1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Driver for ETAS GmbH ES58X USB CAN(-FD) Bus Interfaces.
4  *
5  * File es58x_core.c: Core logic to manage the network devices and the
6  * USB interface.
7  *
8  * Copyright (c) 2019 Robert Bosch Engineering and Business Solutions. All rights reserved.
9  * Copyright (c) 2020 ETAS K.K.. All rights reserved.
10  * Copyright (c) 2020, 2021 Vincent Mailhol <mailhol.vincent@wanadoo.fr>
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/usb.h>
16 #include <linux/crc16.h>
17 #include <asm/unaligned.h>
18 
19 #include "es58x_core.h"
20 
21 #define DRV_VERSION "1.00"
22 MODULE_AUTHOR("Mailhol Vincent <mailhol.vincent@wanadoo.fr>");
23 MODULE_AUTHOR("Arunachalam Santhanam <arunachalam.santhanam@in.bosch.com>");
24 MODULE_DESCRIPTION("Socket CAN driver for ETAS ES58X USB adapters");
25 MODULE_VERSION(DRV_VERSION);
26 MODULE_LICENSE("GPL v2");
27 
28 #define ES58X_MODULE_NAME "etas_es58x"
29 #define ES58X_VENDOR_ID 0x108C
30 #define ES581_4_PRODUCT_ID 0x0159
31 #define ES582_1_PRODUCT_ID 0x0168
32 #define ES584_1_PRODUCT_ID 0x0169
33 
34 /* ES58X FD has some interface protocols unsupported by this driver. */
35 #define ES58X_FD_INTERFACE_PROTOCOL 0
36 
37 /* Table of devices which work with this driver. */
38 static const struct usb_device_id es58x_id_table[] = {
39 	{
40 		/* ETAS GmbH ES581.4 USB dual-channel CAN Bus Interface module. */
41 		USB_DEVICE(ES58X_VENDOR_ID, ES581_4_PRODUCT_ID),
42 		.driver_info = ES58X_DUAL_CHANNEL
43 	}, {
44 		/* ETAS GmbH ES582.1 USB dual-channel CAN FD Bus Interface module. */
45 		USB_DEVICE_INTERFACE_PROTOCOL(ES58X_VENDOR_ID, ES582_1_PRODUCT_ID,
46 					      ES58X_FD_INTERFACE_PROTOCOL),
47 		.driver_info = ES58X_DUAL_CHANNEL | ES58X_FD_FAMILY
48 	}, {
49 		/* ETAS GmbH ES584.1 USB single-channel CAN FD Bus Interface module. */
50 		USB_DEVICE_INTERFACE_PROTOCOL(ES58X_VENDOR_ID, ES584_1_PRODUCT_ID,
51 					      ES58X_FD_INTERFACE_PROTOCOL),
52 		.driver_info = ES58X_FD_FAMILY
53 	}, {
54 		/* Terminating entry */
55 	}
56 };
57 
58 MODULE_DEVICE_TABLE(usb, es58x_id_table);
59 
60 #define es58x_print_hex_dump(buf, len)					\
61 	print_hex_dump(KERN_DEBUG,					\
62 		       ES58X_MODULE_NAME " " __stringify(buf) ": ",	\
63 		       DUMP_PREFIX_NONE, 16, 1, buf, len, false)
64 
65 #define es58x_print_hex_dump_debug(buf, len)				 \
66 	print_hex_dump_debug(ES58X_MODULE_NAME " " __stringify(buf) ": ",\
67 			     DUMP_PREFIX_NONE, 16, 1, buf, len, false)
68 
69 /* The last two bytes of an ES58X command is a CRC16. The first two
70  * bytes (the start of frame) are skipped and the CRC calculation
71  * starts on the third byte.
72  */
73 #define ES58X_CRC_CALC_OFFSET 2
74 
75 /**
76  * es58x_calculate_crc() - Compute the crc16 of a given URB.
77  * @urb_cmd: The URB command for which we want to calculate the CRC.
78  * @urb_len: Length of @urb_cmd. Must be at least bigger than 4
79  *	(ES58X_CRC_CALC_OFFSET + sizeof(crc))
80  *
81  * Return: crc16 value.
82  */
es58x_calculate_crc(const union es58x_urb_cmd * urb_cmd,u16 urb_len)83 static u16 es58x_calculate_crc(const union es58x_urb_cmd *urb_cmd, u16 urb_len)
84 {
85 	u16 crc;
86 	ssize_t len = urb_len - ES58X_CRC_CALC_OFFSET - sizeof(crc);
87 
88 	crc = crc16(0, &urb_cmd->raw_cmd[ES58X_CRC_CALC_OFFSET], len);
89 	return crc;
90 }
91 
92 /**
93  * es58x_get_crc() - Get the CRC value of a given URB.
94  * @urb_cmd: The URB command for which we want to get the CRC.
95  * @urb_len: Length of @urb_cmd. Must be at least bigger than 4
96  *	(ES58X_CRC_CALC_OFFSET + sizeof(crc))
97  *
98  * Return: crc16 value.
99  */
es58x_get_crc(const union es58x_urb_cmd * urb_cmd,u16 urb_len)100 static u16 es58x_get_crc(const union es58x_urb_cmd *urb_cmd, u16 urb_len)
101 {
102 	u16 crc;
103 	const __le16 *crc_addr;
104 
105 	crc_addr = (__le16 *)&urb_cmd->raw_cmd[urb_len - sizeof(crc)];
106 	crc = get_unaligned_le16(crc_addr);
107 	return crc;
108 }
109 
110 /**
111  * es58x_set_crc() - Set the CRC value of a given URB.
112  * @urb_cmd: The URB command for which we want to get the CRC.
113  * @urb_len: Length of @urb_cmd. Must be at least bigger than 4
114  *	(ES58X_CRC_CALC_OFFSET + sizeof(crc))
115  */
es58x_set_crc(union es58x_urb_cmd * urb_cmd,u16 urb_len)116 static void es58x_set_crc(union es58x_urb_cmd *urb_cmd, u16 urb_len)
117 {
118 	u16 crc;
119 	__le16 *crc_addr;
120 
121 	crc = es58x_calculate_crc(urb_cmd, urb_len);
122 	crc_addr = (__le16 *)&urb_cmd->raw_cmd[urb_len - sizeof(crc)];
123 	put_unaligned_le16(crc, crc_addr);
124 }
125 
126 /**
127  * es58x_check_crc() - Validate the CRC value of a given URB.
128  * @es58x_dev: ES58X device.
129  * @urb_cmd: The URB command for which we want to check the CRC.
130  * @urb_len: Length of @urb_cmd. Must be at least bigger than 4
131  *	(ES58X_CRC_CALC_OFFSET + sizeof(crc))
132  *
133  * Return: zero on success, -EBADMSG if the CRC check fails.
134  */
es58x_check_crc(struct es58x_device * es58x_dev,const union es58x_urb_cmd * urb_cmd,u16 urb_len)135 static int es58x_check_crc(struct es58x_device *es58x_dev,
136 			   const union es58x_urb_cmd *urb_cmd, u16 urb_len)
137 {
138 	u16 calculated_crc = es58x_calculate_crc(urb_cmd, urb_len);
139 	u16 expected_crc = es58x_get_crc(urb_cmd, urb_len);
140 
141 	if (expected_crc != calculated_crc) {
142 		dev_err_ratelimited(es58x_dev->dev,
143 				    "%s: Bad CRC, urb_len: %d\n",
144 				    __func__, urb_len);
145 		return -EBADMSG;
146 	}
147 
148 	return 0;
149 }
150 
151 /**
152  * es58x_timestamp_to_ns() - Convert a timestamp value received from a
153  *	ES58X device to nanoseconds.
154  * @timestamp: Timestamp received from a ES58X device.
155  *
156  * The timestamp received from ES58X is expressed in multiples of 0.5
157  * micro seconds. This function converts it in to nanoseconds.
158  *
159  * Return: Timestamp value in nanoseconds.
160  */
es58x_timestamp_to_ns(u64 timestamp)161 static u64 es58x_timestamp_to_ns(u64 timestamp)
162 {
163 	const u64 es58x_timestamp_ns_mult_coef = 500ULL;
164 
165 	return es58x_timestamp_ns_mult_coef * timestamp;
166 }
167 
168 /**
169  * es58x_set_skb_timestamp() - Set the hardware timestamp of an skb.
170  * @netdev: CAN network device.
171  * @skb: socket buffer of a CAN message.
172  * @timestamp: Timestamp received from an ES58X device.
173  *
174  * Used for both received and echo messages.
175  */
es58x_set_skb_timestamp(struct net_device * netdev,struct sk_buff * skb,u64 timestamp)176 static void es58x_set_skb_timestamp(struct net_device *netdev,
177 				    struct sk_buff *skb, u64 timestamp)
178 {
179 	struct es58x_device *es58x_dev = es58x_priv(netdev)->es58x_dev;
180 	struct skb_shared_hwtstamps *hwts;
181 
182 	hwts = skb_hwtstamps(skb);
183 	/* Ignoring overflow (overflow on 64 bits timestamp with nano
184 	 * second precision would occur after more than 500 years).
185 	 */
186 	hwts->hwtstamp = ns_to_ktime(es58x_timestamp_to_ns(timestamp) +
187 				     es58x_dev->realtime_diff_ns);
188 }
189 
190 /**
191  * es58x_rx_timestamp() - Handle a received timestamp.
192  * @es58x_dev: ES58X device.
193  * @timestamp: Timestamp received from a ES58X device.
194  *
195  * Calculate the difference between the ES58X device and the kernel
196  * internal clocks. This difference will be later used as an offset to
197  * convert the timestamps of RX and echo messages to match the kernel
198  * system time (e.g. convert to UNIX time).
199  */
es58x_rx_timestamp(struct es58x_device * es58x_dev,u64 timestamp)200 void es58x_rx_timestamp(struct es58x_device *es58x_dev, u64 timestamp)
201 {
202 	u64 ktime_real_ns = ktime_get_real_ns();
203 	u64 device_timestamp = es58x_timestamp_to_ns(timestamp);
204 
205 	dev_dbg(es58x_dev->dev, "%s: request round-trip time: %llu ns\n",
206 		__func__, ktime_real_ns - es58x_dev->ktime_req_ns);
207 
208 	es58x_dev->realtime_diff_ns =
209 	    (es58x_dev->ktime_req_ns + ktime_real_ns) / 2 - device_timestamp;
210 	es58x_dev->ktime_req_ns = 0;
211 
212 	dev_dbg(es58x_dev->dev,
213 		"%s: Device timestamp: %llu, diff with kernel: %llu\n",
214 		__func__, device_timestamp, es58x_dev->realtime_diff_ns);
215 }
216 
217 /**
218  * es58x_set_realtime_diff_ns() - Calculate difference between the
219  *	clocks of the ES58X device and the kernel
220  * @es58x_dev: ES58X device.
221  *
222  * Request a timestamp from the ES58X device. Once the answer is
223  * received, the timestamp difference will be set by the callback
224  * function es58x_rx_timestamp().
225  *
226  * Return: zero on success, errno when any error occurs.
227  */
es58x_set_realtime_diff_ns(struct es58x_device * es58x_dev)228 static int es58x_set_realtime_diff_ns(struct es58x_device *es58x_dev)
229 {
230 	if (es58x_dev->ktime_req_ns) {
231 		dev_warn(es58x_dev->dev,
232 			 "%s: Previous request to set timestamp has not completed yet\n",
233 			 __func__);
234 		return -EBUSY;
235 	}
236 
237 	es58x_dev->ktime_req_ns = ktime_get_real_ns();
238 	return es58x_dev->ops->get_timestamp(es58x_dev);
239 }
240 
241 /**
242  * es58x_is_can_state_active() - Is the network device in an active
243  *	CAN state?
244  * @netdev: CAN network device.
245  *
246  * The device is considered active if it is able to send or receive
247  * CAN frames, that is to say if it is in any of
248  * CAN_STATE_ERROR_ACTIVE, CAN_STATE_ERROR_WARNING or
249  * CAN_STATE_ERROR_PASSIVE states.
250  *
251  * Caution: when recovering from a bus-off,
252  * net/core/dev.c#can_restart() will call
253  * net/core/dev.c#can_flush_echo_skb() without using any kind of
254  * locks. For this reason, it is critical to guarantee that no TX or
255  * echo operations (i.e. any access to priv->echo_skb[]) can be done
256  * while this function is returning false.
257  *
258  * Return: true if the device is active, else returns false.
