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1517 		aprint_error_dev(sc->sc_dev,
1518 		    "could not lock ROM (error=%d)\n", error);
1519 		return error;
1520 	}
1521 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1522 		if ((error = iwn_init_otprom(sc)) != 0) {
1523 			aprint_error_dev(sc->sc_dev,
1524 			    "could not initialize OTPROM\n");
1525 			return error;
1526 		}
1527 	}
1528 
1529 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1530 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1531 	/* Check if HT support is bonded out. */
1532 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1533 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1534 
1535 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1536 	sc->rfcfg = le16toh(val);
1537 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1538 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1539 	if (sc->txchainmask == 0)
1540 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1541 	if (sc->rxchainmask == 0)
1542 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1543 
1544 	/* Read MAC address. */
1545 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1546 
1547 	/* Read adapter-specific information from EEPROM. */
1548 	ops->read_eeprom(sc);
1549 
1550 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1551 
1552 	iwn_eeprom_unlock(sc);
1553 	return 0;
1554 }
1555 
1556 static void
iwn4965_read_eeprom(struct iwn_softc * sc)1557 iwn4965_read_eeprom(struct iwn_softc *sc)
1558 {
1559 	uint32_t addr;
1560 	uint16_t val;
1561 	int i;
1562 
1563 	/* Read regulatory domain (4 ASCII characters). */
1564 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1565 
1566 	/* Read the list of authorized channels (20MHz ones only). */
1567 	for (i = 0; i < 5; i++) {
1568 		addr = iwn4965_regulatory_bands[i];
1569 		iwn_read_eeprom_channels(sc, i, addr);
1570 	}
1571 
1572 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1573 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1574 	sc->maxpwr2GHz = val & 0xff;
1575 	sc->maxpwr5GHz = val >> 8;
1576 	/* Check that EEPROM values are within valid range. */
1577 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1578 		sc->maxpwr5GHz = 38;
1579 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1580 		sc->maxpwr2GHz = 38;
1581 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1582 
1583 	/* Read samples for each TX power group. */
1584 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1585 	    sizeof sc->bands);
1586 
1587 	/* Read voltage at which samples were taken. */
1588 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1589 	sc->eeprom_voltage = (int16_t)le16toh(val);
1590 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1591 
1592 #ifdef IWN_DEBUG
1593 	/* Print samples. */
1594 	if (iwn_debug > 0) {
1595 		for (i = 0; i < IWN_NBANDS; i++)
1596 			iwn4965_print_power_group(sc, i);
1597 	}
1598 #endif
1599 }
1600 
1601 #ifdef IWN_DEBUG
1602 static void
iwn4965_print_power_group(struct iwn_softc * sc,int i)1603 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1604 {
1605 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1606 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1607 	int j, c;
1608 
1609 	aprint_normal("===band %d===\n", i);
1610 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1611 	aprint_normal("chan1 num=%d\n", chans[0].num);
1612 	for (c = 0; c < 2; c++) {
1613 		for (j = 0; j < IWN_NSAMPLES; j++) {
1614 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1615 			    "power=%d pa_det=%d\n", c, j,
1616 			    chans[0].samples[c][j].temp,
1617 			    chans[0].samples[c][j].gain,
1618 			    chans[0].samples[c][j].power,
1619 			    chans[0].samples[c][j].pa_det);
1620 		}
1621 	}
1622 	aprint_normal("chan2 num=%d\n", chans[1].num);
1623 	for (c = 0; c < 2; c++) {
1624 		for (j = 0; j < IWN_NSAMPLES; j++) {
1625 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1626 			    "power=%d pa_det=%d\n", c, j,
1627 			    chans[1].samples[c][j].temp,
1628 			    chans[1].samples[c][j].gain,
1629 			    chans[1].samples[c][j].power,
1630 			    chans[1].samples[c][j].pa_det);
1631 		}
1632 	}
1633 }
1634 #endif
1635 
1636 static void
iwn5000_read_eeprom(struct iwn_softc * sc)1637 iwn5000_read_eeprom(struct iwn_softc *sc)
1638 {
1639 	struct iwn5000_eeprom_calib_hdr hdr;
1640 	int32_t volt;
1641 	uint32_t base, addr;
1642 	uint16_t val;
1643 	int i;
1644 
1645 	/* Read regulatory domain (4 ASCII characters). */
1646 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1647 	base = le16toh(val);
1648 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1649 	    sc->eeprom_domain, 4);
1650 
1651 	/* Read the list of authorized channels (20MHz ones only). */
1652 	for (i = 0; i < 5; i++) {
1653 		addr = base + iwn5000_regulatory_bands[i];
1654 		iwn_read_eeprom_channels(sc, i, addr);
1655 	}
1656 
1657 	/* Read enhanced TX power information for 6000 Series. */
1658 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1659 		iwn_read_eeprom_enhinfo(sc);
1660 
1661 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1662 	base = le16toh(val);
1663 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1664 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1665 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1666 	sc->calib_ver = hdr.version;
1667 
1668 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1669 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1670 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
1671 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
1672 		sc->eeprom_voltage = le16toh(hdr.volt);
1673 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1674 		sc->eeprom_temp = le16toh(val);
1675 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1676 		sc->eeprom_rawtemp = le16toh(val);
1677 	}
1678 
1679 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1680 		/* Compute temperature offset. */
1681 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1682 		sc->eeprom_temp = le16toh(val);
1683 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1684 		volt = le16toh(val);
1685 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1686 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1687 		    sc->eeprom_temp, volt, sc->temp_off));
1688 	} else {
1689 		/* Read crystal calibration. */
1690 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1691 		    &sc->eeprom_crystal, sizeof (uint32_t));
1692 		DPRINTF(("crystal calibration 0x%08x\n",
1693 		    le32toh(sc->eeprom_crystal)));
1694 	}
1695 }
1696 
1697 static void
iwn_read_eeprom_channels(struct iwn_softc * sc,int n,uint32_t addr)1698 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1699 {
1700 	struct ieee80211com *ic = &sc->sc_ic;
1701 	const struct iwn_chan_band *band = &iwn_bands[n];
1702 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1703 	uint8_t chan;
1704 	int i;
1705 
1706 	iwn_read_prom_data(sc, addr, channels,
1707 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1708 
1709 	for (i = 0; i < band->nchan; i++) {
1710 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1711 			continue;
1712 
1713 		chan = band->chan[i];
1714 
1715 		if (n == 0) {	/* 2GHz band */
1716 			ic->ic_channels[chan].ic_freq =
1717 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1718 			ic->ic_channels[chan].ic_flags =
1719 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1720 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1721 
1722 		} else {	/* 5GHz band */
1723 			/*
1724 			 * Some adapters support channels 7, 8, 11 and 12
1725 			 * both in the 2GHz and 4.9GHz bands.
1726 			 * Because of limitations in our net80211 layer,
1727 			 * we don't support them in the 4.9GHz band.
1728 			 */
1729 			if (chan <= 14)
1730 				continue;
1731 
1732 			ic->ic_channels[chan].ic_freq =
1733 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1734 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1735 			/* We have at least one valid 5GHz channel. */
1736 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1737 		}
1738 
1739 		/* Is active scan allowed on this channel? */
1740 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1741 			ic->ic_channels[chan].ic_flags |=
1742 			    IEEE80211_CHAN_PASSIVE;
1743 		}
1744 
1745 		/* Save maximum allowed TX power for this channel. */
1746 		sc->maxpwr[chan] = channels[i].maxpwr;
1747 
1748 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1749 		    chan, channels[i].flags, sc->maxpwr[chan]));
1750 	}
1751 }
1752 
1753 static void
iwn_read_eeprom_enhinfo(struct iwn_softc * sc)1754 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1755 {
1756 	struct iwn_eeprom_enhinfo enhinfo[35];
1757 	uint16_t val, base;
1758 	int8_t maxpwr;
1759 	int i;
1760 
1761 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1762 	base = le16toh(val);
1763 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1764 	    enhinfo, sizeof enhinfo);
1765 
1766 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1767 	for (i = 0; i < __arraycount(enhinfo); i++) {
1768 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1769 			continue;	/* Skip invalid entries. */
1770 
1771 		maxpwr = 0;
1772 		if (sc->txchainmask & IWN_ANT_A)
1773 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1774 		if (sc->txchainmask & IWN_ANT_B)
1775 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1776 		if (sc->txchainmask & IWN_ANT_C)
1777 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1778 		if (sc->ntxchains == 2)
1779 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1780 		else if (sc->ntxchains == 3)
1781 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1782 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1783 
1784 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1785 		sc->enh_maxpwr[i] = maxpwr;
1786 	}
1787 }
1788 
1789 static struct ieee80211_node *
iwn_node_alloc(struct ieee80211_node_table * ic __unused)1790 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1791 {
1792 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1793 }
1794 
1795 static void
iwn_newassoc(struct ieee80211_node * ni,int isnew)1796 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1797 {
1798 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1799 	struct iwn_node *wn = (void *)ni;
1800 	uint8_t rate;
1801 	int ridx, i;
1802 
1803 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1804 	/* Start at lowest available bit-rate, AMRR will raise. */
1805 	ni->ni_txrate = 0;
1806 
1807 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1808 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1809 		/* Map 802.11 rate to HW rate index. */
1810 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1811 			if (iwn_rates[ridx].rate == rate)
1812 				break;
1813 		wn->ridx[i] = ridx;
1814 	}
1815 }
1816 
1817 static int
iwn_media_change(struct ifnet * ifp)1818 iwn_media_change(struct ifnet *ifp)
1819 {
1820 	struct iwn_softc *sc = ifp->if_softc;
1821 	struct ieee80211com *ic = &sc->sc_ic;
1822 	uint8_t rate, ridx;
1823 	int error;
1824 
1825 	error = ieee80211_media_change(ifp);
1826 	if (error != ENETRESET)
1827 		return error;
1828 
1829 	if (ic->ic_fixed_rate != -1) {
1830 		rate = ic->ic_sup_rates[ic->ic_curmode].
1831 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1832 		/* Map 802.11 rate to HW rate index. */
1833 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1834 			if (iwn_rates[ridx].rate == rate)
1835 				break;
1836 		sc->fixed_ridx = ridx;
1837 	}
1838 
1839 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1840 	    (IFF_UP | IFF_RUNNING)) {
1841 		iwn_stop(ifp, 0);
1842 		error = iwn_init(ifp);
1843 	}
1844 	return error;
1845 }
1846 
1847 static int
iwn_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)1848 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1849 {
1850 	struct ifnet *ifp = ic->ic_ifp;
1851 	struct iwn_softc *sc = ifp->if_softc;
1852 	int error;
1853 
1854 	callout_stop(&sc->calib_to);
1855 
1856 	switch (nstate) {
1857 	case IEEE80211_S_SCAN:
1858 		/* XXX Do not abort a running scan. */
1859 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1860 			if (ic->ic_state != nstate)
1861 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
1862 				    "while scanning(%d) ignored\n", nstate,
1863 				    ic->ic_state);
1864 			break;
1865 		}
1866 
1867 		/* XXX Not sure if call and flags are needed. */
1868 		ieee80211_node_table_reset(&ic->ic_scan);
1869 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1870 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1871 
1872 		/* Make the link LED blink while we're scanning. */
1873 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1874 
1875 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1876 			aprint_error_dev(sc->sc_dev,
1877 			    "could not initiate scan\n");
1878 			return error;
1879 		}
1880 		ic->ic_state = nstate;
1881 		return 0;
1882 
1883 	case IEEE80211_S_ASSOC:
1884 		if (ic->ic_state != IEEE80211_S_RUN)
1885 			break;
1886 		/* FALLTHROUGH */
1887 	case IEEE80211_S_AUTH:
1888 		/* Reset state to handle reassociations correctly. */
1889 		sc->rxon.associd = 0;
1890 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1891 		sc->calib.state = IWN_CALIB_STATE_INIT;
1892 
1893 		if ((error = iwn_auth(sc)) != 0) {
1894 			aprint_error_dev(sc->sc_dev,
1895 			    "could not move to auth state\n");
1896 			return error;
1897 		}
1898 		break;
1899 
1900 	case IEEE80211_S_RUN:
1901 		if ((error = iwn_run(sc)) != 0) {
1902 			aprint_error_dev(sc->sc_dev,
1903 			    "could not move to run state\n");
1904 			return error;
1905 		}
1906 		break;
1907 
1908 	case IEEE80211_S_INIT:
1909 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
1910 		sc->calib.state = IWN_CALIB_STATE_INIT;
1911 		break;
1912 	}
1913 
1914 	return sc->sc_newstate(ic, nstate, arg);
1915 }
1916 
1917 static void
iwn_iter_func(void * arg,struct ieee80211_node * ni)1918 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1919 {
1920 	struct iwn_softc *sc = arg;
1921 	struct iwn_node *wn = (struct iwn_node *)ni;
1922 
1923 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1924 }
1925 
1926 static void
iwn_calib_timeout(void * arg)1927 iwn_calib_timeout(void *arg)
1928 {
1929 	struct iwn_softc *sc = arg;
1930 	struct ieee80211com *ic = &sc->sc_ic;
1931 	int s;
1932 
1933 	s = splnet();
1934 	if (ic->ic_fixed_rate == -1) {
1935 		if (ic->ic_opmode == IEEE80211_M_STA)
1936 			iwn_iter_func(sc, ic->ic_bss);
1937 		else
1938 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1939 	}
1940 	/* Force automatic TX power calibration every 60 secs. */
1941 	if (++sc->calib_cnt >= 120) {
1942 		uint32_t flags = 0;
1943 
1944 		DPRINTF(("sending request for statistics\n"));
1945 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1946 		    sizeof flags, 1);
1947 		sc->calib_cnt = 0;
1948 	}
1949 	splx(s);
1950 
1951 	/* Automatic rate control triggered every 500ms. */
1952 	callout_schedule(&sc->calib_to, hz/2);
1953 }
1954 
1955 /*
1956  * Process an RX_PHY firmware notification.  This is usually immediately
1957  * followed by an MPDU_RX_DONE notification.
1958  */
1959 static void
iwn_rx_phy(struct iwn_softc * sc,struct iwn_rx_desc * desc,struct iwn_rx_data * data)1960 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1961     struct iwn_rx_data *data)
1962 {
1963 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1964 
1965 	DPRINTFN(2, ("received PHY stats\n"));
1966 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1967 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1968 
1969 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1970 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1971 	sc->last_rx_valid = 1;
1972 }
1973 
1974 /*
1975  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1976  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1977  */
1978 static void
iwn_rx_done(struct iwn_softc * sc,struct iwn_rx_desc * desc,struct iwn_rx_data * data)1979 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1980     struct iwn_rx_data *data)
1981 {
1982 	struct iwn_ops *ops = &sc->ops;
1983 	struct ieee80211com *ic = &sc->sc_ic;
1984 	struct ifnet *ifp = ic->ic_ifp;
1985 	struct iwn_rx_ring *ring = &sc->rxq;
1986 	struct ieee80211_frame *wh;
1987 	struct ieee80211_node *ni;
1988 	struct mbuf *m, *m1;
1989 	struct iwn_rx_stat *stat;
1990 	char	*head;
1991 	uint32_t flags;
1992 	int error, len, rssi;
1993 
1994 	if (desc->type == IWN_MPDU_RX_DONE) {
1995 		/* Check for prior RX_PHY notification. */
1996 		if (!sc->last_rx_valid) {
1997 			DPRINTF(("missing RX_PHY\n"));
1998 			return;
1999 		}
2000 		sc->last_rx_valid = 0;
2001 		stat = &sc->last_rx_stat;
2002 	} else
2003 		stat = (struct iwn_rx_stat *)(desc + 1);
2004 
2005 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2006 	    BUS_DMASYNC_POSTREAD);
2007 
2008 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2009 		aprint_error_dev(sc->sc_dev,
2010 		    "invalid RX statistic header\n");
2011 		return;
2012 	}
2013 	if (desc->type == IWN_MPDU_RX_DONE) {
2014 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2015 		head = (char *)(mpdu + 1);
2016 		len = le16toh(mpdu->len);
2017 	} else {
2018 		head = (char *)(stat + 1) + stat->cfg_phy_len;
2019 		len = le16toh(stat->len);
2020 	}
2021 
2022 	flags = le32toh(*(uint32_t *)(head + len));
2023 
2024 	/* Discard frames with a bad FCS early. */
2025 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2026 		DPRINTFN(2, ("RX flags error %x\n", flags));
2027 		ifp->if_ierrors++;
2028 		return;
2029 	}
2030 	/* Discard frames that are too short. */
2031 	if (len < sizeof (*wh)) {
2032 		DPRINTF(("frame too short: %d\n", len));
2033 		ic->ic_stats.is_rx_tooshort++;
2034 		ifp->if_ierrors++;
2035 		return;
2036 	}
2037 
2038 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2039 	if (m1 == NULL) {
2040 		ic->ic_stats.is_rx_nobuf++;
2041 		ifp->if_ierrors++;
2042 		return;
2043 	}
2044 	bus_dmamap_unload(sc->sc_dmat, data->map);
2045 
2046 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2047 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2048 	if (error != 0) {
2049 		m_freem(m1);
2050 
2051 		/* Try to reload the old mbuf. */
2052 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2053 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2054 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2055 		if (error != 0) {
2056 			panic("%s: could not load old RX mbuf",
2057 			    device_xname(sc->sc_dev));
2058 		}
2059 		/* Physical address may have changed. */
2060 		ring->desc[ring->cur] =
2061 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2062 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2063 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2064 		    BUS_DMASYNC_PREWRITE);
2065 		ifp->if_ierrors++;
2066 		return;
2067 	}
2068 
2069 	m = data->m;
2070 	data->m = m1;
2071 	/* Update RX descriptor. */
2072 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2073 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2074 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2075 	    BUS_DMASYNC_PREWRITE);
2076 
2077 	/* Finalize mbuf. */
2078 	m_set_rcvif(m, ifp);
2079 	m->m_data = head;
2080 	m->m_pkthdr.len = m->m_len = len;
2081 
2082 	/* Grab a reference to the source node. */
2083 	wh = mtod(m, struct ieee80211_frame *);
2084 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2085 
2086 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2087 	/* NetBSD does decryption in ieee80211_input. */
2088 
2089 	rssi = ops->get_rssi(stat);
2090 
2091 	/* XXX Added for NetBSD: scans never stop without it */
2092 	if (ic->ic_state == IEEE80211_S_SCAN)
2093 		iwn_fix_channel(ic, m, stat);
2094 
2095 	if (sc->sc_drvbpf != NULL) {
2096 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2097 
2098 		tap->wr_flags = 0;
2099 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2100 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2101 		tap->wr_chan_freq =
2102 		    htole16(ic->ic_channels[stat->chan].ic_freq);
2103 		tap->wr_chan_flags =
2104 		    htole16(ic->ic_channels[stat->chan].ic_flags);
2105 		tap->wr_dbm_antsignal = (int8_t)rssi;
2106 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2107 		tap->wr_tsft = stat->tstamp;
2108 		switch (stat->rate) {
2109 		/* CCK rates. */
2110 		case  10: tap->wr_rate =   2; break;
2111 		case  20: tap->wr_rate =   4; break;
2112 		case  55: tap->wr_rate =  11; break;
2113 		case 110: tap->wr_rate =  22; break;
2114 		/* OFDM rates. */
2115 		case 0xd: tap->wr_rate =  12; break;
2116 		case 0xf: tap->wr_rate =  18; break;
2117 		case 0x5: tap->wr_rate =  24; break;
2118 		case 0x7: tap->wr_rate =  36; break;
2119 		case 0x9: tap->wr_rate =  48; break;
2120 		case 0xb: tap->wr_rate =  72; break;
2121 		case 0x1: tap->wr_rate =  96; break;
2122 		case 0x3: tap->wr_rate = 108; break;
2123 		/* Unknown rate: should not happen. */
2124 		default:  tap->wr_rate =   0;
2125 		}
2126 
2127 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2128 	}
2129 
2130 	/* Send the frame to the 802.11 layer. */
2131 	ieee80211_input(ic, m, ni, rssi, 0);
2132 
2133 	/* Node is no longer needed. */
2134 	ieee80211_free_node(ni);
2135 }
2136 
2137 #ifndef IEEE80211_NO_HT
2138 /* Process an incoming Compressed BlockAck. */
2139 static void
iwn_rx_compressed_ba(struct iwn_softc * sc,struct iwn_rx_desc * desc,struct iwn_rx_data * data)2140 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2141     struct iwn_rx_data *data)
2142 {
2143 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2144 	struct iwn_tx_ring *txq;
2145 
2146 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2147 	    BUS_DMASYNC_POSTREAD);
2148 
2149 	txq = &sc->txq[le16toh(ba->qid)];
2150 	/* XXX TBD */
2151 }
2152 #endif
2153 
2154 /*
2155  * Process a CALIBRATION_RESULT notification sent by the initialization
2156  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2157  */
2158 static void
iwn5000_rx_calib_results(struct iwn_softc * sc,struct iwn_rx_desc * desc,struct iwn_rx_data * data)2159 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2160     struct iwn_rx_data *data)
2161 {
2162 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2163 	int len, idx = -1;
2164 
2165 	/* Runtime firmware should not send such a notification. */
2166 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2167 		return;
2168 
2169 	len = (le32toh(desc->len) & 0x3fff) - 4;
2170 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2171 	    BUS_DMASYNC_POSTREAD);
2172 
2173 	switch (calib->code) {
2174 	case IWN5000_PHY_CALIB_DC:
2175 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2176 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2177 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2178 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
2179 		    sc->hw_type == IWN_HW_REV_TYPE_105)
2180 			idx = 0;
2181 		break;
2182 	case IWN5000_PHY_CALIB_LO:
2183 		idx = 1;
2184 		break;
2185 	case IWN5000_PHY_CALIB_TX_IQ:
2186 		idx = 2;
2187 		break;
2188 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2189 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2190 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2191 			idx = 3;
2192 		break;
2193 	case IWN5000_PHY_CALIB_BASE_BAND:
2194 		idx = 4;
2195 		break;
2196 	}
2197 	if (idx == -1)	/* Ignore other results. */
2198 		return;
2199 
2200 	/* Save calibration result. */
2201 	if (sc->calibcmd[idx].buf != NULL)
2202 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2203 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2204 	if (sc->calibcmd[idx].buf == NULL) {
2205 		DPRINTF(("not enough memory for calibration result %d\n",
2206 		    calib->code));
2207 		return;
2208 	}
2209 	DPRINTF(("saving calibration result code=%d len=%d\n",
2210 	    calib->code, len));
2211 	sc->calibcmd[idx].len = len;
2212 	memcpy(sc->calibcmd[idx].buf, calib, len);
2213 }
2214 
2215 /*
2216  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2217  * The latter is sent by the firmware after each received beacon.
