1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3 *
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16
17 struct workqueue_struct *afs_async_calls;
18
19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
21 static void afs_process_async_call(struct work_struct *);
22 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
24 static int afs_deliver_cm_op_id(struct afs_call *);
25
26 /* asynchronous incoming call initial processing */
27 static const struct afs_call_type afs_RXCMxxxx = {
28 .name = "CB.xxxx",
29 .deliver = afs_deliver_cm_op_id,
30 };
31
32 /*
33 * open an RxRPC socket and bind it to be a server for callback notifications
34 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
35 */
afs_open_socket(struct afs_net * net)36 int afs_open_socket(struct afs_net *net)
37 {
38 struct sockaddr_rxrpc srx;
39 struct socket *socket;
40 int ret;
41
42 _enter("");
43
44 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
45 if (ret < 0)
46 goto error_1;
47
48 socket->sk->sk_allocation = GFP_NOFS;
49
50 /* bind the callback manager's address to make this a server socket */
51 memset(&srx, 0, sizeof(srx));
52 srx.srx_family = AF_RXRPC;
53 srx.srx_service = CM_SERVICE;
54 srx.transport_type = SOCK_DGRAM;
55 srx.transport_len = sizeof(srx.transport.sin6);
56 srx.transport.sin6.sin6_family = AF_INET6;
57 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT);
58
59 ret = rxrpc_sock_set_min_security_level(socket->sk,
60 RXRPC_SECURITY_ENCRYPT);
61 if (ret < 0)
62 goto error_2;
63
64 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
65 if (ret == -EADDRINUSE) {
66 srx.transport.sin6.sin6_port = 0;
67 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
68 }
69 if (ret < 0)
70 goto error_2;
71
72 srx.srx_service = YFS_CM_SERVICE;
73 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
74 if (ret < 0)
75 goto error_2;
76
77 /* Ideally, we'd turn on service upgrade here, but we can't because
78 * OpenAFS is buggy and leaks the userStatus field from packet to
79 * packet and between FS packets and CB packets - so if we try to do an
80 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
81 * it sends back to us.
82 */
83
84 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
85 afs_rx_discard_new_call);
86
87 ret = kernel_listen(socket, INT_MAX);
88 if (ret < 0)
89 goto error_2;
90
91 net->socket = socket;
92 afs_charge_preallocation(&net->charge_preallocation_work);
93 _leave(" = 0");
94 return 0;
95
96 error_2:
97 sock_release(socket);
98 error_1:
99 _leave(" = %d", ret);
100 return ret;
101 }
102
103 /*
104 * close the RxRPC socket AFS was using
105 */
afs_close_socket(struct afs_net * net)106 void afs_close_socket(struct afs_net *net)
107 {
108 _enter("");
109
110 kernel_listen(net->socket, 0);
111 flush_workqueue(afs_async_calls);
112
113 if (net->spare_incoming_call) {
114 afs_put_call(net->spare_incoming_call);
115 net->spare_incoming_call = NULL;
116 }
117
118 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
119 wait_var_event(&net->nr_outstanding_calls,
120 !atomic_read(&net->nr_outstanding_calls));
121 _debug("no outstanding calls");
122
123 kernel_sock_shutdown(net->socket, SHUT_RDWR);
124 flush_workqueue(afs_async_calls);
125 sock_release(net->socket);
126
127 _debug("dework");
128 _leave("");
129 }
130
131 /*
132 * Allocate a call.
133 */
afs_alloc_call(struct afs_net * net,const struct afs_call_type * type,gfp_t gfp)134 static struct afs_call *afs_alloc_call(struct afs_net *net,
135 const struct afs_call_type *type,
136 gfp_t gfp)
137 {
138 struct afs_call *call;
139 int o;
140
141 call = kzalloc(sizeof(*call), gfp);
142 if (!call)
143 return NULL;
144
145 call->type = type;
146 call->net = net;
147 call->debug_id = atomic_inc_return(&rxrpc_debug_id);
148 atomic_set(&call->usage, 1);
149 INIT_WORK(&call->async_work, afs_process_async_call);
150 init_waitqueue_head(&call->waitq);
151 spin_lock_init(&call->state_lock);
152 call->iter = &call->def_iter;
153
154 o = atomic_inc_return(&net->nr_outstanding_calls);
155 trace_afs_call(call, afs_call_trace_alloc, 1, o,
156 __builtin_return_address(0));
157 return call;
158 }
159
160 /*
161 * Dispose of a reference on a call.
