1 /*****************************************************************************
2 * This file is part of Kvazaar HEVC encoder.
3 *
4 * Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modification,
8 * are permitted provided that the following conditions are met:
9 *
10 * * Redistributions of source code must retain the above copyright notice, this
11 * list of conditions and the following disclaimer.
12 *
13 * * Redistributions in binary form must reproduce the above copyright notice, this
14 * list of conditions and the following disclaimer in the documentation and/or
15 * other materials provided with the distribution.
16 *
17 * * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its
18 * contributors may be used to endorse or promote products derived from
19 * this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
23 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
25 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 * INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND ON
28 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS
31 ****************************************************************************/
32
33 /*
34 * \file
35 */
36
37 #include "strategies/avx2/quant-avx2.h"
38
39 #if COMPILE_INTEL_AVX2 && defined X86_64
40 #include <immintrin.h>
41 #include <stdlib.h>
42
43 #include "avx2_common_functions.h"
44 #include "cu.h"
45 #include "encoder.h"
46 #include "encoderstate.h"
47 #include "kvazaar.h"
48 #include "rdo.h"
49 #include "scalinglist.h"
50 #include "strategies/generic/quant-generic.h"
51 #include "strategies/strategies-quant.h"
52 #include "strategyselector.h"
53 #include "tables.h"
54 #include "transform.h"
55 #include "fast_coeff_cost.h"
56
hsum32_8x32i(__m256i src)57 static INLINE int32_t hsum32_8x32i(__m256i src)
58 {
59 __m128i a = _mm256_extracti128_si256(src, 0);
60 __m128i b = _mm256_extracti128_si256(src, 1);
61
62 a = _mm_add_epi32(a, b);
63 b = _mm_shuffle_epi32(a, _MM_SHUFFLE(0, 1, 2, 3));
64
65 a = _mm_add_epi32(a, b);
66 b = _mm_shuffle_epi32(a, _MM_SHUFFLE(2, 3, 0, 1));
67
68 a = _mm_add_epi32(a, b);
69 return _mm_cvtsi128_si32(a);
70 }
71
hsum32_16x16i(__m256i src)72 static INLINE int32_t hsum32_16x16i(__m256i src)
73 {
74 __m128i a = _mm256_extracti128_si256(src, 0);
75 __m128i b = _mm256_extracti128_si256(src, 1);
76 __m256i c = _mm256_cvtepi16_epi32(a);
77 __m256i d = _mm256_cvtepi16_epi32(b);
78
79 c = _mm256_add_epi32(c, d);
80 return hsum32_8x32i(c);
81 }
82
83 // Rearranges a 16x32b double vector into a format suitable for a stable SIMD
84 // max algorithm:
85 // (abcd|efgh) (ijkl|mnop) => (aceg|ikmo) (bdfh|jlnp)
rearrange_512(__m256i * hi,__m256i * lo)86 static INLINE void rearrange_512(__m256i *hi, __m256i *lo)
87 {
88 const __m256i perm8x32mask = _mm256_setr_epi32(0, 2, 4, 6, 1, 3, 5, 7);
89
90 __m256i tmphi = _mm256_permutevar8x32_epi32(*hi, perm8x32mask);
91 __m256i tmplo = _mm256_permutevar8x32_epi32(*lo, perm8x32mask);
92
93 *hi = _mm256_permute2x128_si256(tmplo, tmphi, 0x31);
94 *lo = _mm256_permute2x128_si256(tmplo, tmphi, 0x20);
95 }
96
get_cheapest_alternative(__m256i costs_hi,__m256i costs_lo,__m256i ns,__m256i changes,int16_t * final_change,int32_t * min_pos)97 static INLINE void get_cheapest_alternative(__m256i costs_hi, __m256i costs_lo,
98 __m256i ns, __m256i changes,
99 int16_t *final_change, int32_t *min_pos)
100 {
101 // Interleave ns and lo into 32-bit variables and to two 256-bit wide vecs,
102 // to have the same data layout as in costs. Zero extend to 32b width, shift
103 // changes 16 bits to the left, and store them into the same vectors.
104 __m256i tmp1hi = _mm256_unpackhi_epi16(ns, changes);
105 __m256i tmp1lo = _mm256_unpacklo_epi16(ns, changes);
106
107 __m256i pl1hi = _mm256_permute2x128_si256(tmp1lo, tmp1hi, 0x31);
108 __m256i pl1lo = _mm256_permute2x128_si256(tmp1lo, tmp1hi, 0x20);
109
110 // Reorder to afford result stability (if multiple atoms tie for cheapest,
111 // rightmost ie. the highest is the wanted one)
112 rearrange_512(&costs_hi, &costs_lo);
113 rearrange_512(&pl1hi, &pl1lo);
114
115 // 0: pick hi, 1: pick lo (equality evaluates as 0)
116 __m256i cmpmask1 = _mm256_cmpgt_epi32(costs_hi, costs_lo);
117 __m256i cost1 = _mm256_blendv_epi8(costs_hi, costs_lo, cmpmask1);
118 __m256i pl1_1 = _mm256_blendv_epi8(pl1hi, pl1lo, cmpmask1);
119
120 __m256i cost2 = _mm256_shuffle_epi32(cost1, _MM_SHUFFLE(2, 3, 0, 1));
121 __m256i pl1_2 = _mm256_shuffle_epi32(pl1_1, _MM_SHUFFLE(2, 3, 0, 1));
122
123 __m256i cmpmask2 = _mm256_cmpgt_epi32(cost2, cost1);
124 __m256i cost3 = _mm256_blendv_epi8(cost2, cost1, cmpmask2);
125 __m256i pl1_3 = _mm256_blendv_epi8(pl1_2, pl1_1, cmpmask2);
126
127 __m256i cost4 = _mm256_shuffle_epi32(cost3, _MM_SHUFFLE(1, 0, 3, 2));
128 __m256i pl1_4 = _mm256_shuffle_epi32(pl1_3, _MM_SHUFFLE(1, 0, 3, 2));
129
130 __m256i cmpmask3 = _mm256_cmpgt_epi32(cost4, cost3);
131 __m256i cost5 = _mm256_blendv_epi8(cost4, cost3, cmpmask3);
