1 /*
2  * Copyright 2020 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "dm_services.h"
28 #include "dc.h"
29 
30 #include "dcn30_init.h"
31 
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn20/dcn20_resource.h"
35 
36 #include "dcn30_resource.h"
37 
38 #include "dcn10/dcn10_ipp.h"
39 #include "dcn30/dcn30_hubbub.h"
40 #include "dcn30/dcn30_mpc.h"
41 #include "dcn30/dcn30_hubp.h"
42 #include "irq/dcn30/irq_service_dcn30.h"
43 #include "dcn30/dcn30_dpp.h"
44 #include "dcn30/dcn30_optc.h"
45 #include "dcn20/dcn20_hwseq.h"
46 #include "dcn30/dcn30_hwseq.h"
47 #include "dce110/dce110_hw_sequencer.h"
48 #include "dcn30/dcn30_opp.h"
49 #include "dcn20/dcn20_dsc.h"
50 #include "dcn30/dcn30_vpg.h"
51 #include "dcn30/dcn30_afmt.h"
52 #include "dcn30/dcn30_dio_stream_encoder.h"
53 #include "dcn30/dcn30_dio_link_encoder.h"
54 #include "dce/dce_clock_source.h"
55 #include "dce/dce_audio.h"
56 #include "dce/dce_hwseq.h"
57 #include "clk_mgr.h"
58 #include "virtual/virtual_stream_encoder.h"
59 #include "dce110/dce110_resource.h"
60 #include "dml/display_mode_vba.h"
61 #include "dcn30/dcn30_dccg.h"
62 #include "dcn10/dcn10_resource.h"
63 #include "dc_link_ddc.h"
64 #include "dce/dce_panel_cntl.h"
65 
66 #include "dcn30/dcn30_dwb.h"
67 #include "dcn30/dcn30_mmhubbub.h"
68 
69 #include "sienna_cichlid_ip_offset.h"
70 #include "dcn/dcn_3_0_0_offset.h"
71 #include "dcn/dcn_3_0_0_sh_mask.h"
72 
73 #include "nbio/nbio_7_4_offset.h"
74 
75 #include "dcn/dpcs_3_0_0_offset.h"
76 #include "dcn/dpcs_3_0_0_sh_mask.h"
77 
78 #include "mmhub/mmhub_2_0_0_offset.h"
79 #include "mmhub/mmhub_2_0_0_sh_mask.h"
80 
81 #include "reg_helper.h"
82 #include "dce/dmub_abm.h"
83 #include "dce/dmub_psr.h"
84 #include "dce/dce_aux.h"
85 #include "dce/dce_i2c.h"
86 
87 #include "dml/dcn30/display_mode_vba_30.h"
88 #include "vm_helper.h"
89 #include "dcn20/dcn20_vmid.h"
90 #include "amdgpu_socbb.h"
91 
92 #define DC_LOGGER_INIT(logger)
93 
94 struct _vcs_dpi_ip_params_st dcn3_0_ip = {
95 	.use_min_dcfclk = 1,
96 	.clamp_min_dcfclk = 0,
97 	.odm_capable = 1,
98 	.gpuvm_enable = 0,
99 	.hostvm_enable = 0,
100 	.gpuvm_max_page_table_levels = 4,
101 	.hostvm_max_page_table_levels = 4,
102 	.hostvm_cached_page_table_levels = 0,
103 	.pte_group_size_bytes = 2048,
104 	.num_dsc = 6,
105 	.rob_buffer_size_kbytes = 184,
106 	.det_buffer_size_kbytes = 184,
107 	.dpte_buffer_size_in_pte_reqs_luma = 84,
108 	.pde_proc_buffer_size_64k_reqs = 48,
109 	.dpp_output_buffer_pixels = 2560,
110 	.opp_output_buffer_lines = 1,
111 	.pixel_chunk_size_kbytes = 8,
112 	.pte_enable = 1,
113 	.max_page_table_levels = 2,
114 	.pte_chunk_size_kbytes = 2,  // ?
115 	.meta_chunk_size_kbytes = 2,
116 	.writeback_chunk_size_kbytes = 8,
117 	.line_buffer_size_bits = 789504,
118 	.is_line_buffer_bpp_fixed = 0,  // ?
119 	.line_buffer_fixed_bpp = 0,     // ?
120 	.dcc_supported = true,
121 	.writeback_interface_buffer_size_kbytes = 90,
122 	.writeback_line_buffer_buffer_size = 0,
123 	.max_line_buffer_lines = 12,
124 	.writeback_luma_buffer_size_kbytes = 12,  // writeback_line_buffer_buffer_size = 656640
125 	.writeback_chroma_buffer_size_kbytes = 8,
126 	.writeback_chroma_line_buffer_width_pixels = 4,
127 	.writeback_max_hscl_ratio = 1,
128 	.writeback_max_vscl_ratio = 1,
129 	.writeback_min_hscl_ratio = 1,
130 	.writeback_min_vscl_ratio = 1,
131 	.writeback_max_hscl_taps = 1,
132 	.writeback_max_vscl_taps = 1,
133 	.writeback_line_buffer_luma_buffer_size = 0,
134 	.writeback_line_buffer_chroma_buffer_size = 14643,
135 	.cursor_buffer_size = 8,
136 	.cursor_chunk_size = 2,
137 	.max_num_otg = 6,
138 	.max_num_dpp = 6,
139 	.max_num_wb = 1,
140 	.max_dchub_pscl_bw_pix_per_clk = 4,
141 	.max_pscl_lb_bw_pix_per_clk = 2,
142 	.max_lb_vscl_bw_pix_per_clk = 4,
143 	.max_vscl_hscl_bw_pix_per_clk = 4,
144 	.max_hscl_ratio = 6,
145 	.max_vscl_ratio = 6,
146 	.hscl_mults = 4,
147 	.vscl_mults = 4,
148 	.max_hscl_taps = 8,
149 	.max_vscl_taps = 8,
150 	.dispclk_ramp_margin_percent = 1,
151 	.underscan_factor = 1.11,
152 	.min_vblank_lines = 32,
153 	.dppclk_delay_subtotal = 46,
154 	.dynamic_metadata_vm_enabled = true,
155 	.dppclk_delay_scl_lb_only = 16,
156 	.dppclk_delay_scl = 50,
157 	.dppclk_delay_cnvc_formatter = 27,
158 	.dppclk_delay_cnvc_cursor = 6,
159 	.dispclk_delay_subtotal = 119,
160 	.dcfclk_cstate_latency = 5.2, // SRExitTime
161 	.max_inter_dcn_tile_repeaters = 8,
162 	.odm_combine_4to1_supported = true,
163 
164 	.xfc_supported = false,
165 	.xfc_fill_bw_overhead_percent = 10.0,
166 	.xfc_fill_constant_bytes = 0,
167 	.gfx7_compat_tiling_supported = 0,
168 	.number_of_cursors = 1,
169 };
170 
171 struct _vcs_dpi_soc_bounding_box_st dcn3_0_soc = {
172 	.clock_limits = {
173 			{
174 				.state = 0,
175 				.dispclk_mhz = 562.0,
176 				.dppclk_mhz = 300.0,
177 				.phyclk_mhz = 300.0,
178 				.phyclk_d18_mhz = 667.0,
179 				.dscclk_mhz = 405.6,
180 			},
181 		},
182 	.min_dcfclk = 500.0, /* TODO: set this to actual min DCFCLK */
183 	.num_states = 1,
184 	.sr_exit_time_us = 15.5,
185 	.sr_enter_plus_exit_time_us = 20,
186 	.urgent_latency_us = 4.0,
187 	.urgent_latency_pixel_data_only_us = 4.0,
188 	.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
189 	.urgent_latency_vm_data_only_us = 4.0,
190 	.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
191 	.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
192 	.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
193 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 80.0,
194 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0,
195 	.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 40.0,
196 	.max_avg_sdp_bw_use_normal_percent = 60.0,
197 	.max_avg_dram_bw_use_normal_percent = 40.0,
198 	.writeback_latency_us = 12.0,
199 	.max_request_size_bytes = 256,
200 	.fabric_datapath_to_dcn_data_return_bytes = 64,
201 	.dcn_downspread_percent = 0.5,
202 	.downspread_percent = 0.38,
203 	.dram_page_open_time_ns = 50.0,
204 	.dram_rw_turnaround_time_ns = 17.5,
205 	.dram_return_buffer_per_channel_bytes = 8192,
206 	.round_trip_ping_latency_dcfclk_cycles = 191,
207 	.urgent_out_of_order_return_per_channel_bytes = 4096,
208 	.channel_interleave_bytes = 256,
209 	.num_banks = 8,
210 	.gpuvm_min_page_size_bytes = 4096,
211 	.hostvm_min_page_size_bytes = 4096,
212 	.dram_clock_change_latency_us = 404,
213 	.dummy_pstate_latency_us = 5,
214 	.writeback_dram_clock_change_latency_us = 23.0,
215 	.return_bus_width_bytes = 64,
216 	.dispclk_dppclk_vco_speed_mhz = 3650,
217 	.xfc_bus_transport_time_us = 20,      // ?
218 	.xfc_xbuf_latency_tolerance_us = 4,  // ?
219 	.use_urgent_burst_bw = 1,            // ?