2218  */
2219 static void
iwn_rx_statistics(struct iwn_softc * sc,struct iwn_rx_desc * desc,struct iwn_rx_data * data)2220 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2221     struct iwn_rx_data *data)
2222 {
2223 	struct iwn_ops *ops = &sc->ops;
2224 	struct ieee80211com *ic = &sc->sc_ic;
2225 	struct iwn_calib_state *calib = &sc->calib;
2226 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2227 	int temp;
2228 
2229 	/* Ignore statistics received during a scan. */
2230 	if (ic->ic_state != IEEE80211_S_RUN)
2231 		return;
2232 
2233 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2234 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2235 
2236 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2237 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2238 
2239 	/* Test if temperature has changed. */
2240 	if (stats->general.temp != sc->rawtemp) {
2241 		/* Convert "raw" temperature to degC. */
2242 		sc->rawtemp = stats->general.temp;
2243 		temp = ops->get_temperature(sc);
2244 		DPRINTFN(2, ("temperature=%dC\n", temp));
2245 
2246 		/* Update TX power if need be (4965AGN only). */
2247 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2248 			iwn4965_power_calibration(sc, temp);
2249 	}
2250 
2251 	if (desc->type != IWN_BEACON_STATISTICS)
2252 		return;	/* Reply to a statistics request. */
2253 
2254 	sc->noise = iwn_get_noise(&stats->rx.general);
2255 
2256 	/* Test that RSSI and noise are present in stats report. */
2257 	if (le32toh(stats->rx.general.flags) != 1) {
2258 		DPRINTF(("received statistics without RSSI\n"));
2259 		return;
2260 	}
2261 
2262 	/*
2263 	 * XXX Differential gain calibration makes the 6005 firmware
2264 	 * crap out, so skip it for now.  This effectively disables
2265 	 * sensitivity tuning as well.
2266 	 */
2267 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2268 		return;
2269 
2270 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2271 		iwn_collect_noise(sc, &stats->rx.general);
2272 	else if (calib->state == IWN_CALIB_STATE_RUN)
2273 		iwn_tune_sensitivity(sc, &stats->rx);
2274 }
2275 
2276 /*
2277  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2278  * and 5000 adapters have different incompatible TX status formats.
2279  */
2280 static void
iwn4965_tx_done(struct iwn_softc * sc,struct iwn_rx_desc * desc,struct iwn_rx_data * data)2281 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2282     struct iwn_rx_data *data)
2283 {
2284 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2285 
2286 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2287 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2288 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2289 }
2290 
2291 static void
iwn5000_tx_done(struct iwn_softc * sc,struct iwn_rx_desc * desc,struct iwn_rx_data * data)2292 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2293     struct iwn_rx_data *data)
2294 {
2295 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2296 
2297 #ifdef notyet
2298 	/* Reset TX scheduler slot. */
2299 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2300 #endif
2301 
2302 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2303 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2304 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2305 }
2306 
2307 /*
2308  * Adapter-independent backend for TX_DONE firmware notifications.
2309  */
2310 static void
iwn_tx_done(struct iwn_softc * sc,struct iwn_rx_desc * desc,int ackfailcnt,uint8_t status)2311 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2312     uint8_t status)
2313 {
2314 	struct ieee80211com *ic = &sc->sc_ic;
2315 	struct ifnet *ifp = ic->ic_ifp;
2316 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2317 	struct iwn_tx_data *data = &ring->data[desc->idx];
2318 	struct iwn_node *wn = (struct iwn_node *)data->ni;
2319 
2320 	/* Update rate control statistics. */
2321 	wn->amn.amn_txcnt++;
2322 	if (ackfailcnt > 0)
2323 		wn->amn.amn_retrycnt++;
2324 
2325 	if (status != 1 && status != 2)
2326 		ifp->if_oerrors++;
2327 	else
2328 		ifp->if_opackets++;
2329 
2330 	/* Unmap and free mbuf. */
2331 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2332 	    BUS_DMASYNC_POSTWRITE);
2333 	bus_dmamap_unload(sc->sc_dmat, data->map);
2334 	m_freem(data->m);
2335 	data->m = NULL;
2336 	ieee80211_free_node(data->ni);
2337 	data->ni = NULL;
2338 
2339 	sc->sc_tx_timer = 0;
2340 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2341 		sc->qfullmsk &= ~(1 << ring->qid);
2342 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2343 			ifp->if_flags &= ~IFF_OACTIVE;
2344 			(*ifp->if_start)(ifp);
2345 		}
2346 	}
2347 }
2348 
2349 /*
2350  * Process a "command done" firmware notification.  This is where we wakeup
2351  * processes waiting for a synchronous command completion.
2352  */
2353 static void
iwn_cmd_done(struct iwn_softc * sc,struct iwn_rx_desc * desc)2354 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2355 {
2356 	struct iwn_tx_ring *ring = &sc->txq[4];
2357 	struct iwn_tx_data *data;
2358 
2359 	if ((desc->qid & 0xf) != 4)
2360 		return;	/* Not a command ack. */
2361 
2362 	data = &ring->data[desc->idx];
2363 
2364 	/* If the command was mapped in an mbuf, free it. */
2365 	if (data->m != NULL) {
2366 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2367 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2368 		bus_dmamap_unload(sc->sc_dmat, data->map);
2369 		m_freem(data->m);
2370 		data->m = NULL;
2371 	}
2372 	wakeup(&ring->desc[desc->idx]);
2373 }
2374 
2375 /*
2376  * Process an INT_FH_RX or INT_SW_RX interrupt.
2377  */
2378 static void
iwn_notif_intr(struct iwn_softc * sc)2379 iwn_notif_intr(struct iwn_softc *sc)
2380 {
2381 	struct iwn_ops *ops = &sc->ops;
2382 	struct ieee80211com *ic = &sc->sc_ic;
2383 	struct ifnet *ifp = ic->ic_ifp;
2384 	uint16_t hw;
2385 
2386 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2387 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2388 
2389 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2390 	while (sc->rxq.cur != hw) {
2391 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2392 		struct iwn_rx_desc *desc;
2393 
2394 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2395 		    BUS_DMASYNC_POSTREAD);
2396 		desc = mtod(data->m, struct iwn_rx_desc *);
2397 
2398 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2399 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2400 
2401 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2402 			iwn_cmd_done(sc, desc);
2403 
2404 		switch (desc->type) {
2405 		case IWN_RX_PHY:
2406 			iwn_rx_phy(sc, desc, data);
2407 			break;
2408 
2409 		case IWN_RX_DONE:		/* 4965AGN only. */
2410 		case IWN_MPDU_RX_DONE:
2411 			/* An 802.11 frame has been received. */
2412 			iwn_rx_done(sc, desc, data);
2413 			break;
2414 #ifndef IEEE80211_NO_HT
2415 		case IWN_RX_COMPRESSED_BA:
2416 			/* A Compressed BlockAck has been received. */
2417 			iwn_rx_compressed_ba(sc, desc, data);
2418 			break;
2419 #endif
2420 		case IWN_TX_DONE:
2421 			/* An 802.11 frame has been transmitted. */
2422 			ops->tx_done(sc, desc, data);
2423 			break;
2424 
2425 		case IWN_RX_STATISTICS:
2426 		case IWN_BEACON_STATISTICS:
2427 			iwn_rx_statistics(sc, desc, data);
2428 			break;
2429 
2430 		case IWN_BEACON_MISSED:
2431 		{
2432 			struct iwn_beacon_missed *miss =
2433 			    (struct iwn_beacon_missed *)(desc + 1);
2434 
2435 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2436 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2437 			/*
2438 			 * If more than 5 consecutive beacons are missed,
2439 			 * reinitialize the sensitivity state machine.
2440 			 */
2441 			DPRINTF(("beacons missed %d/%d\n",
2442 			    le32toh(miss->consecutive), le32toh(miss->total)));
2443 			if (ic->ic_state == IEEE80211_S_RUN &&
2444 			    le32toh(miss->consecutive) > 5)
2445 				(void)iwn_init_sensitivity(sc);
2446 			break;
2447 		}
2448 		case IWN_UC_READY:
2449 		{
2450 			struct iwn_ucode_info *uc =
2451 			    (struct iwn_ucode_info *)(desc + 1);
2452 
2453 			/* The microcontroller is ready. */
2454 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2455 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2456 			DPRINTF(("microcode alive notification version=%d.%d "
2457 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2458 			    uc->subtype, le32toh(uc->valid)));
2459 
2460 			if (le32toh(uc->valid) != 1) {
2461 				aprint_error_dev(sc->sc_dev,
2462 				    "microcontroller initialization "
2463 				    "failed\n");
2464 				break;
2465 			}
2466 			if (uc->subtype == IWN_UCODE_INIT) {
2467 				/* Save microcontroller report. */
2468 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2469 			}
2470 			/* Save the address of the error log in SRAM. */
2471 			sc->errptr = le32toh(uc->errptr);
2472 			break;
2473 		}
2474 		case IWN_STATE_CHANGED:
2475 		{
2476 			uint32_t *status = (uint32_t *)(desc + 1);
2477 
2478 			/* Enabled/disabled notification. */
2479 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2480 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2481 			DPRINTF(("state changed to %x\n", le32toh(*status)));
2482 
2483 			if (le32toh(*status) & 1) {
2484 				/* The radio button has to be pushed. */
2485 				aprint_error_dev(sc->sc_dev,
2486 				    "Radio transmitter is off\n");
2487 				/* Turn the interface down. */
2488 				ifp->if_flags &= ~IFF_UP;
2489 				iwn_stop(ifp, 1);
2490 				return;	/* No further processing. */
2491 			}
2492 			break;
2493 		}
2494 		case IWN_START_SCAN:
2495 		{
2496 			struct iwn_start_scan *scan =
2497 			    (struct iwn_start_scan *)(desc + 1);
2498 
2499 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2500 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2501 			DPRINTFN(2, ("scanning channel %d status %x\n",
2502 			    scan->chan, le32toh(scan->status)));
2503 
2504 			/* Fix current channel. */
2505 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2506 			break;
2507 		}
2508 		case IWN_STOP_SCAN:
2509 		{
2510 			struct iwn_stop_scan *scan =
2511 			    (struct iwn_stop_scan *)(desc + 1);
2512 
2513 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2514 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2515 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2516 			    scan->nchan, scan->status, scan->chan));
2517 
2518 			if (scan->status == 1 && scan->chan <= 14 &&
2519 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2520 				/*
2521 				 * We just finished scanning 2GHz channels,
2522 				 * start scanning 5GHz ones.
2523 				 */
2524 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2525 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2526 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2527 					break;
2528 			}
2529 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2530 			ieee80211_end_scan(ic);
2531 			break;
2532 		}
2533 		case IWN5000_CALIBRATION_RESULT:
2534 			iwn5000_rx_calib_results(sc, desc, data);
2535 			break;
2536 
2537 		case IWN5000_CALIBRATION_DONE:
2538 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2539 			wakeup(sc);
2540 			break;
2541 		}
2542 
2543 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2544 	}
2545 
2546 	/* Tell the firmware what we have processed. */
2547 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2548 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2549 }
2550 
2551 /*
2552  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2553  * from power-down sleep mode.
2554  */
2555 static void
iwn_wakeup_intr(struct iwn_softc * sc)2556 iwn_wakeup_intr(struct iwn_softc *sc)
2557 {
2558 	int qid;
2559 
2560 	DPRINTF(("ucode wakeup from power-down sleep\n"));
2561 
2562 	/* Wakeup RX and TX rings. */
2563 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2564 	for (qid = 0; qid < sc->ntxqs; qid++) {
2565 		struct iwn_tx_ring *ring = &sc->txq[qid];
2566 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2567 	}
2568 }
2569 
2570 /*
2571  * Dump the error log of the firmware when a firmware panic occurs.  Although
2572  * we can't debug the firmware because it is neither open source nor free, it
2573  * can help us to identify certain classes of problems.
2574  */
2575 static void
iwn_fatal_intr(struct iwn_softc * sc)2576 iwn_fatal_intr(struct iwn_softc *sc)
2577 {
2578 	struct iwn_fw_dump dump;
2579 	int i;
2580 
2581 	/* Force a complete recalibration on next init. */
2582 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2583 
2584 	/* Check that the error log address is valid. */
2585 	if (sc->errptr < IWN_FW_DATA_BASE ||
2586 	    sc->errptr + sizeof (dump) >
2587 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2588 		aprint_error_dev(sc->sc_dev,
2589 		    "bad firmware error log address 0x%08x\n", sc->errptr);
2590 		return;
2591 	}
2592 	if (iwn_nic_lock(sc) != 0) {
2593 		aprint_error_dev(sc->sc_dev,
2594 		    "could not read firmware error log\n");
2595 		return;
2596 	}
2597 	/* Read firmware error log from SRAM. */
2598 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2599 	    sizeof (dump) / sizeof (uint32_t));
2600 	iwn_nic_unlock(sc);
2601 
2602 	if (dump.valid == 0) {
2603 		aprint_error_dev(sc->sc_dev,
2604 		    "firmware error log is empty\n");
2605 		return;
2606 	}
2607 	aprint_error("firmware error log:\n");
2608 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2609 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2610 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2611 	    dump.id);
2612 	aprint_error("  program counter = 0x%08X\n", dump.pc);
2613 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2614 	aprint_error("  error data      = 0x%08X%08X\n",
2615 	    dump.error_data[0], dump.error_data[1]);
2616 	aprint_error("  branch link     = 0x%08X%08X\n",
2617 	    dump.branch_link[0], dump.branch_link[1]);
2618 	aprint_error("  interrupt link  = 0x%08X%08X\n",
2619 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2620 	aprint_error("  time            = %u\n", dump.time[0]);
2621 
2622 	/* Dump driver status (TX and RX rings) while we're here. */
2623 	aprint_error("driver status:\n");
2624 	for (i = 0; i < sc->ntxqs; i++) {
2625 		struct iwn_tx_ring *ring = &sc->txq[i];
2626 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2627 		    i, ring->qid, ring->cur, ring->queued);
2628 	}
2629 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2630 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2631 }
2632 
2633 static int
iwn_intr(void * arg)2634 iwn_intr(void *arg)
2635 {
2636 	struct iwn_softc *sc = arg;
2637 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2638 	uint32_t r1, r2, tmp;
2639 
2640 	/* Disable interrupts. */
2641 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2642 
2643 	/* Read interrupts from ICT (fast) or from registers (slow). */
2644 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2645 		tmp = 0;
2646 		while (sc->ict[sc->ict_cur] != 0) {
2647 			tmp |= sc->ict[sc->ict_cur];
2648 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2649 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2650 		}
2651 		tmp = le32toh(tmp);
2652 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2653 			tmp = 0;
2654 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2655 			tmp |= 0x8000;
2656 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2657 		r2 = 0;	/* Unused. */
2658 	} else {
2659 		r1 = IWN_READ(sc, IWN_INT);
2660 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2661 			return 0;	/* Hardware gone! */
2662 		r2 = IWN_READ(sc, IWN_FH_INT);
2663 	}
2664 	if (r1 == 0 && r2 == 0) {
2665 		if (ifp->if_flags & IFF_UP)
2666 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2667 		return 0;	/* Interrupt not for us. */
2668 	}
2669 
2670 	/* Acknowledge interrupts. */
2671 	IWN_WRITE(sc, IWN_INT, r1);
2672 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2673 		IWN_WRITE(sc, IWN_FH_INT, r2);
2674 
2675 	if (r1 & IWN_INT_RF_TOGGLED) {
2676 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2677 		aprint_error_dev(sc->sc_dev,
2678 		    "RF switch: radio %s\n",
2679 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2680 	}
2681 	if (r1 & IWN_INT_CT_REACHED) {
2682 		aprint_error_dev(sc->sc_dev,
2683 		    "critical temperature reached!\n");
2684 	}
2685 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2686 		aprint_error_dev(sc->sc_dev,
2687 		    "fatal firmware error\n");
2688 		/* Dump firmware error log and stop. */
2689 		iwn_fatal_intr(sc);
2690 		ifp->if_flags &= ~IFF_UP;
2691 		iwn_stop(ifp, 1);
2692 		return 1;
2693 	}
2694 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2695 	    (r2 & IWN_FH_INT_RX)) {
2696 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2697 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2698 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2699 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2700 			    IWN_INT_PERIODIC_DIS);
2701 			iwn_notif_intr(sc);
2702 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2703 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2704 				    IWN_INT_PERIODIC_ENA);
2705 			}
2706 		} else
2707 			iwn_notif_intr(sc);
2708 	}
2709 
2710 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2711 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2712 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2713 		wakeup(sc);	/* FH DMA transfer completed. */
2714 	}
2715 
2716 	if (r1 & IWN_INT_ALIVE)
2717 		wakeup(sc);	/* Firmware is alive. */
2718 
2719 	if (r1 & IWN_INT_WAKEUP)
2720 		iwn_wakeup_intr(sc);
2721 
2722 	/* Re-enable interrupts. */
2723 	if (ifp->if_flags & IFF_UP)
2724 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2725 
2726 	return 1;
2727 }
2728 
2729 /*
2730  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2731  * 5000 adapters use a slightly different format).