132 __m256i pl1_5 = _mm256_blendv_epi8(pl1_4, pl1_3, cmpmask3);
133
134 __m256i cost6 = _mm256_permute4x64_epi64(cost5, _MM_SHUFFLE(1, 0, 3, 2));
135 __m256i pl1_6 = _mm256_permute4x64_epi64(pl1_5, _MM_SHUFFLE(1, 0, 3, 2));
136
137 __m256i cmpmask4 = _mm256_cmpgt_epi32(cost6, cost5);
138 __m256i pl1_7 = _mm256_blendv_epi8(pl1_6, pl1_5, cmpmask4);
139
140 __m128i res1_128 = _mm256_castsi256_si128(pl1_7);
141 uint32_t tmp1 = (uint32_t)_mm_extract_epi32(res1_128, 0);
142 uint16_t n = (uint16_t)(tmp1 & 0xffff);
143 uint16_t chng = (uint16_t)(tmp1 >> 16);
144
145 *final_change = (int16_t)chng;
146 *min_pos = (int32_t)n;
147 }
148
concatenate_2x128i(__m128i lo,__m128i hi)149 static INLINE __m256i concatenate_2x128i(__m128i lo, __m128i hi)
150 {
151 __m256i v = _mm256_castsi128_si256(lo);
152 return _mm256_inserti128_si256(v, hi, 1);
153 }
154
scanord_read_vector_32(const int32_t * __restrict quant_coeff,const uint32_t * __restrict scan,int8_t scan_mode,int32_t subpos,int32_t width,__m256i * __restrict v_quant_coeffs)155 static INLINE void scanord_read_vector_32(const int32_t *__restrict quant_coeff,
156 const uint32_t *__restrict scan,
157 int8_t scan_mode,
158 int32_t subpos,
159 int32_t width,
160 __m256i *__restrict v_quant_coeffs)
161 {
162 const size_t row_offsets[4] = {
163 scan[subpos] + width * 0,
164 scan[subpos] + width * 1,
165 scan[subpos] + width * 2,
166 scan[subpos] + width * 3,
167 };
168
169 const __m256i shufmasks[3] = {
170 _mm256_setr_epi32(5, 2, 6, 0, 3, 7, 4, 1),
171 _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7),
172 _mm256_setr_epi32(2, 3, 0, 1, 6, 7, 4, 5),
173 };
174
175 const __m256i blend_masks[3] = {
176 _mm256_setr_epi32( 0, 0, 0, -1, 0, 0, -1, -1),
177 _mm256_setr_epi32( 0, 0, 0, 0, 0, 0, 0, 0),
178 _mm256_setr_epi32( 0, 0, -1, -1, 0, 0, -1, -1),
179 };
180
181 const __m256i rearr_masks_lo[3] = {
182 _mm256_setr_epi32(0, 4, 1, 3, 5, 2, 6, 7),
183 _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7),
184 _mm256_setr_epi32(0, 4, 2, 6, 1, 5, 3, 7),
185 };
186
187 const __m256i rearr_masks_hi[3] = {
188 _mm256_setr_epi32(6, 3, 0, 1, 7, 2, 4, 5),
189 _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7),
190 _mm256_setr_epi32(2, 6, 0, 4, 3, 7, 1, 5),
191 };
192
193 __m128i coeffs[4] = {
194 _mm_loadu_si128((__m128i *)(quant_coeff + row_offsets[0])),
195 _mm_loadu_si128((__m128i *)(quant_coeff + row_offsets[1])),
196 _mm_loadu_si128((__m128i *)(quant_coeff + row_offsets[2])),
197 _mm_loadu_si128((__m128i *)(quant_coeff + row_offsets[3])),
198 };
199
200 __m256i coeffs_upper = concatenate_2x128i(coeffs[0], coeffs[1]);
201 __m256i coeffs_lower = concatenate_2x128i(coeffs[2], coeffs[3]);
202
203 __m256i lower_shuffled = _mm256_permutevar8x32_epi32(coeffs_lower, shufmasks[scan_mode]);
204
205 __m256i upper_blended = _mm256_blendv_epi8(coeffs_upper, lower_shuffled, blend_masks[scan_mode]);
206 __m256i lower_blended = _mm256_blendv_epi8(lower_shuffled, coeffs_upper, blend_masks[scan_mode]);
207
208 __m256i result_lo = _mm256_permutevar8x32_epi32(upper_blended, rearr_masks_lo[scan_mode]);
209 __m256i result_hi = _mm256_permutevar8x32_epi32(lower_blended, rearr_masks_hi[scan_mode]);
210
211 v_quant_coeffs[0] = result_lo;
212 v_quant_coeffs[1] = result_hi;
213 }
214
215 #define VEC_WIDTH 16
216 #define SCAN_SET_SIZE 16
217 #define LOG2_SCAN_SET_SIZE 4
218
hide_block_sign(__m256i coefs,__m256i q_coefs,__m256i deltas_h,__m256i deltas_l,coeff_t * __restrict q_coef,const uint32_t * __restrict scan,int32_t subpos,int32_t last_cg)219 static INLINE int32_t hide_block_sign(__m256i coefs, __m256i q_coefs, __m256i deltas_h, __m256i deltas_l, coeff_t * __restrict q_coef, const uint32_t * __restrict scan, int32_t subpos, int32_t last_cg)
220 {
221 assert(SCAN_SET_SIZE == 16);
222
223 int32_t first_nz_pos_in_cg, last_nz_pos_in_cg;
224 int32_t abssum = 0;
225
226 // Find first and last nonzero coeffs
227 get_first_last_nz_int16(q_coefs, &first_nz_pos_in_cg, &last_nz_pos_in_cg);
228
229 // Sum all kvz_quant coeffs between first and last
230 abssum = hsum32_16x16i(q_coefs);
231
232 if (last_nz_pos_in_cg >= 0 && last_cg == -1) {
233 last_cg = 1;
234 }
235
236 if (last_nz_pos_in_cg - first_nz_pos_in_cg >= 4) {
237
238 uint32_t q_coef_signbits = _mm256_movemask_epi8(q_coefs);
239 int32_t signbit = (q_coef_signbits >> (2 * first_nz_pos_in_cg + 1)) & 0x1;
240
241 if (signbit != (abssum & 0x1)) { // compare signbit with sum_parity
242 int32_t min_pos;
243 int16_t final_change;
244 int16_t cheapest_q;
245
246 const int32_t mask_max = (last_cg == 1) ? last_nz_pos_in_cg : SCAN_SET_SIZE - 1;
247
248 const __m256i zero = _mm256_setzero_si256();
249 const __m256i ones = _mm256_set1_epi16(1);
250 const __m256i maxiters = _mm256_set1_epi16(mask_max);
251 const __m256i ff = _mm256_set1_epi8(0xff);
252
253 const __m256i fnpics = _mm256_set1_epi16((int16_t)first_nz_pos_in_cg);
254 const __m256i ns = _mm256_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