220 	.do_urgent_latency_adjustment = true,
221 	.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
222 	.urgent_latency_adjustment_fabric_clock_reference_mhz = 1000,
223 };
224 
225 enum dcn30_clk_src_array_id {
226 	DCN30_CLK_SRC_PLL0,
227 	DCN30_CLK_SRC_PLL1,
228 	DCN30_CLK_SRC_PLL2,
229 	DCN30_CLK_SRC_PLL3,
230 	DCN30_CLK_SRC_PLL4,
231 	DCN30_CLK_SRC_PLL5,
232 	DCN30_CLK_SRC_TOTAL
233 };
234 
235 /* begin *********************
236  * macros to expend register list macro defined in HW object header file
237  */
238 
239 /* DCN */
240 /* TODO awful hack. fixup dcn20_dwb.h */
241 #undef BASE_INNER
242 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
243 
244 #define BASE(seg) BASE_INNER(seg)
245 
246 #define SR(reg_name)\
247 		.reg_name = BASE(mm ## reg_name ## _BASE_IDX) +  \
248 					mm ## reg_name
249 
250 #define SRI(reg_name, block, id)\
251 	.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
252 					mm ## block ## id ## _ ## reg_name
253 
254 #define SRI2(reg_name, block, id)\
255 	.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
256 					mm ## reg_name
257 
258 #define SRIR(var_name, reg_name, block, id)\
259 	.var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
260 					mm ## block ## id ## _ ## reg_name
261 
262 #define SRII(reg_name, block, id)\
263 	.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
264 					mm ## block ## id ## _ ## reg_name
265 
266 #define SRII_MPC_RMU(reg_name, block, id)\
267 	.RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
268 					mm ## block ## id ## _ ## reg_name
269 
270 #define SRII_DWB(reg_name, temp_name, block, id)\
271 	.reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
272 					mm ## block ## id ## _ ## temp_name
273 
274 #define DCCG_SRII(reg_name, block, id)\
275 	.block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
276 					mm ## block ## id ## _ ## reg_name
277 
278 #define VUPDATE_SRII(reg_name, block, id)\
279 	.reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
280 					mm ## reg_name ## _ ## block ## id
281 
282 /* NBIO */
283 #define NBIO_BASE_INNER(seg) \
284 	NBIO_BASE__INST0_SEG ## seg
285 
286 #define NBIO_BASE(seg) \
287 	NBIO_BASE_INNER(seg)
288 
289 #define NBIO_SR(reg_name)\
290 		.reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
291 					mm ## reg_name
292 
293 /* MMHUB */
294 #define MMHUB_BASE_INNER(seg) \
295 	MMHUB_BASE__INST0_SEG ## seg
296 
297 #define MMHUB_BASE(seg) \
298 	MMHUB_BASE_INNER(seg)
299 
300 #define MMHUB_SR(reg_name)\
301 		.reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
302 					mmMM ## reg_name
303 
304 /* CLOCK */
305 #define CLK_BASE_INNER(seg) \
306 	CLK_BASE__INST0_SEG ## seg
307 
308 #define CLK_BASE(seg) \
309 	CLK_BASE_INNER(seg)
310 
311 #define CLK_SRI(reg_name, block, inst)\
312 	.reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \
313 					mm ## block ## _ ## inst ## _ ## reg_name
314 
315 
316 static const struct bios_registers bios_regs = {
317 		NBIO_SR(BIOS_SCRATCH_3),
318 		NBIO_SR(BIOS_SCRATCH_6)
319 };
320 
321 #define clk_src_regs(index, pllid)\
322 [index] = {\
323 	CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
324 }
325 
326 static const struct dce110_clk_src_regs clk_src_regs[] = {
327 	clk_src_regs(0, A),
328 	clk_src_regs(1, B),
329 	clk_src_regs(2, C),
330 	clk_src_regs(3, D),
331 	clk_src_regs(4, E),
332 	clk_src_regs(5, F)
333 };
334 
335 static const struct dce110_clk_src_shift cs_shift = {
336 		CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
337 };
338 
339 static const struct dce110_clk_src_mask cs_mask = {
340 		CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
341 };
342 
343 #define abm_regs(id)\
344 [id] = {\
345 		ABM_DCN30_REG_LIST(id)\
346 }
347 
348 static const struct dce_abm_registers abm_regs[] = {
349 		abm_regs(0),
350 		abm_regs(1),
351 		abm_regs(2),
352 		abm_regs(3),
353 		abm_regs(4),
354 		abm_regs(5),
355 };
356 
357 static const struct dce_abm_shift abm_shift = {
358 		ABM_MASK_SH_LIST_DCN30(__SHIFT)
359 };
360 
361 static const struct dce_abm_mask abm_mask = {
362 		ABM_MASK_SH_LIST_DCN30(_MASK)
363 };
364 
365 
366 
367 #define audio_regs(id)\
368 [id] = {\
369 		AUD_COMMON_REG_LIST(id)\
370 }
371 
372 static const struct dce_audio_registers audio_regs[] = {
373 	audio_regs(0),
374 	audio_regs(1),
375 	audio_regs(2),
376 	audio_regs(3),
377 	audio_regs(4),
378 	audio_regs(5),
379 	audio_regs(6)
380 };
381 
382 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
383 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
384 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
385 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
386 
387 static const struct dce_audio_shift audio_shift = {
388 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
389 };
390 
391 static const struct dce_audio_mask audio_mask = {
392 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
393 };
394 
395 #define vpg_regs(id)\
396 [id] = {\
397 	VPG_DCN3_REG_LIST(id)\
398 }
399 
400 static const struct dcn30_vpg_registers vpg_regs[] = {
401 	vpg_regs(0),
402 	vpg_regs(1),
403 	vpg_regs(2),
404 	vpg_regs(3),
405 	vpg_regs(4),
406 	vpg_regs(5),
407 	vpg_regs(6),
408 };
409 
410 static const struct dcn30_vpg_shift vpg_shift = {
411 	DCN3_VPG_MASK_SH_LIST(__SHIFT)
412 };
413 
414 static const struct dcn30_vpg_mask vpg_mask = {
415 	DCN3_VPG_MASK_SH_LIST(_MASK)
416 };
417 
418 #define afmt_regs(id)\
419 [id] = {\
420 	AFMT_DCN3_REG_LIST(id)\
421 }
422 
423 static const struct dcn30_afmt_registers afmt_regs[] = {
424 	afmt_regs(0),
425 	afmt_regs(1),
426 	afmt_regs(2),
427 	afmt_regs(3),
428 	afmt_regs(4),
429 	afmt_regs(5),
430 	afmt_regs(6),
431 };
432 
433 static const struct dcn30_afmt_shift afmt_shift = {
434 	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
435 };
436 
437 static const struct dcn30_afmt_mask afmt_mask = {
438 	DCN3_AFMT_MASK_SH_LIST(_MASK)
439 };
440 
441 #define stream_enc_regs(id)\
442 [id] = {\
443 	SE_DCN3_REG_LIST(id)\
444 }
445 
446 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
447 	stream_enc_regs(0),
448 	stream_enc_regs(1),
449 	stream_enc_regs(2),
450 	stream_enc_regs(3),
451 	stream_enc_regs(4),
452 	stream_enc_regs(5)
453 };
454 
455 static const struct dcn10_stream_encoder_shift se_shift = {
456 		SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
457 };
458 
459 static const struct dcn10_stream_encoder_mask se_mask = {
460 		SE_COMMON_MASK_SH_LIST_DCN30(_MASK)
461 };
462 
463 
464 #define aux_regs(id)\
465 [id] = {\
466 	DCN2_AUX_REG_LIST(id)\
467 }
468 
469 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
470 		aux_regs(0),
471 		aux_regs(1),
472 		aux_regs(2),
473 		aux_regs(3),
474 		aux_regs(4),
475 		aux_regs(5)
476 };
477 
478 #define hpd_regs(id)\
479 [id] = {\
480 	HPD_REG_LIST(id)\
481 }
482 
483 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
484 		hpd_regs(0),
485 		hpd_regs(1),
486 		hpd_regs(2),
487 		hpd_regs(3),
488 		hpd_regs(4),
489 		hpd_regs(5)
490 };
491 
492 #define link_regs(id, phyid)\
493 [id] = {\
494 	LE_DCN3_REG_LIST(id), \
495 	UNIPHY_DCN2_REG_LIST(phyid), \
496 	DPCS_DCN2_REG_LIST(id), \
497 	SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
498 }
499 
500 static const struct dce110_aux_registers_shift aux_shift = {
501 	DCN_AUX_MASK_SH_LIST(__SHIFT)
502 };
503 
504 static const struct dce110_aux_registers_mask aux_mask = {
505 	DCN_AUX_MASK_SH_LIST(_MASK)
506 };
507 
508 static const struct dcn10_link_enc_registers link_enc_regs[] = {
509 	link_regs(0, A),
510 	link_regs(1, B),
511 	link_regs(2, C),
512 	link_regs(3, D),
513 	link_regs(4, E),
514 	link_regs(5, F)
515 };
516 
517 static const struct dcn10_link_enc_shift le_shift = {
518 	LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\
519 	DPCS_DCN2_MASK_SH_LIST(__SHIFT)
520 };
521 
522 static const struct dcn10_link_enc_mask le_mask = {
523 	LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\
524 	DPCS_DCN2_MASK_SH_LIST(_MASK)
525 };
526 
527 
528 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
529 	{ DCN_PANEL_CNTL_REG_LIST() }
530 };
531 
532 static const struct dce_panel_cntl_shift panel_cntl_shift = {
533 	DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
534 };
535 
536 static const struct dce_panel_cntl_mask panel_cntl_mask = {
537 	DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
538 };
539 
540 #define dpp_regs(id)\
541 [id] = {\
542 	DPP_REG_LIST_DCN30(id),\
543 }
544 
545 static const struct dcn3_dpp_registers dpp_regs[] = {
546 	dpp_regs(0),
547 	dpp_regs(1),
548 	dpp_regs(2),
549 	dpp_regs(3),
550 	dpp_regs(4),
551 	dpp_regs(5),
552 };
553 
554 static const struct dcn3_dpp_shift tf_shift = {
555 		DPP_REG_LIST_SH_MASK_DCN30(__SHIFT)
556 };
557 
558 static const struct dcn3_dpp_mask tf_mask = {
559 		DPP_REG_LIST_SH_MASK_DCN30(_MASK)
560 };
561 
562 #define opp_regs(id)\
563 [id] = {\
564 	OPP_REG_LIST_DCN30(id),\
565 }
566 
567 static const struct dcn20_opp_registers opp_regs[] = {
568 	opp_regs(0),
569 	opp_regs(1),
570 	opp_regs(2),
571 	opp_regs(3),
572 	opp_regs(4),
573 	opp_regs(5)
574 };
575 
576 static const struct dcn20_opp_shift opp_shift = {
577 	OPP_MASK_SH_LIST_DCN20(__SHIFT)
578 };
579 
580 static const struct dcn20_opp_mask opp_mask = {
581 	OPP_MASK_SH_LIST_DCN20(_MASK)
582 };
583 
584 #define aux_engine_regs(id)\
585 [id] = {\
586 	AUX_COMMON_REG_LIST0(id), \
587 	.AUXN_IMPCAL = 0, \
588 	.AUXP_IMPCAL = 0, \
589 	.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
590 }
591 
592 static const struct dce110_aux_registers aux_engine_regs[] = {
593 		aux_engine_regs(0),
594 		aux_engine_regs(1),
595 		aux_engine_regs(2),
596 		aux_engine_regs(3),
597 		aux_engine_regs(4),
598 		aux_engine_regs(5)
599 };
600 
601 #define dwbc_regs_dcn3(id)\
602 [id] = {\
603 	DWBC_COMMON_REG_LIST_DCN30(id),\
604 }
605 
606 static const struct dcn30_dwbc_registers dwbc30_regs[] = {
607 	dwbc_regs_dcn3(0),
608 };
609 
610 static const struct dcn30_dwbc_shift dwbc30_shift = {
611 	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
612 };
613 
614 static const struct dcn30_dwbc_mask dwbc30_mask = {
615 	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
616 };
617 
618 #define mcif_wb_regs_dcn3(id)\
619 [id] = {\
620 	MCIF_WB_COMMON_REG_LIST_DCN30(id),\
621 }
622 
623 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = {
624 	mcif_wb_regs_dcn3(0)
625 };
626 
627 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
628 	MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
629 };
630 
631 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
632 	MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK)
633 };
634 
635 #define dsc_regsDCN20(id)\
636 [id] = {\
637 	DSC_REG_LIST_DCN20(id)\
638 }
639 
640 static const struct dcn20_dsc_registers dsc_regs[] = {
641 	dsc_regsDCN20(0),
642 	dsc_regsDCN20(1),
643 	dsc_regsDCN20(2),
644 	dsc_regsDCN20(3),
645 	dsc_regsDCN20(4),
646 	dsc_regsDCN20(5)
647 };
648 
649 static const struct dcn20_dsc_shift dsc_shift = {
650 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
651 };
652 
653 static const struct dcn20_dsc_mask dsc_mask = {
654 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
655 };
656 
657 static const struct dcn30_mpc_registers mpc_regs = {
658 		MPC_REG_LIST_DCN3_0(0),
659 		MPC_REG_LIST_DCN3_0(1),
660 		MPC_REG_LIST_DCN3_0(2),
661 		MPC_REG_LIST_DCN3_0(3),
662 		MPC_REG_LIST_DCN3_0(4),
663 		MPC_REG_LIST_DCN3_0(5),
664 		MPC_OUT_MUX_REG_LIST_DCN3_0(0),
665 		MPC_OUT_MUX_REG_LIST_DCN3_0(1),
666 		MPC_OUT_MUX_REG_LIST_DCN3_0(2),
667 		MPC_OUT_MUX_REG_LIST_DCN3_0(3),
668 		MPC_OUT_MUX_REG_LIST_DCN3_0(4),
669 		MPC_OUT_MUX_REG_LIST_DCN3_0(5),
670 		MPC_RMU_GLOBAL_REG_LIST_DCN3AG,
671 		MPC_RMU_REG_LIST_DCN3AG(0),
672 		MPC_RMU_REG_LIST_DCN3AG(1),
673 		MPC_RMU_REG_LIST_DCN3AG(2),
674 		MPC_DWB_MUX_REG_LIST_DCN3_0(0),
675 };
676 
677 static const struct dcn30_mpc_shift mpc_shift = {
678 	MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
679 };
680 
681 static const struct dcn30_mpc_mask mpc_mask = {
682 	MPC_COMMON_MASK_SH_LIST_DCN30(_MASK)