259  */
es58x_is_can_state_active(struct net_device * netdev)260 static bool es58x_is_can_state_active(struct net_device *netdev)
261 {
262 	return es58x_priv(netdev)->can.state < CAN_STATE_BUS_OFF;
263 }
264 
265 /**
266  * es58x_is_echo_skb_threshold_reached() - Determine the limit of how
267  *	many skb slots can be taken before we should stop the network
268  *	queue.
269  * @priv: ES58X private parameters related to the network device.
270  *
271  * We need to save enough free skb slots in order to be able to do
272  * bulk send. This function can be used to determine when to wake or
273  * stop the network queue in regard to the number of skb slots already
274  * taken if the echo FIFO.
275  *
276  * Return: boolean.
277  */
es58x_is_echo_skb_threshold_reached(struct es58x_priv * priv)278 static bool es58x_is_echo_skb_threshold_reached(struct es58x_priv *priv)
279 {
280 	u32 num_echo_skb =  priv->tx_head - priv->tx_tail;
281 	u32 threshold = priv->can.echo_skb_max -
282 		priv->es58x_dev->param->tx_bulk_max + 1;
283 
284 	return num_echo_skb >= threshold;
285 }
286 
287 /**
288  * es58x_can_free_echo_skb_tail() - Remove the oldest echo skb of the
289  *	echo FIFO.
290  * @netdev: CAN network device.
291  *
292  * Naming convention: the tail is the beginning of the FIFO, i.e. the
293  * first skb to have entered the FIFO.
294  */
es58x_can_free_echo_skb_tail(struct net_device * netdev)295 static void es58x_can_free_echo_skb_tail(struct net_device *netdev)
296 {
297 	struct es58x_priv *priv = es58x_priv(netdev);
298 	u16 fifo_mask = priv->es58x_dev->param->fifo_mask;
299 	unsigned int frame_len = 0;
300 
301 	can_free_echo_skb(netdev, priv->tx_tail & fifo_mask, &frame_len);
302 	netdev_completed_queue(netdev, 1, frame_len);
303 
304 	priv->tx_tail++;
305 
306 	netdev->stats.tx_dropped++;
307 }
308 
309 /**
310  * es58x_can_get_echo_skb_recovery() - Try to re-sync the echo FIFO.
311  * @netdev: CAN network device.
312  * @rcv_packet_idx: Index
313  *
314  * This function should not be called under normal circumstances. In
315  * the unlikely case that one or several URB packages get dropped by
316  * the device, the index will get out of sync. Try to recover by
317  * dropping the echo skb packets with older indexes.
318  *
319  * Return: zero if recovery was successful, -EINVAL otherwise.
320  */
es58x_can_get_echo_skb_recovery(struct net_device * netdev,u32 rcv_packet_idx)321 static int es58x_can_get_echo_skb_recovery(struct net_device *netdev,
322 					   u32 rcv_packet_idx)
323 {
324 	struct es58x_priv *priv = es58x_priv(netdev);
325 	int ret = 0;
326 
327 	netdev->stats.tx_errors++;
328 
329 	if (net_ratelimit())
330 		netdev_warn(netdev,
331 			    "Bad echo packet index: %u. First index: %u, end index %u, num_echo_skb: %02u/%02u\n",
332 			    rcv_packet_idx, priv->tx_tail, priv->tx_head,
333 			    priv->tx_head - priv->tx_tail,
334 			    priv->can.echo_skb_max);
335 
336 	if ((s32)(rcv_packet_idx - priv->tx_tail) < 0) {
337 		if (net_ratelimit())
338 			netdev_warn(netdev,
339 				    "Received echo index is from the past. Ignoring it\n");
340 		ret = -EINVAL;
341 	} else if ((s32)(rcv_packet_idx - priv->tx_head) >= 0) {
342 		if (net_ratelimit())
343 			netdev_err(netdev,
344 				   "Received echo index is from the future. Ignoring it\n");
345 		ret = -EINVAL;
346 	} else {
347 		if (net_ratelimit())
348 			netdev_warn(netdev,
349 				    "Recovery: dropping %u echo skb from index %u to %u\n",
350 				    rcv_packet_idx - priv->tx_tail,
351 				    priv->tx_tail, rcv_packet_idx - 1);
352 		while (priv->tx_tail != rcv_packet_idx) {
353 			if (priv->tx_tail == priv->tx_head)
354 				return -EINVAL;
355 			es58x_can_free_echo_skb_tail(netdev);
356 		}
357 	}
358 	return ret;
359 }
360 
361 /**
362  * es58x_can_get_echo_skb() - Get the skb from the echo FIFO and loop
363  *	it back locally.
364  * @netdev: CAN network device.
365  * @rcv_packet_idx: Index of the first packet received from the device.
366  * @tstamps: Array of hardware timestamps received from a ES58X device.
367  * @pkts: Number of packets (and so, length of @tstamps).
368  *
369  * Callback function for when we receive a self reception
370  * acknowledgment.  Retrieves the skb from the echo FIFO, sets its
371  * hardware timestamp (the actual time it was sent) and loops it back
372  * locally.
373  *
374  * The device has to be active (i.e. network interface UP and not in
375  * bus off state or restarting).
376  *
377  * Packet indexes must be consecutive (i.e. index of first packet is
378  * @rcv_packet_idx, index of second packet is @rcv_packet_idx + 1 and
379  * index of last packet is @rcv_packet_idx + @pkts - 1).
380  *
381  * Return: zero on success.
382  */
es58x_can_get_echo_skb(struct net_device * netdev,u32 rcv_packet_idx,u64 * tstamps,unsigned int pkts)383 int es58x_can_get_echo_skb(struct net_device *netdev, u32 rcv_packet_idx,
384 			   u64 *tstamps, unsigned int pkts)
385 {
386 	struct es58x_priv *priv = es58x_priv(netdev);
387 	unsigned int rx_total_frame_len = 0;
388 	unsigned int num_echo_skb = priv->tx_head - priv->tx_tail;
389 	int i;
390 	u16 fifo_mask = priv->es58x_dev->param->fifo_mask;
391 
392 	if (!netif_running(netdev)) {
393 		if (net_ratelimit())
394 			netdev_info(netdev,
395 				    "%s: %s is down, dropping %d echo packets\n",
396 				    __func__, netdev->name, pkts);
397 		netdev->stats.tx_dropped += pkts;
398 		return 0;
399 	} else if (!es58x_is_can_state_active(netdev)) {
400 		if (net_ratelimit())
401 			netdev_dbg(netdev,
402 				   "Bus is off or device is restarting. Ignoring %u echo packets from index %u\n",
403 				   pkts, rcv_packet_idx);
404 		/* stats.tx_dropped will be (or was already)
405 		 * incremented by
406 		 * drivers/net/can/net/dev.c:can_flush_echo_skb().
407 		 */
408 		return 0;
409 	} else if (num_echo_skb == 0) {
410 		if (net_ratelimit())
411 			netdev_warn(netdev,
412 				    "Received %u echo packets from index: %u but echo skb queue is empty.\n",
413 				    pkts, rcv_packet_idx);
414 		netdev->stats.tx_dropped += pkts;
415 		return 0;
416 	}
417 
418 	if (priv->tx_tail != rcv_packet_idx) {
419 		if (es58x_can_get_echo_skb_recovery(netdev, rcv_packet_idx) < 0) {
420 			if (net_ratelimit())
421 				netdev_warn(netdev,
422 					    "Could not find echo skb for echo packet index: %u\n",
423 					    rcv_packet_idx);
424 			return 0;
425 		}
426 	}
427 	if (num_echo_skb < pkts) {
428 		int pkts_drop = pkts - num_echo_skb;
429 
430 		if (net_ratelimit())
431 			netdev_err(netdev,
432 				   "Received %u echo packets but have only %d echo skb. Dropping %d echo skb\n",
433 				   pkts, num_echo_skb, pkts_drop);
434 		netdev->stats.tx_dropped += pkts_drop;
435 		pkts -= pkts_drop;
436 	}
437 
438 	for (i = 0; i < pkts; i++) {
439 		unsigned int skb_idx = priv->tx_tail & fifo_mask;
440 		struct sk_buff *skb = priv->can.echo_skb[skb_idx];
441 		unsigned int frame_len = 0;
442 
443 		if (skb)
444 			es58x_set_skb_timestamp(netdev, skb, tstamps[i]);
445 
446 		netdev->stats.tx_bytes += can_get_echo_skb(netdev, skb_idx,
447 							   &frame_len);
448 		rx_total_frame_len += frame_len;
449 
450 		priv->tx_tail++;
451 	}
452 
453 	netdev_completed_queue(netdev, pkts, rx_total_frame_len);
454 	netdev->stats.tx_packets += pkts;
455 
456 	priv->err_passive_before_rtx_success = 0;
457 	if (!es58x_is_echo_skb_threshold_reached(priv))
458 		netif_wake_queue(netdev);
459 
460 	return 0;
461 }
462 
463 /**
464  * es58x_can_reset_echo_fifo() - Reset the echo FIFO.
465  * @netdev: CAN network device.
466  *
467  * The echo_skb array of struct can_priv will be flushed by
468  * drivers/net/can/dev.c:can_flush_echo_skb(). This function resets
469  * the parameters of the struct es58x_priv of our device and reset the
470  * queue (c.f. BQL).
471  */
es58x_can_reset_echo_fifo(struct net_device * netdev)472 static void es58x_can_reset_echo_fifo(struct net_device *netdev)
473 {
474 	struct es58x_priv *priv = es58x_priv(netdev);
475 
476 	priv->tx_tail = 0;
477 	priv->tx_head = 0;
478 	priv->tx_urb = NULL;
479 	priv->err_passive_before_rtx_success = 0;
480 	netdev_reset_queue(netdev);
481 }
482 
483 /**
484  * es58x_flush_pending_tx_msg() - Reset the buffer for transmission messages.
485  * @netdev: CAN network device.
486  *
487  * es58x_start_xmit() will queue up to tx_bulk_max messages in
488  * &tx_urb buffer and do a bulk send of all messages in one single URB
489  * (c.f. xmit_more flag). When the device recovers from a bus off
490  * state or when the device stops, the tx_urb buffer might still have
491  * pending messages in it and thus need to be flushed.
492  */
es58x_flush_pending_tx_msg(struct net_device * netdev)493 static void es58x_flush_pending_tx_msg(struct net_device *netdev)
494 {
495 	struct es58x_priv *priv = es58x_priv(netdev);
496 	struct es58x_device *es58x_dev = priv->es58x_dev;
497 
498 	if (priv->tx_urb) {
499 		netdev_warn(netdev, "%s: dropping %d TX messages\n",
500 			    __func__, priv->tx_can_msg_cnt);
501 		netdev->stats.tx_dropped += priv->tx_can_msg_cnt;
502 		while (priv->tx_can_msg_cnt > 0) {
503 			unsigned int frame_len = 0;
504 			u16 fifo_mask = priv->es58x_dev->param->fifo_mask;
505 
506 			priv->tx_head--;
507 			priv->tx_can_msg_cnt--;
508 			can_free_echo_skb(netdev, priv->tx_head & fifo_mask,
509 					  &frame_len);
510 			netdev_completed_queue(netdev, 1, frame_len);
511 		}
512 		usb_anchor_urb(priv->tx_urb, &priv->es58x_dev->tx_urbs_idle);
513 		atomic_inc(&es58x_dev->tx_urbs_idle_cnt);
514 		usb_free_urb(priv->tx_urb);
515 	}
516 	priv->tx_urb = NULL;
517 }
518 
519 /**
520  * es58x_tx_ack_msg() - Handle acknowledgment messages.
521  * @netdev: CAN network device.
522  * @tx_free_entries: Number of free entries in the device transmit FIFO.
523  * @rx_cmd_ret_u32: error code as returned by the ES58X device.
524  *
525  * ES58X sends an acknowledgment message after a transmission request
526  * is done. This is mandatory for the ES581.4 but is optional (and
527  * deactivated in this driver) for the ES58X_FD family.
528  *
529  * Under normal circumstances, this function should never throw an
530  * error message.
531  *
532  * Return: zero on success, errno when any error occurs.
533  */
es58x_tx_ack_msg(struct net_device * netdev,u16 tx_free_entries,enum es58x_ret_u32 rx_cmd_ret_u32)534 int es58x_tx_ack_msg(struct net_device *netdev, u16 tx_free_entries,
535 		     enum es58x_ret_u32 rx_cmd_ret_u32)
536 {
537 	struct es58x_priv *priv = es58x_priv(netdev);
538 
539 	if (tx_free_entries <= priv->es58x_dev->param->tx_bulk_max) {
540 		if (net_ratelimit())
541 			netdev_err(netdev,
542 				   "Only %d entries left in device queue, num_echo_skb: %d/%d\n",
543 				   tx_free_entries,
544 				   priv->tx_head - priv->tx_tail,
545 				   priv->can.echo_skb_max);
546 		netif_stop_queue(netdev);
547 	}
548 
549 	return es58x_rx_cmd_ret_u32(netdev, ES58X_RET_TYPE_TX_MSG,
550 				    rx_cmd_ret_u32);
551 }
552 
553 /**
554  * es58x_rx_can_msg() - Handle a received a CAN message.