255
256 __m256i block_signbit = _mm256_set1_epi16(((int16_t)signbit) * -1);
257 __m256i coef_signbits = _mm256_cmpgt_epi16(zero, coefs);
258 __m256i signbits_equal_block = _mm256_cmpeq_epi16(coef_signbits, block_signbit);
259
260 __m256i q_coefs_zero = _mm256_cmpeq_epi16(q_coefs, zero);
261
262 __m256i dus_packed = _mm256_packs_epi32(deltas_l, deltas_h);
263 __m256i dus_ordered = _mm256_permute4x64_epi64(dus_packed, _MM_SHUFFLE(3, 1, 2, 0));
264 __m256i dus_positive = _mm256_cmpgt_epi16(dus_ordered, zero);
265
266 __m256i q_coef_abss = _mm256_abs_epi16(q_coefs);
267 __m256i q_coefs_plusminus_one = _mm256_cmpeq_epi16(q_coef_abss, ones);
268
269 __m256i eq_fnpics = _mm256_cmpeq_epi16(fnpics, ns);
270 __m256i lt_fnpics = _mm256_cmpgt_epi16(fnpics, ns);
271
272 __m256i maxcost_subcond1s = _mm256_and_si256(eq_fnpics, q_coefs_plusminus_one);
273 __m256i maxcost_subcond2s = _mm256_andnot_si256(signbits_equal_block, lt_fnpics);
274 __m256i elsecond1s_inv = _mm256_or_si256(dus_positive, maxcost_subcond1s);
275 __m256i elsecond1s = _mm256_andnot_si256(elsecond1s_inv, ff);
276
277 __m256i outside_maxiters = _mm256_cmpgt_epi16(ns, maxiters);
278
279 __m256i negdelta_cond1s = _mm256_andnot_si256(q_coefs_zero, dus_positive);
280 __m256i negdelta_cond2s = _mm256_andnot_si256(maxcost_subcond2s, q_coefs_zero);
281 __m256i negdelta_mask16s_part1 = _mm256_or_si256(negdelta_cond1s, negdelta_cond2s);
282 __m256i negdelta_mask16s = _mm256_andnot_si256(outside_maxiters, negdelta_mask16s_part1);
283
284 __m256i posdelta_mask16s_part1 = _mm256_andnot_si256(q_coefs_zero, elsecond1s);
285 __m256i posdelta_mask16s = _mm256_andnot_si256(outside_maxiters, posdelta_mask16s_part1);
286
287 __m256i maxcost_cond1_parts = _mm256_andnot_si256(dus_positive, maxcost_subcond1s);
288 __m256i maxcost_cond1s = _mm256_andnot_si256(q_coefs_zero, maxcost_cond1_parts);
289 __m256i maxcost_cond2s = _mm256_and_si256(q_coefs_zero, maxcost_subcond2s);
290 __m256i maxcost_mask16s_parts = _mm256_or_si256(maxcost_cond1s, maxcost_cond2s);
291 __m256i maxcost_mask16s = _mm256_or_si256(maxcost_mask16s_parts, outside_maxiters);
292
293 __m128i tmp_l, tmp_h;
294 tmp_l = _mm256_extracti128_si256(negdelta_mask16s, 0);
295 tmp_h = _mm256_extracti128_si256(negdelta_mask16s, 1);
296 __m256i negdelta_mask32s_l = _mm256_cvtepi16_epi32(tmp_l);
297 __m256i negdelta_mask32s_h = _mm256_cvtepi16_epi32(tmp_h);
298
299 tmp_l = _mm256_extracti128_si256(posdelta_mask16s, 0);
300 tmp_h = _mm256_extracti128_si256(posdelta_mask16s, 1);
301 __m256i posdelta_mask32s_l = _mm256_cvtepi16_epi32(tmp_l);
302 __m256i posdelta_mask32s_h = _mm256_cvtepi16_epi32(tmp_h);
303
304 tmp_l = _mm256_extracti128_si256(maxcost_mask16s, 0);
305 tmp_h = _mm256_extracti128_si256(maxcost_mask16s, 1);
306 __m256i maxcost_mask32s_l = _mm256_cvtepi16_epi32(tmp_l);
307 __m256i maxcost_mask32s_h = _mm256_cvtepi16_epi32(tmp_h);
308
309 // Output value generation
310 // cur_change_max: zero
311 // cur_change_negdelta: ff
312 // cur_change_posdelta: ones
313 __m256i costs_negdelta_h = _mm256_sub_epi32(zero, deltas_h);
314 __m256i costs_negdelta_l = _mm256_sub_epi32(zero, deltas_l);
315 // costs_posdelta_l and _h: deltas_l and _h
316 __m256i costs_max_lh = _mm256_set1_epi32(0x7fffffff);
317
318 __m256i change_neg = _mm256_and_si256(negdelta_mask16s, ones);
319 __m256i change_pos = _mm256_and_si256(posdelta_mask16s, ff);
320 __m256i change_max = _mm256_and_si256(maxcost_mask16s, zero);
321
322 __m256i cost_neg_l = _mm256_and_si256(negdelta_mask32s_l, costs_negdelta_l);
323 __m256i cost_neg_h = _mm256_and_si256(negdelta_mask32s_h, costs_negdelta_h);
324 __m256i cost_pos_l = _mm256_and_si256(posdelta_mask32s_l, deltas_l);
325 __m256i cost_pos_h = _mm256_and_si256(posdelta_mask32s_h, deltas_h);
326 __m256i cost_max_l = _mm256_and_si256(maxcost_mask32s_l, costs_max_lh);
327 __m256i cost_max_h = _mm256_and_si256(maxcost_mask32s_h, costs_max_lh);
328
329 __m256i changes = _mm256_or_si256(change_neg, _mm256_or_si256(change_pos, change_max));
330 __m256i costs_l = _mm256_or_si256(cost_neg_l, _mm256_or_si256(cost_pos_l, cost_max_l));
331 __m256i costs_h = _mm256_or_si256(cost_neg_h, _mm256_or_si256(cost_pos_h, cost_max_h));
332
333 get_cheapest_alternative(costs_h, costs_l, ns, changes, &final_change, &min_pos);
334 const int32_t best_id = scan[min_pos + subpos];
335
336 cheapest_q = q_coef[best_id];
337 if (cheapest_q == 32767 || cheapest_q == -32768)
338 final_change = -1;
339
340 uint32_t coef_signs = _mm256_movemask_epi8(coef_signbits);
341 uint32_t cheapest_coef_sign_mask = (uint32_t)(1 << (2 * min_pos));
342
343 if (!(coef_signs & cheapest_coef_sign_mask))
344 cheapest_q += final_change;
345 else
346 cheapest_q -= final_change;
347
348 q_coef[best_id] = cheapest_q;
349 } // Hide
350 }
351 if (last_cg == 1)
352 last_cg = 0;
353
354 return last_cg;
355 }
356
357 /**
358 * \brief quantize transformed coefficents
359 *
360 */