162 */
afs_put_call(struct afs_call * call)163 void afs_put_call(struct afs_call *call)
164 {
165 struct afs_net *net = call->net;
166 int n = atomic_dec_return(&call->usage);
167 int o = atomic_read(&net->nr_outstanding_calls);
168
169 trace_afs_call(call, afs_call_trace_put, n, o,
170 __builtin_return_address(0));
171
172 ASSERTCMP(n, >=, 0);
173 if (n == 0) {
174 ASSERT(!work_pending(&call->async_work));
175 ASSERT(call->type->name != NULL);
176
177 if (call->rxcall) {
178 rxrpc_kernel_end_call(net->socket, call->rxcall);
179 call->rxcall = NULL;
180 }
181 if (call->type->destructor)
182 call->type->destructor(call);
183
184 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
185 afs_put_addrlist(call->alist);
186 kfree(call->request);
187
188 trace_afs_call(call, afs_call_trace_free, 0, o,
189 __builtin_return_address(0));
190 kfree(call);
191
192 o = atomic_dec_return(&net->nr_outstanding_calls);
193 if (o == 0)
194 wake_up_var(&net->nr_outstanding_calls);
195 }
196 }
197
afs_get_call(struct afs_call * call,enum afs_call_trace why)198 static struct afs_call *afs_get_call(struct afs_call *call,
199 enum afs_call_trace why)
200 {
201 int u = atomic_inc_return(&call->usage);
202
203 trace_afs_call(call, why, u,
204 atomic_read(&call->net->nr_outstanding_calls),
205 __builtin_return_address(0));
206 return call;
207 }
208
209 /*
210 * Queue the call for actual work.
211 */
afs_queue_call_work(struct afs_call * call)212 static void afs_queue_call_work(struct afs_call *call)
213 {
214 if (call->type->work) {
215 INIT_WORK(&call->work, call->type->work);
216
217 afs_get_call(call, afs_call_trace_work);
218 if (!queue_work(afs_wq, &call->work))
219 afs_put_call(call);
220 }
221 }
222
223 /*
224 * allocate a call with flat request and reply buffers
225 */
afs_alloc_flat_call(struct afs_net * net,const struct afs_call_type * type,size_t request_size,size_t reply_max)226 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
227 const struct afs_call_type *type,
228 size_t request_size, size_t reply_max)
229 {
230 struct afs_call *call;
231
232 call = afs_alloc_call(net, type, GFP_NOFS);
233 if (!call)
234 goto nomem_call;
235
236 if (request_size) {
237 call->request_size = request_size;
238 call->request = kmalloc(request_size, GFP_NOFS);
239 if (!call->request)
240 goto nomem_free;
241 }
242
243 if (reply_max) {
244 call->reply_max = reply_max;
245 call->buffer = kmalloc(reply_max, GFP_NOFS);
246 if (!call->buffer)
247 goto nomem_free;
248 }
249
250 afs_extract_to_buf(call, call->reply_max);
251 call->operation_ID = type->op;
252 init_waitqueue_head(&call->waitq);
253 return call;
254
255 nomem_free:
256 afs_put_call(call);
257 nomem_call:
258 return NULL;
259 }
260
261 /*
262 * clean up a call with flat buffer
263 */
afs_flat_call_destructor(struct afs_call * call)264 void afs_flat_call_destructor(struct afs_call *call)
265 {
266 _enter("");
267
268 kfree(call->request);
269 call->request = NULL;
270 kfree(call->buffer);
271 call->buffer = NULL;
272 }
273
274 /*
275 * Advance the AFS call state when the RxRPC call ends the transmit phase.