555  * @netdev: CAN network device.
556  * @timestamp: Hardware time stamp (only relevant in rx branches).
557  * @data: CAN payload.
558  * @can_id: CAN ID.
559  * @es58x_flags: Please refer to enum es58x_flag.
560  * @dlc: Data Length Code (raw value).
561  *
562  * Fill up a CAN skb and post it.
563  *
564  * This function handles the case where the DLC of a classical CAN
565  * frame is greater than CAN_MAX_DLEN (c.f. the len8_dlc field of
566  * struct can_frame).
567  *
568  * Return: zero on success.
569  */
es58x_rx_can_msg(struct net_device * netdev,u64 timestamp,const u8 * data,canid_t can_id,enum es58x_flag es58x_flags,u8 dlc)570 int es58x_rx_can_msg(struct net_device *netdev, u64 timestamp, const u8 *data,
571 		     canid_t can_id, enum es58x_flag es58x_flags, u8 dlc)
572 {
573 	struct canfd_frame *cfd;
574 	struct can_frame *ccf;
575 	struct sk_buff *skb;
576 	u8 len;
577 	bool is_can_fd = !!(es58x_flags & ES58X_FLAG_FD_DATA);
578 
579 	if (dlc > CAN_MAX_RAW_DLC) {
580 		netdev_err(netdev,
581 			   "%s: DLC is %d but maximum should be %d\n",
582 			   __func__, dlc, CAN_MAX_RAW_DLC);
583 		return -EMSGSIZE;
584 	}
585 
586 	if (is_can_fd) {
587 		len = can_fd_dlc2len(dlc);
588 		skb = alloc_canfd_skb(netdev, &cfd);
589 	} else {
590 		len = can_cc_dlc2len(dlc);
591 		skb = alloc_can_skb(netdev, &ccf);
592 		cfd = (struct canfd_frame *)ccf;
593 	}
594 	if (!skb) {
595 		netdev->stats.rx_dropped++;
596 		return 0;
597 	}
598 
599 	cfd->can_id = can_id;
600 	if (es58x_flags & ES58X_FLAG_EFF)
601 		cfd->can_id |= CAN_EFF_FLAG;
602 	if (is_can_fd) {
603 		cfd->len = len;
604 		if (es58x_flags & ES58X_FLAG_FD_BRS)
605 			cfd->flags |= CANFD_BRS;
606 		if (es58x_flags & ES58X_FLAG_FD_ESI)
607 			cfd->flags |= CANFD_ESI;
608 	} else {
609 		can_frame_set_cc_len(ccf, dlc, es58x_priv(netdev)->can.ctrlmode);
610 		if (es58x_flags & ES58X_FLAG_RTR) {
611 			ccf->can_id |= CAN_RTR_FLAG;
612 			len = 0;
613 		}
614 	}
615 	memcpy(cfd->data, data, len);
616 	netdev->stats.rx_packets++;
617 	netdev->stats.rx_bytes += len;
618 
619 	es58x_set_skb_timestamp(netdev, skb, timestamp);
620 	netif_rx(skb);
621 
622 	es58x_priv(netdev)->err_passive_before_rtx_success = 0;
623 
624 	return 0;
625 }
626 
627 /**
628  * es58x_rx_err_msg() - Handle a received CAN event or error message.
629  * @netdev: CAN network device.
630  * @error: Error code.
631  * @event: Event code.
632  * @timestamp: Timestamp received from a ES58X device.
633  *
634  * Handle the errors and events received by the ES58X device, create
635  * a CAN error skb and post it.
636  *
637  * In some rare cases the devices might get stuck alternating between
638  * CAN_STATE_ERROR_PASSIVE and CAN_STATE_ERROR_WARNING. To prevent
639  * this behavior, we force a bus off state if the device goes in
640  * CAN_STATE_ERROR_WARNING for ES58X_MAX_CONSECUTIVE_WARN consecutive
641  * times with no successful transmission or reception in between.
642  *
643  * Once the device is in bus off state, the only way to restart it is
644  * through the drivers/net/can/dev.c:can_restart() function. The
645  * device is technically capable to recover by itself under certain
646  * circumstances, however, allowing self recovery would create
647  * complex race conditions with drivers/net/can/dev.c:can_restart()
648  * and thus was not implemented. To activate automatic restart, please
649  * set the restart-ms parameter (e.g. ip link set can0 type can
650  * restart-ms 100).
651  *
652  * If the bus is really instable, this function would try to send a
653  * lot of log messages. Those are rate limited (i.e. you will see
654  * messages such as "net_ratelimit: XXX callbacks suppressed" in
655  * dmesg).
656  *
657  * Return: zero on success, errno when any error occurs.
658  */
es58x_rx_err_msg(struct net_device * netdev,enum es58x_err error,enum es58x_event event,u64 timestamp)659 int es58x_rx_err_msg(struct net_device *netdev, enum es58x_err error,
660 		     enum es58x_event event, u64 timestamp)
661 {
662 	struct es58x_priv *priv = es58x_priv(netdev);
663 	struct can_priv *can = netdev_priv(netdev);
664 	struct can_device_stats *can_stats = &can->can_stats;
665 	struct can_frame *cf = NULL;
666 	struct sk_buff *skb;
667 	int ret;
668 
669 	if (!netif_running(netdev)) {
670 		if (net_ratelimit())
671 			netdev_info(netdev, "%s: %s is down, dropping packet\n",
672 				    __func__, netdev->name);
673 		netdev->stats.rx_dropped++;
674 		return 0;
675 	}
676 
677 	if (error == ES58X_ERR_OK && event == ES58X_EVENT_OK) {
678 		netdev_err(netdev, "%s: Both error and event are zero\n",
679 			   __func__);
680 		return -EINVAL;
681 	}
682 
683 	skb = alloc_can_err_skb(netdev, &cf);
684 
685 	switch (error) {
686 	case ES58X_ERR_OK:	/* 0: No error */
687 		break;
688 
689 	case ES58X_ERR_PROT_STUFF:
690 		if (net_ratelimit())
691 			netdev_dbg(netdev, "Error BITSTUFF\n");
692 		if (cf)
693 			cf->data[2] |= CAN_ERR_PROT_STUFF;
694 		break;
695 
696 	case ES58X_ERR_PROT_FORM:
697 		if (net_ratelimit())
698 			netdev_dbg(netdev, "Error FORMAT\n");
699 		if (cf)
700 			cf->data[2] |= CAN_ERR_PROT_FORM;
701 		break;
702 
703 	case ES58X_ERR_ACK:
704 		if (net_ratelimit())
705 			netdev_dbg(netdev, "Error ACK\n");
706 		if (cf)
707 			cf->can_id |= CAN_ERR_ACK;
708 		break;
709 
710 	case ES58X_ERR_PROT_BIT:
711 		if (net_ratelimit())
712 			netdev_dbg(netdev, "Error BIT\n");
713 		if (cf)
714 			cf->data[2] |= CAN_ERR_PROT_BIT;
715 		break;
716 
717 	case ES58X_ERR_PROT_CRC:
718 		if (net_ratelimit())
719 			netdev_dbg(netdev, "Error CRC\n");
720 		if (cf)
721 			cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
722 		break;
723 
724 	case ES58X_ERR_PROT_BIT1:
725 		if (net_ratelimit())
726 			netdev_dbg(netdev,
727 				   "Error: expected a recessive bit but monitored a dominant one\n");
728 		if (cf)
729 			cf->data[2] |= CAN_ERR_PROT_BIT1;
730 		break;
731 
732 	case ES58X_ERR_PROT_BIT0:
733 		if (net_ratelimit())
734 			netdev_dbg(netdev,
735 				   "Error expected a dominant bit but monitored a recessive one\n");
736 		if (cf)
737 			cf->data[2] |= CAN_ERR_PROT_BIT0;
738 		break;
739 
740 	case ES58X_ERR_PROT_OVERLOAD:
741 		if (net_ratelimit())
742 			netdev_dbg(netdev, "Error OVERLOAD\n");
743 		if (cf)
744 			cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
745 		break;
746 
747 	case ES58X_ERR_PROT_UNSPEC:
748 		if (net_ratelimit())
749 			netdev_dbg(netdev, "Unspecified error\n");
750 		if (cf)
751 			cf->can_id |= CAN_ERR_PROT;
752 		break;
753 
754 	default:
755 		if (net_ratelimit())
756 			netdev_err(netdev,
757 				   "%s: Unspecified error code 0x%04X\n",
758 				   __func__, (int)error);
759 		if (cf)
760 			cf->can_id |= CAN_ERR_PROT;
761 		break;
762 	}
763 
764 	switch (event) {
765 	case ES58X_EVENT_OK:	/* 0: No event */
766 		break;
767 
768 	case ES58X_EVENT_CRTL_ACTIVE:
769 		if (can->state == CAN_STATE_BUS_OFF) {
770 			netdev_err(netdev,
771 				   "%s: state transition: BUS OFF -> ACTIVE\n",
772 				   __func__);
773 		}
774 		if (net_ratelimit())
775 			netdev_dbg(netdev, "Event CAN BUS ACTIVE\n");
776 		if (cf)
777 			cf->data[1] |= CAN_ERR_CRTL_ACTIVE;
778 		can->state = CAN_STATE_ERROR_ACTIVE;
779 		break;
780 
781 	case ES58X_EVENT_CRTL_PASSIVE:
782 		if (net_ratelimit())
783 			netdev_dbg(netdev, "Event CAN BUS PASSIVE\n");
784 		/* Either TX or RX error count reached passive state
785 		 * but we do not know which. Setting both flags by
786 		 * default.
787 		 */
788 		if (cf) {
789 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
790 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
791 		}
792 		if (can->state < CAN_STATE_BUS_OFF)
793 			can->state = CAN_STATE_ERROR_PASSIVE;
794 		can_stats->error_passive++;
795 		if (priv->err_passive_before_rtx_success < U8_MAX)
796 			priv->err_passive_before_rtx_success++;
797 		break;
798 
799 	case ES58X_EVENT_CRTL_WARNING:
800 		if (net_ratelimit())
801 			netdev_dbg(netdev, "Event CAN BUS WARNING\n");
802 		/* Either TX or RX error count reached warning state
803 		 * but we do not know which. Setting both flags by
804 		 * default.
805 		 */
806 		if (cf) {
807 			cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
808 			cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
809 		}
810 		if (can->state < CAN_STATE_BUS_OFF)
811 			can->state = CAN_STATE_ERROR_WARNING;
812 		can_stats->error_warning++;
813 		break;
814 
815 	case ES58X_EVENT_BUSOFF:
816 		if (net_ratelimit())
817 			netdev_dbg(netdev, "Event CAN BUS OFF\n");
818 		if (cf)
819 			cf->can_id |= CAN_ERR_BUSOFF;
820 		can_stats->bus_off++;
821 		netif_stop_queue(netdev);
822 		if (can->state != CAN_STATE_BUS_OFF) {
823 			can->state = CAN_STATE_BUS_OFF;
824 			can_bus_off(netdev);
825 			ret = can->do_set_mode(netdev, CAN_MODE_STOP);
826 			if (ret)
827 				return ret;
828 		}
829 		break;
830 
831 	case ES58X_EVENT_SINGLE_WIRE:
832 		if (net_ratelimit())
833 			netdev_warn(netdev,
834 				    "Lost connection on either CAN high or CAN low\n");
835 		/* Lost connection on either CAN high or CAN
836 		 * low. Setting both flags by default.
837 		 */
838 		if (cf) {
839 			cf->data[4] |= CAN_ERR_TRX_CANH_NO_WIRE;
840 			cf->data[4] |= CAN_ERR_TRX_CANL_NO_WIRE;
841 		}
842 		break;
843 
844 	default:
845 		if (net_ratelimit())
846 			netdev_err(netdev,
847 				   "%s: Unspecified event code 0x%04X\n",
848 				   __func__, (int)event);
849 		if (cf)
850 			cf->can_id |= CAN_ERR_CRTL;
851 		break;
852 	}
853 
854 	/* driver/net/can/dev.c:can_restart() takes in account error
855 	 * messages in the RX stats. Doing the same here for
856 	 * consistency.
