1 /*	$NetBSD: if_nfe.c,v 1.61 2016/06/10 13:27:14 ozaki-r Exp $	*/
2 /*	$OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.61 2016/06/10 13:27:14 ozaki-r Exp $");
25 
26 #include "opt_inet.h"
27 #include "vlan.h"
28 
29 #include <sys/param.h>
30 #include <sys/endian.h>
31 #include <sys/systm.h>
32 #include <sys/types.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/mutex.h>
36 #include <sys/queue.h>
37 #include <sys/kernel.h>
38 #include <sys/device.h>
39 #include <sys/callout.h>
40 #include <sys/socket.h>
41 
42 #include <sys/bus.h>
43 
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49 
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57 
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61 
62 #include <net/bpf.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/pci/if_nfereg.h>
72 #include <dev/pci/if_nfevar.h>
73 
74 static int nfe_ifflags_cb(struct ethercom *);
75 
76 int	nfe_match(device_t, cfdata_t, void *);
77 void	nfe_attach(device_t, device_t, void *);
78 int	nfe_detach(device_t, int);
79 void	nfe_power(int, void *);
80 void	nfe_miibus_statchg(struct ifnet *);
81 int	nfe_miibus_readreg(device_t, int, int);
82 void	nfe_miibus_writereg(device_t, int, int, int);
83 int	nfe_intr(void *);
84 int	nfe_ioctl(struct ifnet *, u_long, void *);
85 void	nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
86 void	nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
87 void	nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
88 void	nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
89 void	nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
90 void	nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
91 void	nfe_rxeof(struct nfe_softc *);
92 void	nfe_txeof(struct nfe_softc *);
93 int	nfe_encap(struct nfe_softc *, struct mbuf *);
94 void	nfe_start(struct ifnet *);
95 void	nfe_watchdog(struct ifnet *);
96 int	nfe_init(struct ifnet *);
97 void	nfe_stop(struct ifnet *, int);
98 struct	nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
99 void	nfe_jfree(struct mbuf *, void *, size_t, void *);
100 int	nfe_jpool_alloc(struct nfe_softc *);
101 void	nfe_jpool_free(struct nfe_softc *);
102 int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
105 int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
108 void	nfe_setmulti(struct nfe_softc *);
109 void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
110 void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
111 void	nfe_tick(void *);
112 void	nfe_poweron(device_t);
113 bool	nfe_resume(device_t, const pmf_qual_t *);
114 
115 CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc),
116     nfe_match, nfe_attach, nfe_detach, NULL);
117 
118 /* #define NFE_NO_JUMBO */
119 
120 #ifdef NFE_DEBUG
121 int nfedebug = 0;
122 #define DPRINTF(x)	do { if (nfedebug) printf x; } while (0)
123 #define DPRINTFN(n,x)	do { if (nfedebug >= (n)) printf x; } while (0)
124 #else
125 #define DPRINTF(x)
126 #define DPRINTFN(n,x)
127 #endif
128 
129 /* deal with naming differences */
130 
131 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
132 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
133 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
134 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
135 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
136 	PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
137 
138 #define	PCI_PRODUCT_NVIDIA_CK804_LAN1 \
139 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
140 #define	PCI_PRODUCT_NVIDIA_CK804_LAN2 \
141 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
142 
143 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
144 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
145 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
146 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
147 
148 #ifdef	_LP64
149 #define	__LP64__ 1
150 #endif
151 
152 const struct nfe_product {
153 	pci_vendor_id_t		vendor;
154 	pci_product_id_t	product;
155 } nfe_devices[] = {
156 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
157 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
158 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
159 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
160 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
161 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
162 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
163 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
164 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
165 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
166 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
167 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
168 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
169 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
170 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
171 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
172 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
173 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
174 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
175 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
176 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
177 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
178 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
179 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
180 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
181 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
182 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
183 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
184 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
185 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
186 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
187 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
188 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
189 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
190 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
191 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
192 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
193 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
194 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
195 };
196 
197 int
nfe_match(device_t dev,cfdata_t match,void * aux)198 nfe_match(device_t dev, cfdata_t match, void *aux)
199 {
200 	struct pci_attach_args *pa = aux;
201 	const struct nfe_product *np;
202 	int i;
203 
204 	for (i = 0; i < __arraycount(nfe_devices); i++) {
205 		np = &nfe_devices[i];
206 		if (PCI_VENDOR(pa->pa_id) == np->vendor &&
207 		    PCI_PRODUCT(pa->pa_id) == np->product)
208 			return 1;
209 	}
210 	return 0;
211 }
212 
213 void
nfe_attach(device_t parent,device_t self,void * aux)214 nfe_attach(device_t parent, device_t self, void *aux)
215 {
216 	struct nfe_softc *sc = device_private(self);
217 	struct pci_attach_args *pa = aux;
218 	pci_chipset_tag_t pc = pa->pa_pc;
219 	pci_intr_handle_t ih;
220 	const char *intrstr;
221 	struct ifnet *ifp;
222 	pcireg_t memtype, csr;
223 	int mii_flags = 0;
224 	char intrbuf[PCI_INTRSTR_LEN];
225 
226 	sc->sc_dev = self;
227 	sc->sc_pc = pa->pa_pc;
228 	pci_aprint_devinfo(pa, NULL);
229 
230 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
231 	switch (memtype) {
232 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
233 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
234 		if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
235 		    &sc->sc_memh, NULL, &sc->sc_mems) == 0)
236 			break;
237 		/* FALLTHROUGH */
238 	default:
239 		aprint_error_dev(self, "could not map mem space\n");
240 		return;
241 	}
242 
243 	if (pci_intr_map(pa, &ih) != 0) {
244 		aprint_error_dev(self, "could not map interrupt\n");
245 		goto fail;
246 	}
247 
248 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
249 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
250 	if (sc->sc_ih == NULL) {
251 		aprint_error_dev(self, "could not establish interrupt");
252 		if (intrstr != NULL)
253 			aprint_error(" at %s", intrstr);
254 		aprint_error("\n");
255 		goto fail;
256 	}
257 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
258 
259 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
260 	csr |= PCI_COMMAND_MASTER_ENABLE;
261 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
262 
263 	sc->sc_flags = 0;
264 
265 	switch (PCI_PRODUCT(pa->pa_id)) {
266 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
267 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
268 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
269 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
270 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
271 		break;
272 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
273 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
274 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
275 		break;
276 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
277 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
278 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
279 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
280 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
281 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
282 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
283 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
284 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
285 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
286 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
287 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
288 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
289 		    NFE_PWR_MGMT;
290 		break;
291 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
292 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
293 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
294 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
295 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
296 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
297 		break;
298 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
299 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
300 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
301 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
302 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
303 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
304 		break;
305 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
306 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
307 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
308 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
309 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
310 		break;
311 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
312 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
313 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
314 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
315 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
316 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
317 		mii_flags = MIIF_DOPAUSE;
318 		break;
319 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
320 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
321 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
322 		    NFE_HW_VLAN | NFE_PWR_MGMT;
323 		break;
324 	}
325 
326 	if (pci_dma64_available(pa) && (sc->sc_flags & NFE_40BIT_ADDR) != 0)
327 		sc->sc_dmat = pa->pa_dmat64;
328 	else
329 		sc->sc_dmat = pa->pa_dmat;
330 
331 	nfe_poweron(self);
332 
333 #ifndef NFE_NO_JUMBO
334 	/* enable jumbo frames for adapters that support it */
335 	if (sc->sc_flags & NFE_JUMBO_SUP)
336 		sc->sc_flags |= NFE_USE_JUMBO;
337 #endif
338 
339 	/* Check for reversed ethernet address */
340 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
341 		sc->sc_flags |= NFE_CORRECT_MACADDR;
342 
343 	nfe_get_macaddr(sc, sc->sc_enaddr);
344 	aprint_normal_dev(self, "Ethernet address %s\n",
345 	    ether_sprintf(sc->sc_enaddr));
346 
347 	/*
348 	 * Allocate Tx and Rx rings.
