1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
6
7
8 /*
9 * mballoc.c contains the multiblocks allocation routines
10 */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20
21 /*
22 * MUSTDO:
23 * - test ext4_ext_search_left() and ext4_ext_search_right()
24 * - search for metadata in few groups
25 *
26 * TODO v4:
27 * - normalization should take into account whether file is still open
28 * - discard preallocations if no free space left (policy?)
29 * - don't normalize tails
30 * - quota
31 * - reservation for superuser
32 *
33 * TODO v3:
34 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
35 * - track min/max extents in each group for better group selection
36 * - mb_mark_used() may allocate chunk right after splitting buddy
37 * - tree of groups sorted by number of free blocks
38 * - error handling
39 */
40
41 /*
42 * The allocation request involve request for multiple number of blocks
43 * near to the goal(block) value specified.
44 *
45 * During initialization phase of the allocator we decide to use the
46 * group preallocation or inode preallocation depending on the size of
47 * the file. The size of the file could be the resulting file size we
48 * would have after allocation, or the current file size, which ever
49 * is larger. If the size is less than sbi->s_mb_stream_request we
50 * select to use the group preallocation. The default value of
51 * s_mb_stream_request is 16 blocks. This can also be tuned via
52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53 * terms of number of blocks.
54 *
55 * The main motivation for having small file use group preallocation is to
56 * ensure that we have small files closer together on the disk.
57 *
58 * First stage the allocator looks at the inode prealloc list,
59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60 * spaces for this particular inode. The inode prealloc space is
61 * represented as:
62 *
63 * pa_lstart -> the logical start block for this prealloc space
64 * pa_pstart -> the physical start block for this prealloc space
65 * pa_len -> length for this prealloc space (in clusters)
66 * pa_free -> free space available in this prealloc space (in clusters)
67 *
68 * The inode preallocation space is used looking at the _logical_ start
69 * block. If only the logical file block falls within the range of prealloc
70 * space we will consume the particular prealloc space. This makes sure that
71 * we have contiguous physical blocks representing the file blocks
72 *
73 * The important thing to be noted in case of inode prealloc space is that
74 * we don't modify the values associated to inode prealloc space except
75 * pa_free.
76 *
77 * If we are not able to find blocks in the inode prealloc space and if we
78 * have the group allocation flag set then we look at the locality group
79 * prealloc space. These are per CPU prealloc list represented as
80 *
81 * ext4_sb_info.s_locality_groups[smp_processor_id()]
82 *
83 * The reason for having a per cpu locality group is to reduce the contention
84 * between CPUs. It is possible to get scheduled at this point.
85 *
86 * The locality group prealloc space is used looking at whether we have
87 * enough free space (pa_free) within the prealloc space.
88 *
89 * If we can't allocate blocks via inode prealloc or/and locality group
90 * prealloc then we look at the buddy cache. The buddy cache is represented
91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92 * mapped to the buddy and bitmap information regarding different
93 * groups. The buddy information is attached to buddy cache inode so that
94 * we can access them through the page cache. The information regarding
95 * each group is loaded via ext4_mb_load_buddy. The information involve
96 * block bitmap and buddy information. The information are stored in the
97 * inode as:
98 *
99 * { page }
100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101 *
102 *
103 * one block each for bitmap and buddy information. So for each group we
104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105 * blocksize) blocks. So it can have information regarding groups_per_page
106 * which is blocks_per_page/2
107 *
108 * The buddy cache inode is not stored on disk. The inode is thrown
109 * away when the filesystem is unmounted.
110 *
111 * We look for count number of blocks in the buddy cache. If we were able
112 * to locate that many free blocks we return with additional information
113 * regarding rest of the contiguous physical block available
114 *
115 * Before allocating blocks via buddy cache we normalize the request
116 * blocks. This ensure we ask for more blocks that we needed. The extra
117 * blocks that we get after allocation is added to the respective prealloc
118 * list. In case of inode preallocation we follow a list of heuristics
119 * based on file size. This can be found in ext4_mb_normalize_request. If
120 * we are doing a group prealloc we try to normalize the request to
121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
122 * dependent on the cluster size; for non-bigalloc file systems, it is
123 * 512 blocks. This can be tuned via
124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125 * terms of number of blocks. If we have mounted the file system with -O
126 * stripe=<value> option the group prealloc request is normalized to the
127 * smallest multiple of the stripe value (sbi->s_stripe) which is
128 * greater than the default mb_group_prealloc.
129 *
130 * If "mb_optimize_scan" mount option is set, we maintain in memory group info
131 * structures in two data structures:
132 *
133 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
134 *
135 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
136 *
137 * This is an array of lists where the index in the array represents the
138 * largest free order in the buddy bitmap of the participating group infos of
139 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
140 * number of buddy bitmap orders possible) number of lists. Group-infos are
141 * placed in appropriate lists.
142 *
143 * 2) Average fragment size rb tree (sbi->s_mb_avg_fragment_size_root)
144 *
145 * Locking: sbi->s_mb_rb_lock (rwlock)
146 *
147 * This is a red black tree consisting of group infos and the tree is sorted
148 * by average fragment sizes (which is calculated as ext4_group_info->bb_free
149 * / ext4_group_info->bb_fragments).
150 *
151 * When "mb_optimize_scan" mount option is set, mballoc consults the above data
152 * structures to decide the order in which groups are to be traversed for
153 * fulfilling an allocation request.
154 *
155 * At CR = 0, we look for groups which have the largest_free_order >= the order
156 * of the request. We directly look at the largest free order list in the data
157 * structure (1) above where largest_free_order = order of the request. If that
158 * list is empty, we look at remaining list in the increasing order of
159 * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time.
160 *
161 * At CR = 1, we only consider groups where average fragment size > request
162 * size. So, we lookup a group which has average fragment size just above or
163 * equal to request size using our rb tree (data structure 2) in O(log N) time.