857 	 */
858 	netdev->stats.rx_packets++;
859 	netdev->stats.rx_bytes += CAN_ERR_DLC;
860 
861 	if (cf) {
862 		if (cf->data[1])
863 			cf->can_id |= CAN_ERR_CRTL;
864 		if (cf->data[2] || cf->data[3]) {
865 			cf->can_id |= CAN_ERR_PROT;
866 			can_stats->bus_error++;
867 		}
868 		if (cf->data[4])
869 			cf->can_id |= CAN_ERR_TRX;
870 
871 		es58x_set_skb_timestamp(netdev, skb, timestamp);
872 		netif_rx(skb);
873 	}
874 
875 	if ((event & ES58X_EVENT_CRTL_PASSIVE) &&
876 	    priv->err_passive_before_rtx_success == ES58X_CONSECUTIVE_ERR_PASSIVE_MAX) {
877 		netdev_info(netdev,
878 			    "Got %d consecutive warning events with no successful RX or TX. Forcing bus-off\n",
879 			    priv->err_passive_before_rtx_success);
880 		return es58x_rx_err_msg(netdev, ES58X_ERR_OK,
881 					ES58X_EVENT_BUSOFF, timestamp);
882 	}
883 
884 	return 0;
885 }
886 
887 /**
888  * es58x_cmd_ret_desc() - Convert a command type to a string.
889  * @cmd_ret_type: Type of the command which triggered the return code.
890  *
891  * The final line (return "<unknown>") should not be reached. If this
892  * is the case, there is an implementation bug.
893  *
894  * Return: a readable description of the @cmd_ret_type.
895  */
es58x_cmd_ret_desc(enum es58x_ret_type cmd_ret_type)896 static const char *es58x_cmd_ret_desc(enum es58x_ret_type cmd_ret_type)
897 {
898 	switch (cmd_ret_type) {
899 	case ES58X_RET_TYPE_SET_BITTIMING:
900 		return "Set bittiming";
901 	case ES58X_RET_TYPE_ENABLE_CHANNEL:
902 		return "Enable channel";
903 	case ES58X_RET_TYPE_DISABLE_CHANNEL:
904 		return "Disable channel";
905 	case ES58X_RET_TYPE_TX_MSG:
906 		return "Transmit message";
907 	case ES58X_RET_TYPE_RESET_RX:
908 		return "Reset RX";
909 	case ES58X_RET_TYPE_RESET_TX:
910 		return "Reset TX";
911 	case ES58X_RET_TYPE_DEVICE_ERR:
912 		return "Device error";
913 	}
914 
915 	return "<unknown>";
916 };
917 
918 /**
919  * es58x_rx_cmd_ret_u8() - Handle the command's return code received
920  *	from the ES58X device.
921  * @dev: Device, only used for the dev_XXX() print functions.
922  * @cmd_ret_type: Type of the command which triggered the return code.
923  * @rx_cmd_ret_u8: Command error code as returned by the ES58X device.
924  *
925  * Handles the 8 bits command return code. Those are specific to the
926  * ES581.4 device. The return value will eventually be used by
927  * es58x_handle_urb_cmd() function which will take proper actions in
928  * case of critical issues such and memory errors or bad CRC values.
929  *
930  * In contrast with es58x_rx_cmd_ret_u32(), the network device is
931  * unknown.
932  *
933  * Return: zero on success, return errno when any error occurs.
934  */
es58x_rx_cmd_ret_u8(struct device * dev,enum es58x_ret_type cmd_ret_type,enum es58x_ret_u8 rx_cmd_ret_u8)935 int es58x_rx_cmd_ret_u8(struct device *dev,
936 			enum es58x_ret_type cmd_ret_type,
937 			enum es58x_ret_u8 rx_cmd_ret_u8)
938 {
939 	const char *ret_desc = es58x_cmd_ret_desc(cmd_ret_type);
940 
941 	switch (rx_cmd_ret_u8) {
942 	case ES58X_RET_U8_OK:
943 		dev_dbg_ratelimited(dev, "%s: OK\n", ret_desc);
944 		return 0;
945 
946 	case ES58X_RET_U8_ERR_UNSPECIFIED_FAILURE:
947 		dev_err(dev, "%s: unspecified failure\n", ret_desc);
948 		return -EBADMSG;
949 
950 	case ES58X_RET_U8_ERR_NO_MEM:
951 		dev_err(dev, "%s: device ran out of memory\n", ret_desc);
952 		return -ENOMEM;
953 
954 	case ES58X_RET_U8_ERR_BAD_CRC:
955 		dev_err(dev, "%s: CRC of previous command is incorrect\n",
956 			ret_desc);
957 		return -EIO;
958 
959 	default:
960 		dev_err(dev, "%s: returned unknown value: 0x%02X\n",
961 			ret_desc, rx_cmd_ret_u8);
962 		return -EBADMSG;
963 	}
964 }
965 
966 /**
967  * es58x_rx_cmd_ret_u32() - Handle the command return code received
968  *	from the ES58X device.
969  * @netdev: CAN network device.
970  * @cmd_ret_type: Type of the command which triggered the return code.
971  * @rx_cmd_ret_u32: error code as returned by the ES58X device.
972  *
973  * Handles the 32 bits command return code. The return value will
974  * eventually be used by es58x_handle_urb_cmd() function which will
975  * take proper actions in case of critical issues such and memory
976  * errors or bad CRC values.
977  *
978  * Return: zero on success, errno when any error occurs.
979  */
es58x_rx_cmd_ret_u32(struct net_device * netdev,enum es58x_ret_type cmd_ret_type,enum es58x_ret_u32 rx_cmd_ret_u32)980 int es58x_rx_cmd_ret_u32(struct net_device *netdev,
981 			 enum es58x_ret_type cmd_ret_type,
982 			 enum es58x_ret_u32 rx_cmd_ret_u32)
983 {
984 	struct es58x_priv *priv = es58x_priv(netdev);
985 	const struct es58x_operators *ops = priv->es58x_dev->ops;
986 	const char *ret_desc = es58x_cmd_ret_desc(cmd_ret_type);
987 
988 	switch (rx_cmd_ret_u32) {
989 	case ES58X_RET_U32_OK:
990 		switch (cmd_ret_type) {
991 		case ES58X_RET_TYPE_ENABLE_CHANNEL:
992 			es58x_can_reset_echo_fifo(netdev);
993 			priv->can.state = CAN_STATE_ERROR_ACTIVE;
994 			netif_wake_queue(netdev);
995 			netdev_info(netdev,
996 				    "%s: %s (Serial Number %s): CAN%d channel becomes ready\n",
997 				    ret_desc, priv->es58x_dev->udev->product,
998 				    priv->es58x_dev->udev->serial,
999 				    priv->channel_idx + 1);
1000 			break;
1001 
1002 		case ES58X_RET_TYPE_TX_MSG:
1003 			if (IS_ENABLED(CONFIG_VERBOSE_DEBUG) && net_ratelimit())
1004 				netdev_vdbg(netdev, "%s: OK\n", ret_desc);
1005 			break;
1006 
1007 		default:
1008 			netdev_dbg(netdev, "%s: OK\n", ret_desc);
1009 			break;
1010 		}
1011 		return 0;
1012 
1013 	case ES58X_RET_U32_ERR_UNSPECIFIED_FAILURE:
1014 		if (cmd_ret_type == ES58X_RET_TYPE_ENABLE_CHANNEL) {
1015 			int ret;
1016 
1017 			netdev_warn(netdev,
1018 				    "%s: channel is already opened, closing and re-opening it to reflect new configuration\n",
1019 				    ret_desc);
1020 			ret = ops->disable_channel(es58x_priv(netdev));
1021 			if (ret)
1022 				return ret;
1023 			return ops->enable_channel(es58x_priv(netdev));
1024 		}
1025 		if (cmd_ret_type == ES58X_RET_TYPE_DISABLE_CHANNEL) {
1026 			netdev_info(netdev,
1027 				    "%s: channel is already closed\n", ret_desc);
1028 			return 0;
1029 		}
1030 		netdev_err(netdev,
1031 			   "%s: unspecified failure\n", ret_desc);
1032 		return -EBADMSG;
1033 
1034 	case ES58X_RET_U32_ERR_NO_MEM:
1035 		netdev_err(netdev, "%s: device ran out of memory\n", ret_desc);
1036 		return -ENOMEM;
1037 
1038 	case ES58X_RET_U32_WARN_PARAM_ADJUSTED:
1039 		netdev_warn(netdev,
1040 			    "%s: some incompatible parameters have been adjusted\n",
1041 			    ret_desc);
1042 		return 0;
1043 
1044 	case ES58X_RET_U32_WARN_TX_MAYBE_REORDER:
1045 		netdev_warn(netdev,
1046 			    "%s: TX messages might have been reordered\n",
1047 			    ret_desc);
1048 		return 0;
1049 
1050 	case ES58X_RET_U32_ERR_TIMEDOUT:
1051 		netdev_err(netdev, "%s: command timed out\n", ret_desc);
1052 		return -ETIMEDOUT;
1053 
1054 	case ES58X_RET_U32_ERR_FIFO_FULL:
1055 		netdev_warn(netdev, "%s: fifo is full\n", ret_desc);
1056 		return 0;
1057 
1058 	case ES58X_RET_U32_ERR_BAD_CONFIG:
1059 		netdev_err(netdev, "%s: bad configuration\n", ret_desc);
1060 		return -EINVAL;
1061 
1062 	case ES58X_RET_U32_ERR_NO_RESOURCE:
1063 		netdev_err(netdev, "%s: no resource available\n", ret_desc);
1064 		return -EBUSY;
1065 
1066 	default:
1067 		netdev_err(netdev, "%s returned unknown value: 0x%08X\n",
1068 			   ret_desc, rx_cmd_ret_u32);
1069 		return -EBADMSG;
1070 	}
1071 }
1072 
1073 /**
1074  * es58x_increment_rx_errors() - Increment the network devices' error
1075  *	count.
1076  * @es58x_dev: ES58X device.
1077  *
1078  * If an error occurs on the early stages on receiving an URB command,
1079  * we might not be able to figure out on which network device the
1080  * error occurred. In such case, we arbitrarily increment the error
1081  * count of all the network devices attached to our ES58X device.
1082  */
es58x_increment_rx_errors(struct es58x_device * es58x_dev)1083 static void es58x_increment_rx_errors(struct es58x_device *es58x_dev)
1084 {
1085 	int i;
1086 
1087 	for (i = 0; i < es58x_dev->num_can_ch; i++)
1088 		if (es58x_dev->netdev[i])
1089 			es58x_dev->netdev[i]->stats.rx_errors++;
1090 }
1091 
1092 /**
1093  * es58x_handle_urb_cmd() - Handle the URB command
1094  * @es58x_dev: ES58X device.
1095  * @urb_cmd: The URB command received from the ES58X device, might not
1096  *	be aligned.
1097  *
1098  * Sends the URB command to the device specific function. Manages the
1099  * errors thrown back by those functions.
1100  */
es58x_handle_urb_cmd(struct es58x_device * es58x_dev,const union es58x_urb_cmd * urb_cmd)1101 static void es58x_handle_urb_cmd(struct es58x_device *es58x_dev,
1102 				 const union es58x_urb_cmd *urb_cmd)
1103 {
1104 	const struct es58x_operators *ops = es58x_dev->ops;
1105 	size_t cmd_len;
1106 	int i, ret;
1107 
1108 	ret = ops->handle_urb_cmd(es58x_dev, urb_cmd);
1109 	switch (ret) {
1110 	case 0:		/* OK */
1111 		return;
1112 
1113 	case -ENODEV:
1114 		dev_err_ratelimited(es58x_dev->dev, "Device is not ready\n");
1115 		break;
1116 
1117 	case -EINVAL:
1118 	case -EMSGSIZE:
1119 	case -EBADRQC:
1120 	case -EBADMSG:
1121 	case -ECHRNG:
1122 	case -ETIMEDOUT:
1123 		cmd_len = es58x_get_urb_cmd_len(es58x_dev,
1124 						ops->get_msg_len(urb_cmd));
1125 		dev_err(es58x_dev->dev,
1126 			"ops->handle_urb_cmd() returned error %pe",
1127 			ERR_PTR(ret));
1128 		es58x_print_hex_dump(urb_cmd, cmd_len);
1129 		break;
1130 
1131 	case -EFAULT:
1132 	case -ENOMEM:
1133 	case -EIO:
1134 	default:
1135 		dev_crit(es58x_dev->dev,
1136 			 "ops->handle_urb_cmd() returned error %pe, detaching all network devices\n",
1137 			 ERR_PTR(ret));
1138 		for (i = 0; i < es58x_dev->num_can_ch; i++)
1139 			if (es58x_dev->netdev[i])
1140 				netif_device_detach(es58x_dev->netdev[i]);
1141 		if (es58x_dev->ops->reset_device)
1142 			es58x_dev->ops->reset_device(es58x_dev);
1143 		break;
1144 	}
1145 
1146 	/* Because the urb command could not fully be parsed,
1147 	 * channel_id is not confirmed. Incrementing rx_errors count
1148 	 * of all channels.