349 	 */
350 	if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
351 		aprint_error_dev(self, "could not allocate Tx ring\n");
352 		goto fail;
353 	}
354 
355 	mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
356 
357 	if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
358 		aprint_error_dev(self, "could not allocate Rx ring\n");
359 		nfe_free_tx_ring(sc, &sc->txq);
360 		goto fail;
361 	}
362 
363 	ifp = &sc->sc_ethercom.ec_if;
364 	ifp->if_softc = sc;
365 	ifp->if_mtu = ETHERMTU;
366 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
367 	ifp->if_ioctl = nfe_ioctl;
368 	ifp->if_start = nfe_start;
369 	ifp->if_stop = nfe_stop;
370 	ifp->if_watchdog = nfe_watchdog;
371 	ifp->if_init = nfe_init;
372 	ifp->if_baudrate = IF_Gbps(1);
373 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
374 	IFQ_SET_READY(&ifp->if_snd);
375 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
376 
377 	if (sc->sc_flags & NFE_USE_JUMBO)
378 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
379 
380 #if NVLAN > 0
381 	if (sc->sc_flags & NFE_HW_VLAN)
382 		sc->sc_ethercom.ec_capabilities |=
383 			ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
384 #endif
385 	if (sc->sc_flags & NFE_HW_CSUM) {
386 		ifp->if_capabilities |=
387 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
388 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
389 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
390 	}
391 
392 	sc->sc_mii.mii_ifp = ifp;
393 	sc->sc_mii.mii_readreg = nfe_miibus_readreg;
394 	sc->sc_mii.mii_writereg = nfe_miibus_writereg;
395 	sc->sc_mii.mii_statchg = nfe_miibus_statchg;
396 
397 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
398 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
399 	    ether_mediastatus);
400 
401 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 0, mii_flags);
402 
403 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
404 		aprint_error_dev(self, "no PHY found!\n");
405 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
406 		    0, NULL);
407 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
408 	} else
409 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
410 
411 	if_attach(ifp);
412 	ether_ifattach(ifp, sc->sc_enaddr);
413 	ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
414 
415 	callout_init(&sc->sc_tick_ch, 0);
416 	callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
417 
418 	if (pmf_device_register(self, NULL, nfe_resume))
419 		pmf_class_network_register(self, ifp);
420 	else
421 		aprint_error_dev(self, "couldn't establish power handler\n");
422 
423 	return;
424 
425 fail:
426 	if (sc->sc_ih != NULL) {
427 		pci_intr_disestablish(pc, sc->sc_ih);
428 		sc->sc_ih = NULL;
429 	}
430 	if (sc->sc_mems != 0) {
431 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
432 		sc->sc_mems = 0;
433 	}
434 }
435 
436 int
nfe_detach(device_t self,int flags)437 nfe_detach(device_t self, int flags)
438 {
439 	struct nfe_softc *sc = device_private(self);
440 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
441 	int s;
442 
443 	s = splnet();
444 
445 	nfe_stop(ifp, 1);
446 
447 	pmf_device_deregister(self);
448 	callout_destroy(&sc->sc_tick_ch);
449 	ether_ifdetach(ifp);
450 	if_detach(ifp);
451 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
452 
453 	nfe_free_rx_ring(sc, &sc->rxq);
454 	mutex_destroy(&sc->rxq.mtx);
455 	nfe_free_tx_ring(sc, &sc->txq);
456 
457 	if (sc->sc_ih != NULL) {
458 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
459 		sc->sc_ih = NULL;
460 	}
461 
462 	if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
463 		nfe_set_macaddr(sc, sc->sc_enaddr);
464 	} else {
465 		NFE_WRITE(sc, NFE_MACADDR_LO,
466 		    sc->sc_enaddr[0] <<  8 | sc->sc_enaddr[1]);
467 		NFE_WRITE(sc, NFE_MACADDR_HI,
468 		    sc->sc_enaddr[2] << 24 | sc->sc_enaddr[3] << 16 |
469 		    sc->sc_enaddr[4] <<  8 | sc->sc_enaddr[5]);
470 	}
471 
472 	if (sc->sc_mems != 0) {
473 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
474 		sc->sc_mems = 0;
475 	}
476 
477 	splx(s);
478 
479 	return 0;
480 }
481 
482 void
nfe_miibus_statchg(struct ifnet * ifp)483 nfe_miibus_statchg(struct ifnet *ifp)
484 {
485 	struct nfe_softc *sc = ifp->if_softc;
486 	struct mii_data *mii = &sc->sc_mii;
487 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
488 
489 	phy = NFE_READ(sc, NFE_PHY_IFACE);
490 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
491 
492 	seed = NFE_READ(sc, NFE_RNDSEED);
493 	seed &= ~NFE_SEED_MASK;
494 
495 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
496 		phy  |= NFE_PHY_HDX;	/* half-duplex */
497 		misc |= NFE_MISC1_HDX;
498 	}
499 
500 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
501 	case IFM_1000_T:	/* full-duplex only */
502 		link |= NFE_MEDIA_1000T;
503 		seed |= NFE_SEED_1000T;
504 		phy  |= NFE_PHY_1000T;
505 		break;
506 	case IFM_100_TX:
507 		link |= NFE_MEDIA_100TX;
508 		seed |= NFE_SEED_100TX;
509 		phy  |= NFE_PHY_100TX;
510 		break;
511 	case IFM_10_T:
512 		link |= NFE_MEDIA_10T;
513 		seed |= NFE_SEED_10T;
514 		break;
515 	}
516 
517 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
518 
519 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
520 	NFE_WRITE(sc, NFE_MISC1, misc);
521 	NFE_WRITE(sc, NFE_LINKSPEED, link);
522 }
523 
524 int
nfe_miibus_readreg(device_t dev,int phy,int reg)525 nfe_miibus_readreg(device_t dev, int phy, int reg)
526 {
527 	struct nfe_softc *sc = device_private(dev);
528 	uint32_t val;
529 	int ntries;
530 
531 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
532 
533 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
534 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
535 		DELAY(100);
536 	}
537 
538 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
539 
540 	for (ntries = 0; ntries < 1000; ntries++) {
541 		DELAY(100);
542 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
543 			break;
544 	}
545 	if (ntries == 1000) {
546 		DPRINTFN(2, ("%s: timeout waiting for PHY\n",
547 		    device_xname(sc->sc_dev)));
548 		return 0;
549 	}
550 
551 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
552 		DPRINTFN(2, ("%s: could not read PHY\n",
553 		    device_xname(sc->sc_dev)));
554 		return 0;
555 	}
556 
557 	val = NFE_READ(sc, NFE_PHY_DATA);
558 	if (val != 0xffffffff && val != 0)
559 		sc->mii_phyaddr = phy;
560 
561 	DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
562 	    device_xname(sc->sc_dev), phy, reg, val));
563 
564 	return val;
565 }
566 
567 void
nfe_miibus_writereg(device_t dev,int phy,int reg,int val)568 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
569 {
570 	struct nfe_softc *sc = device_private(dev);
571 	uint32_t ctl;
572 	int ntries;
573 
574 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
575 
576 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
577 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
578 		DELAY(100);
579 	}
580 
581 	NFE_WRITE(sc, NFE_PHY_DATA, val);
582 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
583 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
584 
585 	for (ntries = 0; ntries < 1000; ntries++) {
586 		DELAY(100);
587 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
588 			break;
589 	}
590 #ifdef NFE_DEBUG
591 	if (nfedebug >= 2 && ntries == 1000)
592 		printf("could not write to PHY\n");
593 #endif
594 }
595 
596 int
nfe_intr(void * arg)597 nfe_intr(void *arg)
598 {
599 	struct nfe_softc *sc = arg;