2732  */
2733 static void
iwn4965_update_sched(struct iwn_softc * sc,int qid,int idx,uint8_t id,uint16_t len)2734 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2735     uint16_t len)
2736 {
2737 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2738 
2739 	*w = htole16(len + 8);
2740 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2741 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2742 	    sizeof (uint16_t),
2743 	    BUS_DMASYNC_PREWRITE);
2744 	if (idx < IWN_SCHED_WINSZ) {
2745 		*(w + IWN_TX_RING_COUNT) = *w;
2746 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2747 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2748 		    (char *)(void *)sc->sched_dma.vaddr,
2749 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2750 	}
2751 }
2752 
2753 static void
iwn5000_update_sched(struct iwn_softc * sc,int qid,int idx,uint8_t id,uint16_t len)2754 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2755     uint16_t len)
2756 {
2757 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2758 
2759 	*w = htole16(id << 12 | (len + 8));
2760 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2761 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2762 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2763 	if (idx < IWN_SCHED_WINSZ) {
2764 		*(w + IWN_TX_RING_COUNT) = *w;
2765 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2766 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2767 		    (char *)(void *)sc->sched_dma.vaddr,
2768 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2769 	}
2770 }
2771 
2772 #ifdef notyet
2773 static void
iwn5000_reset_sched(struct iwn_softc * sc,int qid,int idx)2774 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2775 {
2776 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2777 
2778 	*w = (*w & htole16(0xf000)) | htole16(1);
2779 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2780 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2781 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2782 	if (idx < IWN_SCHED_WINSZ) {
2783 		*(w + IWN_TX_RING_COUNT) = *w;
2784 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2785 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2786 		    (char *)(void *)sc->sched_dma.vaddr,
2787 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2788 	}
2789 }
2790 #endif
2791 
2792 static int
iwn_tx(struct iwn_softc * sc,struct mbuf * m,struct ieee80211_node * ni,int ac)2793 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2794 {
2795 	struct ieee80211com *ic = &sc->sc_ic;
2796 	struct iwn_node *wn = (void *)ni;
2797 	struct iwn_tx_ring *ring;
2798 	struct iwn_tx_desc *desc;
2799 	struct iwn_tx_data *data;
2800 	struct iwn_tx_cmd *cmd;
2801 	struct iwn_cmd_data *tx;
2802 	const struct iwn_rate *rinfo;
2803 	struct ieee80211_frame *wh;
2804 	struct ieee80211_key *k = NULL;
2805 	struct mbuf *m1;
2806 	uint32_t flags;
2807 	u_int hdrlen;
2808 	bus_dma_segment_t *seg;
2809 	uint8_t tid, ridx, txant, type;
2810 	int i, totlen, error, pad;
2811 
2812 	const struct chanAccParams *cap;
2813 	int noack;
2814 	int hdrlen2;
2815 
2816 	wh = mtod(m, struct ieee80211_frame *);
2817 	hdrlen = ieee80211_anyhdrsize(wh);
2818 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2819 
2820 	hdrlen2 = (ieee80211_has_qos(wh)) ?
2821 	    sizeof (struct ieee80211_qosframe) :
2822 	    sizeof (struct ieee80211_frame);
2823 
2824 	if (hdrlen != hdrlen2)
2825 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2826 		hdrlen, hdrlen2);
2827 
2828 	/* XXX OpenBSD sets a different tid when using QOS */
2829 	tid = 0;
2830 	if (ieee80211_has_qos(wh)) {
2831 		cap = &ic->ic_wme.wme_chanParams;
2832 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2833 	}
2834 	else
2835 		noack = 0;
2836 
2837 	ring = &sc->txq[ac];
2838 	desc = &ring->desc[ring->cur];
2839 	data = &ring->data[ring->cur];
2840 
2841 	/* Choose a TX rate index. */
2842 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2843 	    type != IEEE80211_FC0_TYPE_DATA) {
2844 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2845 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2846 	} else if (ic->ic_fixed_rate != -1) {
2847 		ridx = sc->fixed_ridx;
2848 	} else
2849 		ridx = wn->ridx[ni->ni_txrate];
2850 	rinfo = &iwn_rates[ridx];
2851 
2852 	/* Encrypt the frame if need be. */
2853 	/*
2854 	 * XXX For now, NetBSD swaps the encryption and bpf sections
2855 	 * in order to match old code and other drivers. Tests with
2856 	 * tcpdump indicates that the order is irrelevant, however,
2857 	 * as bpf produces unencrypted data for both ordering choices.
2858 	 */
2859 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2860 		k = ieee80211_crypto_encap(ic, ni, m);
2861 		if (k == NULL) {
2862 			m_freem(m);
2863 			return ENOBUFS;
2864 		}
2865 		/* Packet header may have moved, reset our local pointer. */
2866 		wh = mtod(m, struct ieee80211_frame *);
2867 	}
2868 	totlen = m->m_pkthdr.len;
2869 
2870 	if (sc->sc_drvbpf != NULL) {
2871 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2872 
2873 		tap->wt_flags = 0;
2874 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2875 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2876 		tap->wt_rate = rinfo->rate;
2877 		tap->wt_hwqueue = ac;
2878 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2879 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2880 
2881 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2882 	}
2883 
2884 	/* Prepare TX firmware command. */
2885 	cmd = &ring->cmd[ring->cur];
2886 	cmd->code = IWN_CMD_TX_DATA;
2887 	cmd->flags = 0;
2888 	cmd->qid = ring->qid;
2889 	cmd->idx = ring->cur;
2890 
2891 	tx = (struct iwn_cmd_data *)cmd->data;
2892 	/* NB: No need to clear tx, all fields are reinitialized here. */
2893 	tx->scratch = 0;	/* clear "scratch" area */
2894 
2895 	flags = 0;
2896 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2897 		/* Unicast frame, check if an ACK is expected. */
2898 		if (!noack)
2899 			flags |= IWN_TX_NEED_ACK;
2900 	}
2901 
2902 #ifdef notyet
2903 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2904 	if ((wh->i_fc[0] &
2905 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2906 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2907 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2908 #endif
2909 
2910 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2911 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2912 
2913 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2914 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2915 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2916 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2917 			flags |= IWN_TX_NEED_RTS;
2918 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2919 		    ridx >= IWN_RIDX_OFDM6) {
2920 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2921 				flags |= IWN_TX_NEED_CTS;
2922 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2923 				flags |= IWN_TX_NEED_RTS;
2924 		}
2925 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2926 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2927 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2928 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2929 				flags |= IWN_TX_NEED_PROTECTION;
2930 			} else
2931 				flags |= IWN_TX_FULL_TXOP;
2932 		}
2933 	}
2934 
2935 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2936 	    type != IEEE80211_FC0_TYPE_DATA)
2937 		tx->id = sc->broadcast_id;
2938 	else
2939 		tx->id = wn->id;
2940 
2941 	if (type == IEEE80211_FC0_TYPE_MGT) {
2942 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2943 
2944 #ifndef IEEE80211_STA_ONLY
2945 		/* Tell HW to set timestamp in probe responses. */
2946 		/* XXX NetBSD rev 1.11 added probe requests here but */
2947 		/* probe requests do not take timestamps (from Bergamini). */
2948 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2949 			flags |= IWN_TX_INSERT_TSTAMP;
2950 #endif
2951 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2952 		/* changes here. These are not needed (from Bergamini). */
2953 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2954 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2955 			tx->timeout = htole16(3);
2956 		else
2957 			tx->timeout = htole16(2);
2958 	} else
2959 		tx->timeout = htole16(0);
2960 
2961 	if (hdrlen & 3) {
2962 		/* First segment length must be a multiple of 4. */
2963 		flags |= IWN_TX_NEED_PADDING;
2964 		pad = 4 - (hdrlen & 3);
2965 	} else
2966 		pad = 0;
2967 
2968 	tx->len = htole16(totlen);
2969 	tx->tid = tid;
2970 	tx->rts_ntries = 60;
2971 	tx->data_ntries = 15;
2972 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2973 	tx->plcp = rinfo->plcp;
2974 	tx->rflags = rinfo->flags;
2975 	if (tx->id == sc->broadcast_id) {
2976 		/* Group or management frame. */
2977 		tx->linkq = 0;
2978 		/* XXX Alternate between antenna A and B? */
2979 		txant = IWN_LSB(sc->txchainmask);
2980 		tx->rflags |= IWN_RFLAG_ANT(txant);
2981 	} else {
2982 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2983 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2984 	}
2985 	/* Set physical address of "scratch area". */
2986 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2987 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2988 
2989 	/* Copy 802.11 header in TX command. */
2990 	/* XXX NetBSD changed this in rev 1.20 */
2991 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2992 
2993 	/* Trim 802.11 header. */
2994 	m_adj(m, hdrlen);
2995 	tx->security = 0;
2996 	tx->flags = htole32(flags);
2997 
2998 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2999 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3000 	if (error != 0) {
3001 		if (error != EFBIG) {
3002 			aprint_error_dev(sc->sc_dev,
3003 			    "can't map mbuf (error %d)\n", error);
3004 			m_freem(m);
3005 			return error;
3006 		}
3007 		/* Too many DMA segments, linearize mbuf. */
3008 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
3009 		if (m1 == NULL) {
3010 			m_freem(m);
3011 			return ENOBUFS;
3012 		}
3013 		if (m->m_pkthdr.len > MHLEN) {
3014 			MCLGET(m1, M_DONTWAIT);
3015 			if (!(m1->m_flags & M_EXT)) {
3016 				m_freem(m);
3017 				m_freem(m1);
3018 				return ENOBUFS;
3019 			}
3020 		}
3021 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3022 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3023 		m_freem(m);
3024 		m = m1;
3025 
3026 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3027 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3028 		if (error != 0) {
3029 			aprint_error_dev(sc->sc_dev,
3030 			    "can't map mbuf (error %d)\n", error);
3031 			m_freem(m);
3032 			return error;
3033 		}
3034 	}
3035 
3036 	data->m = m;
3037 	data->ni = ni;
3038 
3039 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3040 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3041 
3042 	/* Fill TX descriptor. */
3043 	desc->nsegs = 1 + data->map->dm_nsegs;
3044 	/* First DMA segment is used by the TX command. */
3045 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3046 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3047 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3048 	/* Other DMA segments are for data payload. */
3049 	seg = data->map->dm_segs;
3050 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3051 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3052 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3053 		    seg->ds_len << 4);
3054 		seg++;
3055 	}
3056 
3057 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3058 	    BUS_DMASYNC_PREWRITE);
3059 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3060 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3061 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3062 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3063 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3064 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3065 
3066 #ifdef notyet
3067 	/* Update TX scheduler. */
3068 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3069 #endif
3070 
3071 	/* Kick TX ring. */
3072 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3073 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3074 
3075 	/* Mark TX ring as full if we reach a certain threshold. */
3076 	if (++ring->queued > IWN_TX_RING_HIMARK)
3077 		sc->qfullmsk |= 1 << ring->qid;
3078 
3079 	return 0;
3080 }
3081 
3082 static void
iwn_start(struct ifnet * ifp)3083 iwn_start(struct ifnet *ifp)
3084 {
3085 	struct iwn_softc *sc = ifp->if_softc;
3086 	struct ieee80211com *ic = &sc->sc_ic;
3087 	struct ieee80211_node *ni;
3088 	struct ether_header *eh;
3089 	struct mbuf *m;
3090 	int ac;
3091 
3092 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3093 		return;
3094 
3095 	for (;;) {
3096 		if (sc->qfullmsk != 0) {
3097 			ifp->if_flags |= IFF_OACTIVE;
3098 			break;
3099 		}
3100 		/* Send pending management frames first. */
3101 		IF_DEQUEUE(&ic->ic_mgtq, m);
3102 		if (m != NULL) {
3103 			ni = M_GETCTX(m, struct ieee80211_node *);
3104 			ac = 0;
3105 			goto sendit;
3106 		}
3107 		if (ic->ic_state != IEEE80211_S_RUN)
3108 			break;
3109 
3110 		/* Encapsulate and send data frames. */
3111 		IFQ_DEQUEUE(&ifp->if_snd, m);
3112 		if (m == NULL)
3113 			break;
3114 		if (m->m_len < sizeof (*eh) &&
3115 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3116 			ifp->if_oerrors++;
3117 			continue;
3118 		}
3119 		eh = mtod(m, struct ether_header *);
3120 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3121 		if (ni == NULL) {
3122 			m_freem(m);
3123 			ifp->if_oerrors++;
3124 			continue;
3125 		}
3126 		/* classify mbuf so we can find which tx ring to use */
3127 		if (ieee80211_classify(ic, m, ni) != 0) {
3128 			m_freem(m);
3129 			ieee80211_free_node(ni);
3130 			ifp->if_oerrors++;
3131 			continue;
3132 		}
3133 
3134 		/* No QoS encapsulation for EAPOL frames. */
3135 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3136 		    M_WME_GETAC(m) : WME_AC_BE;
3137 
3138 		bpf_mtap(ifp, m);
3139 
3140 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3141 			ieee80211_free_node(ni);
3142 			ifp->if_oerrors++;
3143 			continue;
3144 		}
3145 sendit:
3146 		bpf_mtap3(ic->ic_rawbpf, m);
3147 
3148 		if (iwn_tx(sc, m, ni, ac) != 0) {
3149 			ieee80211_free_node(ni);
3150 			ifp->if_oerrors++;
3151 			continue;
3152 		}
3153 
3154 		sc->sc_tx_timer = 5;
3155 		ifp->if_timer = 1;
3156 	}
3157 }
3158 
3159 static void
iwn_watchdog(struct ifnet * ifp)3160 iwn_watchdog(struct ifnet *ifp)
3161 {
3162 	struct iwn_softc *sc = ifp->if_softc;
3163 
3164 	ifp->if_timer = 0;
3165 
3166 	if (sc->sc_tx_timer > 0) {
3167 		if (--sc->sc_tx_timer == 0) {
3168 			aprint_error_dev(sc->sc_dev,
3169 			    "device timeout\n");
3170 			ifp->if_flags &= ~IFF_UP;
3171 			iwn_stop(ifp, 1);
3172 			ifp->if_oerrors++;
3173 			return;
3174 		}
3175 		ifp->if_timer = 1;
3176 	}
3177 
3178 	ieee80211_watchdog(&sc->sc_ic);
3179 }
3180 
3181 static int
iwn_ioctl(struct ifnet * ifp,u_long cmd,void * data)3182 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3183 {
3184 	struct iwn_softc *sc = ifp->if_softc;
3185 	struct ieee80211com *ic = &sc->sc_ic;
3186 	const struct sockaddr *sa;
3187 	int s, error = 0;
3188 
3189 	s = splnet();
3190 
3191 	switch (cmd) {
3192 	case SIOCSIFADDR:
3193 		ifp->if_flags |= IFF_UP;
3194 		/* FALLTHROUGH */
3195 	case SIOCSIFFLAGS:
3196 		/* XXX Added as it is in every NetBSD driver */
3197 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3198 			break;
3199 		if (ifp->if_flags & IFF_UP) {
3200 			if (!(ifp->if_flags & IFF_RUNNING))
3201 				error = iwn_init(ifp);
3202 		} else {
3203 			if (ifp->if_flags & IFF_RUNNING)
3204 				iwn_stop(ifp, 1);
3205 		}
3206 		break;
3207 
3208 	case SIOCADDMULTI:
3209 	case SIOCDELMULTI:
3210 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3211 		error = (cmd == SIOCADDMULTI) ?
3212 		    ether_addmulti(sa, &sc->sc_ec) :
3213 		    ether_delmulti(sa, &sc->sc_ec);
3214 
3215 		if (error == ENETRESET)
3216 			error = 0;
3217 		break;
3218 
3219 	default:
3220 		error = ieee80211_ioctl(ic, cmd, data);
3221 	}
3222 
3223 	if (error == ENETRESET) {
3224 		error = 0;
3225 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3226 		    (IFF_UP | IFF_RUNNING)) {
3227 			iwn_stop(ifp, 0);
3228 			error = iwn_init(ifp);
3229 		}
3230 	}
3231 
3232 	splx(s);
3233 	return error;
3234 }
3235 
3236 /*
3237  * Send a command to the firmware.
3238  */
3239 static int
iwn_cmd(struct iwn_softc * sc,int code,const void * buf,int size,int async)3240 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3241 {
3242 	struct iwn_tx_ring *ring = &sc->txq[4];
3243 	struct iwn_tx_desc *desc;
3244 	struct iwn_tx_data *data;
3245 	struct iwn_tx_cmd *cmd;
3246 	struct mbuf *m;
3247 	bus_addr_t paddr;
3248 	int totlen, error;
3249 
3250 	desc = &ring->desc[ring->cur];
3251 	data = &ring->data[ring->cur];
3252 	totlen = 4 + size;
3253 
3254 	if (size > sizeof cmd->data) {
3255 		/* Command is too large to fit in a descriptor. */
3256 		if (totlen > MCLBYTES)
3257 			return EINVAL;
3258 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3259 		if (m == NULL)
3260 			return ENOMEM;
3261 		if (totlen > MHLEN) {
3262 			MCLGET(m, M_DONTWAIT);
3263 			if (!(m->m_flags & M_EXT)) {
3264 				m_freem(m);
3265 				return ENOMEM;
3266 			}
3267 		}
3268 		cmd = mtod(m, struct iwn_tx_cmd *);
3269 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3270 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3271 		if (error != 0) {
3272 			m_freem(m);
3273 			return error;
3274 		}
3275 		data->m = m;
3276 		paddr = data->map->dm_segs[0].ds_addr;
3277 	} else {
3278 		cmd = &ring->cmd[ring->cur];
3279 		paddr = data->cmd_paddr;
3280 	}
3281 
3282 	cmd->code = code;
3283 	cmd->flags = 0;
3284 	cmd->qid = ring->qid;
3285 	cmd->idx = ring->cur;
3286 	memcpy(cmd->data, buf, size);
3287 
3288 	desc->nsegs = 1;
3289 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3290 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3291 
3292 	if (size > sizeof cmd->data) {
3293 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3294 		    BUS_DMASYNC_PREWRITE);
3295 	} else {
3296 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3297 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3298 		    totlen, BUS_DMASYNC_PREWRITE);
3299 	}
3300 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3301 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3302 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3303 
3304 #ifdef notyet
3305 	/* Update TX scheduler. */
3306 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3307 #endif
3308 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3309 
3310 	/* Kick command ring. */
3311 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3312 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3313 
3314 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3315 }
3316 
3317 static int
iwn4965_add_node(struct iwn_softc * sc,struct iwn_node_info * node,int async)3318 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3319 {
3320 	struct iwn4965_node_info hnode;
3321 	char *src, *dst;
3322 
3323 	/*
3324 	 * We use the node structure for 5000 Series internally (it is
3325 	 * a superset of the one for 4965AGN). We thus copy the common
3326 	 * fields before sending the command.
3327 	 */
3328 	src = (char *)node;
3329 	dst = (char *)&hnode;
3330 	memcpy(dst, src, 48);
3331 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3332 	memcpy(dst + 48, src + 72, 20);
3333 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3334 }
3335 
3336 static int
iwn5000_add_node(struct iwn_softc * sc,struct iwn_node_info * node,int async)3337 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3338 {
3339 	/* Direct mapping. */
3340 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3341 }
3342 
3343 static int
iwn_set_link_quality(struct iwn_softc * sc,struct ieee80211_node * ni)3344 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3345 {
3346 	struct iwn_node *wn = (void *)ni;
3347 	struct ieee80211_rateset *rs = &ni->ni_rates;
3348 	struct iwn_cmd_link_quality linkq;
3349 	const struct iwn_rate *rinfo;
3350 	uint8_t txant;
3351 	int i, txrate;
3352 
3353 	/* Use the first valid TX antenna. */
3354 	txant = IWN_LSB(sc->txchainmask);
3355 
3356 	memset(&linkq, 0, sizeof linkq);
3357 	linkq.id = wn->id;
3358 	linkq.antmsk_1stream = txant;
3359 	linkq.antmsk_2stream = IWN_ANT_AB;
3360 	linkq.ampdu_max = 31;
3361 	linkq.ampdu_threshold = 3;
3362 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3363 
3364 	/* Start at highest available bit-rate. */
3365 	txrate = rs->rs_nrates - 1;
3366 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3367 		rinfo = &iwn_rates[wn->ridx[txrate]];
3368 		linkq.retry[i].plcp = rinfo->plcp;
3369 		linkq.retry[i].rflags = rinfo->flags;
3370 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3371 		/* Next retry at immediate lower bit-rate. */
3372 		if (txrate > 0)
3373 			txrate--;
3374 	}
3375 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3376 }
3377 
3378 /*
3379  * Broadcast node is used to send group-addressed and management frames.
3380  */
3381 static int
iwn_add_broadcast_node(struct iwn_softc * sc,int async)3382 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3383 {
3384 	struct iwn_ops *ops = &sc->ops;
3385 	struct iwn_node_info node;
3386 	struct iwn_cmd_link_quality linkq;
3387 	const struct iwn_rate *rinfo;
3388 	uint8_t txant;
3389 	int i, error;
3390 
3391 	memset(&node, 0, sizeof node);
3392 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3393 	node.id = sc->broadcast_id;
3394 	DPRINTF(("adding broadcast node\n"));
3395 	if ((error = ops->add_node(sc, &node, async)) != 0)
3396 		return error;
3397 
3398 	/* Use the first valid TX antenna. */
3399 	txant = IWN_LSB(sc->txchainmask);
3400 
3401 	memset(&linkq, 0, sizeof linkq);
3402 	linkq.id = sc->broadcast_id;
3403 	linkq.antmsk_1stream = txant;
3404 	linkq.antmsk_2stream = IWN_ANT_AB;
3405 	linkq.ampdu_max = 64;
3406 	linkq.ampdu_threshold = 3;
3407 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3408 
3409 	/* Use lowest mandatory bit-rate. */
3410 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3411 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3412 	linkq.retry[0].plcp = rinfo->plcp;
3413 	linkq.retry[0].rflags = rinfo->flags;
3414 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3415 	/* Use same bit-rate for all TX retries. */
3416 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3417 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3418 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3419 	}
3420 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3421 }
3422 
3423 static void
iwn_set_led(struct iwn_softc * sc,uint8_t which,uint8_t off,uint8_t on)3424 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3425 {
3426 	struct iwn_cmd_led led;
3427 
3428 	/* Clear microcode LED ownership. */
3429 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3430 
3431 	led.which = which;
3432 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3433 	led.off = off;
3434 	led.on = on;
3435 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3436 }
3437 
3438 /*
3439  * Set the critical temperature at which the firmware will stop the radio
3440  * and notify us.