276 */
afs_notify_end_request_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)277 static void afs_notify_end_request_tx(struct sock *sock,
278 struct rxrpc_call *rxcall,
279 unsigned long call_user_ID)
280 {
281 struct afs_call *call = (struct afs_call *)call_user_ID;
282
283 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
284 }
285
286 /*
287 * Initiate a call and synchronously queue up the parameters for dispatch. Any
288 * error is stored into the call struct, which the caller must check for.
289 */
afs_make_call(struct afs_addr_cursor * ac,struct afs_call * call,gfp_t gfp)290 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
291 {
292 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
293 struct rxrpc_call *rxcall;
294 struct msghdr msg;
295 struct kvec iov[1];
296 size_t len;
297 s64 tx_total_len;
298 int ret;
299
300 _enter(",{%pISp},", &srx->transport);
301
302 ASSERT(call->type != NULL);
303 ASSERT(call->type->name != NULL);
304
305 _debug("____MAKE %p{%s,%x} [%d]____",
306 call, call->type->name, key_serial(call->key),
307 atomic_read(&call->net->nr_outstanding_calls));
308
309 call->addr_ix = ac->index;
310 call->alist = afs_get_addrlist(ac->alist);
311
312 /* Work out the length we're going to transmit. This is awkward for
313 * calls such as FS.StoreData where there's an extra injection of data
314 * after the initial fixed part.
315 */
316 tx_total_len = call->request_size;
317 if (call->write_iter)
318 tx_total_len += iov_iter_count(call->write_iter);
319
320 /* If the call is going to be asynchronous, we need an extra ref for
321 * the call to hold itself so the caller need not hang on to its ref.
322 */
323 if (call->async) {
324 afs_get_call(call, afs_call_trace_get);
325 call->drop_ref = true;
326 }
327
328 /* create a call */
329 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
330 (unsigned long)call,
331 tx_total_len, gfp,
332 (call->async ?
333 afs_wake_up_async_call :
334 afs_wake_up_call_waiter),
335 call->upgrade,
336 (call->intr ? RXRPC_PREINTERRUPTIBLE :
337 RXRPC_UNINTERRUPTIBLE),
338 call->debug_id);
339 if (IS_ERR(rxcall)) {
340 ret = PTR_ERR(rxcall);
341 call->error = ret;
342 goto error_kill_call;
343 }
344
345 call->rxcall = rxcall;
346
347 if (call->max_lifespan)
348 rxrpc_kernel_set_max_life(call->net->socket, rxcall,
349 call->max_lifespan);
350
351 /* send the request */
352 iov[0].iov_base = call->request;
353 iov[0].iov_len = call->request_size;
354
355 msg.msg_name = NULL;
356 msg.msg_namelen = 0;
357 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
358 msg.msg_control = NULL;
359 msg.msg_controllen = 0;
360 msg.msg_flags = MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
361
362 ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
363 &msg, call->request_size,
364 afs_notify_end_request_tx);
365 if (ret < 0)
366 goto error_do_abort;
367
368 if (call->write_iter) {
369 msg.msg_iter = *call->write_iter;
370 msg.msg_flags &= ~MSG_MORE;
371 trace_afs_send_data(call, &msg);
372
373 ret = rxrpc_kernel_send_data(call->net->socket,
374 call->rxcall, &msg,
375 iov_iter_count(&msg.msg_iter),
376 afs_notify_end_request_tx);
377 *call->write_iter = msg.msg_iter;
378
379 trace_afs_sent_data(call, &msg, ret);
380 if (ret < 0)
381 goto error_do_abort;
382 }
383
384 /* Note that at this point, we may have received the reply or an abort
385 * - and an asynchronous call may already have completed.
386 *
387 * afs_wait_for_call_to_complete(call, ac)
388 * must be called to synchronously clean up.