600 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
601 	uint32_t r;
602 	int handled;
603 
604 	if ((ifp->if_flags & IFF_UP) == 0)
605 		return 0;
606 
607 	handled = 0;
608 
609 	for (;;) {
610 		r = NFE_READ(sc, NFE_IRQ_STATUS);
611 		if ((r & NFE_IRQ_WANTED) == 0)
612 			break;
613 
614 		NFE_WRITE(sc, NFE_IRQ_STATUS, r);
615 		handled = 1;
616 		DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
617 
618 		if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
619 			/* check Rx ring */
620 			nfe_rxeof(sc);
621 		}
622 		if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
623 			/* check Tx ring */
624 			nfe_txeof(sc);
625 		}
626 		if ((r & NFE_IRQ_LINK) != 0) {
627 			NFE_READ(sc, NFE_PHY_STATUS);
628 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
629 			DPRINTF(("%s: link state changed\n",
630 			    device_xname(sc->sc_dev)));
631 		}
632 	}
633 
634 	if (handled && !IF_IS_EMPTY(&ifp->if_snd))
635 		nfe_start(ifp);
636 
637 	return handled;
638 }
639 
640 static int
nfe_ifflags_cb(struct ethercom * ec)641 nfe_ifflags_cb(struct ethercom *ec)
642 {
643 	struct ifnet *ifp = &ec->ec_if;
644 	struct nfe_softc *sc = ifp->if_softc;
645 	int change = ifp->if_flags ^ sc->sc_if_flags;
646 
647 	/*
648 	 * If only the PROMISC flag changes, then
649 	 * don't do a full re-init of the chip, just update
650 	 * the Rx filter.
651 	 */
652 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
653 		return ENETRESET;
654 	else if ((change & IFF_PROMISC) != 0)
655 		nfe_setmulti(sc);
656 
657 	return 0;
658 }
659 
660 int
nfe_ioctl(struct ifnet * ifp,u_long cmd,void * data)661 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
662 {
663 	struct nfe_softc *sc = ifp->if_softc;
664 	struct ifaddr *ifa = (struct ifaddr *)data;
665 	int s, error = 0;
666 
667 	s = splnet();
668 
669 	switch (cmd) {
670 	case SIOCINITIFADDR:
671 		ifp->if_flags |= IFF_UP;
672 		nfe_init(ifp);
673 		switch (ifa->ifa_addr->sa_family) {
674 #ifdef INET
675 		case AF_INET:
676 			arp_ifinit(ifp, ifa);
677 			break;
678 #endif
679 		default:
680 			break;
681 		}
682 		break;
683 	default:
684 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
685 			break;
686 
687 		error = 0;
688 
689 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
690 			;
691 		else if (ifp->if_flags & IFF_RUNNING)
692 			nfe_setmulti(sc);
693 		break;
694 	}
695 	sc->sc_if_flags = ifp->if_flags;
696 
697 	splx(s);
698 
699 	return error;
700 }
701 
702 void
nfe_txdesc32_sync(struct nfe_softc * sc,struct nfe_desc32 * desc32,int ops)703 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
704 {
705 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
706 	    (char *)desc32 - (char *)sc->txq.desc32,
707 	    sizeof (struct nfe_desc32), ops);
708 }
709 
710 void
nfe_txdesc64_sync(struct nfe_softc * sc,struct nfe_desc64 * desc64,int ops)711 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
712 {
713 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
714 	    (char *)desc64 - (char *)sc->txq.desc64,
715 	    sizeof (struct nfe_desc64), ops);
716 }
717 
718 void
nfe_txdesc32_rsync(struct nfe_softc * sc,int start,int end,int ops)719 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
720 {
721 	if (end > start) {
722 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
723 		    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
724 		    (char *)&sc->txq.desc32[end] -
725 		    (char *)&sc->txq.desc32[start], ops);
726 		return;
727 	}
728 	/* sync from 'start' to end of ring */
729 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
730 	    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
731 	    (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
732 	    (char *)&sc->txq.desc32[start], ops);
733 
734 	/* sync from start of ring to 'end' */
735 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
736 	    (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
737 }
738 
739 void
nfe_txdesc64_rsync(struct nfe_softc * sc,int start,int end,int ops)740 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
741 {
742 	if (end > start) {
743 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
744 		    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
745 		    (char *)&sc->txq.desc64[end] -
746 		    (char *)&sc->txq.desc64[start], ops);
747 		return;
748 	}
749 	/* sync from 'start' to end of ring */
750 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
751 	    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
752 	    (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
753 	    (char *)&sc->txq.desc64[start], ops);
754 
755 	/* sync from start of ring to 'end' */
756 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
757 	    (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
758 }
759 
760 void
nfe_rxdesc32_sync(struct nfe_softc * sc,struct nfe_desc32 * desc32,int ops)761 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
762 {
763 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
764 	    (char *)desc32 - (char *)sc->rxq.desc32,
765 	    sizeof (struct nfe_desc32), ops);
766 }
767 
768 void
nfe_rxdesc64_sync(struct nfe_softc * sc,struct nfe_desc64 * desc64,int ops)769 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
770 {
771 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
772 	    (char *)desc64 - (char *)sc->rxq.desc64,
773 	    sizeof (struct nfe_desc64), ops);
774 }
775 
776 void
nfe_rxeof(struct nfe_softc * sc)777 nfe_rxeof(struct nfe_softc *sc)
778 {
779 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
780 	struct nfe_desc32 *desc32;
781 	struct nfe_desc64 *desc64;
782 	struct nfe_rx_data *data;
783 	struct nfe_jbuf *jbuf;
784 	struct mbuf *m, *mnew;
785 	bus_addr_t physaddr;
786 	uint16_t flags;
787 	int error, len, i;
788 
789 	desc32 = NULL;
790 	desc64 = NULL;
791 	for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
792 		data = &sc->rxq.data[i];
793 
794 		if (sc->sc_flags & NFE_40BIT_ADDR) {
795 			desc64 = &sc->rxq.desc64[i];
796 			nfe_rxdesc64_sync(sc, desc64,
797 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
798 
799 			flags = le16toh(desc64->flags);
800 			len = le16toh(desc64->length) & 0x3fff;
801 		} else {
802 			desc32 = &sc->rxq.desc32[i];
803 			nfe_rxdesc32_sync(sc, desc32,
804 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
805 
806 			flags = le16toh(desc32->flags);
807 			len = le16toh(desc32->length) & 0x3fff;
808 		}
809 
810 		if ((flags & NFE_RX_READY) != 0)
811 			break;
812 
813 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
814 			if ((flags & NFE_RX_VALID_V1) == 0)
815 				goto skip;
816 
817 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
818 				flags &= ~NFE_RX_ERROR;
819 				len--;	/* fix buffer length */
820 			}
821 		} else {
822 			if ((flags & NFE_RX_VALID_V2) == 0)
823 				goto skip;
824 
825 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
826 				flags &= ~NFE_RX_ERROR;
827 				len--;	/* fix buffer length */
828 			}
829 		}
830 
831 		if (flags & NFE_RX_ERROR) {
832 			ifp->if_ierrors++;
833 			goto skip;
834 		}
835 
836 		/*
837 		 * Try to allocate a new mbuf for this ring element and load
838 		 * it before processing the current mbuf. If the ring element
839 		 * cannot be loaded, drop the received packet and reuse the
840 		 * old mbuf. In the unlikely case that the old mbuf can't be
841 		 * reloaded either, explicitly panic.