164 *
165 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
166 * linear order which requires O(N) search time for each CR 0 and CR 1 phase.
167 *
168 * The regular allocator (using the buddy cache) supports a few tunables.
169 *
170 * /sys/fs/ext4/<partition>/mb_min_to_scan
171 * /sys/fs/ext4/<partition>/mb_max_to_scan
172 * /sys/fs/ext4/<partition>/mb_order2_req
173 * /sys/fs/ext4/<partition>/mb_linear_limit
174 *
175 * The regular allocator uses buddy scan only if the request len is power of
176 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
177 * value of s_mb_order2_reqs can be tuned via
178 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
179 * stripe size (sbi->s_stripe), we try to search for contiguous block in
180 * stripe size. This should result in better allocation on RAID setups. If
181 * not, we search in the specific group using bitmap for best extents. The
182 * tunable min_to_scan and max_to_scan control the behaviour here.
183 * min_to_scan indicate how long the mballoc __must__ look for a best
184 * extent and max_to_scan indicates how long the mballoc __can__ look for a
185 * best extent in the found extents. Searching for the blocks starts with
186 * the group specified as the goal value in allocation context via
187 * ac_g_ex. Each group is first checked based on the criteria whether it
188 * can be used for allocation. ext4_mb_good_group explains how the groups are
189 * checked.
190 *
191 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
192 * get traversed linearly. That may result in subsequent allocations being not
193 * close to each other. And so, the underlying device may get filled up in a
194 * non-linear fashion. While that may not matter on non-rotational devices, for
195 * rotational devices that may result in higher seek times. "mb_linear_limit"
196 * tells mballoc how many groups mballoc should search linearly before
197 * performing consulting above data structures for more efficient lookups. For
198 * non rotational devices, this value defaults to 0 and for rotational devices
199 * this is set to MB_DEFAULT_LINEAR_LIMIT.
200 *
201 * Both the prealloc space are getting populated as above. So for the first
202 * request we will hit the buddy cache which will result in this prealloc
203 * space getting filled. The prealloc space is then later used for the
204 * subsequent request.
205 */
206
207 /*
208 * mballoc operates on the following data:
209 * - on-disk bitmap
210 * - in-core buddy (actually includes buddy and bitmap)
211 * - preallocation descriptors (PAs)
212 *
213 * there are two types of preallocations:
214 * - inode
215 * assiged to specific inode and can be used for this inode only.
216 * it describes part of inode's space preallocated to specific
217 * physical blocks. any block from that preallocated can be used
218 * independent. the descriptor just tracks number of blocks left
219 * unused. so, before taking some block from descriptor, one must
220 * make sure corresponded logical block isn't allocated yet. this
221 * also means that freeing any block within descriptor's range
222 * must discard all preallocated blocks.
223 * - locality group
224 * assigned to specific locality group which does not translate to
225 * permanent set of inodes: inode can join and leave group. space
226 * from this type of preallocation can be used for any inode. thus
227 * it's consumed from the beginning to the end.
228 *
229 * relation between them can be expressed as:
230 * in-core buddy = on-disk bitmap + preallocation descriptors
231 *
232 * this mean blocks mballoc considers used are:
233 * - allocated blocks (persistent)
234 * - preallocated blocks (non-persistent)
235 *
236 * consistency in mballoc world means that at any time a block is either
237 * free or used in ALL structures. notice: "any time" should not be read
238 * literally -- time is discrete and delimited by locks.
239 *
240 * to keep it simple, we don't use block numbers, instead we count number of
241 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
242 *
243 * all operations can be expressed as:
244 * - init buddy: buddy = on-disk + PAs
245 * - new PA: buddy += N; PA = N
246 * - use inode PA: on-disk += N; PA -= N
247 * - discard inode PA buddy -= on-disk - PA; PA = 0
248 * - use locality group PA on-disk += N; PA -= N
249 * - discard locality group PA buddy -= PA; PA = 0
250 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
251 * is used in real operation because we can't know actual used
252 * bits from PA, only from on-disk bitmap
253 *
254 * if we follow this strict logic, then all operations above should be atomic.
255 * given some of them can block, we'd have to use something like semaphores
256 * killing performance on high-end SMP hardware. let's try to relax it using
257 * the following knowledge:
258 * 1) if buddy is referenced, it's already initialized
259 * 2) while block is used in buddy and the buddy is referenced,
260 * nobody can re-allocate that block
261 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
262 * bit set and PA claims same block, it's OK. IOW, one can set bit in
263 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
264 * block
265 *
266 * so, now we're building a concurrency table:
267 * - init buddy vs.
268 * - new PA
269 * blocks for PA are allocated in the buddy, buddy must be referenced
270 * until PA is linked to allocation group to avoid concurrent buddy init
271 * - use inode PA
272 * we need to make sure that either on-disk bitmap or PA has uptodate data
273 * given (3) we care that PA-=N operation doesn't interfere with init
274 * - discard inode PA
275 * the simplest way would be to have buddy initialized by the discard
276 * - use locality group PA
277 * again PA-=N must be serialized with init
278 * - discard locality group PA
279 * the simplest way would be to have buddy initialized by the discard
280 * - new PA vs.