3441  */
3442 static int
iwn_set_critical_temp(struct iwn_softc * sc)3443 iwn_set_critical_temp(struct iwn_softc *sc)
3444 {
3445 	struct iwn_critical_temp crit;
3446 	int32_t temp;
3447 
3448 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3449 
3450 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3451 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3452 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3453 		temp = IWN_CTOK(110);
3454 	else
3455 		temp = 110;
3456 	memset(&crit, 0, sizeof crit);
3457 	crit.tempR = htole32(temp);
3458 	DPRINTF(("setting critical temperature to %d\n", temp));
3459 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3460 }
3461 
3462 static int
iwn_set_timing(struct iwn_softc * sc,struct ieee80211_node * ni)3463 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3464 {
3465 	struct iwn_cmd_timing cmd;
3466 	uint64_t val, mod;
3467 
3468 	memset(&cmd, 0, sizeof cmd);
3469 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3470 	cmd.bintval = htole16(ni->ni_intval);
3471 	cmd.lintval = htole16(10);
3472 
3473 	/* Compute remaining time until next beacon. */
3474 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3475 	mod = le64toh(cmd.tstamp) % val;
3476 	cmd.binitval = htole32((uint32_t)(val - mod));
3477 
3478 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3479 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3480 
3481 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3482 }
3483 
3484 static void
iwn4965_power_calibration(struct iwn_softc * sc,int temp)3485 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3486 {
3487 	/* Adjust TX power if need be (delta >= 3 degC). */
3488 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3489 	if (abs(temp - sc->temp) >= 3) {
3490 		/* Record temperature of last calibration. */
3491 		sc->temp = temp;
3492 		(void)iwn4965_set_txpower(sc, 1);
3493 	}
3494 }
3495 
3496 /*
3497  * Set TX power for current channel (each rate has its own power settings).
3498  * This function takes into account the regulatory information from EEPROM,
3499  * the current temperature and the current voltage.
3500  */
3501 static int
iwn4965_set_txpower(struct iwn_softc * sc,int async)3502 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3503 {
3504 /* Fixed-point arithmetic division using a n-bit fractional part. */
3505 #define fdivround(a, b, n)	\
3506 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3507 /* Linear interpolation. */
3508 #define interpolate(x, x1, y1, x2, y2, n)	\
3509 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3510 
3511 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3512 	struct ieee80211com *ic = &sc->sc_ic;
3513 	struct iwn_ucode_info *uc = &sc->ucode_info;
3514 	struct ieee80211_channel *ch;
3515 	struct iwn4965_cmd_txpower cmd;
3516 	struct iwn4965_eeprom_chan_samples *chans;
3517 	const uint8_t *rf_gain, *dsp_gain;
3518 	int32_t vdiff, tdiff;
3519 	int i, c, grp, maxpwr;
3520 	uint8_t chan;
3521 
3522 	/* Retrieve current channel from last RXON. */
3523 	chan = sc->rxon.chan;
3524 	DPRINTF(("setting TX power for channel %d\n", chan));
3525 	ch = &ic->ic_channels[chan];
3526 
3527 	memset(&cmd, 0, sizeof cmd);
3528 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3529 	cmd.chan = chan;
3530 
3531 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3532 		maxpwr   = sc->maxpwr5GHz;
3533 		rf_gain  = iwn4965_rf_gain_5ghz;
3534 		dsp_gain = iwn4965_dsp_gain_5ghz;
3535 	} else {
3536 		maxpwr   = sc->maxpwr2GHz;
3537 		rf_gain  = iwn4965_rf_gain_2ghz;
3538 		dsp_gain = iwn4965_dsp_gain_2ghz;
3539 	}
3540 
3541 	/* Compute voltage compensation. */
3542 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3543 	if (vdiff > 0)
3544 		vdiff *= 2;
3545 	if (abs(vdiff) > 2)
3546 		vdiff = 0;
3547 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3548 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3549 
3550 	/* Get channel attenuation group. */
3551 	if (chan <= 20)		/* 1-20 */
3552 		grp = 4;
3553 	else if (chan <= 43)	/* 34-43 */
3554 		grp = 0;
3555 	else if (chan <= 70)	/* 44-70 */
3556 		grp = 1;
3557 	else if (chan <= 124)	/* 71-124 */
3558 		grp = 2;
3559 	else			/* 125-200 */
3560 		grp = 3;
3561 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3562 
3563 	/* Get channel sub-band. */
3564 	for (i = 0; i < IWN_NBANDS; i++)
3565 		if (sc->bands[i].lo != 0 &&
3566 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3567 			break;
3568 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3569 		return EINVAL;
3570 	chans = sc->bands[i].chans;
3571 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3572 
3573 	for (c = 0; c < 2; c++) {
3574 		uint8_t power, gain, temp;
3575 		int maxchpwr, pwr, ridx, idx;
3576 
3577 		power = interpolate(chan,
3578 		    chans[0].num, chans[0].samples[c][1].power,
3579 		    chans[1].num, chans[1].samples[c][1].power, 1);
3580 		gain  = interpolate(chan,
3581 		    chans[0].num, chans[0].samples[c][1].gain,
3582 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3583 		temp  = interpolate(chan,
3584 		    chans[0].num, chans[0].samples[c][1].temp,
3585 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3586 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3587 		    c, power, gain, temp));
3588 
3589 		/* Compute temperature compensation. */
3590 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3591 		DPRINTF(("temperature compensation=%d (current=%d, "
3592 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3593 
3594 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3595 			/* Convert dBm to half-dBm. */
3596 			maxchpwr = sc->maxpwr[chan] * 2;
3597 			if ((ridx / 8) & 1)
3598 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3599 
3600 			pwr = maxpwr;
3601 
3602 			/* Adjust TX power based on rate. */
3603 			if ((ridx % 8) == 5)
3604 				pwr -= 15;	/* OFDM48: -7.5dB */
3605 			else if ((ridx % 8) == 6)
3606 				pwr -= 17;	/* OFDM54: -8.5dB */
3607 			else if ((ridx % 8) == 7)
3608 				pwr -= 20;	/* OFDM60: -10dB */
3609 			else
3610 				pwr -= 10;	/* Others: -5dB */
3611 
3612 			/* Do not exceed channel max TX power. */
3613 			if (pwr > maxchpwr)
3614 				pwr = maxchpwr;
3615 
3616 			idx = gain - (pwr - power) - tdiff - vdiff;
3617 			if ((ridx / 8) & 1)	/* MIMO */
3618 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3619 
3620 			if (cmd.band == 0)
3621 				idx += 9;	/* 5GHz */
3622 			if (ridx == IWN_RIDX_MAX)
3623 				idx += 5;	/* CCK */
3624 
3625 			/* Make sure idx stays in a valid range. */
3626 			if (idx < 0)
3627 				idx = 0;
3628 			else if (idx > IWN4965_MAX_PWR_INDEX)
3629 				idx = IWN4965_MAX_PWR_INDEX;
3630 
3631 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3632 			    c, ridx, idx));
3633 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3634 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3635 		}
3636 	}
3637 
3638 	DPRINTF(("setting TX power for chan %d\n", chan));
3639 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3640 
3641 #undef interpolate
3642 #undef fdivround
3643 }
3644 
3645 static int
iwn5000_set_txpower(struct iwn_softc * sc,int async)3646 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3647 {
3648 	struct iwn5000_cmd_txpower cmd;
3649 
3650 	/*
3651 	 * TX power calibration is handled automatically by the firmware
3652 	 * for 5000 Series.
3653 	 */
3654 	memset(&cmd, 0, sizeof cmd);
3655 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3656 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3657 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3658 	DPRINTF(("setting TX power\n"));
3659 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3660 }
3661 
3662 /*
3663  * Retrieve the maximum RSSI (in dBm) among receivers.
3664  */
3665 static int
iwn4965_get_rssi(const struct iwn_rx_stat * stat)3666 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3667 {
3668 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3669 	uint8_t mask, agc;
3670 	int rssi;
3671 
3672 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3673 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3674 
3675 	rssi = 0;
3676 	if (mask & IWN_ANT_A)
3677 		rssi = MAX(rssi, phy->rssi[0]);
3678 	if (mask & IWN_ANT_B)
3679 		rssi = MAX(rssi, phy->rssi[2]);
3680 	if (mask & IWN_ANT_C)
3681 		rssi = MAX(rssi, phy->rssi[4]);
3682 
3683 	return rssi - agc - IWN_RSSI_TO_DBM;
3684 }
3685 
3686 static int
iwn5000_get_rssi(const struct iwn_rx_stat * stat)3687 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3688 {
3689 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3690 	uint8_t agc;
3691 	int rssi;
3692 
3693 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3694 
3695 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3696 		   le16toh(phy->rssi[1]) & 0xff);
3697 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3698 
3699 	return rssi - agc - IWN_RSSI_TO_DBM;
3700 }
3701 
3702 /*
3703  * Retrieve the average noise (in dBm) among receivers.
3704  */
3705 static int
iwn_get_noise(const struct iwn_rx_general_stats * stats)3706 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3707 {
3708 	int i, total, nbant, noise;
3709 
3710 	total = nbant = 0;
3711 	for (i = 0; i < 3; i++) {
3712 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3713 			continue;
3714 		total += noise;
3715 		nbant++;
3716 	}
3717 	/* There should be at least one antenna but check anyway. */
3718 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3719 }
3720 
3721 /*
3722  * Compute temperature (in degC) from last received statistics.
3723  */
3724 static int
iwn4965_get_temperature(struct iwn_softc * sc)3725 iwn4965_get_temperature(struct iwn_softc *sc)
3726 {
3727 	struct iwn_ucode_info *uc = &sc->ucode_info;
3728 	int32_t r1, r2, r3, r4, temp;
3729 
3730 	r1 = le32toh(uc->temp[0].chan20MHz);
3731 	r2 = le32toh(uc->temp[1].chan20MHz);
3732 	r3 = le32toh(uc->temp[2].chan20MHz);
3733 	r4 = le32toh(sc->rawtemp);
3734 
3735 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3736 		return 0;
3737 
3738 	/* Sign-extend 23-bit R4 value to 32-bit. */
3739 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3740 	/* Compute temperature in Kelvin. */
3741 	temp = (259 * (r4 - r2)) / (r3 - r1);
3742 	temp = (temp * 97) / 100 + 8;
3743 
3744 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3745 	return IWN_KTOC(temp);
3746 }
3747 
3748 static int
iwn5000_get_temperature(struct iwn_softc * sc)3749 iwn5000_get_temperature(struct iwn_softc *sc)
3750 {
3751 	int32_t temp;
3752 
3753 	/*
3754 	 * Temperature is not used by the driver for 5000 Series because
3755 	 * TX power calibration is handled by firmware.  We export it to
3756 	 * users through the sensor framework though.
3757 	 */
3758 	temp = le32toh(sc->rawtemp);
3759 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3760 		temp = (temp / -5) + sc->temp_off;
3761 		temp = IWN_KTOC(temp);
3762 	}
3763 	return temp;
3764 }
3765 
3766 /*
3767  * Initialize sensitivity calibration state machine.
3768  */
3769 static int
iwn_init_sensitivity(struct iwn_softc * sc)3770 iwn_init_sensitivity(struct iwn_softc *sc)
3771 {
3772 	struct iwn_ops *ops = &sc->ops;
3773 	struct iwn_calib_state *calib = &sc->calib;
3774 	uint32_t flags;
3775 	int error;
3776 
3777 	/* Reset calibration state machine. */
3778 	memset(calib, 0, sizeof (*calib));
3779 	calib->state = IWN_CALIB_STATE_INIT;
3780 	calib->cck_state = IWN_CCK_STATE_HIFA;
3781 	/* Set initial correlation values. */
3782 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3783 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3784 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3785 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3786 	calib->cck_x4      = 125;
3787 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3788 	calib->energy_cck  = sc->limits->energy_cck;
3789 
3790 	/* Write initial sensitivity. */
3791 	if ((error = iwn_send_sensitivity(sc)) != 0)
3792 		return error;
3793 
3794 	/* Write initial gains. */
3795 	if ((error = ops->init_gains(sc)) != 0)
3796 		return error;
3797 
3798 	/* Request statistics at each beacon interval. */
3799 	flags = 0;
3800 	DPRINTF(("sending request for statistics\n"));
3801 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3802 }
3803 
3804 /*
3805  * Collect noise and RSSI statistics for the first 20 beacons received
3806  * after association and use them to determine connected antennas and
3807  * to set differential gains.
3808  */
3809 static void
iwn_collect_noise(struct iwn_softc * sc,const struct iwn_rx_general_stats * stats)3810 iwn_collect_noise(struct iwn_softc *sc,
3811     const struct iwn_rx_general_stats *stats)
3812 {
3813 	struct iwn_ops *ops = &sc->ops;
3814 	struct iwn_calib_state *calib = &sc->calib;
3815 	uint32_t val;
3816 	int i;
3817 
3818 	/* Accumulate RSSI and noise for all 3 antennas. */
3819 	for (i = 0; i < 3; i++) {
3820 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3821 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3822 	}
3823 	/* NB: We update differential gains only once after 20 beacons. */
3824 	if (++calib->nbeacons < 20)
3825 		return;
3826 
3827 	/* Determine highest average RSSI. */
3828 	val = MAX(calib->rssi[0], calib->rssi[1]);
3829 	val = MAX(calib->rssi[2], val);
3830 
3831 	/* Determine which antennas are connected. */
3832 	sc->chainmask = sc->rxchainmask;
3833 	for (i = 0; i < 3; i++)
3834 		if (val - calib->rssi[i] > 15 * 20)
3835 			sc->chainmask &= ~(1 << i);
3836 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3837 	    sc->rxchainmask, sc->chainmask));
3838 
3839 	/* If none of the TX antennas are connected, keep at least one. */
3840 	if ((sc->chainmask & sc->txchainmask) == 0)
3841 		sc->chainmask |= IWN_LSB(sc->txchainmask);
3842 
3843 	(void)ops->set_gains(sc);
3844 	calib->state = IWN_CALIB_STATE_RUN;
3845 
3846 #ifdef notyet
3847 	/* XXX Disable RX chains with no antennas connected. */
3848 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3849 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3850 #endif
3851 
3852 	/* Enable power-saving mode if requested by user. */
3853 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3854 		(void)iwn_set_pslevel(sc, 0, 3, 1);
3855 }
3856 
3857 static int
iwn4965_init_gains(struct iwn_softc * sc)3858 iwn4965_init_gains(struct iwn_softc *sc)
3859 {
3860 	struct iwn_phy_calib_gain cmd;
3861 
3862 	memset(&cmd, 0, sizeof cmd);
3863 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3864 	/* Differential gains initially set to 0 for all 3 antennas. */
3865 	DPRINTF(("setting initial differential gains\n"));
3866 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3867 }
3868 
3869 static int
iwn5000_init_gains(struct iwn_softc * sc)3870 iwn5000_init_gains(struct iwn_softc *sc)
3871 {
3872 	struct iwn_phy_calib cmd;
3873 
3874 	memset(&cmd, 0, sizeof cmd);
3875 	cmd.code = sc->reset_noise_gain;
3876 	cmd.ngroups = 1;
3877 	cmd.isvalid = 1;
3878 	DPRINTF(("setting initial differential gains\n"));
3879 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3880 }
3881 
3882 static int
iwn4965_set_gains(struct iwn_softc * sc)3883 iwn4965_set_gains(struct iwn_softc *sc)
3884 {
3885 	struct iwn_calib_state *calib = &sc->calib;
3886 	struct iwn_phy_calib_gain cmd;
3887 	int i, delta, noise;
3888 
3889 	/* Get minimal noise among connected antennas. */
3890 	noise = INT_MAX;	/* NB: There's at least one antenna. */
3891 	for (i = 0; i < 3; i++)
3892 		if (sc->chainmask & (1 << i))
3893 			noise = MIN(calib->noise[i], noise);
3894 
3895 	memset(&cmd, 0, sizeof cmd);
3896 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3897 	/* Set differential gains for connected antennas. */
3898 	for (i = 0; i < 3; i++) {
3899 		if (sc->chainmask & (1 << i)) {
3900 			/* Compute attenuation (in unit of 1.5dB). */
3901 			delta = (noise - (int32_t)calib->noise[i]) / 30;
3902 			/* NB: delta <= 0 */
3903 			/* Limit to [-4.5dB,0]. */
3904 			cmd.gain[i] = MIN(abs(delta), 3);
3905 			if (delta < 0)
3906 				cmd.gain[i] |= 1 << 2;	/* sign bit */
3907 		}
3908 	}
3909 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3910 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3911 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3912 }
3913 
3914 static int
iwn5000_set_gains(struct iwn_softc * sc)3915 iwn5000_set_gains(struct iwn_softc *sc)
3916 {
3917 	struct iwn_calib_state *calib = &sc->calib;
3918 	struct iwn_phy_calib_gain cmd;
3919 	int i, ant, div, delta;
3920 
3921 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
3922 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3923 
3924 	memset(&cmd, 0, sizeof cmd);
3925 	cmd.code = sc->noise_gain;
3926 	cmd.ngroups = 1;
3927 	cmd.isvalid = 1;
3928 	/* Get first available RX antenna as referential. */
3929 	ant = IWN_LSB(sc->rxchainmask);
3930 	/* Set differential gains for other antennas. */
3931 	for (i = ant + 1; i < 3; i++) {
3932 		if (sc->chainmask & (1 << i)) {
3933 			/* The delta is relative to antenna "ant". */
3934 			delta = ((int32_t)calib->noise[ant] -
3935 			    (int32_t)calib->noise[i]) / div;
3936 			/* Limit to [-4.5dB,+4.5dB]. */
3937 			cmd.gain[i - 1] = MIN(abs(delta), 3);
3938 			if (delta < 0)
3939 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
3940 		}
3941 	}
3942 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
3943 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
3944 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3945 }
3946 
3947 /*
3948  * Tune RF RX sensitivity based on the number of false alarms detected
3949  * during the last beacon period.