kvz_quant_avx2(const encoder_state_t * const state,const coeff_t * __restrict coef,coeff_t * __restrict q_coef,int32_t width,int32_t height,int8_t type,int8_t scan_idx,int8_t block_type)361 void kvz_quant_avx2(const encoder_state_t * const state, const coeff_t * __restrict coef, coeff_t * __restrict q_coef, int32_t width,
362 int32_t height, int8_t type, int8_t scan_idx, int8_t block_type)
363 {
364 const encoder_control_t * const encoder = state->encoder_control;
365 const uint32_t log2_block_size = kvz_g_convert_to_bit[width] + 2;
366 const uint32_t * const __restrict scan = kvz_g_sig_last_scan[scan_idx][log2_block_size - 1];
367
368 int32_t qp_scaled = kvz_get_scaled_qp(type, state->qp, (encoder->bitdepth - 8) * 6);
369 const uint32_t log2_tr_size = kvz_g_convert_to_bit[width] + 2;
370 const int32_t scalinglist_type = (block_type == CU_INTRA ? 0 : 3) + (int8_t)("\0\3\1\2"[type]);
371 const int32_t *quant_coeff = encoder->scaling_list.quant_coeff[log2_tr_size - 2][scalinglist_type][qp_scaled % 6];
372 const int32_t transform_shift = MAX_TR_DYNAMIC_RANGE - encoder->bitdepth - log2_tr_size; //!< Represents scaling through forward transform
373 const int32_t q_bits = QUANT_SHIFT + qp_scaled / 6 + transform_shift;
374 const int32_t add = ((state->frame->slicetype == KVZ_SLICE_I) ? 171 : 85) << (q_bits - 9);
375 const int32_t q_bits8 = q_bits - 8;
376
377 uint32_t ac_sum = 0;
378 int32_t last_cg = -1;
379
380 __m256i v_ac_sum = _mm256_setzero_si256();
381
382 // Loading once is enough if scaling lists are not off
383 __m256i low_b = _mm256_setzero_si256(), high_b = _mm256_setzero_si256();
384 if (!(state->encoder_control->scaling_list.enable)) {
385 low_b = _mm256_set1_epi32(quant_coeff[0]);
386 high_b = low_b;
387 }
388
389 for (int32_t n = 0; n < width * height; n += VEC_WIDTH) {
390
391 __m256i v_level = _mm256_loadu_si256((__m256i *)(coef + n));
392 __m256i v_sign = _mm256_cmpgt_epi16(_mm256_setzero_si256(), v_level);
393 v_sign = _mm256_or_si256(v_sign, _mm256_set1_epi16(1));
394
395 if (state->encoder_control->scaling_list.enable) {
396 __m256i v_quant_coeff_lo = _mm256_loadu_si256(((__m256i *)(quant_coeff + n)) + 0);
397 __m256i v_quant_coeff_hi = _mm256_loadu_si256(((__m256i *)(quant_coeff + n)) + 1);
398
399 low_b = _mm256_permute2x128_si256(v_quant_coeff_lo,
400 v_quant_coeff_hi,
401 0x20);
402
403 high_b = _mm256_permute2x128_si256(v_quant_coeff_lo,
404 v_quant_coeff_hi,
405 0x31);
406 }
407
408 // TODO: do we need to have this?
409 // #define CHECK_QUANT_COEFFS
410 #ifdef CHECK_QUANT_COEFFS
411 __m256i abs_vq_lo = _mm256_abs_epi32(v_quant_coeff_lo);
412 __m256i abs_vq_hi = _mm256_abs_epi32(v_quant_coeff_hi);
413
414 __m256i vq_over_16b_lo = _mm256_cmpgt_epi32(abs_vq_lo, _mm256_set1_epi32(0x7fff));
415 __m256i vq_over_16b_hi = _mm256_cmpgt_epi32(abs_vq_hi, _mm256_set1_epi32(0x7fff));
416
417 uint32_t over_16b_mask_lo = _mm256_movemask_epi8(vq_over_16b_lo);
418 uint32_t over_16b_mask_hi = _mm256_movemask_epi8(vq_over_16b_hi);
419
420 assert(!(over_16b_mask_lo || over_16b_mask_hi));
421 #endif
422
423 v_level = _mm256_abs_epi16(v_level);
424 __m256i low_a = _mm256_unpacklo_epi16(v_level, _mm256_setzero_si256());
425 __m256i high_a = _mm256_unpackhi_epi16(v_level, _mm256_setzero_si256());
426
427 __m256i v_level32_a = _mm256_mullo_epi32(low_a, low_b);
428 __m256i v_level32_b = _mm256_mullo_epi32(high_a, high_b);
429
430 v_level32_a = _mm256_add_epi32(v_level32_a, _mm256_set1_epi32(add));
431 v_level32_b = _mm256_add_epi32(v_level32_b, _mm256_set1_epi32(add));
432
433 v_level32_a = _mm256_srai_epi32(v_level32_a, q_bits);
434 v_level32_b = _mm256_srai_epi32(v_level32_b, q_bits);
435
436 v_level = _mm256_packs_epi32(v_level32_a, v_level32_b);
437 v_level = _mm256_sign_epi16(v_level, v_sign);
438
439 _mm256_storeu_si256((__m256i *)(q_coef + n), v_level);
440
441 v_ac_sum = _mm256_add_epi32(v_ac_sum, v_level32_a);
442 v_ac_sum = _mm256_add_epi32(v_ac_sum, v_level32_b);
443 }
444
445 __m128i temp = _mm_add_epi32(_mm256_castsi256_si128(v_ac_sum), _mm256_extracti128_si256(v_ac_sum, 1));
446 temp = _mm_add_epi32(temp, _mm_shuffle_epi32(temp, _MM_SHUFFLE(1, 0, 3, 2)));
447 temp = _mm_add_epi32(temp, _mm_shuffle_epi32(temp, _MM_SHUFFLE(0, 1, 0, 1)));
448 ac_sum += _mm_cvtsi128_si32(temp);
449
450 if (!encoder->cfg.signhide_enable || ac_sum < 2)
451 return;
452
453 assert(VEC_WIDTH == SCAN_SET_SIZE);
454 for (int32_t subpos = (width * height - 1) & (~(VEC_WIDTH - 1)); subpos >= 0; subpos -= VEC_WIDTH) {
455 const int16_t *coeffs[2] = {coef, q_coef};
456 __m256i result_coeffs[2];
457 __m256i v_quant_coeffs[2];
458
459 __m256i v_coef, q_coefs;
460 __m256i v_quant_coeff_lo, v_quant_coeff_hi;
461
462 scanord_read_vector(coeffs, scan, scan_idx, subpos, width, result_coeffs, 2);
463
464 v_coef = result_coeffs[0];
465 q_coefs = result_coeffs[1];
466
467 if (state->encoder_control->scaling_list.enable) {
468 scanord_read_vector_32(quant_coeff, scan, scan_idx, subpos, width, v_quant_coeffs);