281 * - use inode PA
282 * i_data_sem serializes them
283 * - discard inode PA
284 * discard process must wait until PA isn't used by another process
285 * - use locality group PA
286 * some mutex should serialize them
287 * - discard locality group PA
288 * discard process must wait until PA isn't used by another process
289 * - use inode PA
290 * - use inode PA
291 * i_data_sem or another mutex should serializes them
292 * - discard inode PA
293 * discard process must wait until PA isn't used by another process
294 * - use locality group PA
295 * nothing wrong here -- they're different PAs covering different blocks
296 * - discard locality group PA
297 * discard process must wait until PA isn't used by another process
298 *
299 * now we're ready to make few consequences:
300 * - PA is referenced and while it is no discard is possible
301 * - PA is referenced until block isn't marked in on-disk bitmap
302 * - PA changes only after on-disk bitmap
303 * - discard must not compete with init. either init is done before
304 * any discard or they're serialized somehow
305 * - buddy init as sum of on-disk bitmap and PAs is done atomically
306 *
307 * a special case when we've used PA to emptiness. no need to modify buddy
308 * in this case, but we should care about concurrent init
309 *
310 */
311
312 /*
313 * Logic in few words:
314 *
315 * - allocation:
316 * load group
317 * find blocks
318 * mark bits in on-disk bitmap
319 * release group
320 *
321 * - use preallocation:
322 * find proper PA (per-inode or group)
323 * load group
324 * mark bits in on-disk bitmap
325 * release group
326 * release PA
327 *
328 * - free:
329 * load group
330 * mark bits in on-disk bitmap
331 * release group
332 *
333 * - discard preallocations in group:
334 * mark PAs deleted
335 * move them onto local list
336 * load on-disk bitmap
337 * load group
338 * remove PA from object (inode or locality group)
339 * mark free blocks in-core
340 *
341 * - discard inode's preallocations:
342 */
343
344 /*
345 * Locking rules
346 *
347 * Locks:
348 * - bitlock on a group (group)
349 * - object (inode/locality) (object)
350 * - per-pa lock (pa)
351 * - cr0 lists lock (cr0)
352 * - cr1 tree lock (cr1)
353 *
354 * Paths:
355 * - new pa
356 * object
357 * group
358 *
359 * - find and use pa:
360 * pa
361 *
362 * - release consumed pa:
363 * pa
364 * group
365 * object
366 *
367 * - generate in-core bitmap:
368 * group
369 * pa
370 *
371 * - discard all for given object (inode, locality group):
372 * object
373 * pa
374 * group
375 *
376 * - discard all for given group:
377 * group
378 * pa
379 * group
380 * object
381 *
382 * - allocation path (ext4_mb_regular_allocator)
383 * group
384 * cr0/cr1
385 */
386 static struct kmem_cache *ext4_pspace_cachep;
387 static struct kmem_cache *ext4_ac_cachep;
388 static struct kmem_cache *ext4_free_data_cachep;
389
390 /* We create slab caches for groupinfo data structures based on the
391 * superblock block size. There will be one per mounted filesystem for
392 * each unique s_blocksize_bits */
393 #define NR_GRPINFO_CACHES 8
394 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
395
396 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
397 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
398 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
399 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
400 };
401
402 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
403 ext4_group_t group);
404 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
405 ext4_group_t group);
406 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
407
408 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
409 ext4_group_t group, int cr);
410
411 /*
412 * The algorithm using this percpu seq counter goes below:
413 * 1. We sample the percpu discard_pa_seq counter before trying for block
414 * allocation in ext4_mb_new_blocks().
415 * 2. We increment this percpu discard_pa_seq counter when we either allocate
416 * or free these blocks i.e. while marking those blocks as used/free in
417 * mb_mark_used()/mb_free_blocks().
418 * 3. We also increment this percpu seq counter when we successfully identify
419 * that the bb_prealloc_list is not empty and hence proceed for discarding
420 * of those PAs inside ext4_mb_discard_group_preallocations().
421 *
422 * Now to make sure that the regular fast path of block allocation is not
423 * affected, as a small optimization we only sample the percpu seq counter
424 * on that cpu. Only when the block allocation fails and when freed blocks
425 * found were 0, that is when we sample percpu seq counter for all cpus using
426 * below function ext4_get_discard_pa_seq_sum(). This happens after making
427 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
428 */
429 static DEFINE_PER_CPU(u64, discard_pa_seq);
ext4_get_discard_pa_seq_sum(void)430 static inline u64 ext4_get_discard_pa_seq_sum(void)
431 {
432 int __cpu;
433 u64 __seq = 0;
434
435 for_each_possible_cpu(__cpu)
436 __seq += per_cpu(discard_pa_seq, __cpu);
437 return __seq;
438 }
439
mb_correct_addr_and_bit(int * bit,void * addr)440 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
441 {
442 #if BITS_PER_LONG == 64
443 *bit += ((unsigned long) addr & 7UL) << 3;
444 addr = (void *) ((unsigned long) addr & ~7UL);
445 #elif BITS_PER_LONG == 32
446 *bit += ((unsigned long) addr & 3UL) << 3;
447 addr = (void *) ((unsigned long) addr & ~3UL);
448 #else
449 #error "how many bits you are?!"