389 */
390 return;
391
392 error_do_abort:
393 if (ret != -ECONNABORTED) {
394 rxrpc_kernel_abort_call(call->net->socket, rxcall,
395 RX_USER_ABORT, ret, "KSD");
396 } else {
397 len = 0;
398 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
399 rxrpc_kernel_recv_data(call->net->socket, rxcall,
400 &msg.msg_iter, &len, false,
401 &call->abort_code, &call->service_id);
402 ac->abort_code = call->abort_code;
403 ac->responded = true;
404 }
405 call->error = ret;
406 trace_afs_call_done(call);
407 error_kill_call:
408 if (call->type->done)
409 call->type->done(call);
410
411 /* We need to dispose of the extra ref we grabbed for an async call.
412 * The call, however, might be queued on afs_async_calls and we need to
413 * make sure we don't get any more notifications that might requeue it.
414 */
415 if (call->rxcall) {
416 rxrpc_kernel_end_call(call->net->socket, call->rxcall);
417 call->rxcall = NULL;
418 }
419 if (call->async) {
420 if (cancel_work_sync(&call->async_work))
421 afs_put_call(call);
422 afs_put_call(call);
423 }
424
425 ac->error = ret;
426 call->state = AFS_CALL_COMPLETE;
427 _leave(" = %d", ret);
428 }
429
430 /*
431 * Log remote abort codes that indicate that we have a protocol disagreement
432 * with the server.
433 */
afs_log_error(struct afs_call * call,s32 remote_abort)434 static void afs_log_error(struct afs_call *call, s32 remote_abort)
435 {
436 static int max = 0;
437 const char *msg;
438 int m;
439
440 switch (remote_abort) {
441 case RX_EOF: msg = "unexpected EOF"; break;
442 case RXGEN_CC_MARSHAL: msg = "client marshalling"; break;
443 case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling"; break;
444 case RXGEN_SS_MARSHAL: msg = "server marshalling"; break;
445 case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling"; break;
446 case RXGEN_DECODE: msg = "opcode decode"; break;
447 case RXGEN_SS_XDRFREE: msg = "server XDR cleanup"; break;
448 case RXGEN_CC_XDRFREE: msg = "client XDR cleanup"; break;
449 case -32: msg = "insufficient data"; break;
450 default:
451 return;
452 }
453
454 m = max;
455 if (m < 3) {
456 max = m + 1;
457 pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
458 msg, call->type->name,
459 &call->alist->addrs[call->addr_ix].transport);
460 }
461 }
462
463 /*
464 * deliver messages to a call
465 */
afs_deliver_to_call(struct afs_call * call)466 static void afs_deliver_to_call(struct afs_call *call)
467 {
468 enum afs_call_state state;
469 size_t len;
470 u32 abort_code, remote_abort = 0;
471 int ret;
472
473 _enter("%s", call->type->name);
474
475 while (state = READ_ONCE(call->state),
476 state == AFS_CALL_CL_AWAIT_REPLY ||
477 state == AFS_CALL_SV_AWAIT_OP_ID ||
478 state == AFS_CALL_SV_AWAIT_REQUEST ||
479 state == AFS_CALL_SV_AWAIT_ACK
480 ) {
481 if (state == AFS_CALL_SV_AWAIT_ACK) {
482 len = 0;
483 iov_iter_kvec(&call->def_iter, READ, NULL, 0, 0);
484 ret = rxrpc_kernel_recv_data(call->net->socket,
485 call->rxcall, &call->def_iter,
486 &len, false, &remote_abort,
487 &call->service_id);
488 trace_afs_receive_data(call, &call->def_iter, false, ret);
489
490 if (ret == -EINPROGRESS || ret == -EAGAIN)
491 return;
492 if (ret < 0 || ret == 1) {
493 if (ret == 1)
494 ret = 0;
495 goto call_complete;
496 }
497 return;
498 }
499
500 if (!call->have_reply_time &&
501 rxrpc_kernel_get_reply_time(call->net->socket,
502 call->rxcall,
503 &call->reply_time))
504 call->have_reply_time = true;
505
506 ret = call->type->deliver(call);
507 state = READ_ONCE(call->state);
508 if (ret == 0 && call->unmarshalling_error)
509 ret = -EBADMSG;
510 switch (ret) {
511 case 0:
512 afs_queue_call_work(call);
513 if (state == AFS_CALL_CL_PROC_REPLY) {
514 if (call->op)
515 set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
516 &call->op->server->flags);
517 goto call_complete;
518 }
519 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
520 goto done;
521 case -EINPROGRESS:
522 case -EAGAIN:
523 goto out;
524 case -ECONNABORTED:
525 ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
526 afs_log_error(call, call->abort_code);
527 goto done;
528 case -ENOTSUPP:
529 abort_code = RXGEN_OPCODE;