469
470 v_quant_coeff_lo = v_quant_coeffs[0];
471 v_quant_coeff_hi = v_quant_coeffs[1];
472
473 low_b = _mm256_permute2x128_si256(v_quant_coeff_lo,
474 v_quant_coeff_hi,
475 0x20);
476
477 high_b = _mm256_permute2x128_si256(v_quant_coeff_lo,
478 v_quant_coeff_hi,
479 0x31);
480 }
481
482 __m256i v_level = _mm256_abs_epi16(v_coef);
483 __m256i low_a = _mm256_unpacklo_epi16(v_level, _mm256_setzero_si256());
484 __m256i high_a = _mm256_unpackhi_epi16(v_level, _mm256_setzero_si256());
485
486 __m256i v_quant_coeff_a = _mm256_or_si256(low_b, _mm256_setzero_si256());
487 __m256i v_quant_coeff_b = _mm256_or_si256(high_b, _mm256_setzero_si256());
488
489 __m256i v_level32_a = _mm256_mullo_epi32(low_a, low_b);
490 __m256i v_level32_b = _mm256_mullo_epi32(high_a, high_b);
491
492 v_level32_a = _mm256_add_epi32(v_level32_a, _mm256_set1_epi32(add));
493 v_level32_b = _mm256_add_epi32(v_level32_b, _mm256_set1_epi32(add));
494
495 v_level32_a = _mm256_srai_epi32(v_level32_a, q_bits);
496 v_level32_b = _mm256_srai_epi32(v_level32_b, q_bits);
497
498 v_level = _mm256_packs_epi32(v_level32_a, v_level32_b);
499
500 __m256i v_coef_a = _mm256_unpacklo_epi16(_mm256_abs_epi16(v_coef), _mm256_set1_epi16(0));
501 __m256i v_coef_b = _mm256_unpackhi_epi16(_mm256_abs_epi16(v_coef), _mm256_set1_epi16(0));
502
503 v_coef_a = _mm256_mullo_epi32(v_coef_a, v_quant_coeff_a);
504 v_coef_b = _mm256_mullo_epi32(v_coef_b, v_quant_coeff_b);
505
506 v_coef_a = _mm256_sub_epi32(v_coef_a, _mm256_slli_epi32(_mm256_unpacklo_epi16(v_level, _mm256_set1_epi16(0)), q_bits) );
507 v_coef_b = _mm256_sub_epi32(v_coef_b, _mm256_slli_epi32(_mm256_unpackhi_epi16(v_level, _mm256_set1_epi16(0)), q_bits) );
508 v_coef_a = _mm256_srai_epi32(v_coef_a, q_bits8);
509 v_coef_b = _mm256_srai_epi32(v_coef_b, q_bits8);
510
511 __m256i deltas_h = _mm256_permute2x128_si256(v_coef_a, v_coef_b, 0x31);
512 __m256i deltas_l = _mm256_permute2x128_si256(v_coef_a, v_coef_b, 0x20);
513
514 last_cg = hide_block_sign(v_coef, q_coefs, deltas_h, deltas_l, q_coef, scan, subpos, last_cg);
515 }
516
517 #undef VEC_WIDTH
518 #undef SCAN_SET_SIZE
519 #undef LOG2_SCAN_SET_SIZE
520 }
521
522 #if KVZ_BIT_DEPTH == 8
523
get_residual_4x1_avx2(const uint8_t * a_in,const uint8_t * b_in)524 static INLINE __m128i get_residual_4x1_avx2(const uint8_t *a_in, const uint8_t *b_in){
525 __m128i a = _mm_cvtsi32_si128(*(int32_t*)a_in);
526 __m128i b = _mm_cvtsi32_si128(*(int32_t*)b_in);
527 __m128i diff = _mm_sub_epi16(_mm_cvtepu8_epi16(a), _mm_cvtepu8_epi16(b) );
528 return diff;
529 }
530
get_residual_8x1_avx2(const uint8_t * a_in,const uint8_t * b_in)531 static INLINE __m128i get_residual_8x1_avx2(const uint8_t *a_in, const uint8_t *b_in){
532 __m128i a = _mm_cvtsi64_si128(*(int64_t*)a_in);
533 __m128i b = _mm_cvtsi64_si128(*(int64_t*)b_in);
534 __m128i diff = _mm_sub_epi16(_mm_cvtepu8_epi16(a), _mm_cvtepu8_epi16(b) );
535 return diff;
536 }
537
get_quantized_recon_4x1_avx2(int16_t * residual,const uint8_t * pred_in)538 static INLINE int32_t get_quantized_recon_4x1_avx2(int16_t *residual, const uint8_t *pred_in){
539 __m128i res = _mm_loadl_epi64((__m128i*)residual);
540 __m128i pred = _mm_cvtsi32_si128(*(int32_t*)pred_in);
541 __m128i rec = _mm_add_epi16(res, _mm_cvtepu8_epi16(pred));
542 return _mm_cvtsi128_si32(_mm_packus_epi16(rec, rec));
543 }
544
get_quantized_recon_8x1_avx2(int16_t * residual,const uint8_t * pred_in)545 static INLINE int64_t get_quantized_recon_8x1_avx2(int16_t *residual, const uint8_t *pred_in){
546 __m128i res = _mm_loadu_si128((__m128i*)residual);
547 __m128i pred = _mm_cvtsi64_si128(*(int64_t*)pred_in);
548 __m128i rec = _mm_add_epi16(res, _mm_cvtepu8_epi16(pred));
549 return _mm_cvtsi128_si64(_mm_packus_epi16(rec, rec));
550 }
551
get_residual_avx2(const uint8_t * ref_in,const uint8_t * pred_in,int16_t * residual,int width,int in_stride)552 static void get_residual_avx2(const uint8_t *ref_in, const uint8_t *pred_in, int16_t *residual, int width, int in_stride){
553
554 __m128i diff = _mm_setzero_si128();
555 switch (width) {
556 case 4:
557 diff = get_residual_4x1_avx2(ref_in + 0 * in_stride, pred_in + 0 * in_stride);
558 _mm_storel_epi64((__m128i*)&(residual[0]), diff);
559 diff = get_residual_4x1_avx2(ref_in + 1 * in_stride, pred_in + 1 * in_stride);
560 _mm_storel_epi64((__m128i*)&(residual[4]), diff);
561 diff = get_residual_4x1_avx2(ref_in + 2 * in_stride, pred_in + 2 * in_stride);
562 _mm_storel_epi64((__m128i*)&(residual[8]), diff);
563 diff = get_residual_4x1_avx2(ref_in + 3 * in_stride, pred_in + 3 * in_stride);
564 _mm_storel_epi64((__m128i*)&(residual[12]), diff);
565 break;
566 case 8:
567 diff = get_residual_8x1_avx2(&ref_in[0 * in_stride], &pred_in[0 * in_stride]);
568 _mm_storeu_si128((__m128i*)&(residual[0]), diff);
569 diff = get_residual_8x1_avx2(&ref_in[1 * in_stride], &pred_in[1 * in_stride]);
570 _mm_storeu_si128((__m128i*)&(residual[8]), diff);