450 #endif
451 return addr;
452 }
453
mb_test_bit(int bit,void * addr)454 static inline int mb_test_bit(int bit, void *addr)
455 {
456 /*
457 * ext4_test_bit on architecture like powerpc
458 * needs unsigned long aligned address
459 */
460 addr = mb_correct_addr_and_bit(&bit, addr);
461 return ext4_test_bit(bit, addr);
462 }
463
mb_set_bit(int bit,void * addr)464 static inline void mb_set_bit(int bit, void *addr)
465 {
466 addr = mb_correct_addr_and_bit(&bit, addr);
467 ext4_set_bit(bit, addr);
468 }
469
mb_clear_bit(int bit,void * addr)470 static inline void mb_clear_bit(int bit, void *addr)
471 {
472 addr = mb_correct_addr_and_bit(&bit, addr);
473 ext4_clear_bit(bit, addr);
474 }
475
mb_test_and_clear_bit(int bit,void * addr)476 static inline int mb_test_and_clear_bit(int bit, void *addr)
477 {
478 addr = mb_correct_addr_and_bit(&bit, addr);
479 return ext4_test_and_clear_bit(bit, addr);
480 }
481
mb_find_next_zero_bit(void * addr,int max,int start)482 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
483 {
484 int fix = 0, ret, tmpmax;
485 addr = mb_correct_addr_and_bit(&fix, addr);
486 tmpmax = max + fix;
487 start += fix;
488
489 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
490 if (ret > max)
491 return max;
492 return ret;
493 }
494
mb_find_next_bit(void * addr,int max,int start)495 static inline int mb_find_next_bit(void *addr, int max, int start)
496 {
497 int fix = 0, ret, tmpmax;
498 addr = mb_correct_addr_and_bit(&fix, addr);
499 tmpmax = max + fix;
500 start += fix;
501
502 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
503 if (ret > max)
504 return max;
505 return ret;
506 }
507
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)508 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
509 {
510 char *bb;
511
512 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
513 BUG_ON(max == NULL);
514
515 if (order > e4b->bd_blkbits + 1) {
516 *max = 0;
517 return NULL;
518 }
519
520 /* at order 0 we see each particular block */
521 if (order == 0) {
522 *max = 1 << (e4b->bd_blkbits + 3);
523 return e4b->bd_bitmap;
524 }
525
526 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
527 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
528
529 return bb;
530 }
531
532 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)533 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
534 int first, int count)
535 {
536 int i;
537 struct super_block *sb = e4b->bd_sb;
538
539 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
540 return;
541 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
542 for (i = 0; i < count; i++) {
543 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
544 ext4_fsblk_t blocknr;
545
546 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
547 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
548 ext4_grp_locked_error(sb, e4b->bd_group,
549 inode ? inode->i_ino : 0,
550 blocknr,
551 "freeing block already freed "
552 "(bit %u)",
553 first + i);
554 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
555 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
556 }
557 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
558 }
559 }
560
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)561 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
562 {
563 int i;
564
565 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
566 return;
567 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
568 for (i = 0; i < count; i++) {
569 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
570 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
571 }
572 }
573
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)574 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
575 {
576 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
577 return;
578 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
579 unsigned char *b1, *b2;
580 int i;
581 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
582 b2 = (unsigned char *) bitmap;
583 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
584 if (b1[i] != b2[i]) {
585 ext4_msg(e4b->bd_sb, KERN_ERR,
586 "corruption in group %u "
587 "at byte %u(%u): %x in copy != %x "
588 "on disk/prealloc",
589 e4b->bd_group, i, i * 8, b1[i], b2[i]);
590 BUG();
591 }
592 }
593 }
594 }
595
mb_group_bb_bitmap_alloc(struct super_block * sb,struct ext4_group_info * grp,ext4_group_t group)596 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
597 struct ext4_group_info *grp, ext4_group_t group)
598 {
599 struct buffer_head *bh;
600
601 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
602 if (!grp->bb_bitmap)
603 return;
604
605 bh = ext4_read_block_bitmap(sb, group);
606 if (IS_ERR_OR_NULL(bh)) {
607 kfree(grp->bb_bitmap);
608 grp->bb_bitmap = NULL;
609 return;
610 }
611
612 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
613 put_bh(bh);
614 }
615
mb_group_bb_bitmap_free(struct ext4_group_info * grp)616 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
617 {
618 kfree(grp->bb_bitmap);
619 }
620
621 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)622 static inline void mb_free_blocks_double(struct inode *inode,
623 struct ext4_buddy *e4b, int first, int count)
624 {
625 return;
626 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)627 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
628 int first, int count)
629 {
630 return;
631 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)632 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
633 {
634 return;
635 }
636
mb_group_bb_bitmap_alloc(struct super_block * sb,struct ext4_group_info * grp,ext4_group_t group)637 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
638 struct ext4_group_info *grp, ext4_group_t group)
639 {
640 return;
641 }
642
mb_group_bb_bitmap_free(struct ext4_group_info * grp)643 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
644 {
645 return;
646 }
647 #endif
648
649 #ifdef AGGRESSIVE_CHECK
650
651 #define MB_CHECK_ASSERT(assert) \
652 do { \
653 if (!(assert)) { \
654 printk(KERN_EMERG \
655 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
656 function, file, line, # assert); \
657 BUG(); \
658 } \
659 } while (0)
660
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)661 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
662 const char *function, int line)
663 {
664 struct super_block *sb = e4b->bd_sb;
665 int order = e4b->bd_blkbits + 1;
666 int max;
667 int max2;
668 int i;
669 int j;
670 int k;
671 int count;
672 struct ext4_group_info *grp;
673 int fragments = 0;
674 int fstart;
675 struct list_head *cur;
676 void *buddy;
677 void *buddy2;
678
679 if (e4b->bd_info->bb_check_counter++ % 10)
680 return 0;
681
682 while (order > 1) {
683 buddy = mb_find_buddy(e4b, order, &max);
684 MB_CHECK_ASSERT(buddy);
685 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
686 MB_CHECK_ASSERT(buddy2);
687 MB_CHECK_ASSERT(buddy != buddy2);
688 MB_CHECK_ASSERT(max * 2 == max2);
689
690 count = 0;
691 for (i = 0; i < max; i++) {
692
693 if (mb_test_bit(i, buddy)) {
694 /* only single bit in buddy2 may be 1 */
695 if (!mb_test_bit(i << 1, buddy2)) {
696 MB_CHECK_ASSERT(
697 mb_test_bit((i<<1)+1, buddy2));
698 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
699 MB_CHECK_ASSERT(
700 mb_test_bit(i << 1, buddy2));
701 }
702 continue;
703 }
704
705 /* both bits in buddy2 must be 1 */
706 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
707 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
708
709 for (j = 0; j < (1 << order); j++) {
710 k = (i * (1 << order)) + j;
711 MB_CHECK_ASSERT(
712 !mb_test_bit(k, e4b->bd_bitmap));
713 }
714 count++;
715 }
716 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
717 order--;
718 }
719
720 fstart = -1;
721 buddy = mb_find_buddy(e4b, 0, &max);
722 for (i = 0; i < max; i++) {
723 if (!mb_test_bit(i, buddy)) {
724 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
725 if (fstart == -1) {
726 fragments++;
727 fstart = i;
728 }
729 continue;
730 }
731 fstart = -1;
732 /* check used bits only */
733 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
734 buddy2 = mb_find_buddy(e4b, j, &max2);
735 k = i >> j;
736 MB_CHECK_ASSERT(k < max2);
737 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
738 }
739 }
740 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
741 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
742
743 grp = ext4_get_group_info(sb, e4b->bd_group);
744 list_for_each(cur, &grp->bb_prealloc_list) {
745 ext4_group_t groupnr;
746 struct ext4_prealloc_space *pa;
747 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
748 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
749 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
750 for (i = 0; i < pa->pa_len; i++)
751 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
752 }
753 return 0;
754 }
755 #undef MB_CHECK_ASSERT
756 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
757 __FILE__, __func__, __LINE__)
758 #else
759 #define mb_check_buddy(e4b)
760 #endif
761
762 /*
763 * Divide blocks started from @first with length @len into
764 * smaller chunks with power of 2 blocks.