1149 	 */
1150 	es58x_increment_rx_errors(es58x_dev);
1151 }
1152 
1153 /**
1154  * es58x_check_rx_urb() - Check the length and format of the URB command.
1155  * @es58x_dev: ES58X device.
1156  * @urb_cmd: The URB command received from the ES58X device, might not
1157  *	be aligned.
1158  * @urb_actual_len: The actual length of the URB command.
1159  *
1160  * Check if the first message of the received urb is valid, that is to
1161  * say that both the header and the length are coherent.
1162  *
1163  * Return:
1164  * the length of the first message of the URB on success.
1165  *
1166  * -ENODATA if the URB command is incomplete (in which case, the URB
1167  * command should be buffered and combined with the next URB to try to
1168  * reconstitute the URB command).
1169  *
1170  * -EOVERFLOW if the length is bigger than the maximum expected one.
1171  *
1172  * -EBADRQC if the start of frame does not match the expected value.
1173  */
es58x_check_rx_urb(struct es58x_device * es58x_dev,const union es58x_urb_cmd * urb_cmd,u32 urb_actual_len)1174 static signed int es58x_check_rx_urb(struct es58x_device *es58x_dev,
1175 				     const union es58x_urb_cmd *urb_cmd,
1176 				     u32 urb_actual_len)
1177 {
1178 	const struct device *dev = es58x_dev->dev;
1179 	const struct es58x_parameters *param = es58x_dev->param;
1180 	u16 sof, msg_len;
1181 	signed int urb_cmd_len, ret;
1182 
1183 	if (urb_actual_len < param->urb_cmd_header_len) {
1184 		dev_vdbg(dev,
1185 			 "%s: Received %d bytes [%*ph]: header incomplete\n",
1186 			 __func__, urb_actual_len, urb_actual_len,
1187 			 urb_cmd->raw_cmd);
1188 		return -ENODATA;
1189 	}
1190 
1191 	sof = get_unaligned_le16(&urb_cmd->sof);
1192 	if (sof != param->rx_start_of_frame) {
1193 		dev_err_ratelimited(es58x_dev->dev,
1194 				    "%s: Expected sequence 0x%04X for start of frame but got 0x%04X.\n",
1195 				    __func__, param->rx_start_of_frame, sof);
1196 		return -EBADRQC;
1197 	}
1198 
1199 	msg_len = es58x_dev->ops->get_msg_len(urb_cmd);
1200 	urb_cmd_len = es58x_get_urb_cmd_len(es58x_dev, msg_len);
1201 	if (urb_cmd_len > param->rx_urb_cmd_max_len) {
1202 		dev_err_ratelimited(es58x_dev->dev,
1203 				    "%s: Biggest expected size for rx urb_cmd is %u but receive a command of size %d\n",
1204 				    __func__,
1205 				    param->rx_urb_cmd_max_len, urb_cmd_len);
1206 		return -EOVERFLOW;
1207 	} else if (urb_actual_len < urb_cmd_len) {
1208 		dev_vdbg(dev, "%s: Received %02d/%02d bytes\n",
1209 			 __func__, urb_actual_len, urb_cmd_len);
1210 		return -ENODATA;
1211 	}
1212 
1213 	ret = es58x_check_crc(es58x_dev, urb_cmd, urb_cmd_len);
1214 	if (ret)
1215 		return ret;
1216 
1217 	return urb_cmd_len;
1218 }
1219 
1220 /**
1221  * es58x_copy_to_cmd_buf() - Copy an array to the URB command buffer.
1222  * @es58x_dev: ES58X device.
1223  * @raw_cmd: the buffer we want to copy.
1224  * @raw_cmd_len: length of @raw_cmd.
1225  *
1226  * Concatenates @raw_cmd_len bytes of @raw_cmd to the end of the URB
1227  * command buffer.
1228  *
1229  * Return: zero on success, -EMSGSIZE if not enough space is available
1230  * to do the copy.
1231  */
es58x_copy_to_cmd_buf(struct es58x_device * es58x_dev,u8 * raw_cmd,int raw_cmd_len)1232 static int es58x_copy_to_cmd_buf(struct es58x_device *es58x_dev,
1233 				 u8 *raw_cmd, int raw_cmd_len)
1234 {
1235 	if (es58x_dev->rx_cmd_buf_len + raw_cmd_len >
1236 	    es58x_dev->param->rx_urb_cmd_max_len)
1237 		return -EMSGSIZE;
1238 
1239 	memcpy(&es58x_dev->rx_cmd_buf.raw_cmd[es58x_dev->rx_cmd_buf_len],
1240 	       raw_cmd, raw_cmd_len);
1241 	es58x_dev->rx_cmd_buf_len += raw_cmd_len;
1242 
1243 	return 0;
1244 }
1245 
1246 /**
1247  * es58x_split_urb_try_recovery() - Try to recover bad URB sequences.
1248  * @es58x_dev: ES58X device.
1249  * @raw_cmd: pointer to the buffer we want to copy.
1250  * @raw_cmd_len: length of @raw_cmd.
1251  *
1252  * Under some rare conditions, we might get incorrect URBs from the
1253  * device. From our observations, one of the valid URB gets replaced
1254  * by one from the past. The full root cause is not identified.
1255  *
1256  * This function looks for the next start of frame in the urb buffer
1257  * in order to try to recover.
1258  *
1259  * Such behavior was not observed on the devices of the ES58X FD
1260  * family and only seems to impact the ES581.4.
1261  *
1262  * Return: the number of bytes dropped on success, -EBADMSG if recovery failed.
1263  */
es58x_split_urb_try_recovery(struct es58x_device * es58x_dev,u8 * raw_cmd,size_t raw_cmd_len)1264 static int es58x_split_urb_try_recovery(struct es58x_device *es58x_dev,
1265 					u8 *raw_cmd, size_t raw_cmd_len)
1266 {
1267 	union es58x_urb_cmd *urb_cmd;
1268 	signed int urb_cmd_len;
1269 	u16 sof;
1270 	int dropped_bytes = 0;
1271 
1272 	es58x_increment_rx_errors(es58x_dev);
1273 
1274 	while (raw_cmd_len > sizeof(sof)) {
1275 		urb_cmd = (union es58x_urb_cmd *)raw_cmd;
1276 		sof = get_unaligned_le16(&urb_cmd->sof);
1277 
1278 		if (sof == es58x_dev->param->rx_start_of_frame) {
1279 			urb_cmd_len = es58x_check_rx_urb(es58x_dev,
1280 							 urb_cmd, raw_cmd_len);
1281 			if ((urb_cmd_len == -ENODATA) || urb_cmd_len > 0) {
1282 				dev_info_ratelimited(es58x_dev->dev,
1283 						     "Recovery successful! Dropped %d bytes (urb_cmd_len: %d)\n",
1284 						     dropped_bytes,
1285 						     urb_cmd_len);
1286 				return dropped_bytes;
1287 			}
1288 		}
1289 		raw_cmd++;
1290 		raw_cmd_len--;
1291 		dropped_bytes++;
1292 	}
1293 
1294 	dev_warn_ratelimited(es58x_dev->dev, "%s: Recovery failed\n", __func__);
1295 	return -EBADMSG;
1296 }
1297 
1298 /**
1299  * es58x_handle_incomplete_cmd() - Reconstitute an URB command from
1300  *	different URB pieces.
1301  * @es58x_dev: ES58X device.
1302  * @urb: last urb buffer received.
1303  *
1304  * The device might split the URB commands in an arbitrary amount of
1305  * pieces. This function concatenates those in an URB buffer until a
1306  * full URB command is reconstituted and consume it.
1307  *
1308  * Return:
1309  * number of bytes consumed from @urb if successful.
1310  *
1311  * -ENODATA if the URB command is still incomplete.
1312  *
1313  * -EBADMSG if the URB command is incorrect.
1314  */
es58x_handle_incomplete_cmd(struct es58x_device * es58x_dev,struct urb * urb)1315 static signed int es58x_handle_incomplete_cmd(struct es58x_device *es58x_dev,
1316 					      struct urb *urb)
1317 {
1318 	size_t cpy_len;
1319 	signed int urb_cmd_len, tmp_cmd_buf_len, ret;
1320 
1321 	tmp_cmd_buf_len = es58x_dev->rx_cmd_buf_len;
1322 	cpy_len = min_t(int, es58x_dev->param->rx_urb_cmd_max_len -
1323 			es58x_dev->rx_cmd_buf_len, urb->actual_length);
1324 	ret = es58x_copy_to_cmd_buf(es58x_dev, urb->transfer_buffer, cpy_len);
1325 	if (ret < 0)
1326 		return ret;
1327 
1328 	urb_cmd_len = es58x_check_rx_urb(es58x_dev, &es58x_dev->rx_cmd_buf,
1329 					 es58x_dev->rx_cmd_buf_len);
1330 	if (urb_cmd_len == -ENODATA) {
1331 		return -ENODATA;
1332 	} else if (urb_cmd_len < 0) {
1333 		dev_err_ratelimited(es58x_dev->dev,
1334 				    "Could not reconstitute incomplete command from previous URB, dropping %d bytes\n",
1335 				    tmp_cmd_buf_len + urb->actual_length);
1336 		dev_err_ratelimited(es58x_dev->dev,
1337 				    "Error code: %pe, es58x_dev->rx_cmd_buf_len: %d, urb->actual_length: %u\n",
1338 				    ERR_PTR(urb_cmd_len),
1339 				    tmp_cmd_buf_len, urb->actual_length);
1340 		es58x_print_hex_dump(&es58x_dev->rx_cmd_buf, tmp_cmd_buf_len);
1341 		es58x_print_hex_dump(urb->transfer_buffer, urb->actual_length);
1342 		return urb->actual_length;
1343 	}
1344 
1345 	es58x_handle_urb_cmd(es58x_dev, &es58x_dev->rx_cmd_buf);
1346 	return urb_cmd_len - tmp_cmd_buf_len;	/* consumed length */
1347 }
1348 
1349 /**
1350  * es58x_split_urb() - Cut the received URB in individual URB commands.
1351  * @es58x_dev: ES58X device.
1352  * @urb: last urb buffer received.
1353  *
1354  * The device might send urb in bulk format (i.e. several URB commands
1355  * concatenated together). This function will split all the commands
1356  * contained in the urb.
1357  *
1358  * Return:
1359  * number of bytes consumed from @urb if successful.
1360  *
1361  * -ENODATA if the URB command is incomplete.
1362  *
1363  * -EBADMSG if the URB command is incorrect.
1364  */
es58x_split_urb(struct es58x_device * es58x_dev,struct urb * urb)1365 static signed int es58x_split_urb(struct es58x_device *es58x_dev,
1366 				  struct urb *urb)
1367 {
1368 	union es58x_urb_cmd *urb_cmd;
1369 	u8 *raw_cmd = urb->transfer_buffer;
1370 	s32 raw_cmd_len = urb->actual_length;
1371 	int ret;
1372 
1373 	if (es58x_dev->rx_cmd_buf_len != 0) {
1374 		ret = es58x_handle_incomplete_cmd(es58x_dev, urb);
1375 		if (ret != -ENODATA)
1376 			es58x_dev->rx_cmd_buf_len = 0;
1377 		if (ret < 0)
1378 			return ret;
1379 
1380 		raw_cmd += ret;
1381 		raw_cmd_len -= ret;
1382 	}
1383 
1384 	while (raw_cmd_len > 0) {
1385 		if (raw_cmd[0] == ES58X_HEARTBEAT) {
1386 			raw_cmd++;
1387 			raw_cmd_len--;
1388 			continue;
1389 		}
1390 		urb_cmd = (union es58x_urb_cmd *)raw_cmd;
1391 		ret = es58x_check_rx_urb(es58x_dev, urb_cmd, raw_cmd_len);
1392 		if (ret > 0) {
1393 			es58x_handle_urb_cmd(es58x_dev, urb_cmd);
1394 		} else if (ret == -ENODATA) {
1395 			es58x_copy_to_cmd_buf(es58x_dev, raw_cmd, raw_cmd_len);
1396 			return -ENODATA;
1397 		} else if (ret < 0) {
1398 			ret = es58x_split_urb_try_recovery(es58x_dev, raw_cmd,
1399 							   raw_cmd_len);
1400 			if (ret < 0)
1401 				return ret;
1402 		}
1403 		raw_cmd += ret;
1404 		raw_cmd_len -= ret;
1405 	}
1406 
1407 	return 0;
1408 }
1409 
1410 /**
1411  * es58x_read_bulk_callback() - Callback for reading data from device.