571 diff = get_residual_8x1_avx2(&ref_in[2 * in_stride], &pred_in[2 * in_stride]);
572 _mm_storeu_si128((__m128i*)&(residual[16]), diff);
573 diff = get_residual_8x1_avx2(&ref_in[3 * in_stride], &pred_in[3 * in_stride]);
574 _mm_storeu_si128((__m128i*)&(residual[24]), diff);
575 diff = get_residual_8x1_avx2(&ref_in[4 * in_stride], &pred_in[4 * in_stride]);
576 _mm_storeu_si128((__m128i*)&(residual[32]), diff);
577 diff = get_residual_8x1_avx2(&ref_in[5 * in_stride], &pred_in[5 * in_stride]);
578 _mm_storeu_si128((__m128i*)&(residual[40]), diff);
579 diff = get_residual_8x1_avx2(&ref_in[6 * in_stride], &pred_in[6 * in_stride]);
580 _mm_storeu_si128((__m128i*)&(residual[48]), diff);
581 diff = get_residual_8x1_avx2(&ref_in[7 * in_stride], &pred_in[7 * in_stride]);
582 _mm_storeu_si128((__m128i*)&(residual[56]), diff);
583 break;
584 default:
585 for (int y = 0; y < width; ++y) {
586 for (int x = 0; x < width; x+=16) {
587 diff = get_residual_8x1_avx2(&ref_in[x + y * in_stride], &pred_in[x + y * in_stride]);
588 _mm_storeu_si128((__m128i*)&residual[x + y * width], diff);
589 diff = get_residual_8x1_avx2(&ref_in[(x+8) + y * in_stride], &pred_in[(x+8) + y * in_stride]);
590 _mm_storeu_si128((__m128i*)&residual[(x+8) + y * width], diff);
591 }
592 }
593 break;
594 }
595 }
596
get_quantized_recon_avx2(int16_t * residual,const uint8_t * pred_in,int in_stride,uint8_t * rec_out,int out_stride,int width)597 static void get_quantized_recon_avx2(int16_t *residual, const uint8_t *pred_in, int in_stride, uint8_t *rec_out, int out_stride, int width){
598
599 switch (width) {
600 case 4:
601 *(int32_t*)&(rec_out[0 * out_stride]) = get_quantized_recon_4x1_avx2(residual + 0 * width, pred_in + 0 * in_stride);
602 *(int32_t*)&(rec_out[1 * out_stride]) = get_quantized_recon_4x1_avx2(residual + 1 * width, pred_in + 1 * in_stride);
603 *(int32_t*)&(rec_out[2 * out_stride]) = get_quantized_recon_4x1_avx2(residual + 2 * width, pred_in + 2 * in_stride);
604 *(int32_t*)&(rec_out[3 * out_stride]) = get_quantized_recon_4x1_avx2(residual + 3 * width, pred_in + 3 * in_stride);
605 break;
606 case 8:
607 *(int64_t*)&(rec_out[0 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 0 * width, pred_in + 0 * in_stride);
608 *(int64_t*)&(rec_out[1 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 1 * width, pred_in + 1 * in_stride);
609 *(int64_t*)&(rec_out[2 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 2 * width, pred_in + 2 * in_stride);
610 *(int64_t*)&(rec_out[3 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 3 * width, pred_in + 3 * in_stride);
611 *(int64_t*)&(rec_out[4 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 4 * width, pred_in + 4 * in_stride);
612 *(int64_t*)&(rec_out[5 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 5 * width, pred_in + 5 * in_stride);
613 *(int64_t*)&(rec_out[6 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 6 * width, pred_in + 6 * in_stride);
614 *(int64_t*)&(rec_out[7 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 7 * width, pred_in + 7 * in_stride);
615 break;
616 default:
617 for (int y = 0; y < width; ++y) {
618 for (int x = 0; x < width; x += 16) {
619 *(int64_t*)&(rec_out[x + y * out_stride]) = get_quantized_recon_8x1_avx2(residual + x + y * width, pred_in + x + y * in_stride);
620 *(int64_t*)&(rec_out[(x + 8) + y * out_stride]) = get_quantized_recon_8x1_avx2(residual + (x + 8) + y * width, pred_in + (x + 8) + y * in_stride);
621 }
622 }
623 break;
624 }
625 }
626
627 /**
628 * \brief Quantize residual and get both the reconstruction and coeffs.
629 *
630 * \param width Transform width.
631 * \param color Color.
632 * \param scan_order Coefficient scan order.
633 * \param use_trskip Whether transform skip is used.
634 * \param stride Stride for ref_in, pred_in and rec_out.
635 * \param ref_in Reference pixels.
636 * \param pred_in Predicted pixels.
637 * \param rec_out Reconstructed pixels.
638 * \param coeff_out Coefficients used for reconstruction of rec_out.
639 * \param early_skip if this is used for early skip, bypass IT and IQ
640 *
641 * \returns Whether coeff_out contains any non-zero coefficients.
642 */
kvz_quantize_residual_avx2(encoder_state_t * const state,const cu_info_t * const cur_cu,const int width,const color_t color,const coeff_scan_order_t scan_order,const int use_trskip,const int in_stride,const int out_stride,const uint8_t * const ref_in,const uint8_t * const pred_in,uint8_t * rec_out,coeff_t * coeff_out,bool early_skip)643 int kvz_quantize_residual_avx2(encoder_state_t *const state,
644 const cu_info_t *const cur_cu, const int width, const color_t color,
645 const coeff_scan_order_t scan_order, const int use_trskip,
646 const int in_stride, const int out_stride,
647 const uint8_t *const ref_in, const uint8_t *const pred_in,
648 uint8_t *rec_out, coeff_t *coeff_out,
649 bool early_skip)
650 {
651 // Temporary arrays to pass data to and from kvz_quant and transform functions.