765 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
766 * then increase bb_counters[] for corresponded chunk size.
767 */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)768 static void ext4_mb_mark_free_simple(struct super_block *sb,
769 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
770 struct ext4_group_info *grp)
771 {
772 struct ext4_sb_info *sbi = EXT4_SB(sb);
773 ext4_grpblk_t min;
774 ext4_grpblk_t max;
775 ext4_grpblk_t chunk;
776 unsigned int border;
777
778 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
779
780 border = 2 << sb->s_blocksize_bits;
781
782 while (len > 0) {
783 /* find how many blocks can be covered since this position */
784 max = ffs(first | border) - 1;
785
786 /* find how many blocks of power 2 we need to mark */
787 min = fls(len) - 1;
788
789 if (max < min)
790 min = max;
791 chunk = 1 << min;
792
793 /* mark multiblock chunks only */
794 grp->bb_counters[min]++;
795 if (min > 0)
796 mb_clear_bit(first >> min,
797 buddy + sbi->s_mb_offsets[min]);
798
799 len -= chunk;
800 first += chunk;
801 }
802 }
803
ext4_mb_rb_insert(struct rb_root * root,struct rb_node * new,int (* cmp)(struct rb_node *,struct rb_node *))804 static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new,
805 int (*cmp)(struct rb_node *, struct rb_node *))
806 {
807 struct rb_node **iter = &root->rb_node, *parent = NULL;
808
809 while (*iter) {
810 parent = *iter;
811 if (cmp(new, *iter) > 0)
812 iter = &((*iter)->rb_left);
813 else
814 iter = &((*iter)->rb_right);
815 }
816
817 rb_link_node(new, parent, iter);
818 rb_insert_color(new, root);
819 }
820
821 static int
ext4_mb_avg_fragment_size_cmp(struct rb_node * rb1,struct rb_node * rb2)822 ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2)
823 {
824 struct ext4_group_info *grp1 = rb_entry(rb1,
825 struct ext4_group_info,
826 bb_avg_fragment_size_rb);
827 struct ext4_group_info *grp2 = rb_entry(rb2,
828 struct ext4_group_info,
829 bb_avg_fragment_size_rb);
830 int num_frags_1, num_frags_2;
831
832 num_frags_1 = grp1->bb_fragments ?
833 grp1->bb_free / grp1->bb_fragments : 0;
834 num_frags_2 = grp2->bb_fragments ?
835 grp2->bb_free / grp2->bb_fragments : 0;
836
837 return (num_frags_2 - num_frags_1);
838 }
839
840 /*
841 * Reinsert grpinfo into the avg_fragment_size tree with new average
842 * fragment size.
843 */
844 static void
mb_update_avg_fragment_size(struct super_block * sb,struct ext4_group_info * grp)845 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
846 {
847 struct ext4_sb_info *sbi = EXT4_SB(sb);
848
849 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
850 return;
851
852 write_lock(&sbi->s_mb_rb_lock);
853 if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) {
854 rb_erase(&grp->bb_avg_fragment_size_rb,
855 &sbi->s_mb_avg_fragment_size_root);
856 RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb);
857 }
858
859 ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root,
860 &grp->bb_avg_fragment_size_rb,
861 ext4_mb_avg_fragment_size_cmp);
862 write_unlock(&sbi->s_mb_rb_lock);
863 }
864
865 /*
866 * Choose next group by traversing largest_free_order lists. Updates *new_cr if
867 * cr level needs an update.
868 */
ext4_mb_choose_next_group_cr0(struct ext4_allocation_context * ac,int * new_cr,ext4_group_t * group,ext4_group_t ngroups)869 static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
870 int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
871 {
872 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
873 struct ext4_group_info *iter, *grp;
874 int i;
875
876 if (ac->ac_status == AC_STATUS_FOUND)
877 return;
878
879 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED))
880 atomic_inc(&sbi->s_bal_cr0_bad_suggestions);
881
882 grp = NULL;
883 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
884 if (list_empty(&sbi->s_mb_largest_free_orders[i]))
885 continue;
886 read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
887 if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
888 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
889 continue;
890 }
891 grp = NULL;
892 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
893 bb_largest_free_order_node) {
894 if (sbi->s_mb_stats)
895 atomic64_inc(&sbi->s_bal_cX_groups_considered[0]);
896 if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) {
897 grp = iter;
898 break;
899 }
900 }
901 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
902 if (grp)
903 break;
904 }
905
906 if (!grp) {
907 /* Increment cr and search again */
908 *new_cr = 1;
909 } else {
910 *group = grp->bb_group;
911 ac->ac_last_optimal_group = *group;
912 ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED;
913 }
914 }
915
916 /*
917 * Choose next group by traversing average fragment size tree. Updates *new_cr
918 * if cr lvel needs an update. Sets EXT4_MB_SEARCH_NEXT_LINEAR to indicate that
919 * the linear search should continue for one iteration since there's lock
920 * contention on the rb tree lock.