530 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
531 abort_code, ret, "KIV");
532 goto local_abort;
533 case -EIO:
534 pr_err("kAFS: Call %u in bad state %u\n",
535 call->debug_id, state);
536 fallthrough;
537 case -ENODATA:
538 case -EBADMSG:
539 case -EMSGSIZE:
540 abort_code = RXGEN_CC_UNMARSHAL;
541 if (state != AFS_CALL_CL_AWAIT_REPLY)
542 abort_code = RXGEN_SS_UNMARSHAL;
543 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
544 abort_code, ret, "KUM");
545 goto local_abort;
546 default:
547 abort_code = RX_USER_ABORT;
548 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
549 abort_code, ret, "KER");
550 goto local_abort;
551 }
552 }
553
554 done:
555 if (call->type->done)
556 call->type->done(call);
557 out:
558 _leave("");
559 return;
560
561 local_abort:
562 abort_code = 0;
563 call_complete:
564 afs_set_call_complete(call, ret, remote_abort);
565 state = AFS_CALL_COMPLETE;
566 goto done;
567 }
568
569 /*
570 * Wait synchronously for a call to complete and clean up the call struct.
571 */
afs_wait_for_call_to_complete(struct afs_call * call,struct afs_addr_cursor * ac)572 long afs_wait_for_call_to_complete(struct afs_call *call,
573 struct afs_addr_cursor *ac)
574 {
575 long ret;
576 bool rxrpc_complete = false;
577
578 DECLARE_WAITQUEUE(myself, current);
579
580 _enter("");
581
582 ret = call->error;
583 if (ret < 0)
584 goto out;
585
586 add_wait_queue(&call->waitq, &myself);
587 for (;;) {
588 set_current_state(TASK_UNINTERRUPTIBLE);
589
590 /* deliver any messages that are in the queue */
591 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
592 call->need_attention) {
593 call->need_attention = false;
594 __set_current_state(TASK_RUNNING);
595 afs_deliver_to_call(call);
596 continue;
597 }
598
599 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
600 break;
601
602 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
603 /* rxrpc terminated the call. */
604 rxrpc_complete = true;
605 break;
606 }
607
608 schedule();
609 }
610
611 remove_wait_queue(&call->waitq, &myself);
612 __set_current_state(TASK_RUNNING);
613
614 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
615 if (rxrpc_complete) {
616 afs_set_call_complete(call, call->error, call->abort_code);
617 } else {
618 /* Kill off the call if it's still live. */
619 _debug("call interrupted");
620 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
621 RX_USER_ABORT, -EINTR, "KWI"))
622 afs_set_call_complete(call, -EINTR, 0);
623 }
624 }
625
626 spin_lock_bh(&call->state_lock);
627 ac->abort_code = call->abort_code;
628 ac->error = call->error;
629 spin_unlock_bh(&call->state_lock);
630
631 ret = ac->error;
632 switch (ret) {
633 case 0:
634 ret = call->ret0;
635 call->ret0 = 0;
636
637 fallthrough;
638 case -ECONNABORTED:
639 ac->responded = true;
640 break;
641 }
642
643 out:
644 _debug("call complete");
645 afs_put_call(call);
646 _leave(" = %p", (void *)ret);
647 return ret;
648 }
649
650 /*
651 * wake up a waiting call
652 */
afs_wake_up_call_waiter(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)653 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
654 unsigned long call_user_ID)
655 {
656 struct afs_call *call = (struct afs_call *)call_user_ID;
657
658 call->need_attention = true;
659 wake_up(&call->waitq);
660 }
661
662 /*
663 * wake up an asynchronous call
664 */
afs_wake_up_async_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)665 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
666 unsigned long call_user_ID)
667 {
668 struct afs_call *call = (struct afs_call *)call_user_ID;
669 int u;
670
671 trace_afs_notify_call(rxcall, call);
672 call->need_attention = true;
673
674 u = atomic_fetch_add_unless(&call->usage, 1, 0);
675 if (u != 0) {
676 trace_afs_call(call, afs_call_trace_wake, u + 1,
677 atomic_read(&call->net->nr_outstanding_calls),
678 __builtin_return_address(0));
679
680 if (!queue_work(afs_async_calls, &call->async_work))
681 afs_put_call(call);
682 }
683 }
684
685 /*
686 * Perform I/O processing on an asynchronous call. The work item carries a ref
687 * to the call struct that we either need to release or to pass on.
