1 /* lapack/single/slange.f -- translated by f2c (version 20050501).
2    You must link the resulting object file with libf2c:
3         on Microsoft Windows system, link with libf2c.lib;
4         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5         or, if you install libf2c.a in a standard place, with -lf2c -lm
6         -- in that order, at the end of the command line, as in
7                 cc *.o -lf2c -lm
8         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9 
10                 http://www.netlib.org/f2c/libf2c.zip
11 */
12 
13 #ifdef __cplusplus
14 extern "C" {
15 #endif
16 #include "v3p_netlib.h"
17 
18 /* Table of constant values */
19 
20 static integer c__1 = 1;
21 
22 /*<       REAL             FUNCTION SLANGE( NORM, M, N, A, LDA, WORK ) >*/
slange_(char * norm,integer * m,integer * n,real * a,integer * lda,real * work,ftnlen norm_len)23 doublereal slange_(char *norm, integer *m, integer *n, real *a, integer *lda,
24         real *work, ftnlen norm_len)
25 {
26     /* System generated locals */
27     integer a_dim1, a_offset, i__1, i__2;
28     real ret_val, r__1, r__2, r__3;
29 
30     /* Builtin functions */
31     double sqrt(doublereal);
32 
33     /* Local variables */
34     integer i__, j;
35     real sum, scale;
36     extern logical lsame_(const char *, const char *, ftnlen, ftnlen);
37     real value=0;
38     extern /* Subroutine */ int slassq_(integer *, real *, integer *, real *,
39             real *);
40     (void)norm_len;
41 
42 /*  -- LAPACK auxiliary routine (version 3.0) -- */
43 /*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
44 /*     Courant Institute, Argonne National Lab, and Rice University */
45 /*     October 31, 1992 */
46 
47 /*     .. Scalar Arguments .. */
48 /*<       CHARACTER          NORM >*/
49 /*<       INTEGER            LDA, M, N >*/
50 /*     .. */
51 /*     .. Array Arguments .. */
52 /*<       REAL               A( LDA, * ), WORK( * ) >*/
53 /*     .. */
54 
55 /*  Purpose */
56 /*  ======= */
57 
58 /*  SLANGE  returns the value of the one norm,  or the Frobenius norm, or */
59 /*  the  infinity norm,  or the  element of  largest absolute value  of a */
60 /*  real matrix A. */
61 
62 /*  Description */
63 /*  =========== */
64 
65 /*  SLANGE returns the value */
66 
67 /*     SLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
68 /*              ( */
69 /*              ( norm1(A),         NORM = '1', 'O' or 'o' */
70 /*              ( */
71 /*              ( normI(A),         NORM = 'I' or 'i' */
72 /*              ( */
73 /*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */
74 
75 /*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
76 /*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
77 /*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
78 /*  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm. */
79 
80 /*  Arguments */
81 /*  ========= */
82 
83 /*  NORM    (input) CHARACTER*1 */
84 /*          Specifies the value to be returned in SLANGE as described */
85 /*          above. */
86 
87 /*  M       (input) INTEGER */
88 /*          The number of rows of the matrix A.  M >= 0.  When M = 0, */
89 /*          SLANGE is set to zero. */
90 
91 /*  N       (input) INTEGER */
92 /*          The number of columns of the matrix A.  N >= 0.  When N = 0, */
93 /*          SLANGE is set to zero. */
94 
95 /*  A       (input) REAL array, dimension (LDA,N) */
96 /*          The m by n matrix A. */
97 
98 /*  LDA     (input) INTEGER */
99 /*          The leading dimension of the array A.  LDA >= max(M,1). */
100 
101 /*  WORK    (workspace) REAL array, dimension (LWORK), */
102 /*          where LWORK >= M when NORM = 'I'; otherwise, WORK is not */
103 /*          referenced. */
104 
105 /* ===================================================================== */
106 
107 /*     .. Parameters .. */
108 /*<       REAL               ONE, ZERO >*/
109 /*<       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 ) >*/
110 /*     .. */
111 /*     .. Local Scalars .. */
112 /*<       INTEGER            I, J >*/
113 /*<       REAL               SCALE, SUM, VALUE >*/
114 /*     .. */
115 /*     .. External Subroutines .. */
116 /*<       EXTERNAL           SLASSQ >*/
117 /*     .. */
118 /*     .. External Functions .. */
119 /*<       LOGICAL            LSAME >*/
120 /*<       EXTERNAL           LSAME >*/
121 /*     .. */
122 /*     .. Intrinsic Functions .. */