3950  */
3951 static void
iwn_tune_sensitivity(struct iwn_softc * sc,const struct iwn_rx_stats * stats)3952 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3953 {
3954 #define inc(val, inc, max)			\
3955 	if ((val) < (max)) {			\
3956 		if ((val) < (max) - (inc))	\
3957 			(val) += (inc);		\
3958 		else				\
3959 			(val) = (max);		\
3960 		needs_update = 1;		\
3961 	}
3962 #define dec(val, dec, min)			\
3963 	if ((val) > (min)) {			\
3964 		if ((val) > (min) + (dec))	\
3965 			(val) -= (dec);		\
3966 		else				\
3967 			(val) = (min);		\
3968 		needs_update = 1;		\
3969 	}
3970 
3971 	const struct iwn_sensitivity_limits *limits = sc->limits;
3972 	struct iwn_calib_state *calib = &sc->calib;
3973 	uint32_t val, rxena, fa;
3974 	uint32_t energy[3], energy_min;
3975 	uint8_t noise[3], noise_ref;
3976 	int i, needs_update = 0;
3977 
3978 	/* Check that we've been enabled long enough. */
3979 	if ((rxena = le32toh(stats->general.load)) == 0)
3980 		return;
3981 
3982 	/* Compute number of false alarms since last call for OFDM. */
3983 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3984 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3985 	fa *= 200 * 1024;	/* 200TU */
3986 
3987 	/* Save counters values for next call. */
3988 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3989 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3990 
3991 	if (fa > 50 * rxena) {
3992 		/* High false alarm count, decrease sensitivity. */
3993 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3994 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
3995 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3996 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
3997 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3998 
3999 	} else if (fa < 5 * rxena) {
4000 		/* Low false alarm count, increase sensitivity. */
4001 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4002 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4003 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4004 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4005 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4006 	}
4007 
4008 	/* Compute maximum noise among 3 receivers. */
4009 	for (i = 0; i < 3; i++)
4010 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4011 	val = MAX(noise[0], noise[1]);
4012 	val = MAX(noise[2], val);
4013 	/* Insert it into our samples table. */
4014 	calib->noise_samples[calib->cur_noise_sample] = val;
4015 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4016 
4017 	/* Compute maximum noise among last 20 samples. */
4018 	noise_ref = calib->noise_samples[0];
4019 	for (i = 1; i < 20; i++)
4020 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4021 
4022 	/* Compute maximum energy among 3 receivers. */
4023 	for (i = 0; i < 3; i++)
4024 		energy[i] = le32toh(stats->general.energy[i]);
4025 	val = MIN(energy[0], energy[1]);
4026 	val = MIN(energy[2], val);
4027 	/* Insert it into our samples table. */
4028 	calib->energy_samples[calib->cur_energy_sample] = val;
4029 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4030 
4031 	/* Compute minimum energy among last 10 samples. */
4032 	energy_min = calib->energy_samples[0];
4033 	for (i = 1; i < 10; i++)
4034 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4035 	energy_min += 6;
4036 
4037 	/* Compute number of false alarms since last call for CCK. */
4038 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4039 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4040 	fa *= 200 * 1024;	/* 200TU */
4041 
4042 	/* Save counters values for next call. */
4043 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4044 	calib->fa_cck = le32toh(stats->cck.fa);
4045 
4046 	if (fa > 50 * rxena) {
4047 		/* High false alarm count, decrease sensitivity. */
4048 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4049 		calib->cck_state = IWN_CCK_STATE_HIFA;
4050 		calib->low_fa = 0;
4051 
4052 		if (calib->cck_x4 > 160) {
4053 			calib->noise_ref = noise_ref;
4054 			if (calib->energy_cck > 2)
4055 				dec(calib->energy_cck, 2, energy_min);
4056 		}
4057 		if (calib->cck_x4 < 160) {
4058 			calib->cck_x4 = 161;
4059 			needs_update = 1;
4060 		} else
4061 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4062 
4063 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4064 
4065 	} else if (fa < 5 * rxena) {
4066 		/* Low false alarm count, increase sensitivity. */
4067 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4068 		calib->cck_state = IWN_CCK_STATE_LOFA;
4069 		calib->low_fa++;
4070 
4071 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4072 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4073 		     calib->low_fa > 100)) {
4074 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4075 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4076 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4077 		}
4078 	} else {
4079 		/* Not worth to increase or decrease sensitivity. */
4080 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4081 		calib->low_fa = 0;
4082 		calib->noise_ref = noise_ref;
4083 
4084 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4085 			/* Previous interval had many false alarms. */
4086 			dec(calib->energy_cck, 8, energy_min);
4087 		}
4088 		calib->cck_state = IWN_CCK_STATE_INIT;
4089 	}
4090 
4091 	if (needs_update)
4092 		(void)iwn_send_sensitivity(sc);
4093 #undef dec
4094 #undef inc
4095 }
4096 
4097 static int
iwn_send_sensitivity(struct iwn_softc * sc)4098 iwn_send_sensitivity(struct iwn_softc *sc)
4099 {
4100 	struct iwn_calib_state *calib = &sc->calib;
4101 	struct iwn_enhanced_sensitivity_cmd cmd;
4102 	int len;
4103 
4104 	memset(&cmd, 0, sizeof cmd);
4105 	len = sizeof (struct iwn_sensitivity_cmd);
4106 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4107 	/* OFDM modulation. */
4108 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4109 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4110 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4111 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4112 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4113 	cmd.energy_ofdm_th   = htole16(62);
4114 	/* CCK modulation. */
4115 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4116 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4117 	cmd.energy_cck       = htole16(calib->energy_cck);
4118 	/* Barker modulation: use default values. */
4119 	cmd.corr_barker      = htole16(190);
4120 	cmd.corr_barker_mrc  = htole16(390);
4121 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4122 		goto send;
4123 	/* Enhanced sensitivity settings. */
4124 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4125 	cmd.ofdm_det_slope_mrc = htole16(668);
4126 	cmd.ofdm_det_icept_mrc = htole16(4);
4127 	cmd.ofdm_det_slope     = htole16(486);
4128 	cmd.ofdm_det_icept     = htole16(37);
4129 	cmd.cck_det_slope_mrc  = htole16(853);
4130 	cmd.cck_det_icept_mrc  = htole16(4);
4131 	cmd.cck_det_slope      = htole16(476);
4132 	cmd.cck_det_icept      = htole16(99);
4133 send:
4134 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4135 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4136 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4137 	    calib->energy_cck));
4138 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4139 }
4140 
4141 /*
4142  * Set STA mode power saving level (between 0 and 5).
4143  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4144  */
4145 static int
iwn_set_pslevel(struct iwn_softc * sc,int dtim,int level,int async)4146 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4147 {
4148 	struct iwn_pmgt_cmd cmd;
4149 	const struct iwn_pmgt *pmgt;
4150 	uint32_t maxp, skip_dtim;
4151 	pcireg_t reg;
4152 	int i;
4153 
4154 	/* Select which PS parameters to use. */
4155 	if (dtim <= 2)
4156 		pmgt = &iwn_pmgt[0][level];
4157 	else if (dtim <= 10)
4158 		pmgt = &iwn_pmgt[1][level];
4159 	else
4160 		pmgt = &iwn_pmgt[2][level];
4161 
4162 	memset(&cmd, 0, sizeof cmd);
4163 	if (level != 0)	/* not CAM */
4164 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4165 	if (level == 5)
4166 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4167 	/* Retrieve PCIe Active State Power Management (ASPM). */
4168 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4169 	    sc->sc_cap_off + PCIE_LCSR);
4170 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4171 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4172 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4173 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4174 
4175 	if (dtim == 0) {
4176 		dtim = 1;
4177 		skip_dtim = 0;
4178 	} else
4179 		skip_dtim = pmgt->skip_dtim;
4180 	if (skip_dtim != 0) {
4181 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4182 		maxp = pmgt->intval[4];
4183 		if (maxp == (uint32_t)-1)
4184 			maxp = dtim * (skip_dtim + 1);
4185 		else if (maxp > dtim)
4186 			maxp = (maxp / dtim) * dtim;
4187 	} else
4188 		maxp = dtim;
4189 	for (i = 0; i < 5; i++)
4190 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4191 
4192 	DPRINTF(("setting power saving level to %d\n", level));
4193 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4194 }
4195 
4196 int
iwn5000_runtime_calib(struct iwn_softc * sc)4197 iwn5000_runtime_calib(struct iwn_softc *sc)
4198 {
4199 	struct iwn5000_calib_config cmd;
4200 
4201 	memset(&cmd, 0, sizeof cmd);
4202 	cmd.ucode.once.enable = 0xffffffff;
4203 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4204 	DPRINTF(("configuring runtime calibration\n"));
4205 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4206 }
4207 
4208 static int
iwn_config_bt_coex_bluetooth(struct iwn_softc * sc)4209 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4210 {
4211 	struct iwn_bluetooth bluetooth;
4212 
4213 	memset(&bluetooth, 0, sizeof bluetooth);
4214 	bluetooth.flags = IWN_BT_COEX_ENABLE;
4215 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4216 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4217 
4218 	DPRINTF(("configuring bluetooth coexistence\n"));
4219 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4220 }
4221 
4222 static int
iwn_config_bt_coex_prio_table(struct iwn_softc * sc)4223 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4224 {
4225 	uint8_t prio_table[16];
4226 
4227 	memset(&prio_table, 0, sizeof prio_table);
4228 	prio_table[ 0] =  6;	/* init calibration 1		*/
4229 	prio_table[ 1] =  7;	/* init calibration 2		*/
4230 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
4231 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
4232 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
4233 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
4234 	prio_table[ 6] =  6;	/* dtim				*/
4235 	prio_table[ 7] =  8;	/* scan52			*/
4236 	prio_table[ 8] = 10;	/* scan24			*/
4237 
4238 	DPRINTF(("sending priority lookup table\n"));
4239 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4240 	               &prio_table, sizeof prio_table, 0);
4241 }
4242 
4243 static int
iwn_config_bt_coex_adv_config(struct iwn_softc * sc,struct iwn_bt_basic * basic,size_t len)4244 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4245     size_t len)
4246 {
4247 	struct iwn_btcoex_prot btprot;
4248 	int error;
4249 
4250 	basic->bt.flags = IWN_BT_COEX_ENABLE;
4251 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4252 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4253 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4254 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4255 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4256 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4257 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4258 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4259 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4260 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4261 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4262 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4263 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4264 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4265 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4266 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4267 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4268 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
4269 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
4270 	basic->reduce_txpower = 0; /* as not implemented */
4271 	basic->valid = IWN_BT_ALL_VALID_MASK;
4272 
4273 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4274 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4275 	if (error != 0) {
4276 		aprint_error_dev(sc->sc_dev,
4277 			"could not configure advanced bluetooth coexistence\n");
4278 		return error;
4279 	}
4280 
4281 	error = iwn_config_bt_coex_prio_table(sc);
4282 	if (error != 0) {
4283 		aprint_error_dev(sc->sc_dev,
4284 			"could not configure send BT priority table\n");
4285 		return error;
4286 	}
4287 
4288 	/* Force BT state machine change */
4289 	memset(&btprot, 0, sizeof btprot);
4290 	btprot.open = 1;
4291 	btprot.type = 1;
4292 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4293 	if (error != 0) {
4294 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
4295 		return error;
4296 	}
4297 
4298 	btprot.open = 0;
4299 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4300 	if (error != 0) {
4301 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
4302 		return error;
4303 	}
4304 	return 0;
4305 }
4306 
4307 static int
iwn_config_bt_coex_adv1(struct iwn_softc * sc)4308 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4309 {
4310 	struct iwn_bt_adv1 d;
4311 
4312 	memset(&d, 0, sizeof d);
4313 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4314 	d.tx_prio_boost = 0;
4315 	d.rx_prio_boost = 0;
4316 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4317 }
4318 
4319 static int
iwn_config_bt_coex_adv2(struct iwn_softc * sc)4320 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4321 {
4322 	struct iwn_bt_adv2 d;
4323 
4324 	memset(&d, 0, sizeof d);
4325 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4326 	d.tx_prio_boost = 0;
4327 	d.rx_prio_boost = 0;
4328 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4329 }
4330 
4331 static int
iwn_config(struct iwn_softc * sc)4332 iwn_config(struct iwn_softc *sc)
4333 {
4334 	struct iwn_ops *ops = &sc->ops;
4335 	struct ieee80211com *ic = &sc->sc_ic;
4336 	struct ifnet *ifp = ic->ic_ifp;
4337 	uint32_t txmask;
4338 	uint16_t rxchain;
4339 	int error;
4340 
4341 	error = ops->config_bt_coex(sc);
4342 	if (error != 0) {
4343 		aprint_error_dev(sc->sc_dev,
4344 			"could not configure bluetooth coexistence\n");
4345 		return error;
4346 	}
4347 
4348 	/* Set radio temperature sensor offset. */
4349 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4350 		error = iwn6000_temp_offset_calib(sc);
4351 		if (error != 0) {
4352 			aprint_error_dev(sc->sc_dev,
4353 			    "could not set temperature offset\n");
4354 			return error;
4355 		}
4356 	}
4357 
4358 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4359 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4360 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
4361 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
4362 		error = iwn2000_temp_offset_calib(sc);
4363 		if (error != 0) {
4364 			aprint_error_dev(sc->sc_dev,
4365 			    "could not set temperature offset\n");
4366 			return error;
4367 		}
4368 	}
4369 
4370 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4371 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4372 		/* Configure runtime DC calibration. */
4373 		error = iwn5000_runtime_calib(sc);
4374 		if (error != 0) {
4375 			aprint_error_dev(sc->sc_dev,
4376 			    "could not configure runtime calibration\n");
4377 			return error;
4378 		}
4379 	}
4380 
4381 	/* Configure valid TX chains for 5000 Series. */
4382 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4383 		txmask = htole32(sc->txchainmask);
4384 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4385 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4386 		    sizeof txmask, 0);
4387 		if (error != 0) {
4388 			aprint_error_dev(sc->sc_dev,
4389 			    "could not configure valid TX chains\n");
4390 			return error;
4391 		}
4392 	}
4393 
4394 	/* Set mode, channel, RX filter and enable RX. */
4395 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4396 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4397 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4398 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4399 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4400 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4401 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4402 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4403 	switch (ic->ic_opmode) {
4404 	case IEEE80211_M_STA:
4405 		sc->rxon.mode = IWN_MODE_STA;
4406 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4407 		break;
4408 	case IEEE80211_M_MONITOR:
4409 		sc->rxon.mode = IWN_MODE_MONITOR;
4410 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4411 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4412 		break;
4413 	default:
4414 		/* Should not get there. */
4415 		break;
4416 	}
4417 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4418 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4419 	sc->rxon.ht_single_mask = 0xff;
4420 	sc->rxon.ht_dual_mask = 0xff;
4421 	sc->rxon.ht_triple_mask = 0xff;
4422 	rxchain =
4423 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4424 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4425 	    IWN_RXCHAIN_IDLE_COUNT(2);
4426 	sc->rxon.rxchain = htole16(rxchain);
4427 	DPRINTF(("setting configuration\n"));
4428 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4429 	if (error != 0) {
4430 		aprint_error_dev(sc->sc_dev,
4431 		    "RXON command failed\n");
4432 		return error;
4433 	}
4434 
4435 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4436 		aprint_error_dev(sc->sc_dev,
4437 		    "could not add broadcast node\n");
4438 		return error;
4439 	}
4440 
4441 	/* Configuration has changed, set TX power accordingly. */
4442 	if ((error = ops->set_txpower(sc, 0)) != 0) {
4443 		aprint_error_dev(sc->sc_dev,
4444 		    "could not set TX power\n");
4445 		return error;
4446 	}
4447 
4448 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4449 		aprint_error_dev(sc->sc_dev,
4450 		    "could not set critical temperature\n");
4451 		return error;
4452 	}
4453 
4454 	/* Set power saving level to CAM during initialization. */
4455 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4456 		aprint_error_dev(sc->sc_dev,
4457 		    "could not set power saving level\n");
4458 		return error;
4459 	}
4460 	return 0;
4461 }
4462 
4463 static uint16_t
iwn_get_active_dwell_time(struct iwn_softc * sc,uint16_t flags,uint8_t n_probes)4464 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4465     uint8_t n_probes)
4466 {
4467 	/* No channel? Default to 2GHz settings */
4468 	if (flags & IEEE80211_CHAN_2GHZ)
4469 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
4470 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4471 
4472 	/* 5GHz dwell time */
4473 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
4474 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4475 }
4476 
4477 /*
4478  * Limit the total dwell time to 85% of the beacon interval.
4479  *
4480  * Returns the dwell time in milliseconds.
4481  */
4482 static uint16_t
iwn_limit_dwell(struct iwn_softc * sc,uint16_t dwell_time)4483 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4484 {
4485 	struct ieee80211com *ic = &sc->sc_ic;
4486 	struct ieee80211_node *ni = ic->ic_bss;
4487 	int bintval = 0;
4488 
4489 	/* bintval is in TU (1.024mS) */
4490 	if (ni != NULL)
4491 		bintval = ni->ni_intval;
4492 
4493 	/*
4494 	 * If it's non-zero, we should calculate the minimum of
4495 	 * it and the DWELL_BASE.
4496 	 *
4497 	 * XXX Yes, the math should take into account that bintval
4498 	 * is 1.024mS, not 1mS..
4499 	 */
4500 	if (bintval > 0)
4501 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4502 
4503 	/* No association context? Default */
4504 	return IWN_PASSIVE_DWELL_BASE;
4505 }
4506 
4507 static uint16_t
iwn_get_passive_dwell_time(struct iwn_softc * sc,uint16_t flags)4508 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4509 {
4510 	uint16_t passive;
4511 	if (flags & IEEE80211_CHAN_2GHZ)
4512 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4513 	else
4514 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4515 
4516 	/* Clamp to the beacon interval if we're associated */
4517 	return iwn_limit_dwell(sc, passive);
4518 }
4519 
4520 static int
iwn_scan(struct iwn_softc * sc,uint16_t flags)4521 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4522 {
4523 	struct ieee80211com *ic = &sc->sc_ic;
4524 	struct iwn_scan_hdr *hdr;
4525 	struct iwn_cmd_data *tx;
4526 	struct iwn_scan_essid *essid;
4527 	struct iwn_scan_chan *chan;
4528 	struct ieee80211_frame *wh;
4529 	struct ieee80211_rateset *rs;
4530 	struct ieee80211_channel *c;
4531 	uint8_t *buf, *frm;
4532 	uint16_t rxchain, dwell_active, dwell_passive;
4533 	uint8_t txant;
4534 	int buflen, error, is_active;
4535 
4536 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4537 	if (buf == NULL) {
4538 		aprint_error_dev(sc->sc_dev,
4539 		    "could not allocate buffer for scan command\n");
4540 		return ENOMEM;
4541 	}
4542 	hdr = (struct iwn_scan_hdr *)buf;
4543 	/*
4544 	 * Move to the next channel if no frames are received within 10ms
4545 	 * after sending the probe request.
4546 	 */
4547 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4548 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4549 
4550 	/* Select antennas for scanning. */
4551 	rxchain =
4552 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4553 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4554 	    IWN_RXCHAIN_DRIVER_FORCE;
4555 	if ((flags & IEEE80211_CHAN_5GHZ) &&
4556 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4557 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4558 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4559 	} else	/* Use all available RX antennas. */
4560 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4561 	hdr->rxchain = htole16(rxchain);
4562 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4563 
4564 	tx = (struct iwn_cmd_data *)(hdr + 1);
4565 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4566 	tx->id = sc->broadcast_id;
4567 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4568 
4569 	if (flags & IEEE80211_CHAN_5GHZ) {
4570 		hdr->crc_threshold = 0xffff;
4571 		/* Send probe requests at 6Mbps. */
4572 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4573 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4574 	} else {
4575 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4576 		/* Send probe requests at 1Mbps. */
4577 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4578 		tx->rflags = IWN_RFLAG_CCK;
4579 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4580 	}
4581 	/* Use the first valid TX antenna. */
4582 	txant = IWN_LSB(sc->txchainmask);
4583 	tx->rflags |= IWN_RFLAG_ANT(txant);
4584 
4585 	/*
4586 	 * Only do active scanning if we're announcing a probe request
4587 	 * for a given SSID (or more, if we ever add it to the driver.)
4588 	 */
4589 	is_active = 0;
4590 
4591 	essid = (struct iwn_scan_essid *)(tx + 1);
4592 	if (ic->ic_des_esslen != 0) {
4593 		essid[0].id = IEEE80211_ELEMID_SSID;
4594 		essid[0].len = ic->ic_des_esslen;
4595 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4596 
4597 		is_active = 1;
4598 	}
4599 	/*
4600 	 * Build a probe request frame.  Most of the following code is a
4601 	 * copy & paste of what is done in net80211.
4602 	 */
4603 	wh = (struct ieee80211_frame *)(essid + 20);
4604 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4605 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4606 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4607 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4608 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4609 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4610 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4611 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4612 
4613 	frm = (uint8_t *)(wh + 1);
4614 	frm = ieee80211_add_ssid(frm, NULL, 0);
4615 	frm = ieee80211_add_rates(frm, rs);
4616 #ifndef IEEE80211_NO_HT
4617 	if (ic->ic_flags & IEEE80211_F_HTON)
4618 		frm = ieee80211_add_htcaps(frm, ic);
4619 #endif
4620 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4621 		frm = ieee80211_add_xrates(frm, rs);
4622 
4623 	/* Set length of probe request. */
4624 	tx->len = htole16(frm - (uint8_t *)wh);
4625 
4626 
4627 	/*
4628 	 * If active scanning is requested but a certain channel is
4629 	 * marked passive, we can do active scanning if we detect
4630 	 * transmissions.
4631 	 *
4632 	 * There is an issue with some firmware versions that triggers
4633 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
4634 	 * on a radar channel even though this means that we should NOT
4635 	 * send probes.
4636 	 *
4637 	 * The "good CRC threshold" is the number of frames that we
4638 	 * need to receive during our dwell time on a channel before
4639 	 * sending out probes -- setting this to a huge value will
4640 	 * mean we never reach it, but at the same time work around
4641 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4642 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4643 	 *
4644 	 * This was fixed in later versions along with some other
4645 	 * scan changes, and the threshold behaves as a flag in those
4646 	 * versions.