1412  * @urb: last urb buffer received.
1413  *
1414  * This function gets eventually called each time an URB is received
1415  * from the ES58X device.
1416  *
1417  * Checks urb status, calls read function and resubmits urb read
1418  * operation.
1419  */
es58x_read_bulk_callback(struct urb * urb)1420 static void es58x_read_bulk_callback(struct urb *urb)
1421 {
1422 	struct es58x_device *es58x_dev = urb->context;
1423 	const struct device *dev = es58x_dev->dev;
1424 	int i, ret;
1425 
1426 	switch (urb->status) {
1427 	case 0:		/* success */
1428 		break;
1429 
1430 	case -EOVERFLOW:
1431 		dev_err_ratelimited(dev, "%s: error %pe\n",
1432 				    __func__, ERR_PTR(urb->status));
1433 		es58x_print_hex_dump_debug(urb->transfer_buffer,
1434 					   urb->transfer_buffer_length);
1435 		goto resubmit_urb;
1436 
1437 	case -EPROTO:
1438 		dev_warn_ratelimited(dev, "%s: error %pe. Device unplugged?\n",
1439 				     __func__, ERR_PTR(urb->status));
1440 		goto free_urb;
1441 
1442 	case -ENOENT:
1443 	case -EPIPE:
1444 		dev_err_ratelimited(dev, "%s: error %pe\n",
1445 				    __func__, ERR_PTR(urb->status));
1446 		goto free_urb;
1447 
1448 	case -ESHUTDOWN:
1449 		dev_dbg_ratelimited(dev, "%s: error %pe\n",
1450 				    __func__, ERR_PTR(urb->status));
1451 		goto free_urb;
1452 
1453 	default:
1454 		dev_err_ratelimited(dev, "%s: error %pe\n",
1455 				    __func__, ERR_PTR(urb->status));
1456 		goto resubmit_urb;
1457 	}
1458 
1459 	ret = es58x_split_urb(es58x_dev, urb);
1460 	if ((ret != -ENODATA) && ret < 0) {
1461 		dev_err(es58x_dev->dev, "es58x_split_urb() returned error %pe",
1462 			ERR_PTR(ret));
1463 		es58x_print_hex_dump_debug(urb->transfer_buffer,
1464 					   urb->actual_length);
1465 
1466 		/* Because the urb command could not be parsed,
1467 		 * channel_id is not confirmed. Incrementing rx_errors
1468 		 * count of all channels.
1469 		 */
1470 		es58x_increment_rx_errors(es58x_dev);
1471 	}
1472 
1473  resubmit_urb:
1474 	usb_fill_bulk_urb(urb, es58x_dev->udev, es58x_dev->rx_pipe,
1475 			  urb->transfer_buffer, urb->transfer_buffer_length,
1476 			  es58x_read_bulk_callback, es58x_dev);
1477 
1478 	ret = usb_submit_urb(urb, GFP_ATOMIC);
1479 	if (ret == -ENODEV) {
1480 		for (i = 0; i < es58x_dev->num_can_ch; i++)
1481 			if (es58x_dev->netdev[i])
1482 				netif_device_detach(es58x_dev->netdev[i]);
1483 	} else if (ret)
1484 		dev_err_ratelimited(dev,
1485 				    "Failed resubmitting read bulk urb: %pe\n",
1486 				    ERR_PTR(ret));
1487 	return;
1488 
1489  free_urb:
1490 	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
1491 			  urb->transfer_buffer, urb->transfer_dma);
1492 }
1493 
1494 /**
1495  * es58x_write_bulk_callback() - Callback after writing data to the device.
1496  * @urb: urb buffer which was previously submitted.
1497  *
1498  * This function gets eventually called each time an URB was sent to
1499  * the ES58X device.
1500  *
1501  * Puts the @urb back to the urbs idle anchor and tries to restart the
1502  * network queue.
1503  */
es58x_write_bulk_callback(struct urb * urb)1504 static void es58x_write_bulk_callback(struct urb *urb)
1505 {
1506 	struct net_device *netdev = urb->context;
1507 	struct es58x_device *es58x_dev = es58x_priv(netdev)->es58x_dev;
1508 
1509 	switch (urb->status) {
1510 	case 0:		/* success */
1511 		break;
1512 
1513 	case -EOVERFLOW:
1514 		if (net_ratelimit())
1515 			netdev_err(netdev, "%s: error %pe\n",
1516 				   __func__, ERR_PTR(urb->status));
1517 		es58x_print_hex_dump(urb->transfer_buffer,
1518 				     urb->transfer_buffer_length);
1519 		break;
1520 
1521 	case -ENOENT:
1522 		if (net_ratelimit())
1523 			netdev_dbg(netdev, "%s: error %pe\n",
1524 				   __func__, ERR_PTR(urb->status));
1525 		usb_free_coherent(urb->dev,
1526 				  es58x_dev->param->tx_urb_cmd_max_len,
1527 				  urb->transfer_buffer, urb->transfer_dma);
1528 		return;
1529 
1530 	default:
1531 		if (net_ratelimit())
1532 			netdev_info(netdev, "%s: error %pe\n",
1533 				    __func__, ERR_PTR(urb->status));
1534 		break;
1535 	}
1536 
1537 	usb_anchor_urb(urb, &es58x_dev->tx_urbs_idle);
1538 	atomic_inc(&es58x_dev->tx_urbs_idle_cnt);
1539 }
1540 
1541 /**
1542  * es58x_alloc_urb() - Allocate memory for an URB and its transfer
1543  *	buffer.
1544  * @es58x_dev: ES58X device.
1545  * @urb: URB to be allocated.
1546  * @buf: used to return DMA address of buffer.
1547  * @buf_len: requested buffer size.
1548  * @mem_flags: affect whether allocation may block.
1549  *
1550  * Allocates an URB and its @transfer_buffer and set its @transfer_dma
1551  * address.
1552  *
1553  * This function is used at start-up to allocate all RX URBs at once
1554  * and during run time for TX URBs.
1555  *
1556  * Return: zero on success, -ENOMEM if no memory is available.
1557  */
es58x_alloc_urb(struct es58x_device * es58x_dev,struct urb ** urb,u8 ** buf,size_t buf_len,gfp_t mem_flags)1558 static int es58x_alloc_urb(struct es58x_device *es58x_dev, struct urb **urb,
1559 			   u8 **buf, size_t buf_len, gfp_t mem_flags)
1560 {
1561 	*urb = usb_alloc_urb(0, mem_flags);
1562 	if (!*urb) {
1563 		dev_err(es58x_dev->dev, "No memory left for URBs\n");
1564 		return -ENOMEM;
1565 	}
1566 
1567 	*buf = usb_alloc_coherent(es58x_dev->udev, buf_len,
1568 				  mem_flags, &(*urb)->transfer_dma);
1569 	if (!*buf) {
1570 		dev_err(es58x_dev->dev, "No memory left for USB buffer\n");
1571 		usb_free_urb(*urb);
1572 		return -ENOMEM;
1573 	}
1574 
1575 	(*urb)->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
1576 
1577 	return 0;
1578 }
1579 
1580 /**
1581  * es58x_get_tx_urb() - Get an URB for transmission.
1582  * @es58x_dev: ES58X device.
1583  *
1584  * Gets an URB from the idle urbs anchor or allocate a new one if the
1585  * anchor is empty.
1586  *
1587  * If there are more than ES58X_TX_URBS_MAX in the idle anchor, do
1588  * some garbage collection. The garbage collection is done here
1589  * instead of within es58x_write_bulk_callback() because
1590  * usb_free_coherent() should not be used in IRQ context:
1591  * c.f. WARN_ON(irqs_disabled()) in dma_free_attrs().
1592  *
1593  * Return: a pointer to an URB on success, NULL if no memory is
1594  * available.
1595  */
es58x_get_tx_urb(struct es58x_device * es58x_dev)1596 static struct urb *es58x_get_tx_urb(struct es58x_device *es58x_dev)
1597 {
1598 	atomic_t *idle_cnt = &es58x_dev->tx_urbs_idle_cnt;
1599 	struct urb *urb = usb_get_from_anchor(&es58x_dev->tx_urbs_idle);
1600 
1601 	if (!urb) {
1602 		size_t tx_buf_len;
1603 		u8 *buf;
1604 
1605 		tx_buf_len = es58x_dev->param->tx_urb_cmd_max_len;
1606 		if (es58x_alloc_urb(es58x_dev, &urb, &buf, tx_buf_len,
1607 				    GFP_ATOMIC))
1608 			return NULL;
1609 
1610 		usb_fill_bulk_urb(urb, es58x_dev->udev, es58x_dev->tx_pipe,
1611 				  buf, tx_buf_len, NULL, NULL);
1612 		return urb;
1613 	}
1614 
1615 	while (atomic_dec_return(idle_cnt) > ES58X_TX_URBS_MAX) {
1616 		/* Garbage collector */
1617 		struct urb *tmp = usb_get_from_anchor(&es58x_dev->tx_urbs_idle);
1618 
1619 		if (!tmp)
1620 			break;
1621 		usb_free_coherent(tmp->dev,
1622 				  es58x_dev->param->tx_urb_cmd_max_len,
1623 				  tmp->transfer_buffer, tmp->transfer_dma);
1624 		usb_free_urb(tmp);
1625 	}
1626 
1627 	return urb;
1628 }
1629 
1630 /**
1631  * es58x_submit_urb() - Send data to the device.
1632  * @es58x_dev: ES58X device.
1633  * @urb: URB to be sent.
1634  * @netdev: CAN network device.
1635  *
1636  * Return: zero on success, errno when any error occurs.
1637  */
es58x_submit_urb(struct es58x_device * es58x_dev,struct urb * urb,struct net_device * netdev)1638 static int es58x_submit_urb(struct es58x_device *es58x_dev, struct urb *urb,
1639 			    struct net_device *netdev)
1640 {
1641 	int ret;
1642 
1643 	es58x_set_crc(urb->transfer_buffer, urb->transfer_buffer_length);
1644 	usb_fill_bulk_urb(urb, es58x_dev->udev, es58x_dev->tx_pipe,
1645 			  urb->transfer_buffer, urb->transfer_buffer_length,
1646 			  es58x_write_bulk_callback, netdev);
1647 	usb_anchor_urb(urb, &es58x_dev->tx_urbs_busy);
1648 	ret = usb_submit_urb(urb, GFP_ATOMIC);
1649 	if (ret) {
1650 		netdev_err(netdev, "%s: USB send urb failure: %pe\n",
1651 			   __func__, ERR_PTR(ret));
1652 		usb_unanchor_urb(urb);
1653 		usb_free_coherent(urb->dev,
1654 				  es58x_dev->param->tx_urb_cmd_max_len,
1655 				  urb->transfer_buffer, urb->transfer_dma);
1656 	}
1657 	usb_free_urb(urb);
1658 
1659 	return ret;
1660 }
1661 
1662 /**
1663  * es58x_send_msg() - Prepare an URB and submit it.
1664  * @es58x_dev: ES58X device.
1665  * @cmd_type: Command type.
1666  * @cmd_id: Command ID.
1667  * @msg: ES58X message to be sent.
1668  * @msg_len: Length of @msg.
1669  * @channel_idx: Index of the network device.
1670  *
1671  * Creates an URB command from a given message, sets the header and the
1672  * CRC and then submits it.
1673  *
1674  * Return: zero on success, errno when any error occurs.
1675  */
es58x_send_msg(struct es58x_device * es58x_dev,u8 cmd_type,u8 cmd_id,const void * msg,u16 msg_len,int channel_idx)1676 int es58x_send_msg(struct es58x_device *es58x_dev, u8 cmd_type, u8 cmd_id,
1677 		   const void *msg, u16 msg_len, int channel_idx)
1678 {
1679 	struct net_device *netdev;
1680 	union es58x_urb_cmd *urb_cmd;
1681 	struct urb *urb;
1682 	int urb_cmd_len;
1683 
1684 	if (channel_idx == ES58X_CHANNEL_IDX_NA)
1685 		netdev = es58x_dev->netdev[0];	/* Default to first channel */
1686 	else
1687 		netdev = es58x_dev->netdev[channel_idx];
1688 
1689 	urb_cmd_len = es58x_get_urb_cmd_len(es58x_dev, msg_len);
1690 	if (urb_cmd_len > es58x_dev->param->tx_urb_cmd_max_len)
1691 		return -EOVERFLOW;
1692 
1693 	urb = es58x_get_tx_urb(es58x_dev);
1694 	if (!urb)
1695 		return -ENOMEM;
1696 
1697 	urb_cmd = urb->transfer_buffer;
1698 	es58x_dev->ops->fill_urb_header(urb_cmd, cmd_type, cmd_id,
1699 					channel_idx, msg_len);
1700 	memcpy(&urb_cmd->raw_cmd[es58x_dev->param->urb_cmd_header_len],
1701 	       msg, msg_len);
1702 	urb->transfer_buffer_length = urb_cmd_len;
1703 
1704 	return es58x_submit_urb(es58x_dev, urb, netdev);
1705 }
1706 
1707 /**
1708  * es58x_alloc_rx_urbs() - Allocate RX URBs.