652 ALIGNED(64) int16_t residual[TR_MAX_WIDTH * TR_MAX_WIDTH];
653 ALIGNED(64) coeff_t coeff[TR_MAX_WIDTH * TR_MAX_WIDTH];
654
655 int has_coeffs = 0;
656
657 assert(width <= TR_MAX_WIDTH);
658 assert(width >= TR_MIN_WIDTH);
659
660 // Get residual. (ref_in - pred_in -> residual)
661 get_residual_avx2(ref_in, pred_in, residual, width, in_stride);
662
663 // Transform residual. (residual -> coeff)
664 if (use_trskip) {
665 kvz_transformskip(state->encoder_control, residual, coeff, width);
666 }
667 else {
668 kvz_transform2d(state->encoder_control, residual, coeff, width, color, cur_cu->type);
669 }
670
671 // Quantize coeffs. (coeff -> coeff_out)
672 if (state->encoder_control->cfg.rdoq_enable &&
673 (width > 4 || !state->encoder_control->cfg.rdoq_skip))
674 {
675 int8_t tr_depth = cur_cu->tr_depth - cur_cu->depth;
676 tr_depth += (cur_cu->part_size == SIZE_NxN ? 1 : 0);
677 kvz_rdoq(state, coeff, coeff_out, width, width, (color == COLOR_Y ? 0 : 2),
678 scan_order, cur_cu->type, tr_depth);
679 } else {
680 kvz_quant(state, coeff, coeff_out, width, width, (color == COLOR_Y ? 0 : 2),
681 scan_order, cur_cu->type);
682 }
683
684 // Check if there are any non-zero coefficients.
685 for (int i = 0; i < width * width; i += 8) {
686 __m128i v_quant_coeff = _mm_loadu_si128((__m128i*)&(coeff_out[i]));
687 has_coeffs = !_mm_testz_si128(_mm_set1_epi8(0xFF), v_quant_coeff);
688 if(has_coeffs) break;
689 }
690
691 // Do the inverse quantization and transformation and the reconstruction to
692 // rec_out.
693 if (has_coeffs && !early_skip) {
694
695 // Get quantized residual. (coeff_out -> coeff -> residual)
696 kvz_dequant(state, coeff_out, coeff, width, width, (color == COLOR_Y ? 0 : (color == COLOR_U ? 2 : 3)), cur_cu->type);
697 if (use_trskip) {
698 kvz_itransformskip(state->encoder_control, residual, coeff, width);
699 }
700 else {
701 kvz_itransform2d(state->encoder_control, residual, coeff, width, color, cur_cu->type);
702 }
703
704 // Get quantized reconstruction. (residual + pred_in -> rec_out)
705 get_quantized_recon_avx2(residual, pred_in, in_stride, rec_out, out_stride, width);
706 }
707 else if (rec_out != pred_in) {
708 // With no coeffs and rec_out == pred_int we skip copying the coefficients
709 // because the reconstruction is just the prediction.
710 int y, x;
711
712 for (y = 0; y < width; ++y) {
713 for (x = 0; x < width; ++x) {
714 rec_out[x + y * out_stride] = pred_in[x + y * in_stride];
715 }
716 }
717 }
718
719 return has_coeffs;
720 }
721
722 /**
723 * \brief inverse quantize transformed and quantized coefficents
724 *
725 */
kvz_dequant_avx2(const encoder_state_t * const state,coeff_t * q_coef,coeff_t * coef,int32_t width,int32_t height,int8_t type,int8_t block_type)726 void kvz_dequant_avx2(const encoder_state_t * const state, coeff_t *q_coef, coeff_t *coef, int32_t width, int32_t height,int8_t type, int8_t block_type)
727 {
728 const encoder_control_t * const encoder = state->encoder_control;
729 int32_t shift,add,coeff_q;
730 int32_t n;
731 int32_t transform_shift = 15 - encoder->bitdepth - (kvz_g_convert_to_bit[ width ] + 2);
732
733 int32_t qp_scaled = kvz_get_scaled_qp(type, state->qp, (encoder->bitdepth-8)*6);
734
735 shift = 20 - QUANT_SHIFT - transform_shift;
736
737 if (encoder->scaling_list.enable)
738 {
739 uint32_t log2_tr_size = kvz_g_convert_to_bit[ width ] + 2;
740 int32_t scalinglist_type = (block_type == CU_INTRA ? 0 : 3) + (int8_t)("\0\3\1\2"[type]);
741
742 const int32_t *dequant_coef = encoder->scaling_list.de_quant_coeff[log2_tr_size-2][scalinglist_type][qp_scaled%6];
743 shift += 4;
744
745 if (shift >qp_scaled / 6) {
746 add = 1 << (shift - qp_scaled/6 - 1);
747
748 for (n = 0; n < width * height; n++) {
749 coeff_q = ((q_coef[n] * dequant_coef[n]) + add ) >> (shift - qp_scaled/6);
750 coef[n] = (coeff_t)CLIP(-32768,32767,coeff_q);
751 }
752 } else {
753 for (n = 0; n < width * height; n++) {
754 // Clip to avoid possible overflow in following shift left operation
755 coeff_q = CLIP(-32768, 32767, q_coef[n] * dequant_coef[n]);
756 coef[n] = (coeff_t)CLIP(-32768, 32767, coeff_q << (qp_scaled/6 - shift));
757 }
758 }
759 } else {
760 int32_t scale = kvz_g_inv_quant_scales[qp_scaled%6] << (qp_scaled/6);
761 add = 1 << (shift-1);
762
763 __m256i v_scale = _mm256_set1_epi32(scale);
764 __m256i v_add = _mm256_set1_epi32(add);
765
766 for (n = 0; n < width*height; n+=16) {
767 __m128i temp0 = _mm_loadu_si128((__m128i*)&(q_coef[n]));
768 __m128i temp1 = _mm_loadu_si128((__m128i*)&(q_coef[n + 8]));
769 __m256i v_coeff_q_lo = _mm256_cvtepi16_epi32(_mm_unpacklo_epi64(temp0, temp1));
770 __m256i v_coeff_q_hi = _mm256_cvtepi16_epi32(_mm_unpackhi_epi64(temp0, temp1));
771 v_coeff_q_lo = _mm256_mullo_epi32(v_coeff_q_lo, v_scale);
772 v_coeff_q_hi = _mm256_mullo_epi32(v_coeff_q_hi, v_scale);