842 		 */
843 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
844 		if (mnew == NULL) {
845 			ifp->if_ierrors++;
846 			goto skip;
847 		}
848 
849 		if (sc->sc_flags & NFE_USE_JUMBO) {
850 			physaddr =
851 			    sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
852 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
853 				if (len > MCLBYTES) {
854 					m_freem(mnew);
855 					ifp->if_ierrors++;
856 					goto skip1;
857 				}
858 				MCLGET(mnew, M_DONTWAIT);
859 				if ((mnew->m_flags & M_EXT) == 0) {
860 					m_freem(mnew);
861 					ifp->if_ierrors++;
862 					goto skip1;
863 				}
864 
865 				(void)memcpy(mtod(mnew, void *),
866 				    mtod(data->m, const void *), len);
867 				m = mnew;
868 				goto mbufcopied;
869 			} else {
870 				MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
871 				bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
872 				    mtod(data->m, char *) - (char *)sc->rxq.jpool,
873 				    NFE_JBYTES, BUS_DMASYNC_POSTREAD);
874 
875 				physaddr = jbuf->physaddr;
876 			}
877 		} else {
878 			MCLGET(mnew, M_DONTWAIT);
879 			if ((mnew->m_flags & M_EXT) == 0) {
880 				m_freem(mnew);
881 				ifp->if_ierrors++;
882 				goto skip;
883 			}
884 
885 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
886 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
887 			bus_dmamap_unload(sc->sc_dmat, data->map);
888 
889 			error = bus_dmamap_load(sc->sc_dmat, data->map,
890 			    mtod(mnew, void *), MCLBYTES, NULL,
891 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
892 			if (error != 0) {
893 				m_freem(mnew);
894 
895 				/* try to reload the old mbuf */
896 				error = bus_dmamap_load(sc->sc_dmat, data->map,
897 				    mtod(data->m, void *), MCLBYTES, NULL,
898 				    BUS_DMA_READ | BUS_DMA_NOWAIT);
899 				if (error != 0) {
900 					/* very unlikely that it will fail.. */
901 					panic("%s: could not load old rx mbuf",
902 					    device_xname(sc->sc_dev));
903 				}
904 				ifp->if_ierrors++;
905 				goto skip;
906 			}
907 			physaddr = data->map->dm_segs[0].ds_addr;
908 		}
909 
910 		/*
911 		 * New mbuf successfully loaded, update Rx ring and continue
912 		 * processing.
913 		 */
914 		m = data->m;
915 		data->m = mnew;
916 
917 mbufcopied:
918 		/* finalize mbuf */
919 		m->m_pkthdr.len = m->m_len = len;
920 		m_set_rcvif(m, ifp);
921 
922 		if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
923 			/*
924 			 * XXX
925 			 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
926 			 */
927 			if (flags & NFE_RX_IP_CSUMOK) {
928 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
929 				DPRINTFN(3, ("%s: ip4csum-rx ok\n",
930 				    device_xname(sc->sc_dev)));
931 			}
932 			/*
933 			 * XXX
934 			 * no way to check M_CSUM_TCP_UDP_BAD or
935 			 * other protocols?
936 			 */
937 			if (flags & NFE_RX_UDP_CSUMOK) {
938 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
939 				DPRINTFN(3, ("%s: udp4csum-rx ok\n",
940 				    device_xname(sc->sc_dev)));
941 			} else if (flags & NFE_RX_TCP_CSUMOK) {
942 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
943 				DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
944 				    device_xname(sc->sc_dev)));
945 			}
946 		}
947 		bpf_mtap(ifp, m);
948 		ifp->if_ipackets++;
949 		if_percpuq_enqueue(ifp->if_percpuq, m);
950 
951 skip1:
952 		/* update mapping address in h/w descriptor */
953 		if (sc->sc_flags & NFE_40BIT_ADDR) {
954 #if defined(__LP64__)
955 			desc64->physaddr[0] = htole32(physaddr >> 32);
956 #endif
957 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
958 		} else {
959 			desc32->physaddr = htole32(physaddr);
960 		}
961 
962 skip:
963 		if (sc->sc_flags & NFE_40BIT_ADDR) {
964 			desc64->length = htole16(sc->rxq.bufsz);
965 			desc64->flags = htole16(NFE_RX_READY);
966 
967 			nfe_rxdesc64_sync(sc, desc64,
968 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
969 		} else {
970 			desc32->length = htole16(sc->rxq.bufsz);
971 			desc32->flags = htole16(NFE_RX_READY);
972 
973 			nfe_rxdesc32_sync(sc, desc32,
974 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
975 		}
976 	}
977 	/* update current RX pointer */
978 	sc->rxq.cur = i;
979 }
980 
981 void
nfe_txeof(struct nfe_softc * sc)982 nfe_txeof(struct nfe_softc *sc)
983 {
984 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
985 	struct nfe_desc32 *desc32;
986 	struct nfe_desc64 *desc64;
987 	struct nfe_tx_data *data = NULL;
988 	int i;
989 	uint16_t flags;
990 	char buf[128];
991 
992 	for (i = sc->txq.next;
993 	    sc->txq.queued > 0;
994 	    i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
995 		if (sc->sc_flags & NFE_40BIT_ADDR) {
996 			desc64 = &sc->txq.desc64[i];
997 			nfe_txdesc64_sync(sc, desc64,
998 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
999 
1000 			flags = le16toh(desc64->flags);
1001 		} else {
1002 			desc32 = &sc->txq.desc32[i];
1003 			nfe_txdesc32_sync(sc, desc32,
1004 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1005 
1006 			flags = le16toh(desc32->flags);
1007 		}
1008 
1009 		if ((flags & NFE_TX_VALID) != 0)
1010 			break;
1011 
1012 		data = &sc->txq.data[i];
1013 
1014 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
1015 			if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
1016 			    data->m == NULL)
1017 				continue;
1018 
1019 			if ((flags & NFE_TX_ERROR_V1) != 0) {
1020 				snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags);
1021 				aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
1022 				    buf);
1023 				ifp->if_oerrors++;
1024 			} else
1025 				ifp->if_opackets++;
1026 		} else {
1027 			if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
1028 			    data->m == NULL)
1029 				continue;
1030 
1031 			if ((flags & NFE_TX_ERROR_V2) != 0) {
1032 				snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags);
1033 				aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
1034 				    buf);
1035 				ifp->if_oerrors++;
1036 			} else
1037 				ifp->if_opackets++;
1038 		}
1039 
1040 		if (data->m == NULL) {	/* should not get there */
1041 			aprint_error_dev(sc->sc_dev,
1042 			    "last fragment bit w/o associated mbuf!\n");
1043 			continue;
1044 		}
1045 
1046 		/* last fragment of the mbuf chain transmitted */
1047 		bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1048 		    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1049 		bus_dmamap_unload(sc->sc_dmat, data->active);