683 };
684 
685 #define optc_regs(id)\
686 [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)}
687 
688 
689 static const struct dcn_optc_registers optc_regs[] = {
690 	optc_regs(0),
691 	optc_regs(1),
692 	optc_regs(2),
693 	optc_regs(3),
694 	optc_regs(4),
695 	optc_regs(5)
696 };
697 
698 static const struct dcn_optc_shift optc_shift = {
699 	OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
700 };
701 
702 static const struct dcn_optc_mask optc_mask = {
703 	OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK)
704 };
705 
706 #define hubp_regs(id)\
707 [id] = {\
708 	HUBP_REG_LIST_DCN30(id)\
709 }
710 
711 static const struct dcn_hubp2_registers hubp_regs[] = {
712 		hubp_regs(0),
713 		hubp_regs(1),
714 		hubp_regs(2),
715 		hubp_regs(3),
716 		hubp_regs(4),
717 		hubp_regs(5)
718 };
719 
720 static const struct dcn_hubp2_shift hubp_shift = {
721 		HUBP_MASK_SH_LIST_DCN30(__SHIFT)
722 };
723 
724 static const struct dcn_hubp2_mask hubp_mask = {
725 		HUBP_MASK_SH_LIST_DCN30(_MASK)
726 };
727 
728 static const struct dcn_hubbub_registers hubbub_reg = {
729 		HUBBUB_REG_LIST_DCN30(0)
730 };
731 
732 static const struct dcn_hubbub_shift hubbub_shift = {
733 		HUBBUB_MASK_SH_LIST_DCN30(__SHIFT)
734 };
735 
736 static const struct dcn_hubbub_mask hubbub_mask = {
737 		HUBBUB_MASK_SH_LIST_DCN30(_MASK)
738 };
739 
740 static const struct dccg_registers dccg_regs = {
741 		DCCG_REG_LIST_DCN30()
742 };
743 
744 static const struct dccg_shift dccg_shift = {
745 		DCCG_MASK_SH_LIST_DCN3(__SHIFT)
746 };
747 
748 static const struct dccg_mask dccg_mask = {
749 		DCCG_MASK_SH_LIST_DCN3(_MASK)
750 };
751 
752 static const struct dce_hwseq_registers hwseq_reg = {
753 		HWSEQ_DCN30_REG_LIST()
754 };
755 
756 static const struct dce_hwseq_shift hwseq_shift = {
757 		HWSEQ_DCN30_MASK_SH_LIST(__SHIFT)
758 };
759 
760 static const struct dce_hwseq_mask hwseq_mask = {
761 		HWSEQ_DCN30_MASK_SH_LIST(_MASK)
762 };
763 #define vmid_regs(id)\
764 [id] = {\
765 		DCN20_VMID_REG_LIST(id)\
766 }
767 
768 static const struct dcn_vmid_registers vmid_regs[] = {
769 	vmid_regs(0),
770 	vmid_regs(1),
771 	vmid_regs(2),
772 	vmid_regs(3),
773 	vmid_regs(4),
774 	vmid_regs(5),
775 	vmid_regs(6),
776 	vmid_regs(7),
777 	vmid_regs(8),
778 	vmid_regs(9),
779 	vmid_regs(10),
780 	vmid_regs(11),
781 	vmid_regs(12),
782 	vmid_regs(13),
783 	vmid_regs(14),
784 	vmid_regs(15)
785 };
786 
787 static const struct dcn20_vmid_shift vmid_shifts = {
788 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
789 };
790 
791 static const struct dcn20_vmid_mask vmid_masks = {
792 		DCN20_VMID_MASK_SH_LIST(_MASK)
793 };
794 
795 static const struct resource_caps res_cap_dcn3 = {
796 	.num_timing_generator = 6,
797 	.num_opp = 6,
798 	.num_video_plane = 6,
799 	.num_audio = 6,
800 	.num_stream_encoder = 6,
801 	.num_pll = 6,
802 	.num_dwb = 1,
803 	.num_ddc = 6,
804 	.num_vmid = 16,
805 	.num_mpc_3dlut = 3,
806 	.num_dsc = 6,
807 };
808 
809 static const struct dc_plane_cap plane_cap = {
810 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
811 	.blends_with_above = true,
812 	.blends_with_below = true,
813 	.per_pixel_alpha = true,
814 
815 	.pixel_format_support = {
816 			.argb8888 = true,
817 			.nv12 = true,
818 			.fp16 = true,
819 			.p010 = false,
820 			.ayuv = false,
821 	},
822 
823 	.max_upscale_factor = {
824 			.argb8888 = 16000,
825 			.nv12 = 16000,
826 			.fp16 = 16000
827 	},
828 
829 	.max_downscale_factor = {
830 			.argb8888 = 600,
831 			.nv12 = 600,
832 			.fp16 = 600
833 	}
834 };
835 
836 static const struct dc_debug_options debug_defaults_drv = {
837 	.disable_dmcu = true, //No DMCU on DCN30
838 	.force_abm_enable = false,
839 	.timing_trace = false,
840 	.clock_trace = true,
841 	.disable_pplib_clock_request = true,
842 	.pipe_split_policy = MPC_SPLIT_DYNAMIC,
843 	.force_single_disp_pipe_split = false,
844 	.disable_dcc = DCC_ENABLE,
845 	.vsr_support = true,
846 	.performance_trace = false,
847 	.max_downscale_src_width = 7680,/*upto 8K*/
848 	.disable_pplib_wm_range = false,
849 	.scl_reset_length10 = true,
850 	.sanity_checks = false,
851 	.underflow_assert_delay_us = 0xFFFFFFFF,
852 	.dwb_fi_phase = -1, // -1 = disable,
853 	.dmub_command_table = true,
854 	.disable_psr = false,
855 	.use_max_lb = true
856 };
857 
858 static const struct dc_debug_options debug_defaults_diags = {
859 	.disable_dmcu = true, //No dmcu on DCN30
860 	.force_abm_enable = false,
861 	.timing_trace = true,
862 	.clock_trace = true,
863 	.disable_dpp_power_gate = true,
864 	.disable_hubp_power_gate = true,
865 	.disable_clock_gate = true,
866 	.disable_pplib_clock_request = true,
867 	.disable_pplib_wm_range = true,
868 	.disable_stutter = false,
869 	.scl_reset_length10 = true,
870 	.dwb_fi_phase = -1, // -1 = disable
871 	.dmub_command_table = true,
872 	.disable_psr = true,
873 	.enable_tri_buf = true,
874 	.use_max_lb = true
875 };
876 
dcn30_dpp_destroy(struct dpp ** dpp)877 void dcn30_dpp_destroy(struct dpp **dpp)
878 {
879 	kfree(TO_DCN20_DPP(*dpp));
880 	*dpp = NULL;
881 }
882 
dcn30_dpp_create(struct dc_context * ctx,uint32_t inst)883 static struct dpp *dcn30_dpp_create(
884 	struct dc_context *ctx,
885 	uint32_t inst)
886 {
887 	struct dcn3_dpp *dpp =
888 		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
889 
890 	if (!dpp)
891 		return NULL;
892 
893 	if (dpp3_construct(dpp, ctx, inst,
894 			&dpp_regs[inst], &tf_shift, &tf_mask))
895 		return &dpp->base;
896 
897 	BREAK_TO_DEBUGGER();
898 	kfree(dpp);
899 	return NULL;
900 }
901 
dcn30_opp_create(struct dc_context * ctx,uint32_t inst)902 static struct output_pixel_processor *dcn30_opp_create(
903 	struct dc_context *ctx, uint32_t inst)
904 {
905 	struct dcn20_opp *opp =
906 		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
907 
908 	if (!opp) {
909 		BREAK_TO_DEBUGGER();
910 		return NULL;
911 	}
912 
913 	dcn20_opp_construct(opp, ctx, inst,
914 			&opp_regs[inst], &opp_shift, &opp_mask);
915 	return &opp->base;
916 }
917 
dcn30_aux_engine_create(struct dc_context * ctx,uint32_t inst)918 static struct dce_aux *dcn30_aux_engine_create(
919 	struct dc_context *ctx,
920 	uint32_t inst)
921 {
922 	struct aux_engine_dce110 *aux_engine =
923 		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
924 
925 	if (!aux_engine)
926 		return NULL;
927 
928 	dce110_aux_engine_construct(aux_engine, ctx, inst,
929 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
930 				    &aux_engine_regs[inst],
931 					&aux_mask,
932 					&aux_shift,
933 					ctx->dc->caps.extended_aux_timeout_support);
934 
935 	return &aux_engine->base;
936 }
937 
938 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) }
939 
940 static const struct dce_i2c_registers i2c_hw_regs[] = {
941 		i2c_inst_regs(1),
942 		i2c_inst_regs(2),
943 		i2c_inst_regs(3),
944 		i2c_inst_regs(4),
945 		i2c_inst_regs(5),
946 		i2c_inst_regs(6),
947 };
948 
949 static const struct dce_i2c_shift i2c_shifts = {
950 		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
951 };
952 
953 static const struct dce_i2c_mask i2c_masks = {
954 		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
955 };
956 
dcn30_i2c_hw_create(struct dc_context * ctx,uint32_t inst)957 static struct dce_i2c_hw *dcn30_i2c_hw_create(
958 	struct dc_context *ctx,
959 	uint32_t inst)
960 {
961 	struct dce_i2c_hw *dce_i2c_hw =
962 		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
963 
964 	if (!dce_i2c_hw)
965 		return NULL;
966 
967 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
968 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
969 
970 	return dce_i2c_hw;
971 }
972 
dcn30_mpc_create(struct dc_context * ctx,int num_mpcc,int num_rmu)973 static struct mpc *dcn30_mpc_create(
974 		struct dc_context *ctx,
975 		int num_mpcc,
976 		int num_rmu)
977 {
978 	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
979 					  GFP_KERNEL);
980 
981 	if (!mpc30)
982 		return NULL;
983 
984 	dcn30_mpc_construct(mpc30, ctx,
985 			&mpc_regs,
986 			&mpc_shift,
987 			&mpc_mask,
988 			num_mpcc,
989 			num_rmu);
990 
991 	return &mpc30->base;
992 }
993 
dcn30_hubbub_create(struct dc_context * ctx)994 struct hubbub *dcn30_hubbub_create(struct dc_context *ctx)
995 {
996 	int i;
997 
998 	struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub),
999 					  GFP_KERNEL);
1000 
1001 	if (!hubbub3)
1002 		return NULL;
1003 
1004 	hubbub3_construct(hubbub3, ctx,
1005 			&hubbub_reg,
1006 			&hubbub_shift,
1007 			&hubbub_mask);
1008 
1009 
1010 	for (i = 0; i < res_cap_dcn3.num_vmid; i++) {
1011 		struct dcn20_vmid *vmid = &hubbub3->vmid[i];
1012 
1013 		vmid->ctx = ctx;
1014 
1015 		vmid->regs = &vmid_regs[i];
1016 		vmid->shifts = &vmid_shifts;
1017 		vmid->masks = &vmid_masks;
1018 	}
1019 
1020 	return &hubbub3->base;
1021 }
1022 
dcn30_timing_generator_create(struct dc_context * ctx,uint32_t instance)1023 static struct timing_generator *dcn30_timing_generator_create(
1024 		struct dc_context *ctx,
1025 		uint32_t instance)
1026 {
1027 	struct optc *tgn10 =
1028 		kzalloc(sizeof(struct optc), GFP_KERNEL);
1029 
1030 	if (!tgn10)
1031 		return NULL;
1032 
1033 	tgn10->base.inst = instance;
1034 	tgn10->base.ctx = ctx;
1035 
1036 	tgn10->tg_regs = &optc_regs[instance];
1037 	tgn10->tg_shift = &optc_shift;
1038 	tgn10->tg_mask = &optc_mask;
1039 
1040 	dcn30_timing_generator_init(tgn10);
1041 
1042 	return &tgn10->base;
1043 }
1044 
1045 static const struct encoder_feature_support link_enc_feature = {
1046 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
1047 		.max_hdmi_pixel_clock = 600000,
1048 		.hdmi_ycbcr420_supported = true,
1049 		.dp_ycbcr420_supported = true,
1050 		.fec_supported = true,
1051 		.flags.bits.IS_HBR2_CAPABLE = true,
1052 		.flags.bits.IS_HBR3_CAPABLE = true,
1053 		.flags.bits.IS_TPS3_CAPABLE = true,
1054 		.flags.bits.IS_TPS4_CAPABLE = true
1055 };
1056 
dcn30_link_encoder_create(const struct encoder_init_data * enc_init_data)1057 static struct link_encoder *dcn30_link_encoder_create(
1058 	const struct encoder_init_data *enc_init_data)
1059 {
1060 	struct dcn20_link_encoder *enc20 =
1061 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
1062 
1063 	if (!enc20)
1064 		return NULL;
1065 
1066 	dcn30_link_encoder_construct(enc20,
1067 			enc_init_data,
1068 			&link_enc_feature,
1069 			&link_enc_regs[enc_init_data->transmitter],
1070 			&link_enc_aux_regs[enc_init_data->channel - 1],
1071 			&link_enc_hpd_regs[enc_init_data->hpd_source],
1072 			&le_shift,
1073 			&le_mask);
1074 
1075 	return &enc20->enc10.base;
1076 }
1077 
dcn30_panel_cntl_create(const struct panel_cntl_init_data * init_data)1078 static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data)
1079 {
1080 	struct dce_panel_cntl *panel_cntl =
1081 		kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
1082 
1083 	if (!panel_cntl)
1084 		return NULL;
1085 
1086 	dce_panel_cntl_construct(panel_cntl,
1087 			init_data,
1088 			&panel_cntl_regs[init_data->inst],
1089 			&panel_cntl_shift,
1090 			&panel_cntl_mask);
1091 
1092 	return &panel_cntl->base;
1093 }
1094 
read_dce_straps(struct dc_context * ctx,struct resource_straps * straps)1095 static void read_dce_straps(
1096 	struct dc_context *ctx,
1097 	struct resource_straps *straps)
1098 {
1099 	generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
1100 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1101 
1102 }
1103 
dcn30_create_audio(struct dc_context * ctx,unsigned int inst)1104 static struct audio *dcn30_create_audio(
1105 		struct dc_context *ctx, unsigned int inst)
1106 {
1107 	return dce_audio_create(ctx, inst,
1108 			&audio_regs[inst], &audio_shift, &audio_mask);
1109 }
1110 
dcn30_vpg_create(struct dc_context * ctx,uint32_t inst)1111 static struct vpg *dcn30_vpg_create(
1112 	struct dc_context *ctx,
1113 	uint32_t inst)
1114 {
1115 	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
1116 
1117 	if (!vpg3)
1118 		return NULL;
1119 
1120 	vpg3_construct(vpg3, ctx, inst,
1121 			&vpg_regs[inst],
1122 			&vpg_shift,