921 */
ext4_mb_choose_next_group_cr1(struct ext4_allocation_context * ac,int * new_cr,ext4_group_t * group,ext4_group_t ngroups)922 static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
923 int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
924 {
925 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
926 int avg_fragment_size, best_so_far;
927 struct rb_node *node, *found;
928 struct ext4_group_info *grp;
929
930 /*
931 * If there is contention on the lock, instead of waiting for the lock
932 * to become available, just continue searching lineraly. We'll resume
933 * our rb tree search later starting at ac->ac_last_optimal_group.
934 */
935 if (!read_trylock(&sbi->s_mb_rb_lock)) {
936 ac->ac_flags |= EXT4_MB_SEARCH_NEXT_LINEAR;
937 return;
938 }
939
940 if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) {
941 if (sbi->s_mb_stats)
942 atomic_inc(&sbi->s_bal_cr1_bad_suggestions);
943 /* We have found something at CR 1 in the past */
944 grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group);
945 for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL;
946 found = rb_next(found)) {
947 grp = rb_entry(found, struct ext4_group_info,
948 bb_avg_fragment_size_rb);
949 if (sbi->s_mb_stats)
950 atomic64_inc(&sbi->s_bal_cX_groups_considered[1]);
951 if (likely(ext4_mb_good_group(ac, grp->bb_group, 1)))
952 break;
953 }
954 goto done;
955 }
956
957 node = sbi->s_mb_avg_fragment_size_root.rb_node;
958 best_so_far = 0;
959 found = NULL;
960
961 while (node) {
962 grp = rb_entry(node, struct ext4_group_info,
963 bb_avg_fragment_size_rb);
964 avg_fragment_size = 0;
965 if (ext4_mb_good_group(ac, grp->bb_group, 1)) {
966 avg_fragment_size = grp->bb_fragments ?
967 grp->bb_free / grp->bb_fragments : 0;
968 if (!best_so_far || avg_fragment_size < best_so_far) {
969 best_so_far = avg_fragment_size;
970 found = node;
971 }
972 }
973 if (avg_fragment_size > ac->ac_g_ex.fe_len)
974 node = node->rb_right;
975 else
976 node = node->rb_left;
977 }
978
979 done:
980 if (found) {
981 grp = rb_entry(found, struct ext4_group_info,
982 bb_avg_fragment_size_rb);
983 *group = grp->bb_group;
984 ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED;
985 } else {
986 *new_cr = 2;
987 }
988
989 read_unlock(&sbi->s_mb_rb_lock);
990 ac->ac_last_optimal_group = *group;
991 }
992
should_optimize_scan(struct ext4_allocation_context * ac)993 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
994 {
995 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
996 return 0;
997 if (ac->ac_criteria >= 2)
998 return 0;
999 if (ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1000 return 0;
1001 return 1;
1002 }
1003
1004 /*
1005 * Return next linear group for allocation. If linear traversal should not be
1006 * performed, this function just returns the same group
1007 */
1008 static int
next_linear_group(struct ext4_allocation_context * ac,int group,int ngroups)1009 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups)
1010 {
1011 if (!should_optimize_scan(ac))
1012 goto inc_and_return;
1013
1014 if (ac->ac_groups_linear_remaining) {
1015 ac->ac_groups_linear_remaining--;
1016 goto inc_and_return;
1017 }
1018
1019 if (ac->ac_flags & EXT4_MB_SEARCH_NEXT_LINEAR) {
1020 ac->ac_flags &= ~EXT4_MB_SEARCH_NEXT_LINEAR;
1021 goto inc_and_return;
1022 }
1023
1024 return group;
1025 inc_and_return:
1026 /*
1027 * Artificially restricted ngroups for non-extent
1028 * files makes group > ngroups possible on first loop.
1029 */
1030 return group + 1 >= ngroups ? 0 : group + 1;
1031 }
1032
1033 /*
1034 * ext4_mb_choose_next_group: choose next group for allocation.
1035 *
1036 * @ac Allocation Context
1037 * @new_cr This is an output parameter. If the there is no good group
1038 * available at current CR level, this field is updated to indicate
1039 * the new cr level that should be used.
1040 * @group This is an input / output parameter. As an input it indicates the
1041 * next group that the allocator intends to use for allocation. As
1042 * output, this field indicates the next group that should be used as
1043 * determined by the optimization functions.
1044 * @ngroups Total number of groups
1045 */
ext4_mb_choose_next_group(struct ext4_allocation_context * ac,int * new_cr,ext4_group_t * group,ext4_group_t ngroups)1046 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1047 int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1048 {
1049 *new_cr = ac->ac_criteria;
1050
1051 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining)
1052 return;
1053
1054 if (*new_cr == 0) {
1055 ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups);
1056 } else if (*new_cr == 1) {
1057 ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups);
1058 } else {
1059 /*
1060 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1061 * bb_free. But until that happens, we should never come here.
1062 */
1063 WARN_ON(1);
1064 }
1065 }
1066
1067 /*
1068 * Cache the order of the largest free extent we have available in this block
1069 * group.