1050 		m_freem(data->m);
1051 		data->m = NULL;
1052 	}
1053 
1054 	sc->txq.next = i;
1055 
1056 	if (sc->txq.queued < NFE_TX_RING_COUNT) {
1057 		/* at least one slot freed */
1058 		ifp->if_flags &= ~IFF_OACTIVE;
1059 	}
1060 
1061 	if (sc->txq.queued == 0) {
1062 		/* all queued packets are sent */
1063 		ifp->if_timer = 0;
1064 	}
1065 }
1066 
1067 int
nfe_encap(struct nfe_softc * sc,struct mbuf * m0)1068 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
1069 {
1070 	struct nfe_desc32 *desc32;
1071 	struct nfe_desc64 *desc64;
1072 	struct nfe_tx_data *data;
1073 	bus_dmamap_t map;
1074 	uint16_t flags, csumflags;
1075 #if NVLAN > 0
1076 	struct m_tag *mtag;
1077 	uint32_t vtag = 0;
1078 #endif
1079 	int error, i, first;
1080 
1081 	desc32 = NULL;
1082 	desc64 = NULL;
1083 	data = NULL;
1084 
1085 	flags = 0;
1086 	csumflags = 0;
1087 	first = sc->txq.cur;
1088 
1089 	map = sc->txq.data[first].map;
1090 
1091 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1092 	if (error != 0) {
1093 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1094 		    error);
1095 		return error;
1096 	}
1097 
1098 	if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1099 		bus_dmamap_unload(sc->sc_dmat, map);
1100 		return ENOBUFS;
1101 	}
1102 
1103 #if NVLAN > 0
1104 	/* setup h/w VLAN tagging */
1105 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1106 		vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1107 #endif
1108 	if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1109 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1110 			csumflags |= NFE_TX_IP_CSUM;
1111 		if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1112 			csumflags |= NFE_TX_TCP_UDP_CSUM;
1113 	}
1114 
1115 	for (i = 0; i < map->dm_nsegs; i++) {
1116 		data = &sc->txq.data[sc->txq.cur];
1117 
1118 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1119 			desc64 = &sc->txq.desc64[sc->txq.cur];
1120 #if defined(__LP64__)
1121 			desc64->physaddr[0] =
1122 			    htole32(map->dm_segs[i].ds_addr >> 32);
1123 #endif
1124 			desc64->physaddr[1] =
1125 			    htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1126 			desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1127 			desc64->flags = htole16(flags);
1128 			desc64->vtag = 0;
1129 		} else {
1130 			desc32 = &sc->txq.desc32[sc->txq.cur];
1131 
1132 			desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1133 			desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1134 			desc32->flags = htole16(flags);
1135 		}
1136 
1137 		/*
1138 		 * Setting of the valid bit in the first descriptor is
1139 		 * deferred until the whole chain is fully setup.
1140 		 */
1141 		flags |= NFE_TX_VALID;
1142 
1143 		sc->txq.queued++;
1144 		sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1145 	}
1146 
1147 	/* the whole mbuf chain has been setup */
1148 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1149 		/* fix last descriptor */
1150 		flags |= NFE_TX_LASTFRAG_V2;
1151 		desc64->flags = htole16(flags);
1152 
1153 		/* Checksum flags and vtag belong to the first fragment only. */
1154 #if NVLAN > 0
1155 		sc->txq.desc64[first].vtag = htole32(vtag);
1156 #endif
1157 		sc->txq.desc64[first].flags |= htole16(csumflags);
1158 
1159 		/* finally, set the valid bit in the first descriptor */
1160 		sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1161 	} else {
1162 		/* fix last descriptor */
1163 		if (sc->sc_flags & NFE_JUMBO_SUP)
1164 			flags |= NFE_TX_LASTFRAG_V2;
1165 		else
1166 			flags |= NFE_TX_LASTFRAG_V1;
1167 		desc32->flags = htole16(flags);
1168 
1169 		/* Checksum flags belong to the first fragment only. */
1170 		sc->txq.desc32[first].flags |= htole16(csumflags);
1171 
1172 		/* finally, set the valid bit in the first descriptor */
1173 		sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1174 	}
1175 
1176 	data->m = m0;
1177 	data->active = map;
1178 
1179 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1180 	    BUS_DMASYNC_PREWRITE);
1181 
1182 	return 0;
1183 }
1184 
1185 void
nfe_start(struct ifnet * ifp)1186 nfe_start(struct ifnet *ifp)
1187 {
1188 	struct nfe_softc *sc = ifp->if_softc;
1189 	int old = sc->txq.queued;
1190 	struct mbuf *m0;
1191 
1192 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1193 		return;
1194 
1195 	for (;;) {
1196 		IFQ_POLL(&ifp->if_snd, m0);
1197 		if (m0 == NULL)
1198 			break;
1199 
1200 		if (nfe_encap(sc, m0) != 0) {
1201 			ifp->if_flags |= IFF_OACTIVE;
1202 			break;
1203 		}
1204 
1205 		/* packet put in h/w queue, remove from s/w queue */
1206 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1207 
1208 		bpf_mtap(ifp, m0);
1209 	}
1210 
1211 	if (sc->txq.queued != old) {
1212 		/* packets are queued */
1213 		if (sc->sc_flags & NFE_40BIT_ADDR)
1214 			nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1215 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1216 		else
1217 			nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1218 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1219 		/* kick Tx */
1220 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1221 
1222 		/*
1223 		 * Set a timeout in case the chip goes out to lunch.
1224 		 */
1225 		ifp->if_timer = 5;
1226 	}
1227 }
1228 
1229 void
nfe_watchdog(struct ifnet * ifp)1230 nfe_watchdog(struct ifnet *ifp)
1231 {
1232 	struct nfe_softc *sc = ifp->if_softc;
1233 
1234 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1235 
1236 	ifp->if_flags &= ~IFF_RUNNING;
1237 	nfe_init(ifp);
1238 
1239 	ifp->if_oerrors++;
1240 }
1241 
1242 int
nfe_init(struct ifnet * ifp)1243 nfe_init(struct ifnet *ifp)
1244 {
1245 	struct nfe_softc *sc = ifp->if_softc;
1246 	uint32_t tmp;
1247 	int rc = 0, s;
1248 
1249 	if (ifp->if_flags & IFF_RUNNING)
1250 		return 0;
1251 
1252 	nfe_stop(ifp, 0);
1253 
1254 	NFE_WRITE(sc, NFE_TX_UNK, 0);
1255 	NFE_WRITE(sc, NFE_STATUS, 0);
1256 
1257 	sc->rxtxctl = NFE_RXTX_BIT2;
1258 	if (sc->sc_flags & NFE_40BIT_ADDR)
1259 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1260 	else if (sc->sc_flags & NFE_JUMBO_SUP)
1261 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1262 	if (sc->sc_flags & NFE_HW_CSUM)
1263 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
1264 #if NVLAN > 0
1265 	/*
1266 	 * Although the adapter is capable of stripping VLAN tags from received
1267 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1268 	 * purpose.  This will be done in software by our network stack.