773 v_coeff_q_lo = _mm256_add_epi32(v_coeff_q_lo, v_add);
774 v_coeff_q_hi = _mm256_add_epi32(v_coeff_q_hi, v_add);
775 v_coeff_q_lo = _mm256_srai_epi32(v_coeff_q_lo, shift);
776 v_coeff_q_hi = _mm256_srai_epi32(v_coeff_q_hi, shift);
777 v_coeff_q_lo = _mm256_packs_epi32(v_coeff_q_lo, v_coeff_q_hi);
778 _mm_storeu_si128((__m128i*)&(coef[n]), _mm256_castsi256_si128(v_coeff_q_lo) );
779 _mm_storeu_si128((__m128i*)&(coef[n + 8]), _mm256_extracti128_si256(v_coeff_q_lo, 1) );
780 }
781 }
782 }
783
784 #endif // KVZ_BIT_DEPTH == 8
785
coeff_abs_sum_avx2(const coeff_t * coeffs,const size_t length)786 static uint32_t coeff_abs_sum_avx2(const coeff_t *coeffs, const size_t length)
787 {
788 assert(length % 8 == 0);
789
790 __m256i total = _mm256_abs_epi32(_mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) coeffs)));
791
792 for (int i = 8; i < length; i += 8) {
793 __m256i temp = _mm256_abs_epi32(_mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &coeffs[i])));
794 total = _mm256_add_epi32(total, temp);
795 }
796
797 __m128i result128 = _mm_add_epi32(
798 _mm256_castsi256_si128(total),
799 _mm256_extractf128_si256(total, 1)
800 );
801
802 uint32_t parts[4];
803 _mm_storeu_si128((__m128i*) parts, result128);
804
805 return parts[0] + parts[1] + parts[2] + parts[3];
806 }
807
fast_coeff_cost_avx2(const coeff_t * coeff,int32_t width,uint64_t weights)808 static uint32_t fast_coeff_cost_avx2(const coeff_t *coeff, int32_t width, uint64_t weights)
809 {
810 const __m256i zero = _mm256_setzero_si256();
811 const __m256i threes = _mm256_set1_epi16(3);
812 const __m256i negate_hibytes = _mm256_set1_epi16(0xff00);
813 const __m128i wt_extract_los = _mm_cvtsi32_si128(0x06040200);
814 const __m128i wt_extract_his = _mm_cvtsi32_si128(0x07050301);
815
816 __m256i lo_sum = _mm256_setzero_si256();
817 __m256i hi_sum = _mm256_setzero_si256();
818
819 __m128i wts_128 = _mm_loadl_epi64 ((const __m128i *)&weights);
820 __m128i wts_lo_128 = _mm_shuffle_epi8(wts_128, wt_extract_los);
821 __m128i wts_hi_128 = _mm_shuffle_epi8(wts_128, wt_extract_his);
822
823 __m256i wts_lo = _mm256_broadcastsi128_si256(wts_lo_128);
824 __m256i wts_hi = _mm256_broadcastsi128_si256(wts_hi_128);
825
826 for (int i = 0; i < width * width; i += 32) {
827 __m256i curr_lo = _mm256_loadu_si256 ((const __m256i *)(coeff + i));
828 __m256i curr_abs_lo = _mm256_abs_epi16 (curr_lo);
829 __m256i curr_max3_lo = _mm256_min_epu16 (curr_abs_lo, threes);
830
831 // 4x4 blocks only have 16 coeffs, so handle them separately
832 __m256i curr_max3_hi;
833 if (width >= 8) {
834 __m256i curr_hi = _mm256_loadu_si256 ((const __m256i *)(coeff + i + 16));
835 __m256i curr_abs_hi = _mm256_abs_epi16 (curr_hi);
836 curr_max3_hi = _mm256_min_epu16 (curr_abs_hi, threes);
837 curr_max3_hi = _mm256_slli_epi16 (curr_max3_hi, 8);
838 } else {
839 // Set MSBs for high bytes if they're meaningless, so shuffles will
840 // return zeros for them
841 curr_max3_hi = negate_hibytes;
842 }
843 __m256i curr_max3 = _mm256_or_si256 (curr_max3_lo, curr_max3_hi);
844 __m256i curr_wts_lo = _mm256_shuffle_epi8(wts_lo, curr_max3);
845 __m256i curr_wts_hi = _mm256_shuffle_epi8(wts_hi, curr_max3);
846
847 __m256i curr_sum_lo = _mm256_sad_epu8 (curr_wts_lo, zero);
848 __m256i curr_sum_hi = _mm256_sad_epu8 (curr_wts_hi, zero);
849
850 lo_sum = _mm256_add_epi64 (lo_sum, curr_sum_lo);
851 hi_sum = _mm256_add_epi64 (hi_sum, curr_sum_hi);
852 }
853 hi_sum = _mm256_slli_epi64(hi_sum, 8);
854 __m256i sum0 = _mm256_add_epi64(lo_sum, hi_sum);
855
856 __m256i sum1 = _mm256_permute4x64_epi64(sum0, _MM_SHUFFLE(1, 0, 3, 2));
857 __m256i sum2 = _mm256_add_epi64 (sum0, sum1);
858 __m256i sum3 = _mm256_shuffle_epi32 (sum2, _MM_SHUFFLE(1, 0, 3, 2));
859 __m256i sum4 = _mm256_add_epi64 (sum2, sum3);
860
861 __m128i sum128 = _mm256_castsi256_si128 (sum4);
862 return (_mm_cvtsi128_si32(sum128) + (1 << 7)) >> 8;
863 }
864
865 #endif //COMPILE_INTEL_AVX2 && defined X86_64
866
kvz_strategy_register_quant_avx2(void * opaque,uint8_t bitdepth)867 int kvz_strategy_register_quant_avx2(void* opaque, uint8_t bitdepth)
868 {
869 bool success = true;
870
871 #if COMPILE_INTEL_AVX2 && defined X86_64
872 #if KVZ_BIT_DEPTH == 8
873 if (bitdepth == 8) {
874 success &= kvz_strategyselector_register(opaque, "quantize_residual", "avx2", 40, &kvz_quantize_residual_avx2);
875 success &= kvz_strategyselector_register(opaque, "dequant", "avx2", 40, &kvz_dequant_avx2);
876 }
877 #endif // KVZ_BIT_DEPTH == 8
878 success &= kvz_strategyselector_register(opaque, "quant", "avx2", 40, &kvz_quant_avx2);
879 success &= kvz_strategyselector_register(opaque, "coeff_abs_sum", "avx2", 0, &coeff_abs_sum_avx2);
880 success &= kvz_strategyselector_register(opaque, "fast_coeff_cost", "avx2", 40, &fast_coeff_cost_avx2);
881 #endif //COMPILE_INTEL_AVX2 && defined X86_64
882
883 return success;
884 }
885