1123 			&vpg_mask);
1124 
1125 	return &vpg3->base;
1126 }
1127 
dcn30_afmt_create(struct dc_context * ctx,uint32_t inst)1128 static struct afmt *dcn30_afmt_create(
1129 	struct dc_context *ctx,
1130 	uint32_t inst)
1131 {
1132 	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1133 
1134 	if (!afmt3)
1135 		return NULL;
1136 
1137 	afmt3_construct(afmt3, ctx, inst,
1138 			&afmt_regs[inst],
1139 			&afmt_shift,
1140 			&afmt_mask);
1141 
1142 	return &afmt3->base;
1143 }
1144 
dcn30_stream_encoder_create(enum engine_id eng_id,struct dc_context * ctx)1145 struct stream_encoder *dcn30_stream_encoder_create(
1146 	enum engine_id eng_id,
1147 	struct dc_context *ctx)
1148 {
1149 	struct dcn10_stream_encoder *enc1;
1150 	struct vpg *vpg;
1151 	struct afmt *afmt;
1152 	int vpg_inst;
1153 	int afmt_inst;
1154 
1155 	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1156 	if (eng_id <= ENGINE_ID_DIGF) {
1157 		vpg_inst = eng_id;
1158 		afmt_inst = eng_id;
1159 	} else
1160 		return NULL;
1161 
1162 	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1163 	vpg = dcn30_vpg_create(ctx, vpg_inst);
1164 	afmt = dcn30_afmt_create(ctx, afmt_inst);
1165 
1166 	if (!enc1 || !vpg || !afmt)
1167 		return NULL;
1168 
1169 	dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1170 					eng_id, vpg, afmt,
1171 					&stream_enc_regs[eng_id],
1172 					&se_shift, &se_mask);
1173 
1174 	return &enc1->base;
1175 }
1176 
dcn30_hwseq_create(struct dc_context * ctx)1177 struct dce_hwseq *dcn30_hwseq_create(
1178 	struct dc_context *ctx)
1179 {
1180 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1181 
1182 	if (hws) {
1183 		hws->ctx = ctx;
1184 		hws->regs = &hwseq_reg;
1185 		hws->shifts = &hwseq_shift;
1186 		hws->masks = &hwseq_mask;
1187 	}
1188 	return hws;
1189 }
1190 static const struct resource_create_funcs res_create_funcs = {
1191 	.read_dce_straps = read_dce_straps,
1192 	.create_audio = dcn30_create_audio,
1193 	.create_stream_encoder = dcn30_stream_encoder_create,
1194 	.create_hwseq = dcn30_hwseq_create,
1195 };
1196 
1197 static const struct resource_create_funcs res_create_maximus_funcs = {
1198 	.read_dce_straps = NULL,
1199 	.create_audio = NULL,
1200 	.create_stream_encoder = NULL,
1201 	.create_hwseq = dcn30_hwseq_create,
1202 };
1203 
dcn30_resource_destruct(struct dcn30_resource_pool * pool)1204 static void dcn30_resource_destruct(struct dcn30_resource_pool *pool)
1205 {
1206 	unsigned int i;
1207 
1208 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1209 		if (pool->base.stream_enc[i] != NULL) {
1210 			if (pool->base.stream_enc[i]->vpg != NULL) {
1211 				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1212 				pool->base.stream_enc[i]->vpg = NULL;
1213 			}
1214 			if (pool->base.stream_enc[i]->afmt != NULL) {
1215 				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1216 				pool->base.stream_enc[i]->afmt = NULL;
1217 			}
1218 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1219 			pool->base.stream_enc[i] = NULL;
1220 		}
1221 	}
1222 
1223 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1224 		if (pool->base.dscs[i] != NULL)
1225 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1226 	}
1227 
1228 	if (pool->base.mpc != NULL) {
1229 		kfree(TO_DCN20_MPC(pool->base.mpc));
1230 		pool->base.mpc = NULL;
1231 	}
1232 	if (pool->base.hubbub != NULL) {
1233 		kfree(pool->base.hubbub);
1234 		pool->base.hubbub = NULL;
1235 	}
1236 	for (i = 0; i < pool->base.pipe_count; i++) {
1237 		if (pool->base.dpps[i] != NULL)
1238 			dcn30_dpp_destroy(&pool->base.dpps[i]);
1239 
1240 		if (pool->base.ipps[i] != NULL)
1241 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1242 
1243 		if (pool->base.hubps[i] != NULL) {
1244 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1245 			pool->base.hubps[i] = NULL;
1246 		}
1247 
1248 		if (pool->base.irqs != NULL) {
1249 			dal_irq_service_destroy(&pool->base.irqs);
1250 		}
1251 	}
1252 
1253 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1254 		if (pool->base.engines[i] != NULL)
1255 			dce110_engine_destroy(&pool->base.engines[i]);
1256 		if (pool->base.hw_i2cs[i] != NULL) {
1257 			kfree(pool->base.hw_i2cs[i]);
1258 			pool->base.hw_i2cs[i] = NULL;
1259 		}
1260 		if (pool->base.sw_i2cs[i] != NULL) {
1261 			kfree(pool->base.sw_i2cs[i]);
1262 			pool->base.sw_i2cs[i] = NULL;
1263 		}
1264 	}
1265 
1266 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1267 		if (pool->base.opps[i] != NULL)
1268 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1269 	}
1270 
1271 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1272 		if (pool->base.timing_generators[i] != NULL)	{
1273 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1274 			pool->base.timing_generators[i] = NULL;
1275 		}
1276 	}
1277 
1278 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1279 		if (pool->base.dwbc[i] != NULL) {
1280 			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1281 			pool->base.dwbc[i] = NULL;
1282 		}
1283 		if (pool->base.mcif_wb[i] != NULL) {
1284 			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1285 			pool->base.mcif_wb[i] = NULL;
1286 		}
1287 	}
1288 
1289 	for (i = 0; i < pool->base.audio_count; i++) {
1290 		if (pool->base.audios[i])
1291 			dce_aud_destroy(&pool->base.audios[i]);
1292 	}
1293 
1294 	for (i = 0; i < pool->base.clk_src_count; i++) {
1295 		if (pool->base.clock_sources[i] != NULL) {
1296 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1297 			pool->base.clock_sources[i] = NULL;
1298 		}
1299 	}
1300 
1301 	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1302 		if (pool->base.mpc_lut[i] != NULL) {
1303 			dc_3dlut_func_release(pool->base.mpc_lut[i]);
1304 			pool->base.mpc_lut[i] = NULL;
1305 		}
1306 		if (pool->base.mpc_shaper[i] != NULL) {
1307 			dc_transfer_func_release(pool->base.mpc_shaper[i]);
1308 			pool->base.mpc_shaper[i] = NULL;
1309 		}
1310 	}
1311 
1312 	if (pool->base.dp_clock_source != NULL) {
1313 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1314 		pool->base.dp_clock_source = NULL;
1315 	}
1316 
1317 	for (i = 0; i < pool->base.pipe_count; i++) {
1318 		if (pool->base.multiple_abms[i] != NULL)
1319 			dce_abm_destroy(&pool->base.multiple_abms[i]);
1320 	}
1321 
1322 	if (pool->base.psr != NULL)
1323 		dmub_psr_destroy(&pool->base.psr);
1324 
1325 	if (pool->base.dccg != NULL)
1326 		dcn_dccg_destroy(&pool->base.dccg);
1327 
1328 	if (pool->base.oem_device != NULL)
1329 		dal_ddc_service_destroy(&pool->base.oem_device);
1330 }
1331 
dcn30_hubp_create(struct dc_context * ctx,uint32_t inst)1332 static struct hubp *dcn30_hubp_create(
1333 	struct dc_context *ctx,
1334 	uint32_t inst)
1335 {
1336 	struct dcn20_hubp *hubp2 =
1337 		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
1338 
1339 	if (!hubp2)
1340 		return NULL;
1341 
1342 	if (hubp3_construct(hubp2, ctx, inst,
1343 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
1344 		return &hubp2->base;
1345 
1346 	BREAK_TO_DEBUGGER();
1347 	kfree(hubp2);
1348 	return NULL;
1349 }
1350 
dcn30_dwbc_create(struct dc_context * ctx,struct resource_pool * pool)1351 static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1352 {
1353 	int i;
1354 	uint32_t pipe_count = pool->res_cap->num_dwb;
1355 
1356 	for (i = 0; i < pipe_count; i++) {
1357 		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1358 						    GFP_KERNEL);
1359 
1360 		if (!dwbc30) {
1361 			dm_error("DC: failed to create dwbc30!\n");
1362 			return false;
1363 		}
1364 
1365 		dcn30_dwbc_construct(dwbc30, ctx,
1366 				&dwbc30_regs[i],
1367 				&dwbc30_shift,
1368 				&dwbc30_mask,
1369 				i);
1370 
1371 		pool->dwbc[i] = &dwbc30->base;
1372 	}
1373 	return true;
1374 }
1375 
dcn30_mmhubbub_create(struct dc_context * ctx,struct resource_pool * pool)1376 static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1377 {
1378 	int i;
1379 	uint32_t pipe_count = pool->res_cap->num_dwb;
1380 
1381 	for (i = 0; i < pipe_count; i++) {
1382 		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1383 						    GFP_KERNEL);
1384 
1385 		if (!mcif_wb30) {
1386 			dm_error("DC: failed to create mcif_wb30!\n");
1387 			return false;
1388 		}
1389 
1390 		dcn30_mmhubbub_construct(mcif_wb30, ctx,
1391 				&mcif_wb30_regs[i],
1392 				&mcif_wb30_shift,
1393 				&mcif_wb30_mask,
1394 				i);
1395 
1396 		pool->mcif_wb[i] = &mcif_wb30->base;
1397 	}
1398 	return true;
1399 }
1400 
dcn30_dsc_create(struct dc_context * ctx,uint32_t inst)1401 static struct display_stream_compressor *dcn30_dsc_create(
1402 	struct dc_context *ctx, uint32_t inst)
1403 {
1404 	struct dcn20_dsc *dsc =
1405 		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1406 
1407 	if (!dsc) {
1408 		BREAK_TO_DEBUGGER();
1409 		return NULL;
1410 	}
1411 
1412 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1413 	return &dsc->base;
1414 }
1415 
dcn30_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1416 enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1417 {
1418 
1419 	return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream);
1420 }
1421 
dcn30_destroy_resource_pool(struct resource_pool ** pool)1422 static void dcn30_destroy_resource_pool(struct resource_pool **pool)
1423 {
1424 	struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool);
1425 
1426 	dcn30_resource_destruct(dcn30_pool);
1427 	kfree(dcn30_pool);
1428 	*pool = NULL;
1429 }
1430 
dcn30_clock_source_create(struct dc_context * ctx,struct dc_bios * bios,enum clock_source_id id,const struct dce110_clk_src_regs * regs,bool dp_clk_src)1431 static struct clock_source *dcn30_clock_source_create(
1432 		struct dc_context *ctx,
1433 		struct dc_bios *bios,
1434 		enum clock_source_id id,
1435 		const struct dce110_clk_src_regs *regs,
1436 		bool dp_clk_src)
1437 {
1438 	struct dce110_clk_src *clk_src =
1439 		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
1440 
1441 	if (!clk_src)
1442 		return NULL;
1443 
1444 	if (dcn3_clk_src_construct(clk_src, ctx, bios, id,
1445 			regs, &cs_shift, &cs_mask)) {
1446 		clk_src->base.dp_clk_src = dp_clk_src;
1447 		return &clk_src->base;
1448 	}
1449 
1450 	BREAK_TO_DEBUGGER();
1451 	return NULL;
1452 }
1453 
dcn30_populate_dml_pipes_from_context(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,bool fast_validate)1454 int dcn30_populate_dml_pipes_from_context(
1455 	struct dc *dc, struct dc_state *context,
1456 	display_e2e_pipe_params_st *pipes,
1457 	bool fast_validate)
1458 {
1459 	int i, pipe_cnt;
1460 	struct resource_context *res_ctx = &context->res_ctx;
1461 
1462 	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1463 
1464 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1465 		if (!res_ctx->pipe_ctx[i].stream)
1466 			continue;
1467 
1468 		pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth =
1469 			dm_lb_16;
1470 	}
1471 
1472 	return pipe_cnt;
1473 }
1474 
dcn30_populate_dml_writeback_from_context(struct dc * dc,struct resource_context * res_ctx,display_e2e_pipe_params_st * pipes)1475 void dcn30_populate_dml_writeback_from_context(
1476 	struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes)
1477 {
1478 	int pipe_cnt, i, j;
1479 	double max_calc_writeback_dispclk;
1480 	double writeback_dispclk;
1481 	struct writeback_st dout_wb;
1482 
1483 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1484 		struct dc_stream_state *stream = res_ctx->pipe_ctx[i].stream;
1485 
1486 		if (!stream)
1487 			continue;
1488 		max_calc_writeback_dispclk = 0;
1489 
1490 		/* Set writeback information */
1491 		pipes[pipe_cnt].dout.wb_enable = 0;
1492 		pipes[pipe_cnt].dout.num_active_wb = 0;
1493 		for (j = 0; j < stream->num_wb_info; j++) {
1494 			struct dc_writeback_info *wb_info = &stream->writeback_info[j];
1495 
1496 			if (wb_info->wb_enabled && wb_info->writeback_source_plane &&
1497 					(wb_info->writeback_source_plane == res_ctx->pipe_ctx[i].plane_state)) {
1498 				pipes[pipe_cnt].dout.wb_enable = 1;
1499 				pipes[pipe_cnt].dout.num_active_wb++;
1500 				dout_wb.wb_src_height = wb_info->dwb_params.cnv_params.crop_en ?