1269 	 */
1270 	if (sc->sc_flags & NFE_HW_VLAN)
1271 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1272 #endif
1273 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1274 	DELAY(10);
1275 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1276 
1277 #if NVLAN
1278 	if (sc->sc_flags & NFE_HW_VLAN)
1279 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1280 #endif
1281 
1282 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
1283 
1284 	/* set MAC address */
1285 	nfe_set_macaddr(sc, sc->sc_enaddr);
1286 
1287 	/* tell MAC where rings are in memory */
1288 #ifdef __LP64__
1289 	NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1290 #endif
1291 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1292 #ifdef __LP64__
1293 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1294 #endif
1295 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1296 
1297 	NFE_WRITE(sc, NFE_RING_SIZE,
1298 	    (NFE_RX_RING_COUNT - 1) << 16 |
1299 	    (NFE_TX_RING_COUNT - 1));
1300 
1301 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1302 
1303 	/* force MAC to wakeup */
1304 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1305 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1306 	DELAY(10);
1307 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1308 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1309 
1310 	s = splnet();
1311 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1312 	nfe_intr(sc); /* XXX clear IRQ status registers */
1313 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1314 	splx(s);
1315 
1316 #if 1
1317 	/* configure interrupts coalescing/mitigation */
1318 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1319 #else
1320 	/* no interrupt mitigation: one interrupt per packet */
1321 	NFE_WRITE(sc, NFE_IMTIMER, 970);
1322 #endif
1323 
1324 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1325 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1326 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1327 
1328 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1329 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1330 
1331 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1332 	NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
1333 
1334 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
1335 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1336 	DELAY(10);
1337 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1338 
1339 	/* set Rx filter */
1340 	nfe_setmulti(sc);
1341 
1342 	if ((rc = ether_mediachange(ifp)) != 0)
1343 		goto out;
1344 
1345 	nfe_tick(sc);
1346 
1347 	/* enable Rx */
1348 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1349 
1350 	/* enable Tx */
1351 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1352 
1353 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1354 
1355 	/* enable interrupts */
1356 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1357 
1358 	callout_schedule(&sc->sc_tick_ch, hz);
1359 
1360 	ifp->if_flags |= IFF_RUNNING;
1361 	ifp->if_flags &= ~IFF_OACTIVE;
1362 
1363 out:
1364 	return rc;
1365 }
1366 
1367 void
nfe_stop(struct ifnet * ifp,int disable)1368 nfe_stop(struct ifnet *ifp, int disable)
1369 {
1370 	struct nfe_softc *sc = ifp->if_softc;
1371 
1372 	callout_stop(&sc->sc_tick_ch);
1373 
1374 	ifp->if_timer = 0;
1375 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1376 
1377 	mii_down(&sc->sc_mii);
1378 
1379 	/* abort Tx */
1380 	NFE_WRITE(sc, NFE_TX_CTL, 0);
1381 
1382 	/* disable Rx */
1383 	NFE_WRITE(sc, NFE_RX_CTL, 0);
1384 
1385 	/* disable interrupts */
1386 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1387 
1388 	/* reset Tx and Rx rings */
1389 	nfe_reset_tx_ring(sc, &sc->txq);
1390 	nfe_reset_rx_ring(sc, &sc->rxq);
1391 }
1392 
1393 int
nfe_alloc_rx_ring(struct nfe_softc * sc,struct nfe_rx_ring * ring)1394 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1395 {
1396 	struct nfe_desc32 *desc32;
1397 	struct nfe_desc64 *desc64;
1398 	struct nfe_rx_data *data;
1399 	struct nfe_jbuf *jbuf;
1400 	void **desc;
1401 	bus_addr_t physaddr;
1402 	int i, nsegs, error, descsize;
1403 
1404 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1405 		desc = (void **)&ring->desc64;
1406 		descsize = sizeof (struct nfe_desc64);
1407 	} else {
1408 		desc = (void **)&ring->desc32;
1409 		descsize = sizeof (struct nfe_desc32);
1410 	}
1411 
1412 	ring->cur = ring->next = 0;
1413 	ring->bufsz = MCLBYTES;
1414 
1415 	error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1416 	    NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1417 	if (error != 0) {
1418 		aprint_error_dev(sc->sc_dev,
1419 		    "could not create desc DMA map\n");
1420 		ring->map = NULL;
1421 		goto fail;
1422 	}
1423 
1424 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1425 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1426 	if (error != 0) {
1427 		aprint_error_dev(sc->sc_dev,
1428 		    "could not allocate DMA memory\n");
1429 		goto fail;
1430 	}
1431 
1432 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1433 	    NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1434 	if (error != 0) {
1435 		aprint_error_dev(sc->sc_dev,
1436 		    "could not map desc DMA memory\n");
1437 		goto fail;
1438 	}
1439 
1440 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1441 	    NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1442 	if (error != 0) {
1443 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1444 		goto fail;
1445 	}
1446 
1447 	memset(*desc, 0, NFE_RX_RING_COUNT * descsize);
1448 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1449 
1450 	if (sc->sc_flags & NFE_USE_JUMBO) {
1451 		ring->bufsz = NFE_JBYTES;
1452 		if ((error = nfe_jpool_alloc(sc)) != 0) {
1453 			aprint_error_dev(sc->sc_dev,
1454 			    "could not allocate jumbo frames\n");
1455 			goto fail;
1456 		}
1457 	}
1458 
1459 	/*
1460 	 * Pre-allocate Rx buffers and populate Rx ring.