4647 	 */
4648 
4649 	/*
4650 	 * If we're doing active scanning, set the crc_threshold
4651 	 * to a suitable value.  This is different to active veruss
4652 	 * passive scanning depending upon the channel flags; the
4653 	 * firmware will obey that particular check for us.
4654 	 */
4655 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4656 		hdr->crc_threshold = is_active ?
4657 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4658 	else
4659 		hdr->crc_threshold = is_active ?
4660 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4661 
4662 	chan = (struct iwn_scan_chan *)frm;
4663 	for (c  = &ic->ic_channels[1];
4664 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4665 		if ((c->ic_flags & flags) != flags)
4666 			continue;
4667 
4668 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4669 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4670 		chan->flags = 0;
4671 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4672 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4673 		if (ic->ic_des_esslen != 0)
4674 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4675 
4676 		/*
4677 		 * Calculate the active/passive dwell times.
4678 		 */
4679 
4680 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4681 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4682 
4683 		/* Make sure they're valid */
4684 		if (dwell_passive <= dwell_active)
4685 			dwell_passive = dwell_active + 1;
4686 
4687 		chan->active = htole16(dwell_active);
4688 		chan->passive = htole16(dwell_passive);
4689 
4690 		chan->dsp_gain = 0x6e;
4691 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4692 			chan->rf_gain = 0x3b;
4693 		} else {
4694 			chan->rf_gain = 0x28;
4695 		}
4696 		hdr->nchan++;
4697 		chan++;
4698 	}
4699 
4700 	buflen = (uint8_t *)chan - buf;
4701 	hdr->len = htole16(buflen);
4702 
4703 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4704 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4705 	free(buf, M_DEVBUF);
4706 	return error;
4707 }
4708 
4709 static int
iwn_auth(struct iwn_softc * sc)4710 iwn_auth(struct iwn_softc *sc)
4711 {
4712 	struct iwn_ops *ops = &sc->ops;
4713 	struct ieee80211com *ic = &sc->sc_ic;
4714 	struct ieee80211_node *ni = ic->ic_bss;
4715 	int error;
4716 
4717 	/* Update adapter configuration. */
4718 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4719 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4720 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4721 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4722 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4723 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4724 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4725 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4726 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4727 	switch (ic->ic_curmode) {
4728 	case IEEE80211_MODE_11A:
4729 		sc->rxon.cck_mask  = 0;
4730 		sc->rxon.ofdm_mask = 0x15;
4731 		break;
4732 	case IEEE80211_MODE_11B:
4733 		sc->rxon.cck_mask  = 0x03;
4734 		sc->rxon.ofdm_mask = 0;
4735 		break;
4736 	default:	/* Assume 802.11b/g. */
4737 		sc->rxon.cck_mask  = 0x0f;
4738 		sc->rxon.ofdm_mask = 0x15;
4739 	}
4740 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4741 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4742 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4743 	if (error != 0) {
4744 		aprint_error_dev(sc->sc_dev,
4745 		    "RXON command failed\n");
4746 		return error;
4747 	}
4748 
4749 	/* Configuration has changed, set TX power accordingly. */
4750 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4751 		aprint_error_dev(sc->sc_dev,
4752 		    "could not set TX power\n");
4753 		return error;
4754 	}
4755 	/*
4756 	 * Reconfiguring RXON clears the firmware nodes table so we must
4757 	 * add the broadcast node again.
4758 	 */
4759 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4760 		aprint_error_dev(sc->sc_dev,
4761 		    "could not add broadcast node\n");
4762 		return error;
4763 	}
4764 	return 0;
4765 }
4766 
4767 static int
iwn_run(struct iwn_softc * sc)4768 iwn_run(struct iwn_softc *sc)
4769 {
4770 	struct iwn_ops *ops = &sc->ops;
4771 	struct ieee80211com *ic = &sc->sc_ic;
4772 	struct ieee80211_node *ni = ic->ic_bss;
4773 	struct iwn_node_info node;
4774 	int error;
4775 
4776 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4777 		/* Link LED blinks while monitoring. */
4778 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4779 		return 0;
4780 	}
4781 	if ((error = iwn_set_timing(sc, ni)) != 0) {
4782 		aprint_error_dev(sc->sc_dev,
4783 		    "could not set timing\n");
4784 		return error;
4785 	}
4786 
4787 	/* Update adapter configuration. */
4788 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4789 	/* Short preamble and slot time are negotiated when associating. */
4790 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4791 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4792 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4793 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4794 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4795 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4796 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4797 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4798 	if (error != 0) {
4799 		aprint_error_dev(sc->sc_dev,
4800 		    "could not update configuration\n");
4801 		return error;
4802 	}
4803 
4804 	/* Configuration has changed, set TX power accordingly. */
4805 	if ((error = ops->set_txpower(sc, 1)) != 0) {
4806 		aprint_error_dev(sc->sc_dev,
4807 		    "could not set TX power\n");
4808 		return error;
4809 	}
4810 
4811 	/* Fake a join to initialize the TX rate. */
4812 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
4813 	iwn_newassoc(ni, 1);
4814 
4815 	/* Add BSS node. */
4816 	memset(&node, 0, sizeof node);
4817 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4818 	node.id = IWN_ID_BSS;
4819 #ifdef notyet
4820 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4821 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4822 #endif
4823 	DPRINTF(("adding BSS node\n"));
4824 	error = ops->add_node(sc, &node, 1);
4825 	if (error != 0) {
4826 		aprint_error_dev(sc->sc_dev,
4827 		    "could not add BSS node\n");
4828 		return error;
4829 	}
4830 	DPRINTF(("setting link quality for node %d\n", node.id));
4831 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4832 		aprint_error_dev(sc->sc_dev,
4833 		    "could not setup link quality for node %d\n", node.id);
4834 		return error;
4835 	}
4836 
4837 	if ((error = iwn_init_sensitivity(sc)) != 0) {
4838 		aprint_error_dev(sc->sc_dev,
4839 		    "could not set sensitivity\n");
4840 		return error;
4841 	}
4842 	/* Start periodic calibration timer. */
4843 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4844 	sc->calib_cnt = 0;
4845 	callout_schedule(&sc->calib_to, hz/2);
4846 
4847 	/* Link LED always on while associated. */
4848 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4849 	return 0;
4850 }
4851 
4852 #ifdef IWN_HWCRYPTO
4853 /*
4854  * We support CCMP hardware encryption/decryption of unicast frames only.
4855  * HW support for TKIP really sucks.  We should let TKIP die anyway.
4856  */
4857 static int
iwn_set_key(struct ieee80211com * ic,struct ieee80211_node * ni,struct ieee80211_key * k)4858 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4859     struct ieee80211_key *k)
4860 {
4861 	struct iwn_softc *sc = ic->ic_softc;
4862 	struct iwn_ops *ops = &sc->ops;
4863 	struct iwn_node *wn = (void *)ni;
4864 	struct iwn_node_info node;
4865 	uint16_t kflags;
4866 
4867 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4868 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
4869 		return ieee80211_set_key(ic, ni, k);
4870 
4871 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4872 	if (k->k_flags & IEEE80211_KEY_GROUP)
4873 		kflags |= IWN_KFLAG_GROUP;
4874 
4875 	memset(&node, 0, sizeof node);
4876 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4877 	    sc->broadcast_id : wn->id;
4878 	node.control = IWN_NODE_UPDATE;
4879 	node.flags = IWN_FLAG_SET_KEY;
4880 	node.kflags = htole16(kflags);
4881 	node.kid = k->k_id;
4882 	memcpy(node.key, k->k_key, k->k_len);
4883 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4884 	return ops->add_node(sc, &node, 1);
4885 }
4886 
4887 static void
iwn_delete_key(struct ieee80211com * ic,struct ieee80211_node * ni,struct ieee80211_key * k)4888 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4889     struct ieee80211_key *k)
4890 {
4891 	struct iwn_softc *sc = ic->ic_softc;
4892 	struct iwn_ops *ops = &sc->ops;
4893 	struct iwn_node *wn = (void *)ni;
4894 	struct iwn_node_info node;
4895 
4896 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4897 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
4898 		/* See comment about other ciphers above. */
4899 		ieee80211_delete_key(ic, ni, k);
4900 		return;
4901 	}
4902 	if (ic->ic_state != IEEE80211_S_RUN)
4903 		return;	/* Nothing to do. */
4904 	memset(&node, 0, sizeof node);
4905 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4906 	    sc->broadcast_id : wn->id;
4907 	node.control = IWN_NODE_UPDATE;
4908 	node.flags = IWN_FLAG_SET_KEY;
4909 	node.kflags = htole16(IWN_KFLAG_INVALID);
4910 	node.kid = 0xff;
4911 	DPRINTF(("delete keys for node %d\n", node.id));
4912 	(void)ops->add_node(sc, &node, 1);
4913 }
4914 #endif
4915 
4916 /* XXX Added for NetBSD (copied from rev 1.39). */
4917 
4918 static int
iwn_wme_update(struct ieee80211com * ic)4919 iwn_wme_update(struct ieee80211com *ic)
4920 {
4921 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
4922 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
4923 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4924 	const struct wmeParams *wmep;
4925 	struct iwn_edca_params cmd;
4926 	int ac;
4927 
4928 	/* don't override default WME values if WME is not actually enabled */
4929 	if (!(ic->ic_flags & IEEE80211_F_WME))
4930 		return 0;
4931 	cmd.flags = 0;
4932 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4933 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4934 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4935 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4936 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4937 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
4938 
4939 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4940 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
4941 					cmd.ac[ac].cwmin,
4942 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4943 	}
4944 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4945 #undef IWN_USEC
4946 #undef IWN_EXP2
4947 }
4948 
4949 #ifndef IEEE80211_NO_HT
4950 /*
4951  * This function is called by upper layer when an ADDBA request is received
4952  * from another STA and before the ADDBA response is sent.
4953  */
4954 static int
iwn_ampdu_rx_start(struct ieee80211com * ic,struct ieee80211_node * ni,uint8_t tid)4955 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4956     uint8_t tid)
4957 {
4958 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4959 	struct iwn_softc *sc = ic->ic_softc;
4960 	struct iwn_ops *ops = &sc->ops;
4961 	struct iwn_node *wn = (void *)ni;
4962 	struct iwn_node_info node;
4963 
4964 	memset(&node, 0, sizeof node);
4965 	node.id = wn->id;
4966 	node.control = IWN_NODE_UPDATE;
4967 	node.flags = IWN_FLAG_SET_ADDBA;
4968 	node.addba_tid = tid;
4969 	node.addba_ssn = htole16(ba->ba_winstart);
4970 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4971 	    ba->ba_winstart));
4972 	return ops->add_node(sc, &node, 1);
4973 }
4974 
4975 /*
4976  * This function is called by upper layer on teardown of an HT-immediate
4977  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4978  */
4979 static void
iwn_ampdu_rx_stop(struct ieee80211com * ic,struct ieee80211_node * ni,uint8_t tid)4980 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4981     uint8_t tid)
4982 {
4983 	struct iwn_softc *sc = ic->ic_softc;
4984 	struct iwn_ops *ops = &sc->ops;
4985 	struct iwn_node *wn = (void *)ni;
4986 	struct iwn_node_info node;
4987 
4988 	memset(&node, 0, sizeof node);
4989 	node.id = wn->id;
4990 	node.control = IWN_NODE_UPDATE;
4991 	node.flags = IWN_FLAG_SET_DELBA;
4992 	node.delba_tid = tid;
4993 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4994 	(void)ops->add_node(sc, &node, 1);
4995 }
4996 
4997 /*
4998  * This function is called by upper layer when an ADDBA response is received
4999  * from another STA.
5000  */
5001 static int
iwn_ampdu_tx_start(struct ieee80211com * ic,struct ieee80211_node * ni,uint8_t tid)5002 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5003     uint8_t tid)
5004 {
5005 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5006 	struct iwn_softc *sc = ic->ic_softc;
5007 	struct iwn_ops *ops = &sc->ops;
5008 	struct iwn_node *wn = (void *)ni;
5009 	struct iwn_node_info node;
5010 	int error;
5011 
5012 	/* Enable TX for the specified RA/TID. */
5013 	wn->disable_tid &= ~(1 << tid);
5014 	memset(&node, 0, sizeof node);
5015 	node.id = wn->id;
5016 	node.control = IWN_NODE_UPDATE;
5017 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5018 	node.disable_tid = htole16(wn->disable_tid);
5019 	error = ops->add_node(sc, &node, 1);
5020 	if (error != 0)
5021 		return error;
5022 
5023 	if ((error = iwn_nic_lock(sc)) != 0)
5024 		return error;
5025 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5026 	iwn_nic_unlock(sc);
5027 	return 0;
5028 }
5029 
5030 static void
iwn_ampdu_tx_stop(struct ieee80211com * ic,struct ieee80211_node * ni,uint8_t tid)5031 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5032     uint8_t tid)
5033 {
5034 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5035 	struct iwn_softc *sc = ic->ic_softc;
5036 	struct iwn_ops *ops = &sc->ops;
5037 
5038 	if (iwn_nic_lock(sc) != 0)
5039 		return;
5040 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5041 	iwn_nic_unlock(sc);
5042 }
5043 
5044 static void
iwn4965_ampdu_tx_start(struct iwn_softc * sc,struct ieee80211_node * ni,uint8_t tid,uint16_t ssn)5045 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5046     uint8_t tid, uint16_t ssn)
5047 {
5048 	struct iwn_node *wn = (void *)ni;
5049 	int qid = 7 + tid;
5050 
5051 	/* Stop TX scheduler while we're changing its configuration. */
5052 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5053 	    IWN4965_TXQ_STATUS_CHGACT);
5054 
5055 	/* Assign RA/TID translation to the queue. */
5056 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5057 	    wn->id << 4 | tid);
5058 
5059 	/* Enable chain-building mode for the queue. */
5060 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5061 
5062 	/* Set starting sequence number from the ADDBA request. */
5063 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5064 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5065 
5066 	/* Set scheduler window size. */
5067 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5068 	    IWN_SCHED_WINSZ);
5069 	/* Set scheduler frame limit. */
5070 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5071 	    IWN_SCHED_LIMIT << 16);
5072 
5073 	/* Enable interrupts for the queue. */
5074 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5075 
5076 	/* Mark the queue as active. */
5077 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5078 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5079 	    iwn_tid2fifo[tid] << 1);
5080 }
5081 
5082 static void
iwn4965_ampdu_tx_stop(struct iwn_softc * sc,uint8_t tid,uint16_t ssn)5083 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5084 {
5085 	int qid = 7 + tid;
5086 
5087 	/* Stop TX scheduler while we're changing its configuration. */
5088 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5089 	    IWN4965_TXQ_STATUS_CHGACT);
5090 
5091 	/* Set starting sequence number from the ADDBA request. */
5092 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5093 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5094 
5095 	/* Disable interrupts for the queue. */
5096 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5097 
5098 	/* Mark the queue as inactive. */
5099 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5100 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5101 }
5102 
5103 static void
iwn5000_ampdu_tx_start(struct iwn_softc * sc,struct ieee80211_node * ni,uint8_t tid,uint16_t ssn)5104 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5105     uint8_t tid, uint16_t ssn)
5106 {
5107 	struct iwn_node *wn = (void *)ni;
5108 	int qid = 10 + tid;
5109 
5110 	/* Stop TX scheduler while we're changing its configuration. */
5111 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5112 	    IWN5000_TXQ_STATUS_CHGACT);
5113 
5114 	/* Assign RA/TID translation to the queue. */
5115 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5116 	    wn->id << 4 | tid);
5117 
5118 	/* Enable chain-building mode for the queue. */
5119 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5120 
5121 	/* Enable aggregation for the queue. */
5122 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5123 
5124 	/* Set starting sequence number from the ADDBA request. */
5125 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5126 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5127 
5128 	/* Set scheduler window size and frame limit. */
5129 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5130 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5131 
5132 	/* Enable interrupts for the queue. */
5133 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5134 
5135 	/* Mark the queue as active. */
5136 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5137 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5138 }
5139 
5140 static void
iwn5000_ampdu_tx_stop(struct iwn_softc * sc,uint8_t tid,uint16_t ssn)5141 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5142 {
5143 	int qid = 10 + tid;
5144 
5145 	/* Stop TX scheduler while we're changing its configuration. */
5146 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5147 	    IWN5000_TXQ_STATUS_CHGACT);
5148 
5149 	/* Disable aggregation for the queue. */
5150 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5151 
5152 	/* Set starting sequence number from the ADDBA request. */
5153 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5154 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5155 
5156 	/* Disable interrupts for the queue. */
5157 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5158 
5159 	/* Mark the queue as inactive. */
5160 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5161 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5162 }
5163 #endif	/* !IEEE80211_NO_HT */
5164 
5165 /*
5166  * Query calibration tables from the initialization firmware.  We do this
5167  * only once at first boot.  Called from a process context.
5168  */
5169 static int
iwn5000_query_calibration(struct iwn_softc * sc)5170 iwn5000_query_calibration(struct iwn_softc *sc)
5171 {
5172 	struct iwn5000_calib_config cmd;
5173 	int error;
5174 
5175 	memset(&cmd, 0, sizeof cmd);
5176 	cmd.ucode.once.enable = 0xffffffff;
5177 	cmd.ucode.once.start  = 0xffffffff;
5178 	cmd.ucode.once.send   = 0xffffffff;
5179 	cmd.ucode.flags       = 0xffffffff;
5180 	DPRINTF(("sending calibration query\n"));
5181 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5182 	if (error != 0)
5183 		return error;
5184 
5185 	/* Wait at most two seconds for calibration to complete. */
5186 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5187 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5188 	return error;
5189 }
5190 
5191 /*
5192  * Send calibration results to the runtime firmware.  These results were
5193  * obtained on first boot from the initialization firmware.
5194  */
5195 static int
iwn5000_send_calibration(struct iwn_softc * sc)5196 iwn5000_send_calibration(struct iwn_softc *sc)
5197 {
5198 	int idx, error;
5199 
5200 	for (idx = 0; idx < 5; idx++) {
5201 		if (sc->calibcmd[idx].buf == NULL)
5202 			continue;	/* No results available. */
5203 		DPRINTF(("send calibration result idx=%d len=%d\n",
5204 		    idx, sc->calibcmd[idx].len));
5205 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5206 		    sc->calibcmd[idx].len, 0);
5207 		if (error != 0) {
5208 			aprint_error_dev(sc->sc_dev,
5209 			    "could not send calibration result\n");
5210 			return error;
5211 		}
5212 	}
5213 	return 0;
5214 }
5215 
5216 static int
iwn5000_send_wimax_coex(struct iwn_softc * sc)5217 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5218 {
5219 	struct iwn5000_wimax_coex wimax;
5220 
5221 #ifdef notyet
5222 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5223 		/* Enable WiMAX coexistence for combo adapters. */
5224 		wimax.flags =
5225 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5226 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5227 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5228 		    IWN_WIMAX_COEX_ENABLE;
5229 		memcpy(wimax.events, iwn6050_wimax_events,
5230 		    sizeof iwn6050_wimax_events);
5231 	} else
5232 #endif
5233 	{
5234 		/* Disable WiMAX coexistence. */
5235 		wimax.flags = 0;
5236 		memset(wimax.events, 0, sizeof wimax.events);
5237 	}
5238 	DPRINTF(("Configuring WiMAX coexistence\n"));
5239 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5240 }
5241 
5242 static int
iwn6000_temp_offset_calib(struct iwn_softc * sc)5243 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5244 {
5245 	struct iwn6000_phy_calib_temp_offset cmd;
5246 
5247 	memset(&cmd, 0, sizeof cmd);
5248 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5249 	cmd.ngroups = 1;
5250 	cmd.isvalid = 1;
5251 	if (sc->eeprom_temp != 0)
5252 		cmd.offset = htole16(sc->eeprom_temp);
5253 	else
5254 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5255 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5256 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5257 }
5258 
5259 static int
iwn2000_temp_offset_calib(struct iwn_softc * sc)5260 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5261 {
5262 	struct iwn2000_phy_calib_temp_offset cmd;
5263 
5264 	memset(&cmd, 0, sizeof cmd);
5265 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5266 	cmd.ngroups = 1;
5267 	cmd.isvalid = 1;
5268 	if (sc->eeprom_rawtemp != 0) {
5269 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
5270 		cmd.offset_high = htole16(sc->eeprom_temp);
5271 	} else {
5272 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5273 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5274 	}
5275 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5276 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5277 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5278 	    le16toh(cmd.burnt_voltage_ref)));
5279 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5280 }
5281 
5282 /*
5283  * This function is called after the runtime firmware notifies us of its
5284  * readiness (called in a process context).