1070 */
1071 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)1072 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1073 {
1074 struct ext4_sb_info *sbi = EXT4_SB(sb);
1075 int i;
1076
1077 if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) {
1078 write_lock(&sbi->s_mb_largest_free_orders_locks[
1079 grp->bb_largest_free_order]);
1080 list_del_init(&grp->bb_largest_free_order_node);
1081 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1082 grp->bb_largest_free_order]);
1083 }
1084 grp->bb_largest_free_order = -1; /* uninit */
1085
1086 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) {
1087 if (grp->bb_counters[i] > 0) {
1088 grp->bb_largest_free_order = i;
1089 break;
1090 }
1091 }
1092 if (test_opt2(sb, MB_OPTIMIZE_SCAN) &&
1093 grp->bb_largest_free_order >= 0 && grp->bb_free) {
1094 write_lock(&sbi->s_mb_largest_free_orders_locks[
1095 grp->bb_largest_free_order]);
1096 list_add_tail(&grp->bb_largest_free_order_node,
1097 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1098 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1099 grp->bb_largest_free_order]);
1100 }
1101 }
1102
1103 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)1104 void ext4_mb_generate_buddy(struct super_block *sb,
1105 void *buddy, void *bitmap, ext4_group_t group)
1106 {
1107 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1108 struct ext4_sb_info *sbi = EXT4_SB(sb);
1109 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1110 ext4_grpblk_t i = 0;
1111 ext4_grpblk_t first;
1112 ext4_grpblk_t len;
1113 unsigned free = 0;
1114 unsigned fragments = 0;
1115 unsigned long long period = get_cycles();
1116
1117 /* initialize buddy from bitmap which is aggregation
1118 * of on-disk bitmap and preallocations */
1119 i = mb_find_next_zero_bit(bitmap, max, 0);
1120 grp->bb_first_free = i;
1121 while (i < max) {
1122 fragments++;
1123 first = i;
1124 i = mb_find_next_bit(bitmap, max, i);
1125 len = i - first;
1126 free += len;
1127 if (len > 1)
1128 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1129 else
1130 grp->bb_counters[0]++;
1131 if (i < max)
1132 i = mb_find_next_zero_bit(bitmap, max, i);
1133 }
1134 grp->bb_fragments = fragments;
1135
1136 if (free != grp->bb_free) {
1137 ext4_grp_locked_error(sb, group, 0, 0,
1138 "block bitmap and bg descriptor "
1139 "inconsistent: %u vs %u free clusters",
1140 free, grp->bb_free);
1141 /*
1142 * If we intend to continue, we consider group descriptor
1143 * corrupt and update bb_free using bitmap value
1144 */
1145 grp->bb_free = free;
1146 ext4_mark_group_bitmap_corrupted(sb, group,
1147 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1148 }
1149 mb_set_largest_free_order(sb, grp);
1150
1151 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1152
1153 period = get_cycles() - period;
1154 atomic_inc(&sbi->s_mb_buddies_generated);
1155 atomic64_add(period, &sbi->s_mb_generation_time);
1156 mb_update_avg_fragment_size(sb, grp);
1157 }
1158
1159 /* The buddy information is attached the buddy cache inode
1160 * for convenience. The information regarding each group
1161 * is loaded via ext4_mb_load_buddy. The information involve
1162 * block bitmap and buddy information. The information are
1163 * stored in the inode as
1164 *
1165 * { page }
1166 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1167 *
1168 *
1169 * one block each for bitmap and buddy information.
1170 * So for each group we take up 2 blocks. A page can
1171 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
1172 * So it can have information regarding groups_per_page which
1173 * is blocks_per_page/2
1174 *
1175 * Locking note: This routine takes the block group lock of all groups
1176 * for this page; do not hold this lock when calling this routine!
1177 */
1178
ext4_mb_init_cache(struct page * page,char * incore,gfp_t gfp)1179 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1180 {
1181 ext4_group_t ngroups;
1182 int blocksize;
1183 int blocks_per_page;
1184 int groups_per_page;
1185 int err = 0;
1186 int i;
1187 ext4_group_t first_group, group;
1188 int first_block;
1189 struct super_block *sb;
1190 struct buffer_head *bhs;
1191 struct buffer_head **bh = NULL;
1192 struct inode *inode;
1193 char *data;
1194 char *bitmap;
1195 struct ext4_group_info *grinfo;
1196
1197 inode = page->mapping->host;
1198 sb = inode->i_sb;
1199 ngroups = ext4_get_groups_count(sb);
1200 blocksize = i_blocksize(inode);
1201 blocks_per_page = PAGE_SIZE / blocksize;
1202
1203 mb_debug(sb, "init page %lu\n", page->index);
1204
1205 groups_per_page = blocks_per_page >> 1;
1206 if (groups_per_page == 0)
1207 groups_per_page = 1;
1208
1209 /* allocate buffer_heads to read bitmaps */
1210 if (groups_per_page > 1) {
1211 i = sizeof(struct buffer_head *) * groups_per_page;
1212 bh = kzalloc(i, gfp);
1213 if (bh == NULL) {
1214 err = -ENOMEM;
1215 goto out;
1216 }
1217 } else
1218 bh = &bhs;
1219
1220 first_group = page->index * blocks_per_page / 2;
1221
1222 /* read all groups the page covers into the cache */
1223 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1224 if (group >= ngroups)
1225 break;
1226
1227 grinfo = ext4_get_group_info(sb, group);
1228 /*
1229 * If page is uptodate then we came here after online resize
1230 * which added some new uninitialized group info structs, so
1231 * we must skip all initialized uptodate buddies on the page,
1232 * which may be currently in use by an allocating task.