1461 	 */
1462 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1463 		data = &sc->rxq.data[i];
1464 
1465 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1466 		if (data->m == NULL) {
1467 			aprint_error_dev(sc->sc_dev,
1468 			    "could not allocate rx mbuf\n");
1469 			error = ENOMEM;
1470 			goto fail;
1471 		}
1472 
1473 		if (sc->sc_flags & NFE_USE_JUMBO) {
1474 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1475 				aprint_error_dev(sc->sc_dev,
1476 				    "could not allocate jumbo buffer\n");
1477 				goto fail;
1478 			}
1479 			MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1480 			    sc);
1481 
1482 			physaddr = jbuf->physaddr;
1483 		} else {
1484 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1485 			    MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1486 			if (error != 0) {
1487 				aprint_error_dev(sc->sc_dev,
1488 				    "could not create DMA map\n");
1489 				data->map = NULL;
1490 				goto fail;
1491 			}
1492 			MCLGET(data->m, M_DONTWAIT);
1493 			if (!(data->m->m_flags & M_EXT)) {
1494 				aprint_error_dev(sc->sc_dev,
1495 				    "could not allocate mbuf cluster\n");
1496 				error = ENOMEM;
1497 				goto fail;
1498 			}
1499 
1500 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1501 			    mtod(data->m, void *), MCLBYTES, NULL,
1502 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
1503 			if (error != 0) {
1504 				aprint_error_dev(sc->sc_dev,
1505 				    "could not load rx buf DMA map");
1506 				goto fail;
1507 			}
1508 			physaddr = data->map->dm_segs[0].ds_addr;
1509 		}
1510 
1511 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1512 			desc64 = &sc->rxq.desc64[i];
1513 #if defined(__LP64__)
1514 			desc64->physaddr[0] = htole32(physaddr >> 32);
1515 #endif
1516 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1517 			desc64->length = htole16(sc->rxq.bufsz);
1518 			desc64->flags = htole16(NFE_RX_READY);
1519 		} else {
1520 			desc32 = &sc->rxq.desc32[i];
1521 			desc32->physaddr = htole32(physaddr);
1522 			desc32->length = htole16(sc->rxq.bufsz);
1523 			desc32->flags = htole16(NFE_RX_READY);
1524 		}
1525 	}
1526 
1527 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1528 	    BUS_DMASYNC_PREWRITE);
1529 
1530 	return 0;
1531 
1532 fail:	nfe_free_rx_ring(sc, ring);
1533 	return error;
1534 }
1535 
1536 void
nfe_reset_rx_ring(struct nfe_softc * sc,struct nfe_rx_ring * ring)1537 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1538 {
1539 	int i;
1540 
1541 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1542 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1543 			ring->desc64[i].length = htole16(ring->bufsz);
1544 			ring->desc64[i].flags = htole16(NFE_RX_READY);
1545 		} else {
1546 			ring->desc32[i].length = htole16(ring->bufsz);
1547 			ring->desc32[i].flags = htole16(NFE_RX_READY);
1548 		}
1549 	}
1550 
1551 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1552 	    BUS_DMASYNC_PREWRITE);
1553 
1554 	ring->cur = ring->next = 0;
1555 }
1556 
1557 void
nfe_free_rx_ring(struct nfe_softc * sc,struct nfe_rx_ring * ring)1558 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1559 {
1560 	struct nfe_rx_data *data;
1561 	void *desc;
1562 	int i, descsize;
1563 
1564 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1565 		desc = ring->desc64;
1566 		descsize = sizeof (struct nfe_desc64);
1567 	} else {
1568 		desc = ring->desc32;
1569 		descsize = sizeof (struct nfe_desc32);
1570 	}
1571 
1572 	if (desc != NULL) {
1573 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1574 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1575 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1576 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1577 		    NFE_RX_RING_COUNT * descsize);
1578 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1579 	}
1580 
1581 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1582 		data = &ring->data[i];
1583 
1584 		if (data->map != NULL) {
1585 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1586 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1587 			bus_dmamap_unload(sc->sc_dmat, data->map);
1588 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1589 		}
1590 		if (data->m != NULL)
1591 			m_freem(data->m);
1592 	}
1593 
1594 	nfe_jpool_free(sc);
1595 }
1596 
1597 struct nfe_jbuf *
nfe_jalloc(struct nfe_softc * sc,int i)1598 nfe_jalloc(struct nfe_softc *sc, int i)
1599 {
1600 	struct nfe_jbuf *jbuf;
1601 
1602 	mutex_enter(&sc->rxq.mtx);
1603 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1604 	if (jbuf != NULL)
1605 		SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1606 	mutex_exit(&sc->rxq.mtx);
1607 	if (jbuf == NULL)
1608 		return NULL;
1609 	sc->rxq.jbufmap[i] =
1610 	    ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1611 	return jbuf;
1612 }
1613 
1614 /*
1615  * This is called automatically by the network stack when the mbuf is freed.
1616  * Caution must be taken that the NIC might be reset by the time the mbuf is
1617  * freed.
1618  */
1619 void
nfe_jfree(struct mbuf * m,void * buf,size_t size,void * arg)1620 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1621 {
1622 	struct nfe_softc *sc = arg;
1623 	struct nfe_jbuf *jbuf;
1624 	int i;
1625 
1626 	/* find the jbuf from the base pointer */
1627 	i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1628 	if (i < 0 || i >= NFE_JPOOL_COUNT) {
1629 		aprint_error_dev(sc->sc_dev,
1630 		    "request to free a buffer (%p) not managed by us\n", buf);
1631 		return;
1632 	}
1633 	jbuf = &sc->rxq.jbuf[i];
1634 
1635 	/* ..and put it back in the free list */
1636 	mutex_enter(&sc->rxq.mtx);
1637 	SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1638 	mutex_exit(&sc->rxq.mtx);
1639 
1640 	if (m != NULL)
1641 		pool_cache_put(mb_cache, m);
1642 }
1643 
1644 int
nfe_jpool_alloc(struct nfe_softc * sc)1645 nfe_jpool_alloc(struct nfe_softc *sc)
1646 {
1647 	struct nfe_rx_ring *ring = &sc->rxq;
1648 	struct nfe_jbuf *jbuf;
1649 	bus_addr_t physaddr;
1650 	char *buf;
1651 	int i, nsegs, error;
1652 
1653 	/*
1654 	 * Allocate a big chunk of DMA'able memory.
1655 	 */
1656 	error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1657 	    NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1658 	if (error != 0) {
1659 		aprint_error_dev(sc->sc_dev,
1660 		    "could not create jumbo DMA map\n");
1661 		ring->jmap = NULL;
1662 		goto fail;
1663 	}
1664 
1665 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1666 	    &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1667 	if (error != 0) {
1668 		aprint_error_dev(sc->sc_dev,
1669 		    "could not allocate jumbo DMA memory\n");
1670 		goto fail;
1671 	}
1672 
1673 	error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1674 	    &ring->jpool, BUS_DMA_NOWAIT);
1675 	if (error != 0) {
1676 		aprint_error_dev(sc->sc_dev,
1677 		    "could not map jumbo DMA memory\n");
1678 		goto fail;
1679 	}
1680 
1681 	error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1682 	    NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1683 	if (error != 0) {
1684 		aprint_error_dev(sc->sc_dev,
1685 		    "could not load jumbo DMA map\n");
1686 		goto fail;
1687 	}
1688 
1689 	/* ..and split it into 9KB chunks */
1690 	SLIST_INIT(&ring->jfreelist);
1691 
1692 	buf = ring->jpool;
1693 	physaddr = ring->jmap->dm_segs[0].ds_addr;
1694 	for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1695 		jbuf = &ring->jbuf[i];
1696 
1697 		jbuf->buf = buf;
1698 		jbuf->physaddr = physaddr;
1699 
1700 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1701 
1702 		buf += NFE_JBYTES;
1703 		physaddr += NFE_JBYTES;
1704 	}
1705 
1706 	return 0;
1707 
1708 fail:	nfe_jpool_free(sc);
1709 	return error;
1710 }
1711 
1712 void
nfe_jpool_free(struct nfe_softc * sc)1713 nfe_jpool_free(struct nfe_softc *sc)
1714 {
1715 	struct nfe_rx_ring *ring = &sc->rxq;
1716 
1717 	if (ring->jmap != NULL) {
1718 		bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1719 		    ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1720 		bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1721 		bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1722 		ring->jmap = NULL;
1723 	}
1724 	if (ring->jpool != NULL) {
1725 		bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1726 		bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1727 		ring->jpool = NULL;
1728 	}
1729 }
1730 
1731 int