5285  */
5286 static int
iwn4965_post_alive(struct iwn_softc * sc)5287 iwn4965_post_alive(struct iwn_softc *sc)
5288 {
5289 	int error, qid;
5290 
5291 	if ((error = iwn_nic_lock(sc)) != 0)
5292 		return error;
5293 
5294 	/* Clear TX scheduler state in SRAM. */
5295 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5296 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5297 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5298 
5299 	/* Set physical address of TX scheduler rings (1KB aligned). */
5300 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5301 
5302 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5303 
5304 	/* Disable chain mode for all our 16 queues. */
5305 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5306 
5307 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5308 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5309 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5310 
5311 		/* Set scheduler window size. */
5312 		iwn_mem_write(sc, sc->sched_base +
5313 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5314 		/* Set scheduler frame limit. */
5315 		iwn_mem_write(sc, sc->sched_base +
5316 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5317 		    IWN_SCHED_LIMIT << 16);
5318 	}
5319 
5320 	/* Enable interrupts for all our 16 queues. */
5321 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5322 	/* Identify TX FIFO rings (0-7). */
5323 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5324 
5325 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5326 	for (qid = 0; qid < 7; qid++) {
5327 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5328 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5329 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5330 	}
5331 	iwn_nic_unlock(sc);
5332 	return 0;
5333 }
5334 
5335 /*
5336  * This function is called after the initialization or runtime firmware
5337  * notifies us of its readiness (called in a process context).
5338  */
5339 static int
iwn5000_post_alive(struct iwn_softc * sc)5340 iwn5000_post_alive(struct iwn_softc *sc)
5341 {
5342 	int error, qid;
5343 
5344 	/* Switch to using ICT interrupt mode. */
5345 	iwn5000_ict_reset(sc);
5346 
5347 	if ((error = iwn_nic_lock(sc)) != 0)
5348 		return error;
5349 
5350 	/* Clear TX scheduler state in SRAM. */
5351 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5352 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5353 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5354 
5355 	/* Set physical address of TX scheduler rings (1KB aligned). */
5356 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5357 
5358 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5359 
5360 	/* Enable chain mode for all queues, except command queue. */
5361 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5362 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5363 
5364 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5365 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5366 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5367 
5368 		iwn_mem_write(sc, sc->sched_base +
5369 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5370 		/* Set scheduler window size and frame limit. */
5371 		iwn_mem_write(sc, sc->sched_base +
5372 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5373 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5374 	}
5375 
5376 	/* Enable interrupts for all our 20 queues. */
5377 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5378 	/* Identify TX FIFO rings (0-7). */
5379 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5380 
5381 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5382 	for (qid = 0; qid < 7; qid++) {
5383 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5384 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5385 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5386 	}
5387 	iwn_nic_unlock(sc);
5388 
5389 	/* Configure WiMAX coexistence for combo adapters. */
5390 	error = iwn5000_send_wimax_coex(sc);
5391 	if (error != 0) {
5392 		aprint_error_dev(sc->sc_dev,
5393 		    "could not configure WiMAX coexistence\n");
5394 		return error;
5395 	}
5396 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5397 		struct iwn5000_phy_calib_crystal cmd;
5398 
5399 		/* Perform crystal calibration. */
5400 		memset(&cmd, 0, sizeof cmd);
5401 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5402 		cmd.ngroups = 1;
5403 		cmd.isvalid = 1;
5404 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5405 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5406 		DPRINTF(("sending crystal calibration %d, %d\n",
5407 		    cmd.cap_pin[0], cmd.cap_pin[1]));
5408 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5409 		if (error != 0) {
5410 			aprint_error_dev(sc->sc_dev,
5411 			    "crystal calibration failed\n");
5412 			return error;
5413 		}
5414 	}
5415 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5416 		/* Query calibration from the initialization firmware. */
5417 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5418 			aprint_error_dev(sc->sc_dev,
5419 			    "could not query calibration\n");
5420 			return error;
5421 		}
5422 		/*
5423 		 * We have the calibration results now, reboot with the
5424 		 * runtime firmware (call ourselves recursively!)
5425 		 */
5426 		iwn_hw_stop(sc);
5427 		error = iwn_hw_init(sc);
5428 	} else {
5429 		/* Send calibration results to runtime firmware. */
5430 		error = iwn5000_send_calibration(sc);
5431 	}
5432 	return error;
5433 }
5434 
5435 /*
5436  * The firmware boot code is small and is intended to be copied directly into
5437  * the NIC internal memory (no DMA transfer).
5438  */
5439 static int
iwn4965_load_bootcode(struct iwn_softc * sc,const uint8_t * ucode,int size)5440 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5441 {
5442 	int error, ntries;
5443 
5444 	size /= sizeof (uint32_t);
5445 
5446 	if ((error = iwn_nic_lock(sc)) != 0)
5447 		return error;
5448 
5449 	/* Copy microcode image into NIC memory. */
5450 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5451 	    (const uint32_t *)ucode, size);
5452 
5453 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5454 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5455 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5456 
5457 	/* Start boot load now. */
5458 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5459 
5460 	/* Wait for transfer to complete. */
5461 	for (ntries = 0; ntries < 1000; ntries++) {
5462 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5463 		    IWN_BSM_WR_CTRL_START))
5464 			break;
5465 		DELAY(10);
5466 	}
5467 	if (ntries == 1000) {
5468 		aprint_error_dev(sc->sc_dev,
5469 		    "could not load boot firmware\n");
5470 		iwn_nic_unlock(sc);
5471 		return ETIMEDOUT;
5472 	}
5473 
5474 	/* Enable boot after power up. */
5475 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5476 
5477 	iwn_nic_unlock(sc);
5478 	return 0;
5479 }
5480 
5481 static int
iwn4965_load_firmware(struct iwn_softc * sc)5482 iwn4965_load_firmware(struct iwn_softc *sc)
5483 {
5484 	struct iwn_fw_info *fw = &sc->fw;
5485 	struct iwn_dma_info *dma = &sc->fw_dma;
5486 	int error;
5487 
5488 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5489 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5490 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5491 	    BUS_DMASYNC_PREWRITE);
5492 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5493 	    fw->init.text, fw->init.textsz);
5494 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5495 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5496 
5497 	/* Tell adapter where to find initialization sections. */
5498 	if ((error = iwn_nic_lock(sc)) != 0)
5499 		return error;
5500 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5501 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5502 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5503 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5504 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5505 	iwn_nic_unlock(sc);
5506 
5507 	/* Load firmware boot code. */
5508 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5509 	if (error != 0) {
5510 		aprint_error_dev(sc->sc_dev,
5511 		    "could not load boot firmware\n");
5512 		return error;
5513 	}
5514 	/* Now press "execute". */
5515 	IWN_WRITE(sc, IWN_RESET, 0);
5516 
5517 	/* Wait at most one second for first alive notification. */
5518 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5519 		aprint_error_dev(sc->sc_dev,
5520 		    "timeout waiting for adapter to initialize\n");
5521 		return error;
5522 	}
5523 
5524 	/* Retrieve current temperature for initial TX power calibration. */
5525 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5526 	sc->temp = iwn4965_get_temperature(sc);
5527 
5528 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5529 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5530 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5531 	    BUS_DMASYNC_PREWRITE);
5532 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5533 	    fw->main.text, fw->main.textsz);
5534 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5535 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5536 
5537 	/* Tell adapter where to find runtime sections. */
5538 	if ((error = iwn_nic_lock(sc)) != 0)
5539 		return error;
5540 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5541 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5542 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5543 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5544 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5545 	    IWN_FW_UPDATED | fw->main.textsz);
5546 	iwn_nic_unlock(sc);
5547 
5548 	return 0;
5549 }
5550 
5551 static int
iwn5000_load_firmware_section(struct iwn_softc * sc,uint32_t dst,const uint8_t * section,int size)5552 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5553     const uint8_t *section, int size)
5554 {
5555 	struct iwn_dma_info *dma = &sc->fw_dma;
5556 	int error;
5557 
5558 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5559 	memcpy(dma->vaddr, section, size);
5560 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5561 
5562 	if ((error = iwn_nic_lock(sc)) != 0)
5563 		return error;
5564 
5565 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5566 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5567 
5568 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5569 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5570 	    IWN_LOADDR(dma->paddr));
5571 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5572 	    IWN_HIADDR(dma->paddr) << 28 | size);
5573 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5574 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5575 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5576 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5577 
5578 	/* Kick Flow Handler to start DMA transfer. */
5579 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5580 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5581 
5582 	iwn_nic_unlock(sc);
5583 
5584 	/* Wait at most five seconds for FH DMA transfer to complete. */
5585 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5586 }
5587 
5588 static int
iwn5000_load_firmware(struct iwn_softc * sc)5589 iwn5000_load_firmware(struct iwn_softc *sc)
5590 {
5591 	struct iwn_fw_part *fw;
5592 	int error;
5593 
5594 	/* Load the initialization firmware on first boot only. */
5595 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5596 	    &sc->fw.main : &sc->fw.init;
5597 
5598 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5599 	    fw->text, fw->textsz);
5600 	if (error != 0) {
5601 		aprint_error_dev(sc->sc_dev,
5602 		    "could not load firmware %s section\n", ".text");
5603 		return error;
5604 	}
5605 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5606 	    fw->data, fw->datasz);
5607 	if (error != 0) {
5608 		aprint_error_dev(sc->sc_dev,
5609 		    "could not load firmware %s section\n", ".data");
5610 		return error;
5611 	}
5612 
5613 	/* Now press "execute". */
5614 	IWN_WRITE(sc, IWN_RESET, 0);
5615 	return 0;
5616 }
5617 
5618 /*
5619  * Extract text and data sections from a legacy firmware image.
5620  */
5621 static int
iwn_read_firmware_leg(struct iwn_softc * sc,struct iwn_fw_info * fw)5622 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5623 {
5624 	const uint32_t *ptr;
5625 	size_t hdrlen = 24;
5626 	uint32_t rev;
5627 
5628 	ptr = (const uint32_t *)fw->data;
5629 	rev = le32toh(*ptr++);
5630 
5631 	/* Check firmware API version. */
5632 	if (IWN_FW_API(rev) <= 1) {
5633 		aprint_error_dev(sc->sc_dev,
5634 		    "bad firmware, need API version >=2\n");
5635 		return EINVAL;
5636 	}
5637 	if (IWN_FW_API(rev) >= 3) {
5638 		/* Skip build number (version 2 header). */
5639 		hdrlen += 4;
5640 		ptr++;
5641 	}
5642 	if (fw->size < hdrlen) {
5643 		aprint_error_dev(sc->sc_dev,
5644 		    "firmware too short: %zd bytes\n", fw->size);
5645 		return EINVAL;
5646 	}
5647 	fw->main.textsz = le32toh(*ptr++);
5648 	fw->main.datasz = le32toh(*ptr++);
5649 	fw->init.textsz = le32toh(*ptr++);
5650 	fw->init.datasz = le32toh(*ptr++);
5651 	fw->boot.textsz = le32toh(*ptr++);
5652 
5653 	/* Check that all firmware sections fit. */
5654 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5655 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5656 		aprint_error_dev(sc->sc_dev,
5657 		    "firmware too short: %zd bytes\n", fw->size);
5658 		return EINVAL;
5659 	}
5660 
5661 	/* Get pointers to firmware sections. */
5662 	fw->main.text = (const uint8_t *)ptr;
5663 	fw->main.data = fw->main.text + fw->main.textsz;
5664 	fw->init.text = fw->main.data + fw->main.datasz;
5665 	fw->init.data = fw->init.text + fw->init.textsz;
5666 	fw->boot.text = fw->init.data + fw->init.datasz;
5667 	return 0;
5668 }
5669 
5670 /*
5671  * Extract text and data sections from a TLV firmware image.
5672  */
5673 static int
iwn_read_firmware_tlv(struct iwn_softc * sc,struct iwn_fw_info * fw,uint16_t alt)5674 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5675     uint16_t alt)
5676 {
5677 	const struct iwn_fw_tlv_hdr *hdr;
5678 	const struct iwn_fw_tlv *tlv;
5679 	const uint8_t *ptr, *end;
5680 	uint64_t altmask;
5681 	uint32_t len;
5682 
5683 	if (fw->size < sizeof (*hdr)) {
5684 		aprint_error_dev(sc->sc_dev,
5685 		    "firmware too short: %zd bytes\n", fw->size);
5686 		return EINVAL;
5687 	}
5688 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5689 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5690 		aprint_error_dev(sc->sc_dev,
5691 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5692 		return EINVAL;
5693 	}
5694 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5695 	    le32toh(hdr->build)));
5696 
5697 	/*
5698 	 * Select the closest supported alternative that is less than
5699 	 * or equal to the specified one.
5700 	 */
5701 	altmask = le64toh(hdr->altmask);
5702 	while (alt > 0 && !(altmask & (1ULL << alt)))
5703 		alt--;	/* Downgrade. */
5704 	DPRINTF(("using alternative %d\n", alt));
5705 
5706 	ptr = (const uint8_t *)(hdr + 1);
5707 	end = (const uint8_t *)(fw->data + fw->size);
5708 
5709 	/* Parse type-length-value fields. */
5710 	while (ptr + sizeof (*tlv) <= end) {
5711 		tlv = (const struct iwn_fw_tlv *)ptr;
5712 		len = le32toh(tlv->len);
5713 
5714 		ptr += sizeof (*tlv);
5715 		if (ptr + len > end) {
5716 			aprint_error_dev(sc->sc_dev,
5717 			    "firmware too short: %zd bytes\n", fw->size);
5718 			return EINVAL;
5719 		}
5720 		/* Skip other alternatives. */
5721 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5722 			goto next;
5723 
5724 		switch (le16toh(tlv->type)) {
5725 		case IWN_FW_TLV_MAIN_TEXT:
5726 			fw->main.text = ptr;
5727 			fw->main.textsz = len;
5728 			break;
5729 		case IWN_FW_TLV_MAIN_DATA:
5730 			fw->main.data = ptr;
5731 			fw->main.datasz = len;
5732 			break;
5733 		case IWN_FW_TLV_INIT_TEXT:
5734 			fw->init.text = ptr;
5735 			fw->init.textsz = len;
5736 			break;
5737 		case IWN_FW_TLV_INIT_DATA:
5738 			fw->init.data = ptr;
5739 			fw->init.datasz = len;
5740 			break;
5741 		case IWN_FW_TLV_BOOT_TEXT:
5742 			fw->boot.text = ptr;
5743 			fw->boot.textsz = len;
5744 			break;
5745 		case IWN_FW_TLV_ENH_SENS:
5746 			if (len != 0) {
5747 				aprint_error_dev(sc->sc_dev,
5748 				    "TLV type %d has invalid size %u\n",
5749 				    le16toh(tlv->type), len);
5750 				goto next;
5751 			}
5752 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
5753 			break;
5754 		case IWN_FW_TLV_PHY_CALIB:
5755 			if (len != sizeof(uint32_t)) {
5756 				aprint_error_dev(sc->sc_dev,
5757 				    "TLV type %d has invalid size %u\n",
5758 				    le16toh(tlv->type), len);
5759 				goto next;
5760 			}
5761 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5762 				sc->reset_noise_gain = le32toh(*ptr);
5763 				sc->noise_gain = le32toh(*ptr) + 1;
5764 			}
5765 			break;
5766 		case IWN_FW_TLV_FLAGS:
5767 			if (len < sizeof(uint32_t))
5768 				break;
5769 			if (len % sizeof(uint32_t))
5770 				break;
5771 			sc->tlv_feature_flags = le32toh(*ptr);
5772 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5773 			break;
5774 		default:
5775 			DPRINTF(("TLV type %d not handled\n",
5776 			    le16toh(tlv->type)));
5777 			break;
5778 		}
5779  next:		/* TLV fields are 32-bit aligned. */
5780 		ptr += (len + 3) & ~3;
5781 	}
5782 	return 0;
5783 }
5784 
5785 static int
iwn_read_firmware(struct iwn_softc * sc)5786 iwn_read_firmware(struct iwn_softc *sc)
5787 {
5788 	struct iwn_fw_info *fw = &sc->fw;
5789 	firmware_handle_t fwh;
5790 	int error;
5791 
5792 	/*
5793 	 * Some PHY calibration commands are firmware-dependent; these
5794 	 * are the default values that will be overridden if
5795 	 * necessary.
5796 	 */
5797 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5798 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5799 
5800 	/* Initialize for error returns */
5801 	fw->data = NULL;
5802 	fw->size = 0;
5803 
5804 	/* Open firmware image. */
5805 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5806 		aprint_error_dev(sc->sc_dev,
5807 		    "could not get firmware handle %s\n", sc->fwname);
5808 		return error;
5809 	}
5810 	fw->size = firmware_get_size(fwh);
5811 	if (fw->size < sizeof (uint32_t)) {
5812 		aprint_error_dev(sc->sc_dev,
5813 		    "firmware too short: %zd bytes\n", fw->size);
5814 		firmware_close(fwh);
5815 		return EINVAL;
5816 	}
5817 
5818 	/* Read the firmware. */
5819 	fw->data = firmware_malloc(fw->size);
5820 	if (fw->data == NULL) {
5821 		aprint_error_dev(sc->sc_dev,
5822 		    "not enough memory to stock firmware %s\n", sc->fwname);
5823 		firmware_close(fwh);
5824 		return ENOMEM;
5825 	}
5826 	error = firmware_read(fwh, 0, fw->data, fw->size);
5827 	firmware_close(fwh);
5828 	if (error != 0) {
5829 		aprint_error_dev(sc->sc_dev,
5830 		    "could not read firmware %s\n", sc->fwname);
5831 		goto out;
5832 	}
5833 
5834 	/* Retrieve text and data sections. */
5835 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5836 		error = iwn_read_firmware_leg(sc, fw);
5837 	else
5838 		error = iwn_read_firmware_tlv(sc, fw, 1);
5839 	if (error != 0) {
5840 		aprint_error_dev(sc->sc_dev,
5841 		    "could not read firmware sections\n");
5842 		goto out;
5843 	}
5844 
5845 	/* Make sure text and data sections fit in hardware memory. */
5846 	if (fw->main.textsz > sc->fw_text_maxsz ||
5847 	    fw->main.datasz > sc->fw_data_maxsz ||
5848 	    fw->init.textsz > sc->fw_text_maxsz ||
5849 	    fw->init.datasz > sc->fw_data_maxsz ||
5850 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5851 	    (fw->boot.textsz & 3) != 0) {
5852 		aprint_error_dev(sc->sc_dev,
5853 		    "firmware sections too large\n");
5854 		goto out;
5855 	}
5856 
5857 	/* We can proceed with loading the firmware. */
5858 	return 0;
5859 out:
5860 	firmware_free(fw->data, fw->size);
5861 	fw->data = NULL;
5862 	fw->size = 0;
5863 	return error ? error : EINVAL;
5864 }
5865 
5866 static int
iwn_clock_wait(struct iwn_softc * sc)5867 iwn_clock_wait(struct iwn_softc *sc)
5868 {
5869 	int ntries;
5870 
5871 	/* Set "initialization complete" bit. */
5872 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5873 
5874 	/* Wait for clock stabilization. */
5875 	for (ntries = 0; ntries < 2500; ntries++) {
5876 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5877 			return 0;
5878 		DELAY(10);
5879 	}
5880 	aprint_error_dev(sc->sc_dev,
5881 	    "timeout waiting for clock stabilization\n");
5882 	return ETIMEDOUT;
5883 }
5884 
5885 static int
iwn_apm_init(struct iwn_softc * sc)5886 iwn_apm_init(struct iwn_softc *sc)
5887 {
5888 	pcireg_t reg;
5889 	int error;
5890 
5891 	/* Disable L0s exit timer (NMI bug workaround). */
5892 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5893 	/* Don't wait for ICH L0s (ICH bug workaround). */
5894 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5895 
5896 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5897 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5898 
5899 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5900 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5901 
5902 	/* Retrieve PCIe Active State Power Management (ASPM). */
5903 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5904 	    sc->sc_cap_off + PCIE_LCSR);
5905 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5906 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
5907 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5908 	else
5909 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5910 
5911 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5912 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
5913 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5914 
5915 	/* Wait for clock stabilization before accessing prph. */
5916 	if ((error = iwn_clock_wait(sc)) != 0)
5917 		return error;
5918 
5919 	if ((error = iwn_nic_lock(sc)) != 0)
5920 		return error;
5921 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5922 		/* Enable DMA and BSM (Bootstrap State Machine). */
5923 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5924 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5925 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5926 	} else {
5927 		/* Enable DMA. */
5928 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5929 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5930 	}
5931 	DELAY(20);
5932 	/* Disable L1-Active. */
5933 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5934 	iwn_nic_unlock(sc);
5935 
5936 	return 0;
5937 }
5938 
5939 static void
iwn_apm_stop_master(struct iwn_softc * sc)5940 iwn_apm_stop_master(struct iwn_softc *sc)
5941 {
5942 	int ntries;
5943 
5944 	/* Stop busmaster DMA activity. */
5945 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5946 	for (ntries = 0; ntries < 100; ntries++) {
5947 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5948 			return;
5949 		DELAY(10);
5950 	}
5951 	aprint_error_dev(sc->sc_dev,
5952 	    "timeout waiting for master\n");
5953 }
5954 
5955 static void
iwn_apm_stop(struct iwn_softc * sc)5956 iwn_apm_stop(struct iwn_softc *sc)
5957 {
5958 	iwn_apm_stop_master(sc);
5959 
5960 	/* Reset the entire device. */
5961 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5962 	DELAY(10);
5963 	/* Clear "initialization complete" bit. */
5964 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5965 }
5966 
5967 static int
iwn4965_nic_config(struct iwn_softc * sc)5968 iwn4965_nic_config(struct iwn_softc *sc)
5969 {
5970 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5971 		/*
5972 		 * I don't believe this to be correct but this is what the
5973 		 * vendor driver is doing. Probably the bits should not be
5974 		 * shifted in IWN_RFCFG_*.