1501 					wb_info->dwb_params.cnv_params.crop_height :
1502 					wb_info->dwb_params.cnv_params.src_height;
1503 				dout_wb.wb_src_width = wb_info->dwb_params.cnv_params.crop_en ?
1504 					wb_info->dwb_params.cnv_params.crop_width :
1505 					wb_info->dwb_params.cnv_params.src_width;
1506 				dout_wb.wb_dst_width = wb_info->dwb_params.dest_width;
1507 				dout_wb.wb_dst_height = wb_info->dwb_params.dest_height;
1508 
1509 				/* For IP that doesn't support WB scaling, set h/v taps to 1 to avoid DML validation failure */
1510 				if (dc->dml.ip.writeback_max_hscl_taps > 1) {
1511 					dout_wb.wb_htaps_luma = wb_info->dwb_params.scaler_taps.h_taps;
1512 					dout_wb.wb_vtaps_luma = wb_info->dwb_params.scaler_taps.v_taps;
1513 				} else {
1514 					dout_wb.wb_htaps_luma = 1;
1515 					dout_wb.wb_vtaps_luma = 1;
1516 				}
1517 				dout_wb.wb_htaps_chroma = 0;
1518 				dout_wb.wb_vtaps_chroma = 0;
1519 				dout_wb.wb_hratio = wb_info->dwb_params.cnv_params.crop_en ?
1520 					(double)wb_info->dwb_params.cnv_params.crop_width /
1521 						(double)wb_info->dwb_params.dest_width :
1522 					(double)wb_info->dwb_params.cnv_params.src_width /
1523 						(double)wb_info->dwb_params.dest_width;
1524 				dout_wb.wb_vratio = wb_info->dwb_params.cnv_params.crop_en ?
1525 					(double)wb_info->dwb_params.cnv_params.crop_height /
1526 						(double)wb_info->dwb_params.dest_height :
1527 					(double)wb_info->dwb_params.cnv_params.src_height /
1528 						(double)wb_info->dwb_params.dest_height;
1529 				if (wb_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB ||
1530 					wb_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA)
1531 					dout_wb.wb_pixel_format = dm_444_64;
1532 				else
1533 					dout_wb.wb_pixel_format = dm_444_32;
1534 
1535 				/* Workaround for cases where multiple writebacks are connected to same plane
1536 				 * In which case, need to compute worst case and set the associated writeback parameters
1537 				 * This workaround is necessary due to DML computation assuming only 1 set of writeback
1538 				 * parameters per pipe
1539 				 */
1540 				writeback_dispclk = dml30_CalculateWriteBackDISPCLK(
1541 						dout_wb.wb_pixel_format,
1542 						pipes[pipe_cnt].pipe.dest.pixel_rate_mhz,
1543 						dout_wb.wb_hratio,
1544 						dout_wb.wb_vratio,
1545 						dout_wb.wb_htaps_luma,
1546 						dout_wb.wb_vtaps_luma,
1547 						dout_wb.wb_src_width,
1548 						dout_wb.wb_dst_width,
1549 						pipes[pipe_cnt].pipe.dest.htotal,
1550 						dc->current_state->bw_ctx.dml.ip.writeback_line_buffer_buffer_size);
1551 
1552 				if (writeback_dispclk > max_calc_writeback_dispclk) {
1553 					max_calc_writeback_dispclk = writeback_dispclk;
1554 					pipes[pipe_cnt].dout.wb = dout_wb;
1555 				}
1556 			}
1557 		}
1558 
1559 		pipe_cnt++;
1560 	}
1561 
1562 }
1563 
dcn30_calc_max_scaled_time(unsigned int time_per_pixel,enum mmhubbub_wbif_mode mode,unsigned int urgent_watermark)1564 unsigned int dcn30_calc_max_scaled_time(
1565 		unsigned int time_per_pixel,
1566 		enum mmhubbub_wbif_mode mode,
1567 		unsigned int urgent_watermark)
1568 {
1569 	unsigned int time_per_byte = 0;
1570 	unsigned int total_free_entry = 0xb40;
1571 	unsigned int buf_lh_capability;
1572 	unsigned int max_scaled_time;
1573 
1574 	if (mode == PACKED_444) /* packed mode 32 bpp */
1575 		time_per_byte = time_per_pixel/4;
1576 	else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */
1577 		time_per_byte = time_per_pixel/8;
1578 
1579 	if (time_per_byte == 0)
1580 		time_per_byte = 1;
1581 
1582 	buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/
1583 	max_scaled_time   = buf_lh_capability - urgent_watermark;
1584 	return max_scaled_time;
1585 }
1586 
dcn30_set_mcif_arb_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt)1587 void dcn30_set_mcif_arb_params(
1588 		struct dc *dc,
1589 		struct dc_state *context,
1590 		display_e2e_pipe_params_st *pipes,
1591 		int pipe_cnt)
1592 {
1593 	enum mmhubbub_wbif_mode wbif_mode;
1594 	struct display_mode_lib *dml = &context->bw_ctx.dml;
1595 	struct mcif_arb_params *wb_arb_params;
1596 	int i, j, k, dwb_pipe;
1597 
1598 	/* Writeback MCIF_WB arbitration parameters */
1599 	dwb_pipe = 0;
1600 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1601 
1602 		if (!context->res_ctx.pipe_ctx[i].stream)
1603 			continue;
1604 
1605 		for (j = 0; j < MAX_DWB_PIPES; j++) {
1606 			struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j];
1607 
1608 			if (writeback_info->wb_enabled == false)
1609 				continue;
1610 
1611 			//wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1612 			wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1613 
1614 			if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB ||
1615 				writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA)
1616 				wbif_mode = PACKED_444_FP16;
1617 			else
1618 				wbif_mode = PACKED_444;
1619 
1620 			for (k = 0; k < sizeof(wb_arb_params->cli_watermark)/sizeof(wb_arb_params->cli_watermark[0]); k++) {
1621 				wb_arb_params->cli_watermark[k] = get_wm_writeback_urgent(dml, pipes, pipe_cnt) * 1000;
1622 				wb_arb_params->pstate_watermark[k] = get_wm_writeback_dram_clock_change(dml, pipes, pipe_cnt) * 1000;
1623 			}
1624 			wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */
1625 			wb_arb_params->slice_lines = 32;
1626 			wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */
1627 			wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1628 					wbif_mode,
1629 					wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1630 			wb_arb_params->dram_speed_change_duration = dml->vba.WritebackAllowDRAMClockChangeEndPosition[j] * pipes[0].clks_cfg.refclk_mhz; /* num_clock_cycles = us * MHz */
1631 
1632 			dwb_pipe++;
1633 
1634 			if (dwb_pipe >= MAX_DWB_PIPES)
1635 				return;
1636 		}
1637 		if (dwb_pipe >= MAX_DWB_PIPES)
1638 			return;
1639 	}
1640 
1641 }
1642 
1643 static struct dc_cap_funcs cap_funcs = {
1644 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
1645 };
1646 
dcn30_acquire_post_bldn_3dlut(struct resource_context * res_ctx,const struct resource_pool * pool,int mpcc_id,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1647 bool dcn30_acquire_post_bldn_3dlut(
1648 		struct resource_context *res_ctx,
1649 		const struct resource_pool *pool,
1650 		int mpcc_id,
1651 		struct dc_3dlut **lut,
1652 		struct dc_transfer_func **shaper)
1653 {
1654 	int i;
1655 	bool ret = false;
1656 	union dc_3dlut_state *state;
1657 
1658 	ASSERT(*lut == NULL && *shaper == NULL);
1659 	*lut = NULL;
1660 	*shaper = NULL;
1661 
1662 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1663 		if (!res_ctx->is_mpc_3dlut_acquired[i]) {
1664 			*lut = pool->mpc_lut[i];
1665 			*shaper = pool->mpc_shaper[i];
1666 			state = &pool->mpc_lut[i]->state;
1667 			res_ctx->is_mpc_3dlut_acquired[i] = true;
1668 			state->bits.rmu_idx_valid = 1;
1669 			state->bits.rmu_mux_num = i;
1670 			if (state->bits.rmu_mux_num == 0)
1671 				state->bits.mpc_rmu0_mux = mpcc_id;
1672 			else if (state->bits.rmu_mux_num == 1)
1673 				state->bits.mpc_rmu1_mux = mpcc_id;
1674 			else if (state->bits.rmu_mux_num == 2)
1675 				state->bits.mpc_rmu2_mux = mpcc_id;
1676 			ret = true;
1677 			break;
1678 			}
1679 		}
1680 	return ret;
1681 }
1682 
dcn30_release_post_bldn_3dlut(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1683 bool dcn30_release_post_bldn_3dlut(
1684 		struct resource_context *res_ctx,
1685 		const struct resource_pool *pool,
1686 		struct dc_3dlut **lut,
1687 		struct dc_transfer_func **shaper)
1688 {
1689 	int i;
1690 	bool ret = false;
1691 
1692 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1693 		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1694 			res_ctx->is_mpc_3dlut_acquired[i] = false;
1695 			pool->mpc_lut[i]->state.raw = 0;
1696 			*lut = NULL;
1697 			*shaper = NULL;
1698 			ret = true;
1699 			break;
1700 		}
1701 	}
1702 	return ret;
1703 }
1704 
1705 #define fixed16_to_double(x) (((double) x) / ((double) (1 << 16)))
1706 #define fixed16_to_double_to_cpu(x) fixed16_to_double(le32_to_cpu(x))
1707 
is_soc_bounding_box_valid(struct dc * dc)1708 static bool is_soc_bounding_box_valid(struct dc *dc)
1709 {
1710 	uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
1711 
1712 	if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev))
1713 		return true;
1714 
1715 	return false;
1716 }
1717 
init_soc_bounding_box(struct dc * dc,struct dcn30_resource_pool * pool)1718 static bool init_soc_bounding_box(struct dc *dc,
1719 				  struct dcn30_resource_pool *pool)
1720 {
1721 	struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc;
1722 	struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip;
1723 
1724 	DC_LOGGER_INIT(dc->ctx->logger);
1725 
1726 	if (!is_soc_bounding_box_valid(dc)) {
1727 		DC_LOG_ERROR("%s: not valid soc bounding box/n", __func__);
1728 		return false;
1729 	}
1730 
1731 	loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
1732 	loaded_ip->max_num_dpp = pool->base.pipe_count;
1733 	loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
1734 	dcn20_patch_bounding_box(dc, loaded_bb);
1735 
1736 	if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
1737 		struct bp_soc_bb_info bb_info = {0};
1738 
1739 		if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
1740 			if (bb_info.dram_clock_change_latency_100ns > 0)
1741 				dcn3_0_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10;
1742 
1743 			if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
1744 				dcn3_0_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10;
1745 
1746 			if (bb_info.dram_sr_exit_latency_100ns > 0)
1747 				dcn3_0_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10;
1748 		}
1749 	}
1750 
1751 	return true;
1752 }
1753 
dcn30_split_stream_for_mpc_or_odm(const struct dc * dc,struct resource_context * res_ctx,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)1754 static bool dcn30_split_stream_for_mpc_or_odm(
1755 		const struct dc *dc,
1756 		struct resource_context *res_ctx,
1757 		struct pipe_ctx *pri_pipe,
1758 		struct pipe_ctx *sec_pipe,
1759 		bool odm)
1760 {
1761 	int pipe_idx = sec_pipe->pipe_idx;
1762 	const struct resource_pool *pool = dc->res_pool;
1763 
1764 	*sec_pipe = *pri_pipe;
1765 
1766 	sec_pipe->pipe_idx = pipe_idx;
1767 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1768 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1769 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1770 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1771 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1772 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1773 	sec_pipe->stream_res.dsc = NULL;
1774 	if (odm) {
1775 		if (pri_pipe->next_odm_pipe) {
1776 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1777 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1778 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1779 		}
1780 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1781 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1782 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1783 		}
1784 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1785 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1786 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1787 		}
1788 		pri_pipe->next_odm_pipe = sec_pipe;
1789 		sec_pipe->prev_odm_pipe = pri_pipe;
1790 		ASSERT(sec_pipe->top_pipe == NULL);
1791 
1792 		if (!sec_pipe->top_pipe)
1793 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1794 		else
1795 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1796 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1797 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1798 			ASSERT(sec_pipe->stream_res.dsc);
1799 			if (sec_pipe->stream_res.dsc == NULL)
1800 				return false;
1801 		}
1802 	} else {
1803 		if (pri_pipe->bottom_pipe) {
1804 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1805 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1806 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1807 		}
1808 		pri_pipe->bottom_pipe = sec_pipe;
1809 		sec_pipe->top_pipe = pri_pipe;
1810 
1811 		ASSERT(pri_pipe->plane_state);
1812 	}
1813 
1814 	return true;
1815 }
1816 
dcn30_find_split_pipe(struct dc * dc,struct dc_state * context,int old_index)1817 static struct pipe_ctx *dcn30_find_split_pipe(
1818 		struct dc *dc,
1819 		struct dc_state *context,
1820 		int old_index)
1821 {
1822 	struct pipe_ctx *pipe = NULL;
1823 	int i;
1824 
1825 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1826 		pipe = &context->res_ctx.pipe_ctx[old_index];
1827 		pipe->pipe_idx = old_index;
1828 	}
1829 
1830 	if (!pipe)
1831 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1832 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1833 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1834 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1835 					pipe = &context->res_ctx.pipe_ctx[i];
1836 					pipe->pipe_idx = i;
1837 					break;
1838 				}
1839 			}
1840 		}
1841 
1842 	/*
1843 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1844 	 * Add for debugging transient underflow during topology updates:
1845 	 * ASSERT(pipe);
1846 	 */
1847 	if (!pipe)
1848 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1849 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1850 				pipe = &context->res_ctx.pipe_ctx[i];
1851 				pipe->pipe_idx = i;
1852 				break;
1853 			}
1854 		}
1855 
1856 	return pipe;
1857 }
1858 
dcn30_internal_validate_bw(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * pipe_cnt_out,int * vlevel_out,bool fast_validate)1859 static noinline bool dcn30_internal_validate_bw(
1860 		struct dc *dc,
1861 		struct dc_state *context,
1862 		display_e2e_pipe_params_st *pipes,
1863 		int *pipe_cnt_out,
1864 		int *vlevel_out,
1865 		bool fast_validate)
1866 {
1867 	bool out = false;
1868 	bool repopulate_pipes = false;
1869 	int split[MAX_PIPES] = { 0 };
1870 	bool merge[MAX_PIPES] = { false };
1871 	bool newly_split[MAX_PIPES] = { false };
1872 	int pipe_cnt, i, pipe_idx, vlevel;
1873 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1874 
1875 	ASSERT(pipes);
1876 	if (!pipes)
1877 		return false;
1878 
1879 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1880 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1881 
1882 	DC_FP_START();
1883 	if (!pipe_cnt) {
1884 		out = true;
1885 		goto validate_out;
1886 	}
1887 
1888 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1889 
1890 	if (!fast_validate) {
1891 		/*
1892 		 * DML favors voltage over p-state, but we're more interested in
1893 		 * supporting p-state over voltage. We can't support p-state in
1894 		 * prefetch mode > 0 so try capping the prefetch mode to start.
1895 		 */
1896 		context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1897 			dm_allow_self_refresh_and_mclk_switch;
1898 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1899 		/* This may adjust vlevel and maxMpcComb */
1900 		if (vlevel < context->bw_ctx.dml.soc.num_states)
1901 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1902 	}
1903 	if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states ||
1904 			vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
1905 		/*
1906 		 * If mode is unsupported or there's still no p-state support then
1907 		 * fall back to favoring voltage.
1908 		 *
1909 		 * We don't actually support prefetch mode 2, so require that we
1910 		 * at least support prefetch mode 1.
1911 		 */
1912 		context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1913 			dm_allow_self_refresh;
1914 
1915 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1916 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
1917 			memset(split, 0, sizeof(split));
1918 			memset(merge, 0, sizeof(merge));
1919 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1920 		}
1921 	}
1922 
1923 	dml_log_mode_support_params(&context->bw_ctx.dml);
1924 
1925 	if (vlevel == context->bw_ctx.dml.soc.num_states)
1926 		goto validate_fail;
1927 
1928 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1929 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1930 		struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1931 
1932 		if (!pipe->stream)
1933 			continue;
1934 
1935 		/* We only support full screen mpo with ODM */
1936 		if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1937 				&& pipe->plane_state && mpo_pipe
1938 				&& memcmp(&mpo_pipe->plane_res.scl_data.recout,
1939 						&pipe->plane_res.scl_data.recout,
1940 						sizeof(struct rect)) != 0) {
1941 			ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1942 			goto validate_fail;
1943 		}
1944 		pipe_idx++;
1945 	}
1946 
1947 	/* merge pipes if necessary */
1948 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1949 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1950 
1951 		/*skip pipes that don't need merging*/
1952 		if (!merge[i])
1953 			continue;
1954 
1955 		/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1956 		if (pipe->prev_odm_pipe) {
1957 			/*split off odm pipe*/
1958 			pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1959 			if (pipe->next_odm_pipe)
1960 				pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1961 
1962 			pipe->bottom_pipe = NULL;
1963 			pipe->next_odm_pipe = NULL;
1964 			pipe->plane_state = NULL;
1965 			pipe->stream = NULL;
1966 			pipe->top_pipe = NULL;
1967 			pipe->prev_odm_pipe = NULL;
1968 			if (pipe->stream_res.dsc)
1969 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1970 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1971 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1972 			repopulate_pipes = true;
1973 		} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1974 			struct pipe_ctx *top_pipe = pipe->top_pipe;
1975 			struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1976 
1977 			top_pipe->bottom_pipe = bottom_pipe;
1978 			if (bottom_pipe)
1979 				bottom_pipe->top_pipe = top_pipe;
1980 
1981 			pipe->top_pipe = NULL;
1982 			pipe->bottom_pipe = NULL;
1983 			pipe->plane_state = NULL;
1984 			pipe->stream = NULL;
1985 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1986 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1987 			repopulate_pipes = true;
1988 		} else
1989 			ASSERT(0); /* Should never try to merge master pipe */
1990 
1991 	}
1992 
1993 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1994 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1995 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1996 		struct pipe_ctx *hsplit_pipe = NULL;
1997 		bool odm;
1998 		int old_index = -1;
1999 
2000 		if (!pipe->stream || newly_split[i])
2001 			continue;
2002 
2003 		pipe_idx++;
2004 		odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
2005 
2006 		if (!pipe->plane_state && !odm)
2007 			continue;
2008 
2009 		if (split[i]) {
2010 			if (odm) {
2011 				if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
2012 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2013 				else if (old_pipe->next_odm_pipe)
2014 					old_index = old_pipe->next_odm_pipe->pipe_idx;
2015 			} else {
2016 				if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2017 						old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2018 					old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2019 				else if (old_pipe->bottom_pipe &&
2020 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2021 					old_index = old_pipe->bottom_pipe->pipe_idx;
2022 			}
2023 			hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index);
2024 			ASSERT(hsplit_pipe);
2025 			if (!hsplit_pipe)
2026 				goto validate_fail;
2027 
2028 			if (!dcn30_split_stream_for_mpc_or_odm(
2029 					dc, &context->res_ctx,
2030 					pipe, hsplit_pipe, odm))
2031 				goto validate_fail;
2032 
2033 			newly_split[hsplit_pipe->pipe_idx] = true;
2034 			repopulate_pipes = true;
2035 		}
2036 		if (split[i] == 4) {
2037 			struct pipe_ctx *pipe_4to1;
2038 
2039 			if (odm && old_pipe->next_odm_pipe)
2040 				old_index = old_pipe->next_odm_pipe->pipe_idx;
2041 			else if (!odm && old_pipe->bottom_pipe &&
2042 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2043 				old_index = old_pipe->bottom_pipe->pipe_idx;
2044 			else
2045 				old_index = -1;
2046 			pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
2047 			ASSERT(pipe_4to1);
2048 			if (!pipe_4to1)
2049 				goto validate_fail;
2050 			if (!dcn30_split_stream_for_mpc_or_odm(
2051 					dc, &context->res_ctx,
2052 					pipe, pipe_4to1, odm))
2053 				goto validate_fail;
2054 			newly_split[pipe_4to1->pipe_idx] = true;
2055 
2056 			if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
2057 					&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
2058 				old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2059 			else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2060 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
2061 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2062 				old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2063 			else
2064 				old_index = -1;
2065 			pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
2066 			ASSERT(pipe_4to1);
2067 			if (!pipe_4to1)
2068 				goto validate_fail;
2069 			if (!dcn30_split_stream_for_mpc_or_odm(
2070 					dc, &context->res_ctx,
2071 					hsplit_pipe, pipe_4to1, odm))
2072 				goto validate_fail;
2073 			newly_split[pipe_4to1->pipe_idx] = true;
2074 		}
2075 		if (odm)
2076 			dcn20_build_mapped_resource(dc, context, pipe->stream);
2077 	}
2078 
2079 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2080 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2081 
2082 		if (pipe->plane_state) {
2083 			if (!resource_build_scaling_params(pipe))
2084 				goto validate_fail;
2085 		}
2086 	}
2087 
2088 	/* Actual dsc count per stream dsc validation*/
2089 	if (!dcn20_validate_dsc(dc, context)) {
2090 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
2091 		goto validate_fail;
2092 	}
2093 
2094 	if (repopulate_pipes)
2095 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2096 	*vlevel_out = vlevel;
2097 	*pipe_cnt_out = pipe_cnt;
2098 
2099 	out = true;
2100 	goto validate_out;
2101 
2102 validate_fail:
2103 	out = false;
2104 
2105 validate_out:
2106 	DC_FP_END();
2107 	return out;
2108 }
2109 
2110 /*
2111  * This must be noinline to ensure anything that deals with FP registers
2112  * is contained within this call; previously our compiling with hard-float
2113  * would result in fp instructions being emitted outside of the boundaries
2114  * of the DC_FP_START/END macros, which makes sense as the compiler has no
2115  * idea about what is wrapped and what is not
2116  *
2117  * This is largely just a workaround to avoid breakage introduced with 5.6,
2118  * ideally all fp-using code should be moved into its own file, only that
2119  * should be compiled with hard-float, and all code exported from there
2120  * should be strictly wrapped with DC_FP_START/END
2121  */
dcn30_calculate_wm_and_dlg_fp(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)2122 static noinline void dcn30_calculate_wm_and_dlg_fp(
2123 		struct dc *dc, struct dc_state *context,
2124 		display_e2e_pipe_params_st *pipes,
2125 		int pipe_cnt,
2126 		int vlevel)
2127 {
2128 	int i, pipe_idx;
2129 	double dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2130 	bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
2131 			dm_dram_clock_change_unsupported;
2132 
2133 	if (context->bw_ctx.dml.soc.min_dcfclk > dcfclk)
2134 		dcfclk = context->bw_ctx.dml.soc.min_dcfclk;
2135 
2136 	pipes[0].clks_cfg.voltage = vlevel;
2137 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2138 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2139 
2140 	/* Set B:
2141 	 * DCFCLK: 1GHz or min required above 1GHz
2142 	 * FCLK/UCLK: Max
2143 	 */
2144 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2145 		if (vlevel == 0) {
2146 			pipes[0].clks_cfg.voltage = 1;
2147 			pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dcfclk_mhz;
2148 		}
2149 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2150 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2151 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2152 	}
2153 	context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2154 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2155 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2156 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2157 	context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2158 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2159 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2160 	context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2161 
2162 	pipes[0].clks_cfg.voltage = vlevel;
2163 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2164 
2165 	/* Set D:
2166 	 * DCFCLK: Min Required
2167 	 * FCLK(proportional to UCLK): 1GHz or Max
2168 	 * MALL stutter, sr_enter_exit = 4, sr_exit = 2us
2169 	 */
2170 	/*
2171 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2172 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2173 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2174 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2175 	}
2176 	context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2177 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2178 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2179 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2180 	context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2181 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2182 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2183 	context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2184 	*/
2185 
2186 	/* Set C:
2187 	 * DCFCLK: Min Required
2188 	 * FCLK(proportional to UCLK): 1GHz or Max
2189 	 * pstate latency overridden to 5us
2190 	 */
2191 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2192 		unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
2193 		unsigned int min_dram_speed_mts_margin = 160;
2194 
2195 		if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_dram_clock_change_unsupported)