nfe_alloc_tx_ring(struct nfe_softc * sc,struct nfe_tx_ring * ring)1732 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1733 {
1734 	int i, nsegs, error;
1735 	void **desc;
1736 	int descsize;
1737 
1738 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1739 		desc = (void **)&ring->desc64;
1740 		descsize = sizeof (struct nfe_desc64);
1741 	} else {
1742 		desc = (void **)&ring->desc32;
1743 		descsize = sizeof (struct nfe_desc32);
1744 	}
1745 
1746 	ring->queued = 0;
1747 	ring->cur = ring->next = 0;
1748 
1749 	error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1750 	    NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1751 
1752 	if (error != 0) {
1753 		aprint_error_dev(sc->sc_dev,
1754 		    "could not create desc DMA map\n");
1755 		ring->map = NULL;
1756 		goto fail;
1757 	}
1758 
1759 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1760 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1761 	if (error != 0) {
1762 		aprint_error_dev(sc->sc_dev,
1763 		    "could not allocate DMA memory\n");
1764 		goto fail;
1765 	}
1766 
1767 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1768 	    NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1769 	if (error != 0) {
1770 		aprint_error_dev(sc->sc_dev,
1771 		    "could not map desc DMA memory\n");
1772 		goto fail;
1773 	}
1774 
1775 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1776 	    NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1777 	if (error != 0) {
1778 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1779 		goto fail;
1780 	}
1781 
1782 	memset(*desc, 0, NFE_TX_RING_COUNT * descsize);
1783 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1784 
1785 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1786 		error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1787 		    NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1788 		    &ring->data[i].map);
1789 		if (error != 0) {
1790 			aprint_error_dev(sc->sc_dev,
1791 			    "could not create DMA map\n");
1792 			ring->data[i].map = NULL;
1793 			goto fail;
1794 		}
1795 	}
1796 
1797 	return 0;
1798 
1799 fail:	nfe_free_tx_ring(sc, ring);
1800 	return error;
1801 }
1802 
1803 void
nfe_reset_tx_ring(struct nfe_softc * sc,struct nfe_tx_ring * ring)1804 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1805 {
1806 	struct nfe_tx_data *data;
1807 	int i;
1808 
1809 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1810 		if (sc->sc_flags & NFE_40BIT_ADDR)
1811 			ring->desc64[i].flags = 0;
1812 		else
1813 			ring->desc32[i].flags = 0;
1814 
1815 		data = &ring->data[i];
1816 
1817 		if (data->m != NULL) {
1818 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1819 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1820 			bus_dmamap_unload(sc->sc_dmat, data->active);
1821 			m_freem(data->m);
1822 			data->m = NULL;
1823 		}
1824 	}
1825 
1826 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1827 	    BUS_DMASYNC_PREWRITE);
1828 
1829 	ring->queued = 0;
1830 	ring->cur = ring->next = 0;
1831 }
1832 
1833 void
nfe_free_tx_ring(struct nfe_softc * sc,struct nfe_tx_ring * ring)1834 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1835 {
1836 	struct nfe_tx_data *data;
1837 	void *desc;
1838 	int i, descsize;
1839 
1840 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1841 		desc = ring->desc64;
1842 		descsize = sizeof (struct nfe_desc64);
1843 	} else {
1844 		desc = ring->desc32;
1845 		descsize = sizeof (struct nfe_desc32);
1846 	}
1847 
1848 	if (desc != NULL) {
1849 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1850 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1851 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1852 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1853 		    NFE_TX_RING_COUNT * descsize);
1854 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1855 	}
1856 
1857 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1858 		data = &ring->data[i];
1859 
1860 		if (data->m != NULL) {
1861 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1862 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1863 			bus_dmamap_unload(sc->sc_dmat, data->active);
1864 			m_freem(data->m);
1865 		}
1866 	}
1867 
1868 	/* ..and now actually destroy the DMA mappings */
1869 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1870 		data = &ring->data[i];
1871 		if (data->map == NULL)
1872 			continue;
1873 		bus_dmamap_destroy(sc->sc_dmat, data->map);
1874 	}
1875 }
1876 
1877 void
nfe_setmulti(struct nfe_softc * sc)1878 nfe_setmulti(struct nfe_softc *sc)
1879 {
1880 	struct ethercom *ec = &sc->sc_ethercom;
1881 	struct ifnet *ifp = &ec->ec_if;
1882 	struct ether_multi *enm;
1883 	struct ether_multistep step;
1884 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1885 	uint32_t filter = NFE_RXFILTER_MAGIC;
1886 	int i;
1887 
1888 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1889 		memset(addr, 0, ETHER_ADDR_LEN);
1890 		memset(mask, 0, ETHER_ADDR_LEN);
1891 		goto done;
1892 	}
1893 
1894 	memcpy(addr, etherbroadcastaddr, ETHER_ADDR_LEN);
1895 	memcpy(mask, etherbroadcastaddr, ETHER_ADDR_LEN);
1896 
1897 	ETHER_FIRST_MULTI(step, ec, enm);
1898 	while (enm != NULL) {
1899 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1900 			ifp->if_flags |= IFF_ALLMULTI;
1901 			memset(addr, 0, ETHER_ADDR_LEN);
1902 			memset(mask, 0, ETHER_ADDR_LEN);
1903 			goto done;
1904 		}
1905 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1906 			addr[i] &=  enm->enm_addrlo[i];
1907 			mask[i] &= ~enm->enm_addrlo[i];
1908 		}
1909 		ETHER_NEXT_MULTI(step, enm);
1910 	}
1911 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1912 		mask[i] |= addr[i];
1913 
1914 done:
1915 	addr[0] |= 0x01;	/* make sure multicast bit is set */
1916 
1917 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
1918 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1919 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
1920 	    addr[5] <<  8 | addr[4]);
1921 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
1922 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1923 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
1924 	    mask[5] <<  8 | mask[4]);
1925 
1926 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1927 	NFE_WRITE(sc, NFE_RXFILTER, filter);
1928 }
1929 
1930 void
nfe_get_macaddr(struct nfe_softc * sc,uint8_t * addr)1931 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1932 {
1933 	uint32_t tmp;
1934 
1935 	if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
1936 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
1937 		addr[0] = (tmp & 0xff);
1938 		addr[1] = (tmp >>  8) & 0xff;
1939 		addr[2] = (tmp >> 16) & 0xff;
1940 		addr[3] = (tmp >> 24) & 0xff;
1941 
1942 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
1943 		addr[4] = (tmp & 0xff);
1944 		addr[5] = (tmp >> 8) & 0xff;
1945 
1946 	} else {
1947 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
1948 		addr[0] = (tmp >> 8) & 0xff;
1949 		addr[1] = (tmp & 0xff);
1950 
1951 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
1952 		addr[2] = (tmp >> 24) & 0xff;
1953 		addr[3] = (tmp >> 16) & 0xff;
1954 		addr[4] = (tmp >>  8) & 0xff;
1955 		addr[5] = (tmp & 0xff);
1956 	}
1957 }
1958 
1959 void
nfe_set_macaddr(struct nfe_softc * sc,const uint8_t * addr)1960 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1961 {
1962 	NFE_WRITE(sc, NFE_MACADDR_LO,
1963 	    addr[5] <<  8 | addr[4]);
1964 	NFE_WRITE(sc, NFE_MACADDR_HI,
1965 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1966 }
1967 
1968 void
nfe_tick(void * arg)1969 nfe_tick(void *arg)
1970 {
1971 	struct nfe_softc *sc = arg;
1972 	int s;
1973 
1974 	s = splnet();
1975 	mii_tick(&sc->sc_mii);
1976 	splx(s);
1977 
1978 	callout_schedule(&sc->sc_tick_ch, hz);
1979 }
1980 
1981 void
nfe_poweron(device_t self)1982 nfe_poweron(device_t self)
1983 {
1984 	struct nfe_softc *sc = device_private(self);
1985 
1986 	if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
1987 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
1988 		NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
1989 		DELAY(100);
1990 		NFE_WRITE(sc, NFE_MAC_RESET, 0);
1991 		DELAY(100);
1992 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
1993 		NFE_WRITE(sc, NFE_PWR2_CTL,
1994 		    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
1995 	}
1996 }
1997 
1998 bool
nfe_resume(device_t dv,const pmf_qual_t * qual)1999 nfe_resume(device_t dv, const pmf_qual_t *qual)
2000 {
2001 	nfe_poweron(dv);
2002 
2003 	return true;
2004 }
2005