1709  * @es58x_dev: ES58X device.
1710  *
1711  * Allocate URBs for reception and anchor them.
1712  *
1713  * Return: zero on success, errno when any error occurs.
1714  */
es58x_alloc_rx_urbs(struct es58x_device * es58x_dev)1715 static int es58x_alloc_rx_urbs(struct es58x_device *es58x_dev)
1716 {
1717 	const struct device *dev = es58x_dev->dev;
1718 	const struct es58x_parameters *param = es58x_dev->param;
1719 	size_t rx_buf_len = es58x_dev->rx_max_packet_size;
1720 	struct urb *urb;
1721 	u8 *buf;
1722 	int i;
1723 	int ret = -EINVAL;
1724 
1725 	for (i = 0; i < param->rx_urb_max; i++) {
1726 		ret = es58x_alloc_urb(es58x_dev, &urb, &buf, rx_buf_len,
1727 				      GFP_KERNEL);
1728 		if (ret)
1729 			break;
1730 
1731 		usb_fill_bulk_urb(urb, es58x_dev->udev, es58x_dev->rx_pipe,
1732 				  buf, rx_buf_len, es58x_read_bulk_callback,
1733 				  es58x_dev);
1734 		usb_anchor_urb(urb, &es58x_dev->rx_urbs);
1735 
1736 		ret = usb_submit_urb(urb, GFP_KERNEL);
1737 		if (ret) {
1738 			usb_unanchor_urb(urb);
1739 			usb_free_coherent(es58x_dev->udev, rx_buf_len,
1740 					  buf, urb->transfer_dma);
1741 			usb_free_urb(urb);
1742 			break;
1743 		}
1744 		usb_free_urb(urb);
1745 	}
1746 
1747 	if (i == 0) {
1748 		dev_err(dev, "%s: Could not setup any rx URBs\n", __func__);
1749 		return ret;
1750 	}
1751 	dev_dbg(dev, "%s: Allocated %d rx URBs each of size %zu\n",
1752 		__func__, i, rx_buf_len);
1753 
1754 	return ret;
1755 }
1756 
1757 /**
1758  * es58x_free_urbs() - Free all the TX and RX URBs.
1759  * @es58x_dev: ES58X device.
1760  */
es58x_free_urbs(struct es58x_device * es58x_dev)1761 static void es58x_free_urbs(struct es58x_device *es58x_dev)
1762 {
1763 	struct urb *urb;
1764 
1765 	if (!usb_wait_anchor_empty_timeout(&es58x_dev->tx_urbs_busy, 1000)) {
1766 		dev_err(es58x_dev->dev, "%s: Timeout, some TX urbs still remain\n",
1767 			__func__);
1768 		usb_kill_anchored_urbs(&es58x_dev->tx_urbs_busy);
1769 	}
1770 
1771 	while ((urb = usb_get_from_anchor(&es58x_dev->tx_urbs_idle)) != NULL) {
1772 		usb_free_coherent(urb->dev, es58x_dev->param->tx_urb_cmd_max_len,
1773 				  urb->transfer_buffer, urb->transfer_dma);
1774 		usb_free_urb(urb);
1775 		atomic_dec(&es58x_dev->tx_urbs_idle_cnt);
1776 	}
1777 	if (atomic_read(&es58x_dev->tx_urbs_idle_cnt))
1778 		dev_err(es58x_dev->dev,
1779 			"All idle urbs were freed but tx_urb_idle_cnt is %d\n",
1780 			atomic_read(&es58x_dev->tx_urbs_idle_cnt));
1781 
1782 	usb_kill_anchored_urbs(&es58x_dev->rx_urbs);
1783 }
1784 
1785 /**
1786  * es58x_open() - Enable the network device.
1787  * @netdev: CAN network device.
1788  *
1789  * Called when the network transitions to the up state. Allocate the
1790  * URB resources if needed and open the channel.
1791  *
1792  * Return: zero on success, errno when any error occurs.
1793  */
es58x_open(struct net_device * netdev)1794 static int es58x_open(struct net_device *netdev)
1795 {
1796 	struct es58x_device *es58x_dev = es58x_priv(netdev)->es58x_dev;
1797 	int ret;
1798 
1799 	if (atomic_inc_return(&es58x_dev->opened_channel_cnt) == 1) {
1800 		ret = es58x_alloc_rx_urbs(es58x_dev);
1801 		if (ret)
1802 			return ret;
1803 
1804 		ret = es58x_set_realtime_diff_ns(es58x_dev);
1805 		if (ret)
1806 			goto free_urbs;
1807 	}
1808 
1809 	ret = open_candev(netdev);
1810 	if (ret)
1811 		goto free_urbs;
1812 
1813 	ret = es58x_dev->ops->enable_channel(es58x_priv(netdev));
1814 	if (ret)
1815 		goto free_urbs;
1816 
1817 	netif_start_queue(netdev);
1818 
1819 	return ret;
1820 
1821  free_urbs:
1822 	if (atomic_dec_and_test(&es58x_dev->opened_channel_cnt))
1823 		es58x_free_urbs(es58x_dev);
1824 	netdev_err(netdev, "%s: Could not open the network device: %pe\n",
1825 		   __func__, ERR_PTR(ret));
1826 
1827 	return ret;
1828 }
1829 
1830 /**
1831  * es58x_stop() - Disable the network device.
1832  * @netdev: CAN network device.
1833  *
1834  * Called when the network transitions to the down state. If all the
1835  * channels of the device are closed, free the URB resources which are
1836  * not needed anymore.
1837  *
1838  * Return: zero on success, errno when any error occurs.
1839  */
es58x_stop(struct net_device * netdev)1840 static int es58x_stop(struct net_device *netdev)
1841 {
1842 	struct es58x_priv *priv = es58x_priv(netdev);
1843 	struct es58x_device *es58x_dev = priv->es58x_dev;
1844 	int ret;
1845 
1846 	netif_stop_queue(netdev);
1847 	ret = es58x_dev->ops->disable_channel(priv);
1848 	if (ret)
1849 		return ret;
1850 
1851 	priv->can.state = CAN_STATE_STOPPED;
1852 	es58x_can_reset_echo_fifo(netdev);
1853 	close_candev(netdev);
1854 
1855 	es58x_flush_pending_tx_msg(netdev);
1856 
1857 	if (atomic_dec_and_test(&es58x_dev->opened_channel_cnt))
1858 		es58x_free_urbs(es58x_dev);
1859 
1860 	return 0;
1861 }
1862 
1863 /**
1864  * es58x_xmit_commit() - Send the bulk urb.
1865  * @netdev: CAN network device.
1866  *
1867  * Do the bulk send. This function should be called only once by bulk
1868  * transmission.
1869  *
1870  * Return: zero on success, errno when any error occurs.
1871  */
es58x_xmit_commit(struct net_device * netdev)1872 static int es58x_xmit_commit(struct net_device *netdev)
1873 {
1874 	struct es58x_priv *priv = es58x_priv(netdev);
1875 	int ret;
1876 
1877 	if (!es58x_is_can_state_active(netdev))
1878 		return -ENETDOWN;
1879 
1880 	if (es58x_is_echo_skb_threshold_reached(priv))
1881 		netif_stop_queue(netdev);
1882 
1883 	ret = es58x_submit_urb(priv->es58x_dev, priv->tx_urb, netdev);
1884 	if (ret == 0)
1885 		priv->tx_urb = NULL;
1886 
1887 	return ret;
1888 }
1889 
1890 /**
1891  * es58x_xmit_more() - Can we put more packets?
1892  * @priv: ES58X private parameters related to the network device.
1893  *
1894  * Return: true if we can put more, false if it is time to send.
1895  */
es58x_xmit_more(struct es58x_priv * priv)1896 static bool es58x_xmit_more(struct es58x_priv *priv)
1897 {
1898 	unsigned int free_slots =
1899 	    priv->can.echo_skb_max - (priv->tx_head - priv->tx_tail);
1900 
1901 	return netdev_xmit_more() && free_slots > 0 &&
1902 		priv->tx_can_msg_cnt < priv->es58x_dev->param->tx_bulk_max;
1903 }
1904 
1905 /**
1906  * es58x_start_xmit() - Transmit an skb.
1907  * @skb: socket buffer of a CAN message.
1908  * @netdev: CAN network device.
1909  *
1910  * Called when a packet needs to be transmitted.
1911  *
1912  * This function relies on Byte Queue Limits (BQL). The main benefit
1913  * is to increase the throughput by allowing bulk transfers
1914  * (c.f. xmit_more flag).
1915  *
1916  * Queues up to tx_bulk_max messages in &tx_urb buffer and does
1917  * a bulk send of all messages in one single URB.
1918  *
1919  * Return: NETDEV_TX_OK regardless of if we could transmit the @skb or
1920  *	had to drop it.
1921  */
es58x_start_xmit(struct sk_buff * skb,struct net_device * netdev)1922 static netdev_tx_t es58x_start_xmit(struct sk_buff *skb,
1923 				    struct net_device *netdev)
1924 {
1925 	struct es58x_priv *priv = es58x_priv(netdev);
1926 	struct es58x_device *es58x_dev = priv->es58x_dev;
1927 	unsigned int frame_len;
1928 	int ret;
1929 
1930 	if (can_dropped_invalid_skb(netdev, skb)) {
1931 		if (priv->tx_urb)
1932 			goto xmit_commit;
1933 		return NETDEV_TX_OK;
1934 	}
1935 
1936 	if (priv->tx_urb && priv->tx_can_msg_is_fd != can_is_canfd_skb(skb)) {
1937 		/* Can not do bulk send with mixed CAN and CAN FD frames. */
1938 		ret = es58x_xmit_commit(netdev);
1939 		if (ret)
1940 			goto drop_skb;
1941 	}
1942 
1943 	if (!priv->tx_urb) {
1944 		priv->tx_urb = es58x_get_tx_urb(es58x_dev);
1945 		if (!priv->tx_urb) {
1946 			ret = -ENOMEM;
1947 			goto drop_skb;
1948 		}
1949 		priv->tx_can_msg_cnt = 0;
1950 		priv->tx_can_msg_is_fd = can_is_canfd_skb(skb);
1951 	}
1952 
1953 	ret = es58x_dev->ops->tx_can_msg(priv, skb);
1954 	if (ret)
1955 		goto drop_skb;
1956 
1957 	frame_len = can_skb_get_frame_len(skb);
1958 	ret = can_put_echo_skb(skb, netdev,
1959 			       priv->tx_head & es58x_dev->param->fifo_mask,
1960 			       frame_len);
1961 	if (ret)
1962 		goto xmit_failure;
1963 	netdev_sent_queue(netdev, frame_len);
1964 
1965 	priv->tx_head++;
1966 	priv->tx_can_msg_cnt++;
1967 
1968  xmit_commit:
1969 	if (!es58x_xmit_more(priv)) {
1970 		ret = es58x_xmit_commit(netdev);
1971 		if (ret)
1972 			goto xmit_failure;
1973 	}
1974 
1975 	return NETDEV_TX_OK;
1976 
1977  drop_skb:
1978 	dev_kfree_skb(skb);
1979 	netdev->stats.tx_dropped++;
1980  xmit_failure:
1981 	netdev_warn(netdev, "%s: send message failure: %pe\n",
1982 		    __func__, ERR_PTR(ret));
1983 	netdev->stats.tx_errors++;
1984 	es58x_flush_pending_tx_msg(netdev);
1985 	return NETDEV_TX_OK;
1986 }
1987 
1988 static const struct net_device_ops es58x_netdev_ops = {
1989 	.ndo_open = es58x_open,
1990 	.ndo_stop = es58x_stop,
1991 	.ndo_start_xmit = es58x_start_xmit
1992 };
1993 
1994 /**
1995  * es58x_set_mode() - Change network device mode.
1996  * @netdev: CAN network device.
1997  * @mode: either %CAN_MODE_START, %CAN_MODE_STOP or %CAN_MODE_SLEEP
1998  *
1999  * Currently, this function is only used to stop and restart the
2000  * channel during a bus off event (c.f. es58x_rx_err_msg() and
2001  * drivers/net/can/dev.c:can_restart() which are the two only
2002  * callers).