688 */
afs_process_async_call(struct work_struct * work)689 static void afs_process_async_call(struct work_struct *work)
690 {
691 struct afs_call *call = container_of(work, struct afs_call, async_work);
692
693 _enter("");
694
695 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
696 call->need_attention = false;
697 afs_deliver_to_call(call);
698 }
699
700 afs_put_call(call);
701 _leave("");
702 }
703
afs_rx_attach(struct rxrpc_call * rxcall,unsigned long user_call_ID)704 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
705 {
706 struct afs_call *call = (struct afs_call *)user_call_ID;
707
708 call->rxcall = rxcall;
709 }
710
711 /*
712 * Charge the incoming call preallocation.
713 */
afs_charge_preallocation(struct work_struct * work)714 void afs_charge_preallocation(struct work_struct *work)
715 {
716 struct afs_net *net =
717 container_of(work, struct afs_net, charge_preallocation_work);
718 struct afs_call *call = net->spare_incoming_call;
719
720 for (;;) {
721 if (!call) {
722 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
723 if (!call)
724 break;
725
726 call->drop_ref = true;
727 call->async = true;
728 call->state = AFS_CALL_SV_AWAIT_OP_ID;
729 init_waitqueue_head(&call->waitq);
730 afs_extract_to_tmp(call);
731 }
732
733 if (rxrpc_kernel_charge_accept(net->socket,
734 afs_wake_up_async_call,
735 afs_rx_attach,
736 (unsigned long)call,
737 GFP_KERNEL,
738 call->debug_id) < 0)
739 break;
740 call = NULL;
741 }
742 net->spare_incoming_call = call;
743 }
744
745 /*
746 * Discard a preallocated call when a socket is shut down.
747 */
afs_rx_discard_new_call(struct rxrpc_call * rxcall,unsigned long user_call_ID)748 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
749 unsigned long user_call_ID)
750 {
751 struct afs_call *call = (struct afs_call *)user_call_ID;
752
753 call->rxcall = NULL;
754 afs_put_call(call);
755 }
756
757 /*
758 * Notification of an incoming call.
759 */
afs_rx_new_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long user_call_ID)760 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
761 unsigned long user_call_ID)
762 {
763 struct afs_net *net = afs_sock2net(sk);
764
765 queue_work(afs_wq, &net->charge_preallocation_work);
766 }
767
768 /*
769 * Grab the operation ID from an incoming cache manager call. The socket
770 * buffer is discarded on error or if we don't yet have sufficient data.
771 */
afs_deliver_cm_op_id(struct afs_call * call)772 static int afs_deliver_cm_op_id(struct afs_call *call)
773 {
774 int ret;
775
776 _enter("{%zu}", iov_iter_count(call->iter));
777
778 /* the operation ID forms the first four bytes of the request data */
779 ret = afs_extract_data(call, true);
780 if (ret < 0)
781 return ret;
782
783 call->operation_ID = ntohl(call->tmp);
784 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
785
786 /* ask the cache manager to route the call (it'll change the call type
787 * if successful) */
788 if (!afs_cm_incoming_call(call))
789 return -ENOTSUPP;
790
791 trace_afs_cb_call(call);
792
793 /* pass responsibility for the remainer of this message off to the
794 * cache manager op */
795 return call->type->deliver(call);
796 }
797
798 /*
799 * Advance the AFS call state when an RxRPC service call ends the transmit
800 * phase.