2196 			min_dram_speed_mts = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz * 16;
2197 
2198 		/* find largest table entry that is lower than dram speed, but lower than DPM0 still uses DPM0 */
2199 		for (i = 3; i > 0; i--)
2200 			if (min_dram_speed_mts + min_dram_speed_mts_margin > dc->clk_mgr->bw_params->dummy_pstate_table[i].dram_speed_mts)
2201 				break;
2202 
2203 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us;
2204 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2205 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2206 	}
2207 	context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2208 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2209 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2210 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2211 	context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2212 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2213 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2214 	context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2215 
2216 	if (!pstate_en) {
2217 		/* The only difference between A and C is p-state latency, if p-state is not supported we want to
2218 		 * calculate DLG based on dummy p-state latency, and max out the set A p-state watermark
2219 		 */
2220 		context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2221 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2222 	} else {
2223 		/* Set A:
2224 		 * DCFCLK: Min Required
2225 		 * FCLK(proportional to UCLK): 1GHz or Max
2226 		 *
2227 		 * Set A calculated last so that following calculations are based on Set A
2228 		 */
2229 		dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
2230 		context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2231 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2232 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2233 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2234 		context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2235 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2236 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2237 		context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2238 	}
2239 
2240 	context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2241 
2242 	/* Make set D = set A until set D is enabled */
2243 	context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2244 
2245 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2246 		if (!context->res_ctx.pipe_ctx[i].stream)
2247 			continue;
2248 
2249 		pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2250 		pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2251 
2252 		if (dc->config.forced_clocks) {
2253 			pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2254 			pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2255 		}
2256 		if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2257 			pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2258 		if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2259 			pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2260 
2261 		pipe_idx++;
2262 	}
2263 
2264 	dcn20_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2265 
2266 	if (!pstate_en)
2267 		/* Restore full p-state latency */
2268 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2269 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2270 }
2271 
dcn30_update_soc_for_wm_a(struct dc * dc,struct dc_state * context)2272 void dcn30_update_soc_for_wm_a(struct dc *dc, struct dc_state *context)
2273 {
2274 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].valid) {
2275 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2276 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2277 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2278 	}
2279 }
2280 
dcn30_calculate_wm_and_dlg(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)2281 void dcn30_calculate_wm_and_dlg(
2282 		struct dc *dc, struct dc_state *context,
2283 		display_e2e_pipe_params_st *pipes,
2284 		int pipe_cnt,
2285 		int vlevel)
2286 {
2287 	DC_FP_START();
2288 	dcn30_calculate_wm_and_dlg_fp(dc, context, pipes, pipe_cnt, vlevel);
2289 	DC_FP_END();
2290 }
2291 
dcn30_validate_bandwidth(struct dc * dc,struct dc_state * context,bool fast_validate)2292 bool dcn30_validate_bandwidth(struct dc *dc,
2293 		struct dc_state *context,
2294 		bool fast_validate)
2295 {
2296 	bool out = false;
2297 
2298 	BW_VAL_TRACE_SETUP();
2299 
2300 	int vlevel = 0;
2301 	int pipe_cnt = 0;
2302 	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
2303 	DC_LOGGER_INIT(dc->ctx->logger);
2304 
2305 	BW_VAL_TRACE_COUNT();
2306 
2307 	out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
2308 
2309 	if (pipe_cnt == 0)
2310 		goto validate_out;
2311 
2312 	if (!out)
2313 		goto validate_fail;
2314 
2315 	BW_VAL_TRACE_END_VOLTAGE_LEVEL();
2316 
2317 	if (fast_validate) {
2318 		BW_VAL_TRACE_SKIP(fast);
2319 		goto validate_out;
2320 	}
2321 
2322 	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
2323 
2324 	BW_VAL_TRACE_END_WATERMARKS();
2325 
2326 	goto validate_out;
2327 
2328 validate_fail:
2329 	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
2330 		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
2331 
2332 	BW_VAL_TRACE_SKIP(fail);
2333 	out = false;
2334 
2335 validate_out:
2336 	kfree(pipes);
2337 
2338 	BW_VAL_TRACE_FINISH();
2339 
2340 	return out;
2341 }
2342 
2343 /*
2344  * This must be noinline to ensure anything that deals with FP registers
2345  * is contained within this call; previously our compiling with hard-float
2346  * would result in fp instructions being emitted outside of the boundaries
2347  * of the DC_FP_START/END macros, which makes sense as the compiler has no
2348  * idea about what is wrapped and what is not
2349  *
2350  * This is largely just a workaround to avoid breakage introduced with 5.6,
2351  * ideally all fp-using code should be moved into its own file, only that
2352  * should be compiled with hard-float, and all code exported from there
2353  * should be strictly wrapped with DC_FP_START/END
2354  */
dcn30_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,unsigned int * optimal_dcfclk,unsigned int * optimal_fclk)2355 static noinline void dcn30_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2356 		unsigned int *optimal_dcfclk,
2357 		unsigned int *optimal_fclk)
2358 {
2359        double bw_from_dram, bw_from_dram1, bw_from_dram2;
2360 
2361        bw_from_dram1 = uclk_mts * dcn3_0_soc.num_chans *
2362 		dcn3_0_soc.dram_channel_width_bytes * (dcn3_0_soc.max_avg_dram_bw_use_normal_percent / 100);
2363        bw_from_dram2 = uclk_mts * dcn3_0_soc.num_chans *
2364 		dcn3_0_soc.dram_channel_width_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100);
2365 
2366        bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2367 
2368        if (optimal_fclk)
2369                *optimal_fclk = bw_from_dram /
2370                (dcn3_0_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100));
2371 
2372        if (optimal_dcfclk)
2373                *optimal_dcfclk =  bw_from_dram /
2374                (dcn3_0_soc.return_bus_width_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100));
2375 }
2376 
dcn30_update_bw_bounding_box(struct dc * dc,struct clk_bw_params * bw_params)2377 void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2378 {
2379 	unsigned int i, j;
2380 	unsigned int num_states = 0;
2381 
2382 	unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2383 	unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2384 	unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2385 	unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2386 
2387 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200};
2388 	unsigned int num_dcfclk_sta_targets = 4;
2389 	unsigned int num_uclk_states;
2390 
2391 	if (dc->ctx->dc_bios->vram_info.num_chans)
2392 		dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2393 
2394 	if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
2395 		dcn3_0_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
2396 
2397 	dcn3_0_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2398 	dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2399 
2400 	if (bw_params->clk_table.entries[0].memclk_mhz) {
2401 
2402 		if (bw_params->clk_table.entries[1].dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2403 			// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2404 			dcfclk_sta_targets[num_dcfclk_sta_targets] = bw_params->clk_table.entries[1].dcfclk_mhz;
2405 			num_dcfclk_sta_targets++;
2406 		} else if (bw_params->clk_table.entries[1].dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2407 			// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2408 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
2409 				if (dcfclk_sta_targets[i] > bw_params->clk_table.entries[1].dcfclk_mhz) {
2410 					dcfclk_sta_targets[i] = bw_params->clk_table.entries[1].dcfclk_mhz;
2411 					break;
2412 				}
2413 			}
2414 			// Update size of array since we "removed" duplicates
2415 			num_dcfclk_sta_targets = i + 1;
2416 		}
2417 
2418 		num_uclk_states = bw_params->clk_table.num_entries;
2419 
2420 		// Calculate optimal dcfclk for each uclk
2421 		for (i = 0; i < num_uclk_states; i++) {
2422 			DC_FP_START();
2423 			dcn30_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2424 					&optimal_dcfclk_for_uclk[i], NULL);
2425 			DC_FP_END();
2426 			if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2427 				optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2428 			}
2429 		}
2430 
2431 		// Calculate optimal uclk for each dcfclk sta target
2432 		for (i = 0; i < num_dcfclk_sta_targets; i++) {
2433 			for (j = 0; j < num_uclk_states; j++) {
2434 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2435 					optimal_uclk_for_dcfclk_sta_targets[i] =
2436 							bw_params->clk_table.entries[j].memclk_mhz * 16;
2437 					break;
2438 				}
2439 			}
2440 		}
2441 
2442 		i = 0;
2443 		j = 0;
2444 		// create the final dcfclk and uclk table
2445 		while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2446 			if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2447 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2448 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2449 			} else {
2450 				if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= bw_params->clk_table.entries[1].dcfclk_mhz) {
2451 					dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2452 					dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2453 				} else {
2454 					j = num_uclk_states;
2455 				}
2456 			}
2457 		}
2458 
2459 		while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2460 			dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2461 			dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2462 		}
2463 
2464 		while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2465 				optimal_dcfclk_for_uclk[j] <= bw_params->clk_table.entries[1].dcfclk_mhz) {
2466 			dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2467 			dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2468 		}
2469 
2470 		for (i = 0; i < dcn3_0_soc.num_states; i++) {
2471 			dcn3_0_soc.clock_limits[i].state = i;
2472 			dcn3_0_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
2473 			dcn3_0_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
2474 			dcn3_0_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
2475 
2476 			/* Fill all states with max values of all other clocks */
2477 			dcn3_0_soc.clock_limits[i].dispclk_mhz = bw_params->clk_table.entries[1].dispclk_mhz;
2478 			dcn3_0_soc.clock_limits[i].dppclk_mhz  = bw_params->clk_table.entries[1].dppclk_mhz;
2479 			dcn3_0_soc.clock_limits[i].phyclk_mhz  = bw_params->clk_table.entries[1].phyclk_mhz;
2480 			dcn3_0_soc.clock_limits[i].dtbclk_mhz = dcn3_0_soc.clock_limits[0].dtbclk_mhz;
2481 			/* These clocks cannot come from bw_params, always fill from dcn3_0_soc[1] */
2482 			/* FCLK, PHYCLK_D18, SOCCLK, DSCCLK */
2483 			dcn3_0_soc.clock_limits[i].phyclk_d18_mhz = dcn3_0_soc.clock_limits[0].phyclk_d18_mhz;
2484 			dcn3_0_soc.clock_limits[i].socclk_mhz = dcn3_0_soc.clock_limits[0].socclk_mhz;
2485 			dcn3_0_soc.clock_limits[i].dscclk_mhz = dcn3_0_soc.clock_limits[0].dscclk_mhz;
2486 		}
2487 		/* re-init DML with updated bb */
2488 		dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2489 		if (dc->current_state)
2490 			dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2491 	}
2492 
2493 	/* re-init DML with updated bb */
2494 	dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2495 	if (dc->current_state)
2496 		dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2497 }
2498 
2499 static const struct resource_funcs dcn30_res_pool_funcs = {
2500 	.destroy = dcn30_destroy_resource_pool,
2501 	.link_enc_create = dcn30_link_encoder_create,
2502 	.panel_cntl_create = dcn30_panel_cntl_create,
2503 	.validate_bandwidth = dcn30_validate_bandwidth,
2504 	.calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg,
2505 	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