5975 		 */
5976 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5977 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5978 		    IWN_RFCFG_STEP(sc->rfcfg) |
5979 		    IWN_RFCFG_DASH(sc->rfcfg));
5980 	}
5981 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5982 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5983 	return 0;
5984 }
5985 
5986 static int
iwn5000_nic_config(struct iwn_softc * sc)5987 iwn5000_nic_config(struct iwn_softc *sc)
5988 {
5989 	uint32_t tmp;
5990 	int error;
5991 
5992 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5993 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5994 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5995 		    IWN_RFCFG_STEP(sc->rfcfg) |
5996 		    IWN_RFCFG_DASH(sc->rfcfg));
5997 	}
5998 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5999 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6000 
6001 	if ((error = iwn_nic_lock(sc)) != 0)
6002 		return error;
6003 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6004 
6005 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6006 		/*
6007 		 * Select first Switching Voltage Regulator (1.32V) to
6008 		 * solve a stability issue related to noisy DC2DC line
6009 		 * in the silicon of 1000 Series.
6010 		 */
6011 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6012 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6013 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6014 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6015 	}
6016 	iwn_nic_unlock(sc);
6017 
6018 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6019 		/* Use internal power amplifier only. */
6020 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6021 	}
6022 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6023 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6024 		/* Indicate that ROM calibration version is >=6. */
6025 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6026 	}
6027 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6028 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6029 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6030 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6031 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
6032 	    sc->hw_type == IWN_HW_REV_TYPE_105)
6033 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6034 	return 0;
6035 }
6036 
6037 /*
6038  * Take NIC ownership over Intel Active Management Technology (AMT).
6039  */
6040 static int
iwn_hw_prepare(struct iwn_softc * sc)6041 iwn_hw_prepare(struct iwn_softc *sc)
6042 {
6043 	int ntries;
6044 
6045 	/* Check if hardware is ready. */
6046 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6047 	for (ntries = 0; ntries < 5; ntries++) {
6048 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6049 		    IWN_HW_IF_CONFIG_NIC_READY)
6050 			return 0;
6051 		DELAY(10);
6052 	}
6053 
6054 	/* Hardware not ready, force into ready state. */
6055 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6056 	for (ntries = 0; ntries < 15000; ntries++) {
6057 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6058 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6059 			break;
6060 		DELAY(10);
6061 	}
6062 	if (ntries == 15000)
6063 		return ETIMEDOUT;
6064 
6065 	/* Hardware should be ready now. */
6066 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6067 	for (ntries = 0; ntries < 5; ntries++) {
6068 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6069 		    IWN_HW_IF_CONFIG_NIC_READY)
6070 			return 0;
6071 		DELAY(10);
6072 	}
6073 	return ETIMEDOUT;
6074 }
6075 
6076 static int
iwn_hw_init(struct iwn_softc * sc)6077 iwn_hw_init(struct iwn_softc *sc)
6078 {
6079 	struct iwn_ops *ops = &sc->ops;
6080 	int error, chnl, qid;
6081 
6082 	/* Clear pending interrupts. */
6083 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6084 
6085 	if ((error = iwn_apm_init(sc)) != 0) {
6086 		aprint_error_dev(sc->sc_dev,
6087 		    "could not power ON adapter\n");
6088 		return error;
6089 	}
6090 
6091 	/* Select VMAIN power source. */
6092 	if ((error = iwn_nic_lock(sc)) != 0)
6093 		return error;
6094 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6095 	iwn_nic_unlock(sc);
6096 
6097 	/* Perform adapter-specific initialization. */
6098 	if ((error = ops->nic_config(sc)) != 0)
6099 		return error;
6100 
6101 	/* Initialize RX ring. */
6102 	if ((error = iwn_nic_lock(sc)) != 0)
6103 		return error;
6104 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6105 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6106 	/* Set physical address of RX ring (256-byte aligned). */
6107 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6108 	/* Set physical address of RX status (16-byte aligned). */
6109 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6110 	/* Enable RX. */
6111 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6112 	    IWN_FH_RX_CONFIG_ENA           |
6113 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6114 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6115 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6116 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6117 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6118 	iwn_nic_unlock(sc);
6119 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6120 
6121 	if ((error = iwn_nic_lock(sc)) != 0)
6122 		return error;
6123 
6124 	/* Initialize TX scheduler. */
6125 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6126 
6127 	/* Set physical address of "keep warm" page (16-byte aligned). */
6128 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6129 
6130 	/* Initialize TX rings. */
6131 	for (qid = 0; qid < sc->ntxqs; qid++) {
6132 		struct iwn_tx_ring *txq = &sc->txq[qid];
6133 
6134 		/* Set physical address of TX ring (256-byte aligned). */
6135 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6136 		    txq->desc_dma.paddr >> 8);
6137 	}
6138 	iwn_nic_unlock(sc);
6139 
6140 	/* Enable DMA channels. */
6141 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6142 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6143 		    IWN_FH_TX_CONFIG_DMA_ENA |
6144 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6145 	}
6146 
6147 	/* Clear "radio off" and "commands blocked" bits. */
6148 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6149 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6150 
6151 	/* Clear pending interrupts. */
6152 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6153 	/* Enable interrupt coalescing. */
6154 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6155 	/* Enable interrupts. */
6156 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6157 
6158 	/* _Really_ make sure "radio off" bit is cleared! */
6159 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6160 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6161 
6162 	/* Enable shadow registers. */
6163 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6164 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6165 
6166 	if ((error = ops->load_firmware(sc)) != 0) {
6167 		aprint_error_dev(sc->sc_dev,
6168 		    "could not load firmware\n");
6169 		return error;
6170 	}
6171 	/* Wait at most one second for firmware alive notification. */
6172 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6173 		aprint_error_dev(sc->sc_dev,
6174 		    "timeout waiting for adapter to initialize\n");
6175 		return error;
6176 	}
6177 	/* Do post-firmware initialization. */
6178 	return ops->post_alive(sc);
6179 }
6180 
6181 static void
iwn_hw_stop(struct iwn_softc * sc)6182 iwn_hw_stop(struct iwn_softc *sc)
6183 {
6184 	int chnl, qid, ntries;
6185 
6186 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6187 
6188 	/* Disable interrupts. */
6189 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6190 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6191 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6192 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6193 
6194 	/* Make sure we no longer hold the NIC lock. */
6195 	iwn_nic_unlock(sc);
6196 
6197 	/* Stop TX scheduler. */
6198 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6199 
6200 	/* Stop all DMA channels. */
6201 	if (iwn_nic_lock(sc) == 0) {
6202 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6203 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6204 			for (ntries = 0; ntries < 200; ntries++) {
6205 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6206 				    IWN_FH_TX_STATUS_IDLE(chnl))
6207 					break;
6208 				DELAY(10);
6209 			}
6210 		}
6211 		iwn_nic_unlock(sc);
6212 	}
6213 
6214 	/* Stop RX ring. */
6215 	iwn_reset_rx_ring(sc, &sc->rxq);
6216 
6217 	/* Reset all TX rings. */
6218 	for (qid = 0; qid < sc->ntxqs; qid++)
6219 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6220 
6221 	if (iwn_nic_lock(sc) == 0) {
6222 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6223 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6224 		iwn_nic_unlock(sc);
6225 	}
6226 	DELAY(5);
6227 	/* Power OFF adapter. */
6228 	iwn_apm_stop(sc);
6229 }
6230 
6231 static int
iwn_init(struct ifnet * ifp)6232 iwn_init(struct ifnet *ifp)
6233 {
6234 	struct iwn_softc *sc = ifp->if_softc;
6235 	struct ieee80211com *ic = &sc->sc_ic;
6236 	int error;
6237 
6238 	mutex_enter(&sc->sc_mtx);
6239 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
6240 		goto out;
6241 	if ((error = iwn_hw_prepare(sc)) != 0) {
6242 		aprint_error_dev(sc->sc_dev,
6243 		    "hardware not ready\n");
6244 		goto fail;
6245 	}
6246 
6247 	/* Check that the radio is not disabled by hardware switch. */
6248 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6249 		aprint_error_dev(sc->sc_dev,
6250 		    "radio is disabled by hardware switch\n");
6251 		error = EPERM;	/* :-) */
6252 		goto fail;
6253 	}
6254 
6255 	/* Read firmware images from the filesystem. */
6256 	if ((error = iwn_read_firmware(sc)) != 0) {
6257 		aprint_error_dev(sc->sc_dev,
6258 		    "could not read firmware\n");
6259 		goto fail;
6260 	}
6261 
6262 	/* Initialize interrupt mask to default value. */
6263 	sc->int_mask = IWN_INT_MASK_DEF;
6264 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6265 
6266 	/* Initialize hardware and upload firmware. */
6267 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6268 	error = iwn_hw_init(sc);
6269 	firmware_free(sc->fw.data, sc->fw.size);
6270 	sc->fw.data = NULL;
6271 	sc->fw.size = 0;
6272 	if (error != 0) {
6273 		aprint_error_dev(sc->sc_dev,
6274 		    "could not initialize hardware\n");
6275 		goto fail;
6276 	}
6277 
6278 	/* Configure adapter now that it is ready. */
6279 	if ((error = iwn_config(sc)) != 0) {
6280 		aprint_error_dev(sc->sc_dev,
6281 		    "could not configure device\n");
6282 		goto fail;
6283 	}
6284 
6285 	ifp->if_flags &= ~IFF_OACTIVE;
6286 	ifp->if_flags |= IFF_RUNNING;
6287 
6288 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
6289 		ieee80211_begin_scan(ic, 0);
6290 	else
6291 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6292 
6293 	sc->sc_flags |= IWN_FLAG_HW_INITED;
6294 out:
6295 	mutex_exit(&sc->sc_mtx);
6296 	return 0;
6297 
6298 fail:	mutex_exit(&sc->sc_mtx);
6299 	iwn_stop(ifp, 1);
6300 	return error;
6301 }
6302 
6303 static void
iwn_stop(struct ifnet * ifp,int disable)6304 iwn_stop(struct ifnet *ifp, int disable)
6305 {
6306 	struct iwn_softc *sc = ifp->if_softc;
6307 	struct ieee80211com *ic = &sc->sc_ic;
6308 
6309 	if (!disable)
6310 		mutex_enter(&sc->sc_mtx);
6311 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6312 	ifp->if_timer = sc->sc_tx_timer = 0;
6313 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6314 
6315 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6316 
6317 	/* Power OFF hardware. */
6318 	iwn_hw_stop(sc);
6319 
6320 	if (!disable)
6321 		mutex_exit(&sc->sc_mtx);
6322 }
6323 
6324 /*
6325  * XXX MCLGETI alternative
6326  *
6327  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6328  * as long as there are available free buffers then it uses MEXTMALLOC.,
6329  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6330  * The MCLGET4K code is used for testing an alternative mbuf cache.
6331  */
6332 
6333 static struct mbuf *
MCLGETIalt(struct iwn_softc * sc,int how,struct ifnet * ifp __unused,u_int size)6334 MCLGETIalt(struct iwn_softc *sc, int how,
6335     struct ifnet *ifp __unused, u_int size)
6336 {
6337 	struct mbuf *m;
6338 #ifdef IWN_USE_RBUF
6339 	struct iwn_rbuf *rbuf;
6340 #endif
6341 
6342 	MGETHDR(m, how, MT_DATA);
6343 	if (m == NULL)
6344 		return NULL;
6345 
6346 #ifdef IWN_USE_RBUF
6347 	if (sc->rxq.nb_free_entries > 0 &&
6348 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6349 		/* Attach buffer to mbuf header. */
6350 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6351 		m->m_flags |= M_EXT_RW;
6352 	}
6353 	else {
6354 		MEXTMALLOC(m, size, how);
6355 		if ((m->m_flags & M_EXT) == 0) {
6356 			m_freem(m);
6357 			return NULL;
6358 		}
6359 	}
6360 
6361 #else
6362 #ifdef MCLGET4K
6363 	if (size == 4096)
6364 		MCLGET4K(m, how);
6365 	else
6366 		panic("size must be 4k");
6367 #else
6368 	MEXTMALLOC(m, size, how);
6369 #endif
6370 	if ((m->m_flags & M_EXT) == 0) {
6371 		m_freem(m);
6372 		return NULL;
6373 	}
6374 #endif
6375 
6376 	return m;
6377 }
6378 
6379 #ifdef IWN_USE_RBUF
6380 static struct iwn_rbuf *
iwn_alloc_rbuf(struct iwn_softc * sc)6381 iwn_alloc_rbuf(struct iwn_softc *sc)
6382 {
6383 	struct iwn_rbuf *rbuf;
6384 	mutex_enter(&sc->rxq.freelist_mtx);
6385 
6386 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6387 	if (rbuf != NULL) {
6388 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6389 		sc->rxq.nb_free_entries --;
6390 	}
6391 	mutex_exit(&sc->rxq.freelist_mtx);
6392 	return rbuf;
6393 }
6394 
6395 /*
6396  * This is called automatically by the network stack when the mbuf to which
6397  * our RX buffer is attached is freed.
6398  */
6399 static void
iwn_free_rbuf(struct mbuf * m,void * buf,size_t size,void * arg)6400 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6401 {
6402 	struct iwn_rbuf *rbuf = arg;
6403 	struct iwn_softc *sc = rbuf->sc;
6404 
6405 	/* Put the RX buffer back in the free list. */
6406 	mutex_enter(&sc->rxq.freelist_mtx);
6407 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6408 	mutex_exit(&sc->rxq.freelist_mtx);
6409 
6410 	sc->rxq.nb_free_entries ++;
6411 	if (__predict_true(m != NULL))
6412 		pool_cache_put(mb_cache, m);
6413 }
6414 
6415 static int
iwn_alloc_rpool(struct iwn_softc * sc)6416 iwn_alloc_rpool(struct iwn_softc *sc)
6417 {
6418 	struct iwn_rx_ring *ring = &sc->rxq;
6419 	struct iwn_rbuf *rbuf;
6420 	int i, error;
6421 
6422 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6423 
6424 	/* Allocate a big chunk of DMA'able memory... */
6425 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6426 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6427 	if (error != 0) {
6428 		aprint_error_dev(sc->sc_dev,
6429 		    "could not allocate RX buffers DMA memory\n");
6430 		return error;
6431 	}
6432 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6433 	SLIST_INIT(&ring->freelist);
6434 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6435 		rbuf = &ring->rbuf[i];
6436 
6437 		rbuf->sc = sc;	/* Backpointer for callbacks. */
6438 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6439 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6440 
6441 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6442 	}
6443 	ring->nb_free_entries = IWN_RBUF_COUNT;
6444 	return 0;
6445 }
6446 
6447 static void
iwn_free_rpool(struct iwn_softc * sc)6448 iwn_free_rpool(struct iwn_softc *sc)
6449 {
6450 	iwn_dma_contig_free(&sc->rxq.buf_dma);
6451 }
6452 #endif
6453 
6454 /*
6455  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6456  * Copyright (c) 2001 Atsushi Onoe
6457  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6458  * Copyright (c) 2007-2009 Damien Bergamini
6459  * All rights reserved.
6460  */
6461 
6462 /*
6463  * Add an SSID element to a frame (see 7.3.2.1).
6464  */
6465 static u_int8_t *
ieee80211_add_ssid(u_int8_t * frm,const u_int8_t * ssid,u_int len)6466 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6467 {
6468 	*frm++ = IEEE80211_ELEMID_SSID;
6469 	*frm++ = len;
6470 	memcpy(frm, ssid, len);
6471 	return frm + len;
6472 }
6473 
6474 /*
6475  * Add a supported rates element to a frame (see 7.3.2.2).
6476  */
6477 static u_int8_t *
ieee80211_add_rates(u_int8_t * frm,const struct ieee80211_rateset * rs)6478 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6479 {
6480 	int nrates;
6481 
6482 	*frm++ = IEEE80211_ELEMID_RATES;
6483 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6484 	*frm++ = nrates;
6485 	memcpy(frm, rs->rs_rates, nrates);
6486 	return frm + nrates;
6487 }
6488 
6489 /*
6490  * Add an extended supported rates element to a frame (see 7.3.2.14).
6491  */
6492 static u_int8_t *
ieee80211_add_xrates(u_int8_t * frm,const struct ieee80211_rateset * rs)6493 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6494 {
6495 	int nrates;
6496 
6497 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6498 
6499 	*frm++ = IEEE80211_ELEMID_XRATES;
6500 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6501 	*frm++ = nrates;
6502 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6503 	return frm + nrates;
6504 }
6505 
6506 /*
6507  * XXX: Hack to set the current channel to the value advertised in beacons or
6508  * probe responses. Only used during AP detection.
6509  * XXX: Duplicated from if_iwi.c
6510  */
6511 static void
iwn_fix_channel(struct ieee80211com * ic,struct mbuf * m,struct iwn_rx_stat * stat)6512 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6513     struct iwn_rx_stat *stat)
6514 {
6515 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6516 	struct ieee80211_frame *wh;
6517 	uint8_t subtype;
6518 	uint8_t *frm, *efrm;
6519 
6520 	wh = mtod(m, struct ieee80211_frame *);
6521 
6522 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6523 		return;
6524 
6525 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6526 
6527 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6528 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6529 		return;
6530 
6531 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6532 		int chan = le16toh(stat->chan);
6533 		if (chan < __arraycount(ic->ic_channels))
6534 			ic->ic_curchan = &ic->ic_channels[chan];
6535 		return;
6536 	}
6537 
6538 	frm = (uint8_t *)(wh + 1);
6539 	efrm = mtod(m, uint8_t *) + m->m_len;
6540 
6541 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6542 	while (frm < efrm) {
6543 		if (*frm == IEEE80211_ELEMID_DSPARMS)
6544 #if IEEE80211_CHAN_MAX < 255
6545 		if (frm[2] <= IEEE80211_CHAN_MAX)
6546 #endif
6547 			ic->ic_curchan = &ic->ic_channels[frm[2]];
6548 
6549 		frm += frm[1] + 2;
6550 	}
6551 }
6552 
6553 #ifdef notyetMODULE
6554 
6555 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6556 
6557 #ifdef _MODULE
6558 #include "ioconf.c"
6559 #endif
6560 
6561 static int
if_iwn_modcmd(modcmd_t cmd,void * data)6562 if_iwn_modcmd(modcmd_t cmd, void *data)
6563 {
6564 	int error = 0;
6565 
6566 	switch (cmd) {
6567 	case MODULE_CMD_INIT:
6568 #ifdef _MODULE
6569 		error = config_init_component(cfdriver_ioconf_if_iwn,
6570 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6571 #endif
6572 		return error;
6573 	case MODULE_CMD_FINI:
6574 #ifdef _MODULE
6575 		error = config_fini_component(cfdriver_ioconf_if_iwn,
6576 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6577 #endif
6578 		return error;
6579 	case MODULE_CMD_AUTOUNLOAD:
6580 #ifdef _MODULE
6581 		/* XXX This is not optional! */
6582 #endif
6583 		return error;
6584 	default:
6585 		return ENOTTY;
6586 	}
6587 }
6588 #endif
6589