801 */
afs_notify_end_reply_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)802 static void afs_notify_end_reply_tx(struct sock *sock,
803 struct rxrpc_call *rxcall,
804 unsigned long call_user_ID)
805 {
806 struct afs_call *call = (struct afs_call *)call_user_ID;
807
808 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
809 }
810
811 /*
812 * send an empty reply
813 */
afs_send_empty_reply(struct afs_call * call)814 void afs_send_empty_reply(struct afs_call *call)
815 {
816 struct afs_net *net = call->net;
817 struct msghdr msg;
818
819 _enter("");
820
821 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
822
823 msg.msg_name = NULL;
824 msg.msg_namelen = 0;
825 iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
826 msg.msg_control = NULL;
827 msg.msg_controllen = 0;
828 msg.msg_flags = 0;
829
830 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
831 afs_notify_end_reply_tx)) {
832 case 0:
833 _leave(" [replied]");
834 return;
835
836 case -ENOMEM:
837 _debug("oom");
838 rxrpc_kernel_abort_call(net->socket, call->rxcall,
839 RX_USER_ABORT, -ENOMEM, "KOO");
840 fallthrough;
841 default:
842 _leave(" [error]");
843 return;
844 }
845 }
846
847 /*
848 * send a simple reply
849 */
afs_send_simple_reply(struct afs_call * call,const void * buf,size_t len)850 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
851 {
852 struct afs_net *net = call->net;
853 struct msghdr msg;
854 struct kvec iov[1];
855 int n;
856
857 _enter("");
858
859 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
860
861 iov[0].iov_base = (void *) buf;
862 iov[0].iov_len = len;
863 msg.msg_name = NULL;
864 msg.msg_namelen = 0;
865 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
866 msg.msg_control = NULL;
867 msg.msg_controllen = 0;
868 msg.msg_flags = 0;
869
870 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
871 afs_notify_end_reply_tx);
872 if (n >= 0) {
873 /* Success */
874 _leave(" [replied]");
875 return;
876 }
877
878 if (n == -ENOMEM) {
879 _debug("oom");
880 rxrpc_kernel_abort_call(net->socket, call->rxcall,
881 RX_USER_ABORT, -ENOMEM, "KOO");
882 }
883 _leave(" [error]");
884 }
885
886 /*
887 * Extract a piece of data from the received data socket buffers.
888 */
afs_extract_data(struct afs_call * call,bool want_more)889 int afs_extract_data(struct afs_call *call, bool want_more)
890 {
891 struct afs_net *net = call->net;
892 struct iov_iter *iter = call->iter;
893 enum afs_call_state state;
894 u32 remote_abort = 0;
895 int ret;
896
897 _enter("{%s,%zu,%zu},%d",
898 call->type->name, call->iov_len, iov_iter_count(iter), want_more);
899
900 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
901 &call->iov_len, want_more, &remote_abort,
902 &call->service_id);
903 if (ret == 0 || ret == -EAGAIN)
904 return ret;
905
906 state = READ_ONCE(call->state);
907 if (ret == 1) {
908 switch (state) {
909 case AFS_CALL_CL_AWAIT_REPLY:
910 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
911 break;
912 case AFS_CALL_SV_AWAIT_REQUEST:
913 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
914 break;
915 case AFS_CALL_COMPLETE:
916 kdebug("prem complete %d", call->error);
917 return afs_io_error(call, afs_io_error_extract);
918 default:
919 break;
920 }
921 return 0;
922 }
923
924 afs_set_call_complete(call, ret, remote_abort);
925 return ret;
926 }
927
928 /*
929 * Log protocol error production.
930 */
afs_protocol_error(struct afs_call * call,enum afs_eproto_cause cause)931 noinline int afs_protocol_error(struct afs_call *call,
932 enum afs_eproto_cause cause)
933 {
934 trace_afs_protocol_error(call, cause);
935 if (call)
936 call->unmarshalling_error = true;
937 return -EBADMSG;
938 }
939