2506 	.populate_dml_pipes = dcn30_populate_dml_pipes_from_context,
2507 	.acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
2508 	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
2509 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2510 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2511 	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2512 	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
2513 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2514 	.acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut,
2515 	.release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut,
2516 	.update_bw_bounding_box = dcn30_update_bw_bounding_box,
2517 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2518 };
2519 
2520 #define CTX ctx
2521 
2522 #define REG(reg_name) \
2523 	(DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
2524 
read_pipe_fuses(struct dc_context * ctx)2525 static uint32_t read_pipe_fuses(struct dc_context *ctx)
2526 {
2527 	uint32_t value = REG_READ(CC_DC_PIPE_DIS);
2528 	/* Support for max 6 pipes */
2529 	value = value & 0x3f;
2530 	return value;
2531 }
2532 
dcn30_resource_construct(uint8_t num_virtual_links,struct dc * dc,struct dcn30_resource_pool * pool)2533 static bool dcn30_resource_construct(
2534 	uint8_t num_virtual_links,
2535 	struct dc *dc,
2536 	struct dcn30_resource_pool *pool)
2537 {
2538 	int i;
2539 	struct dc_context *ctx = dc->ctx;
2540 	struct irq_service_init_data init_data;
2541 	struct ddc_service_init_data ddc_init_data;
2542 	uint32_t pipe_fuses = read_pipe_fuses(ctx);
2543 	uint32_t num_pipes = 0;
2544 
2545 	if (!(pipe_fuses == 0 || pipe_fuses == 0x3e)) {
2546 		BREAK_TO_DEBUGGER();
2547 		dm_error("DC: Unexpected fuse recipe for navi2x !\n");
2548 		/* fault to single pipe */
2549 		pipe_fuses = 0x3e;
2550 	}
2551 
2552 	DC_FP_START();
2553 
2554 	ctx->dc_bios->regs = &bios_regs;
2555 
2556 	pool->base.res_cap = &res_cap_dcn3;
2557 
2558 	pool->base.funcs = &dcn30_res_pool_funcs;
2559 
2560 	/*************************************************
2561 	 *  Resource + asic cap harcoding                *
2562 	 *************************************************/
2563 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2564 	pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
2565 	pool->base.mpcc_count = pool->base.res_cap->num_timing_generator;
2566 	dc->caps.max_downscale_ratio = 600;
2567 	dc->caps.i2c_speed_in_khz = 100;
2568 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2569 	dc->caps.max_cursor_size = 256;
2570 	dc->caps.min_horizontal_blanking_period = 80;
2571 	dc->caps.dmdata_alloc_size = 2048;
2572 	dc->caps.mall_size_per_mem_channel = 8;
2573 	/* total size = mall per channel * num channels * 1024 * 1024 */
2574 	dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576;
2575 	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2576 
2577 	dc->caps.max_slave_planes = 1;
2578 	dc->caps.max_slave_yuv_planes = 1;
2579 	dc->caps.max_slave_rgb_planes = 1;
2580 	dc->caps.post_blend_color_processing = true;
2581 	dc->caps.force_dp_tps4_for_cp2520 = true;
2582 	dc->caps.extended_aux_timeout_support = true;
2583 	dc->caps.dmcub_support = true;
2584 
2585 	/* Color pipeline capabilities */
2586 	dc->caps.color.dpp.dcn_arch = 1;
2587 	dc->caps.color.dpp.input_lut_shared = 0;
2588 	dc->caps.color.dpp.icsc = 1;
2589 	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2590 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2591 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2592 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2593 	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2594 	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2595 	dc->caps.color.dpp.post_csc = 1;
2596 	dc->caps.color.dpp.gamma_corr = 1;
2597 	dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2598 
2599 	dc->caps.color.dpp.hw_3d_lut = 1;
2600 	dc->caps.color.dpp.ogam_ram = 1;
2601 	// no OGAM ROM on DCN3
2602 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2603 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2604 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2605 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2606 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2607 	dc->caps.color.dpp.ocsc = 0;
2608 
2609 	dc->caps.color.mpc.gamut_remap = 1;
2610 	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3
2611 	dc->caps.color.mpc.ogam_ram = 1;
2612 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2613 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2614 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2615 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2616 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2617 	dc->caps.color.mpc.ocsc = 1;
2618 
2619 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2620 		dc->debug = debug_defaults_drv;
2621 	else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
2622 		dc->debug = debug_defaults_diags;
2623 	} else
2624 		dc->debug = debug_defaults_diags;
2625 	// Init the vm_helper
2626 	if (dc->vm_helper)
2627 		vm_helper_init(dc->vm_helper, 16);
2628 
2629 	/*************************************************
2630 	 *  Create resources                             *
2631 	 *************************************************/
2632 
2633 	/* Clock Sources for Pixel Clock*/
2634 	pool->base.clock_sources[DCN30_CLK_SRC_PLL0] =
2635 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2636 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2637 				&clk_src_regs[0], false);
2638 	pool->base.clock_sources[DCN30_CLK_SRC_PLL1] =
2639 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2640 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2641 				&clk_src_regs[1], false);
2642 	pool->base.clock_sources[DCN30_CLK_SRC_PLL2] =
2643 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2644 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2645 				&clk_src_regs[2], false);
2646 	pool->base.clock_sources[DCN30_CLK_SRC_PLL3] =
2647 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2648 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2649 				&clk_src_regs[3], false);
2650 	pool->base.clock_sources[DCN30_CLK_SRC_PLL4] =
2651 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2652 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2653 				&clk_src_regs[4], false);
2654 	pool->base.clock_sources[DCN30_CLK_SRC_PLL5] =
2655 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2656 				CLOCK_SOURCE_COMBO_PHY_PLL5,
2657 				&clk_src_regs[5], false);
2658 
2659 	pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL;
2660 
2661 	/* todo: not reuse phy_pll registers */
2662 	pool->base.dp_clock_source =
2663 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2664 				CLOCK_SOURCE_ID_DP_DTO,
2665 				&clk_src_regs[0], true);
2666 
2667 	for (i = 0; i < pool->base.clk_src_count; i++) {
2668 		if (pool->base.clock_sources[i] == NULL) {
2669 			dm_error("DC: failed to create clock sources!\n");
2670 			BREAK_TO_DEBUGGER();
2671 			goto create_fail;
2672 		}
2673 	}
2674 
2675 	/* DCCG */
2676 	pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2677 	if (pool->base.dccg == NULL) {
2678 		dm_error("DC: failed to create dccg!\n");
2679 		BREAK_TO_DEBUGGER();
2680 		goto create_fail;
2681 	}
2682 
2683 	/* PP Lib and SMU interfaces */
2684 	init_soc_bounding_box(dc, pool);
2685 
2686 	num_pipes = dcn3_0_ip.max_num_dpp;
2687 
2688 	for (i = 0; i < dcn3_0_ip.max_num_dpp; i++)
2689 		if (pipe_fuses & 1 << i)
2690 			num_pipes--;
2691 
2692 	dcn3_0_ip.max_num_dpp = num_pipes;
2693 	dcn3_0_ip.max_num_otg = num_pipes;
2694 
2695 	dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2696 
2697 	/* IRQ */
2698 	init_data.ctx = dc->ctx;
2699 	pool->base.irqs = dal_irq_service_dcn30_create(&init_data);
2700 	if (!pool->base.irqs)
2701 		goto create_fail;
2702 
2703 	/* HUBBUB */
2704 	pool->base.hubbub = dcn30_hubbub_create(ctx);
2705 	if (pool->base.hubbub == NULL) {
2706 		BREAK_TO_DEBUGGER();
2707 		dm_error("DC: failed to create hubbub!\n");
2708 		goto create_fail;
2709 	}
2710 
2711 	/* HUBPs, DPPs, OPPs and TGs */
2712 	for (i = 0; i < pool->base.pipe_count; i++) {
2713 		pool->base.hubps[i] = dcn30_hubp_create(ctx, i);
2714 		if (pool->base.hubps[i] == NULL) {
2715 			BREAK_TO_DEBUGGER();
2716 			dm_error(
2717 				"DC: failed to create hubps!\n");
2718 			goto create_fail;
2719 		}
2720 
2721 		pool->base.dpps[i] = dcn30_dpp_create(ctx, i);
2722 		if (pool->base.dpps[i] == NULL) {
2723 			BREAK_TO_DEBUGGER();
2724 			dm_error(
2725 				"DC: failed to create dpps!\n");
2726 			goto create_fail;
2727 		}
2728 	}
2729 
2730 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2731 		pool->base.opps[i] = dcn30_opp_create(ctx, i);
2732 		if (pool->base.opps[i] == NULL) {
2733 			BREAK_TO_DEBUGGER();
2734 			dm_error(
2735 				"DC: failed to create output pixel processor!\n");
2736 			goto create_fail;
2737 		}
2738 	}
2739 
2740 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2741 		pool->base.timing_generators[i] = dcn30_timing_generator_create(
2742 				ctx, i);
2743 		if (pool->base.timing_generators[i] == NULL) {
2744 			BREAK_TO_DEBUGGER();
2745 			dm_error("DC: failed to create tg!\n");
2746 			goto create_fail;
2747 		}
2748 	}
2749 	pool->base.timing_generator_count = i;
2750 	/* PSR */
2751 	pool->base.psr = dmub_psr_create(ctx);
2752 
2753 	if (pool->base.psr == NULL) {
2754 		dm_error("DC: failed to create PSR obj!\n");
2755 		BREAK_TO_DEBUGGER();
2756 		goto create_fail;
2757 	}
2758 
2759 	/* ABM */
2760 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2761 		pool->base.multiple_abms[i] = dmub_abm_create(ctx,
2762 				&abm_regs[i],
2763 				&abm_shift,
2764 				&abm_mask);
2765 		if (pool->base.multiple_abms[i] == NULL) {
2766 			dm_error("DC: failed to create abm for pipe %d!\n", i);
2767 			BREAK_TO_DEBUGGER();
2768 			goto create_fail;
2769 		}
2770 	}
2771 	/* MPC and DSC */
2772 	pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut);
2773 	if (pool->base.mpc == NULL) {
2774 		BREAK_TO_DEBUGGER();
2775 		dm_error("DC: failed to create mpc!\n");
2776 		goto create_fail;
2777 	}
2778 
2779 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2780 		pool->base.dscs[i] = dcn30_dsc_create(ctx, i);
2781 		if (pool->base.dscs[i] == NULL) {
2782 			BREAK_TO_DEBUGGER();
2783 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2784 			goto create_fail;
2785 		}
2786 	}
2787 
2788 	/* DWB and MMHUBBUB */
2789 	if (!dcn30_dwbc_create(ctx, &pool->base)) {
2790 		BREAK_TO_DEBUGGER();
2791 		dm_error("DC: failed to create dwbc!\n");
2792 		goto create_fail;
2793 	}
2794 
2795 	if (!dcn30_mmhubbub_create(ctx, &pool->base)) {
2796 		BREAK_TO_DEBUGGER();
2797 		dm_error("DC: failed to create mcif_wb!\n");
2798 		goto create_fail;
2799 	}
2800 
2801 	/* AUX and I2C */
2802 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2803 		pool->base.engines[i] = dcn30_aux_engine_create(ctx, i);
2804 		if (pool->base.engines[i] == NULL) {
2805 			BREAK_TO_DEBUGGER();
2806 			dm_error(
2807 				"DC:failed to create aux engine!!\n");
2808 			goto create_fail;
2809 		}
2810 		pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i);
2811 		if (pool->base.hw_i2cs[i] == NULL) {
2812 			BREAK_TO_DEBUGGER();
2813 			dm_error(
2814 				"DC:failed to create hw i2c!!\n");
2815 			goto create_fail;
2816 		}
2817 		pool->base.sw_i2cs[i] = NULL;
2818 	}
2819 
2820 	/* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */
2821 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2822 			(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
2823 			&res_create_funcs : &res_create_maximus_funcs)))
2824 		goto create_fail;
2825 
2826 	/* HW Sequencer and Plane caps */
2827 	dcn30_hw_sequencer_construct(dc);
2828 
2829 	dc->caps.max_planes =  pool->base.pipe_count;
2830 
2831 	for (i = 0; i < dc->caps.max_planes; ++i)
2832 		dc->caps.planes[i] = plane_cap;
2833 
2834 	dc->cap_funcs = cap_funcs;
2835 
2836 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2837 		ddc_init_data.ctx = dc->ctx;
2838 		ddc_init_data.link = NULL;
2839 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2840 		ddc_init_data.id.enum_id = 0;
2841 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2842 		pool->base.oem_device = dal_ddc_service_create(&ddc_init_data);
2843 	} else {
2844 		pool->base.oem_device = NULL;
2845 	}
2846 
2847 	DC_FP_END();
2848 
2849 	return true;
2850 
2851 create_fail:
2852 
2853 	DC_FP_END();
2854 	dcn30_resource_destruct(pool);
2855 
2856 	return false;
2857 }
2858 
dcn30_create_resource_pool(const struct dc_init_data * init_data,struct dc * dc)2859 struct resource_pool *dcn30_create_resource_pool(
2860 		const struct dc_init_data *init_data,
2861 		struct dc *dc)
2862 {
2863 	struct dcn30_resource_pool *pool =
2864 		kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL);
2865 
2866 	if (!pool)
2867 		return NULL;
2868 
2869 	if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool))
2870 		return &pool->base;
2871 
2872 	BREAK_TO_DEBUGGER();
2873 	kfree(pool);
2874 	return NULL;
2875 }
2876