123 /*<       INTRINSIC          ABS, MAX, MIN, SQRT >*/
124 /*     .. */
125 /*     .. Executable Statements .. */
126 
127 /*<       IF( MIN( M, N ).EQ.0 ) THEN >*/
128     /* Parameter adjustments */
129     a_dim1 = *lda;
130     a_offset = 1 + a_dim1;
131     a -= a_offset;
132     --work;
133 
134     /* Function Body */
135     if (min(*m,*n) == 0) {
136 /*<          VALUE = ZERO >*/
137         value = (float)0.;
138 /*<       ELSE IF( LSAME( NORM, 'M' ) ) THEN >*/
139     } else if (lsame_(norm, "M", (ftnlen)1, (ftnlen)1)) {
140 
141 /*        Find max(abs(A(i,j))). */
142 
143 /*<          VALUE = ZERO >*/
144         value = (float)0.;
145 /*<          DO 20 J = 1, N >*/
146         i__1 = *n;
147         for (j = 1; j <= i__1; ++j) {
148 /*<             DO 10 I = 1, M >*/
149             i__2 = *m;
150             for (i__ = 1; i__ <= i__2; ++i__) {
151 /*<                VALUE = MAX( VALUE, ABS( A( I, J ) ) ) >*/
152 /* Computing MAX */
153                 r__2 = value, r__3 = (r__1 = a[i__ + j * a_dim1], dabs(r__1));
154                 value = dmax(r__2,r__3);
155 /*<    10       CONTINUE >*/
156 /* L10: */
157             }
158 /*<    20    CONTINUE >*/
159 /* L20: */
160         }
161 /*<       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN >*/
162     } else if (lsame_(norm, "O", (ftnlen)1, (ftnlen)1) || *(unsigned char *)
163             norm == '1') {
164 
165 /*        Find norm1(A). */
166 
167 /*<          VALUE = ZERO >*/
168         value = (float)0.;
169 /*<          DO 40 J = 1, N >*/
170         i__1 = *n;
171         for (j = 1; j <= i__1; ++j) {
172 /*<             SUM = ZERO >*/
173             sum = (float)0.;
174 /*<             DO 30 I = 1, M >*/
175             i__2 = *m;
176             for (i__ = 1; i__ <= i__2; ++i__) {
177 /*<                SUM = SUM + ABS( A( I, J ) ) >*/
178                 sum += (r__1 = a[i__ + j * a_dim1], dabs(r__1));
179 /*<    30       CONTINUE >*/
180 /* L30: */
181             }
182 /*<             VALUE = MAX( VALUE, SUM ) >*/
183             value = dmax(value,sum);
184 /*<    40    CONTINUE >*/
185 /* L40: */
186         }
187 /*<       ELSE IF( LSAME( NORM, 'I' ) ) THEN >*/
188     } else if (lsame_(norm, "I", (ftnlen)1, (ftnlen)1)) {
189 
190 /*        Find normI(A). */
191 
192 /*<          DO 50 I = 1, M >*/
193         i__1 = *m;
194         for (i__ = 1; i__ <= i__1; ++i__) {
195 /*<             WORK( I ) = ZERO >*/
196             work[i__] = (float)0.;
197 /*<    50    CONTINUE >*/
198 /* L50: */
199         }
200 /*<          DO 70 J = 1, N >*/
201         i__1 = *n;
202         for (j = 1; j <= i__1; ++j) {
203 /*<             DO 60 I = 1, M >*/
204             i__2 = *m;
205             for (i__ = 1; i__ <= i__2; ++i__) {
206 /*<                WORK( I ) = WORK( I ) + ABS( A( I, J ) ) >*/
207                 work[i__] += (r__1 = a[i__ + j * a_dim1], dabs(r__1));
208 /*<    60       CONTINUE >*/
209 /* L60: */
210             }
211 /*<    70    CONTINUE >*/
212 /* L70: */
213         }
214 /*<          VALUE = ZERO >*/
215         value = (float)0.;
216 /*<          DO 80 I = 1, M >*/
217         i__1 = *m;
218         for (i__ = 1; i__ <= i__1; ++i__) {
219 /*<             VALUE = MAX( VALUE, WORK( I ) ) >*/
220 /* Computing MAX */
221             r__1 = value, r__2 = work[i__];
222             value = dmax(r__1,r__2);
223 /*<    80    CONTINUE >*/
224 /* L80: */
225         }
226 /*<       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN >*/
227     } else if (lsame_(norm, "F", (ftnlen)1, (ftnlen)1) || lsame_(norm, "E", (
228             ftnlen)1, (ftnlen)1)) {
229 
230 /*        Find normF(A). */
231 
232 /*<          SCALE = ZERO >*/
233         scale = (float)0.;
234 /*<          SUM = ONE >*/
235         sum = (float)1.;
236 /*<          DO 90 J = 1, N >*/
237         i__1 = *n;
238         for (j = 1; j <= i__1; ++j) {
239 /*<             CALL SLASSQ( M, A( 1, J ), 1, SCALE, SUM ) >*/
240             slassq_(m, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
241 /*<    90    CONTINUE >*/
242 /* L90: */
243         }
244 /*<          VALUE = SCALE*SQRT( SUM ) >*/
245         value = scale * sqrt(sum);
246 /*<       END IF >*/
247     }
248 
249 /*<       SLANGE = VALUE >*/
250     ret_val = value;
251 /*<       RETURN >*/
252     return ret_val;
253 
254 /*     End of SLANGE */
255 
256 /*<       END >*/
257 } /* slange_ */
258 
259 #ifdef __cplusplus
260         }
261 #endif
262