2003  *
2004  * Return: zero on success, errno when any error occurs.
2005  */
es58x_set_mode(struct net_device * netdev,enum can_mode mode)2006 static int es58x_set_mode(struct net_device *netdev, enum can_mode mode)
2007 {
2008 	struct es58x_priv *priv = es58x_priv(netdev);
2009 
2010 	switch (mode) {
2011 	case CAN_MODE_START:
2012 		switch (priv->can.state) {
2013 		case CAN_STATE_BUS_OFF:
2014 			return priv->es58x_dev->ops->enable_channel(priv);
2015 
2016 		case CAN_STATE_STOPPED:
2017 			return es58x_open(netdev);
2018 
2019 		case CAN_STATE_ERROR_ACTIVE:
2020 		case CAN_STATE_ERROR_WARNING:
2021 		case CAN_STATE_ERROR_PASSIVE:
2022 		default:
2023 			return 0;
2024 		}
2025 
2026 	case CAN_MODE_STOP:
2027 		switch (priv->can.state) {
2028 		case CAN_STATE_STOPPED:
2029 			return 0;
2030 
2031 		case CAN_STATE_ERROR_ACTIVE:
2032 		case CAN_STATE_ERROR_WARNING:
2033 		case CAN_STATE_ERROR_PASSIVE:
2034 		case CAN_STATE_BUS_OFF:
2035 		default:
2036 			return priv->es58x_dev->ops->disable_channel(priv);
2037 		}
2038 
2039 	case CAN_MODE_SLEEP:
2040 	default:
2041 		return -EOPNOTSUPP;
2042 	}
2043 }
2044 
2045 /**
2046  * es58x_init_priv() - Initialize private parameters.
2047  * @es58x_dev: ES58X device.
2048  * @priv: ES58X private parameters related to the network device.
2049  * @channel_idx: Index of the network device.
2050  */
es58x_init_priv(struct es58x_device * es58x_dev,struct es58x_priv * priv,int channel_idx)2051 static void es58x_init_priv(struct es58x_device *es58x_dev,
2052 			    struct es58x_priv *priv, int channel_idx)
2053 {
2054 	const struct es58x_parameters *param = es58x_dev->param;
2055 	struct can_priv *can = &priv->can;
2056 
2057 	priv->es58x_dev = es58x_dev;
2058 	priv->channel_idx = channel_idx;
2059 	priv->tx_urb = NULL;
2060 	priv->tx_can_msg_cnt = 0;
2061 
2062 	can->bittiming_const = param->bittiming_const;
2063 	if (param->ctrlmode_supported & CAN_CTRLMODE_FD) {
2064 		can->data_bittiming_const = param->data_bittiming_const;
2065 		can->tdc_const = param->tdc_const;
2066 	}
2067 	can->bitrate_max = param->bitrate_max;
2068 	can->clock = param->clock;
2069 	can->state = CAN_STATE_STOPPED;
2070 	can->ctrlmode_supported = param->ctrlmode_supported;
2071 	can->do_set_mode = es58x_set_mode;
2072 }
2073 
2074 /**
2075  * es58x_init_netdev() - Initialize the network device.
2076  * @es58x_dev: ES58X device.
2077  * @channel_idx: Index of the network device.
2078  *
2079  * Return: zero on success, errno when any error occurs.
2080  */
es58x_init_netdev(struct es58x_device * es58x_dev,int channel_idx)2081 static int es58x_init_netdev(struct es58x_device *es58x_dev, int channel_idx)
2082 {
2083 	struct net_device *netdev;
2084 	struct device *dev = es58x_dev->dev;
2085 	int ret;
2086 
2087 	netdev = alloc_candev(sizeof(struct es58x_priv),
2088 			      es58x_dev->param->fifo_mask + 1);
2089 	if (!netdev) {
2090 		dev_err(dev, "Could not allocate candev\n");
2091 		return -ENOMEM;
2092 	}
2093 	SET_NETDEV_DEV(netdev, dev);
2094 	es58x_dev->netdev[channel_idx] = netdev;
2095 	es58x_init_priv(es58x_dev, es58x_priv(netdev), channel_idx);
2096 
2097 	netdev->netdev_ops = &es58x_netdev_ops;
2098 	netdev->flags |= IFF_ECHO;	/* We support local echo */
2099 
2100 	ret = register_candev(netdev);
2101 	if (ret)
2102 		return ret;
2103 
2104 	netdev_queue_set_dql_min_limit(netdev_get_tx_queue(netdev, 0),
2105 				       es58x_dev->param->dql_min_limit);
2106 
2107 	return ret;
2108 }
2109 
2110 /**
2111  * es58x_get_product_info() - Get the product information and print them.
2112  * @es58x_dev: ES58X device.
2113  *
2114  * Do a synchronous call to get the product information.
2115  *
2116  * Return: zero on success, errno when any error occurs.
2117  */
es58x_get_product_info(struct es58x_device * es58x_dev)2118 static int es58x_get_product_info(struct es58x_device *es58x_dev)
2119 {
2120 	struct usb_device *udev = es58x_dev->udev;
2121 	const int es58x_prod_info_idx = 6;
2122 	/* Empirical tests show a prod_info length of maximum 83,
2123 	 * below should be more than enough.
2124 	 */
2125 	const size_t prod_info_len = 127;
2126 	char *prod_info;
2127 	int ret;
2128 
2129 	prod_info = kmalloc(prod_info_len, GFP_KERNEL);
2130 	if (!prod_info)
2131 		return -ENOMEM;
2132 
2133 	ret = usb_string(udev, es58x_prod_info_idx, prod_info, prod_info_len);
2134 	if (ret < 0) {
2135 		dev_err(es58x_dev->dev,
2136 			"%s: Could not read the product info: %pe\n",
2137 			__func__, ERR_PTR(ret));
2138 		goto out_free;
2139 	}
2140 	if (ret >= prod_info_len - 1) {
2141 		dev_warn(es58x_dev->dev,
2142 			 "%s: Buffer is too small, result might be truncated\n",
2143 			 __func__);
2144 	}
2145 	dev_info(es58x_dev->dev, "Product info: %s\n", prod_info);
2146 
2147  out_free:
2148 	kfree(prod_info);
2149 	return ret < 0 ? ret : 0;
2150 }
2151 
2152 /**
2153  * es58x_init_es58x_dev() - Initialize the ES58X device.
2154  * @intf: USB interface.
2155  * @p_es58x_dev: pointer to the address of the ES58X device.
2156  * @driver_info: Quirks of the device.
2157  *
2158  * Return: zero on success, errno when any error occurs.
2159  */
es58x_init_es58x_dev(struct usb_interface * intf,struct es58x_device ** p_es58x_dev,kernel_ulong_t driver_info)2160 static int es58x_init_es58x_dev(struct usb_interface *intf,
2161 				struct es58x_device **p_es58x_dev,
2162 				kernel_ulong_t driver_info)
2163 {
2164 	struct device *dev = &intf->dev;
2165 	struct es58x_device *es58x_dev;
2166 	const struct es58x_parameters *param;
2167 	const struct es58x_operators *ops;
2168 	struct usb_device *udev = interface_to_usbdev(intf);
2169 	struct usb_endpoint_descriptor *ep_in, *ep_out;
2170 	int ret;
2171 
2172 	dev_info(dev,
2173 		 "Starting %s %s (Serial Number %s) driver version %s\n",
2174 		 udev->manufacturer, udev->product, udev->serial, DRV_VERSION);
2175 
2176 	ret = usb_find_common_endpoints(intf->cur_altsetting, &ep_in, &ep_out,
2177 					NULL, NULL);
2178 	if (ret)
2179 		return ret;
2180 
2181 	if (driver_info & ES58X_FD_FAMILY) {
2182 		param = &es58x_fd_param;
2183 		ops = &es58x_fd_ops;
2184 	} else {
2185 		param = &es581_4_param;
2186 		ops = &es581_4_ops;
2187 	}
2188 
2189 	es58x_dev = kzalloc(es58x_sizeof_es58x_device(param), GFP_KERNEL);
2190 	if (!es58x_dev)
2191 		return -ENOMEM;
2192 
2193 	es58x_dev->param = param;
2194 	es58x_dev->ops = ops;
2195 	es58x_dev->dev = dev;
2196 	es58x_dev->udev = udev;
2197 
2198 	if (driver_info & ES58X_DUAL_CHANNEL)
2199 		es58x_dev->num_can_ch = 2;
2200 	else
2201 		es58x_dev->num_can_ch = 1;
2202 
2203 	init_usb_anchor(&es58x_dev->rx_urbs);
2204 	init_usb_anchor(&es58x_dev->tx_urbs_idle);
2205 	init_usb_anchor(&es58x_dev->tx_urbs_busy);
2206 	atomic_set(&es58x_dev->tx_urbs_idle_cnt, 0);
2207 	atomic_set(&es58x_dev->opened_channel_cnt, 0);
2208 	usb_set_intfdata(intf, es58x_dev);
2209 
2210 	es58x_dev->rx_pipe = usb_rcvbulkpipe(es58x_dev->udev,
2211 					     ep_in->bEndpointAddress);
2212 	es58x_dev->tx_pipe = usb_sndbulkpipe(es58x_dev->udev,
2213 					     ep_out->bEndpointAddress);
2214 	es58x_dev->rx_max_packet_size = le16_to_cpu(ep_in->wMaxPacketSize);
2215 
2216 	*p_es58x_dev = es58x_dev;
2217 
2218 	return 0;
2219 }
2220 
2221 /**
2222  * es58x_probe() - Initialize the USB device.
2223  * @intf: USB interface.
2224  * @id: USB device ID.
2225  *
2226  * Return: zero on success, -ENODEV if the interface is not supported
2227  * or errno when any other error occurs.
2228  */
es58x_probe(struct usb_interface * intf,const struct usb_device_id * id)2229 static int es58x_probe(struct usb_interface *intf,
2230 		       const struct usb_device_id *id)
2231 {
2232 	struct es58x_device *es58x_dev;
2233 	int ch_idx, ret;
2234 
2235 	ret = es58x_init_es58x_dev(intf, &es58x_dev, id->driver_info);
2236 	if (ret)
2237 		return ret;
2238 
2239 	ret = es58x_get_product_info(es58x_dev);
2240 	if (ret)
2241 		goto cleanup_es58x_dev;
2242 
2243 	for (ch_idx = 0; ch_idx < es58x_dev->num_can_ch; ch_idx++) {
2244 		ret = es58x_init_netdev(es58x_dev, ch_idx);
2245 		if (ret)
2246 			goto cleanup_candev;
2247 	}
2248 
2249 	return ret;
2250 
2251  cleanup_candev:
2252 	for (ch_idx = 0; ch_idx < es58x_dev->num_can_ch; ch_idx++)
2253 		if (es58x_dev->netdev[ch_idx]) {
2254 			unregister_candev(es58x_dev->netdev[ch_idx]);
2255 			free_candev(es58x_dev->netdev[ch_idx]);
2256 		}
2257  cleanup_es58x_dev:
2258 	kfree(es58x_dev);
2259 
2260 	return ret;
2261 }
2262 
2263 /**
2264  * es58x_disconnect() - Disconnect the USB device.
2265  * @intf: USB interface
2266  *
2267  * Called by the usb core when driver is unloaded or device is
2268  * removed.
2269  */
es58x_disconnect(struct usb_interface * intf)2270 static void es58x_disconnect(struct usb_interface *intf)
2271 {
2272 	struct es58x_device *es58x_dev = usb_get_intfdata(intf);
2273 	struct net_device *netdev;
2274 	int i;
2275 
2276 	dev_info(&intf->dev, "Disconnecting %s %s\n",
2277 		 es58x_dev->udev->manufacturer, es58x_dev->udev->product);
2278 
2279 	for (i = 0; i < es58x_dev->num_can_ch; i++) {
2280 		netdev = es58x_dev->netdev[i];
2281 		if (!netdev)
2282 			continue;
2283 		unregister_candev(netdev);
2284 		es58x_dev->netdev[i] = NULL;
2285 		free_candev(netdev);
2286 	}
2287 
2288 	es58x_free_urbs(es58x_dev);
2289 
2290 	kfree(es58x_dev);
2291 	usb_set_intfdata(intf, NULL);
2292 }
2293 
2294 static struct usb_driver es58x_driver = {
2295 	.name = ES58X_MODULE_NAME,
2296 	.probe = es58x_probe,
2297 	.disconnect = es58x_disconnect,
2298 	.id_table = es58x_id_table
2299 };
2300 
2301 module_usb_driver(es58x_driver);
2302