1233 */
1234 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1235 bh[i] = NULL;
1236 continue;
1237 }
1238 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1239 if (IS_ERR(bh[i])) {
1240 err = PTR_ERR(bh[i]);
1241 bh[i] = NULL;
1242 goto out;
1243 }
1244 mb_debug(sb, "read bitmap for group %u\n", group);
1245 }
1246
1247 /* wait for I/O completion */
1248 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1249 int err2;
1250
1251 if (!bh[i])
1252 continue;
1253 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1254 if (!err)
1255 err = err2;
1256 }
1257
1258 first_block = page->index * blocks_per_page;
1259 for (i = 0; i < blocks_per_page; i++) {
1260 group = (first_block + i) >> 1;
1261 if (group >= ngroups)
1262 break;
1263
1264 if (!bh[group - first_group])
1265 /* skip initialized uptodate buddy */
1266 continue;
1267
1268 if (!buffer_verified(bh[group - first_group]))
1269 /* Skip faulty bitmaps */
1270 continue;
1271 err = 0;
1272
1273 /*
1274 * data carry information regarding this
1275 * particular group in the format specified
1276 * above
1277 *
1278 */
1279 data = page_address(page) + (i * blocksize);
1280 bitmap = bh[group - first_group]->b_data;
1281
1282 /*
1283 * We place the buddy block and bitmap block
1284 * close together
1285 */
1286 if ((first_block + i) & 1) {
1287 /* this is block of buddy */
1288 BUG_ON(incore == NULL);
1289 mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1290 group, page->index, i * blocksize);
1291 trace_ext4_mb_buddy_bitmap_load(sb, group);
1292 grinfo = ext4_get_group_info(sb, group);
1293 grinfo->bb_fragments = 0;
1294 memset(grinfo->bb_counters, 0,
1295 sizeof(*grinfo->bb_counters) *
1296 (MB_NUM_ORDERS(sb)));
1297 /*
1298 * incore got set to the group block bitmap below
1299 */
1300 ext4_lock_group(sb, group);
1301 /* init the buddy */
1302 memset(data, 0xff, blocksize);
1303 ext4_mb_generate_buddy(sb, data, incore, group);
1304 ext4_unlock_group(sb, group);
1305 incore = NULL;
1306 } else {
1307 /* this is block of bitmap */
1308 BUG_ON(incore != NULL);
1309 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1310 group, page->index, i * blocksize);
1311 trace_ext4_mb_bitmap_load(sb, group);
1312
1313 /* see comments in ext4_mb_put_pa() */
1314 ext4_lock_group(sb, group);
1315 memcpy(data, bitmap, blocksize);
1316
1317 /* mark all preallocated blks used in in-core bitmap */
1318 ext4_mb_generate_from_pa(sb, data, group);
1319 ext4_mb_generate_from_freelist(sb, data, group);
1320 ext4_unlock_group(sb, group);
1321
1322 /* set incore so that the buddy information can be
1323 * generated using this
1324 */
1325 incore = data;
1326 }
1327 }
1328 SetPageUptodate(page);
1329
1330 out:
1331 if (bh) {
1332 for (i = 0; i < groups_per_page; i++)
1333 brelse(bh[i]);
1334 if (bh != &bhs)
1335 kfree(bh);
1336 }
1337 return err;
1338 }
1339
1340 /*
1341 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1342 * on the same buddy page doesn't happen whild holding the buddy page lock.
1343 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1344 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1345 */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1346 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1347 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1348 {
1349 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1350 int block, pnum, poff;
1351 int blocks_per_page;
1352 struct page *page;
1353
1354 e4b->bd_buddy_page = NULL;
1355 e4b->bd_bitmap_page = NULL;
1356
1357 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1358 /*
1359 * the buddy cache inode stores the block bitmap
1360 * and buddy information in consecutive blocks.
1361 * So for each group we need two blocks.
1362 */
1363 block = group * 2;
1364 pnum = block / blocks_per_page;
1365 poff = block % blocks_per_page;
1366 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1367 if (!page)
1368 return -ENOMEM;
1369 BUG_ON(page->mapping != inode->i_mapping);
1370 e4b->bd_bitmap_page = page;
1371 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1372
1373 if (blocks_per_page >= 2) {
1374 /* buddy and bitmap are on the same page */
1375 return 0;
1376 }
1377
1378 block++;
1379 pnum = block / blocks_per_page;
1380 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1381 if (!page)
1382 return -ENOMEM;
1383 BUG_ON(page->mapping != inode->i_mapping);
1384 e4b->bd_buddy_page = page;
1385 return 0;
1386 }
1387
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1388 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1389 {
1390 if (e4b->bd_bitmap_page) {
1391 unlock_page(e4b->bd_bitmap_page);
1392 put_page(e4b->bd_bitmap_page);
1393 }
1394 if (e4b->bd_buddy_page) {
1395 unlock_page(e4b->bd_buddy_page);
1396 put_page(e4b->bd_buddy_page);
1397 }
1398 }
1399
1400 /*
1401 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1402 * block group lock of all groups for this page; do not hold the BG lock when
1403 * calling this routine!
1404 */
1405 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group,gfp_t gfp)1406 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1407 {
1408
1409 struct ext4_group_info *this_grp;
1410 struct ext4_buddy e4b;
1411 struct page *page;
1412 int ret = 0;
1413
1414 might_sleep();
1415 mb_debug(sb, "init group %u\n", group);
1416 this_grp = ext4_get_group_info(sb, group);
1417 /*
1418 * This ensures that we don't reinit the buddy cache
1419 * page which map to the group from which we are already
1420 * allocating. If we are looking at the buddy cache we would
1421 * have taken a reference using ext4_mb_load_buddy and that
1422 * would have pinned buddy page to page cache.
1423 * The call to ext4_mb_get_buddy_page_lock will mark the
1424 * page accessed.
1425 */
1426 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1427 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1428 /*
1429 * somebody initialized the group
1430 * return without doing anything
1431 */
1432 goto err;
1433 }
1434
1435 page = e4b.bd_bitmap_page;
1436 ret = ext4_mb_init_cache(page, NULL, gfp);
1437 if (ret)
1438 goto err;
1439 if (!PageUptodate(page)) {
1440 ret = -EIO;
1441 goto err;
1442 }
1443
1444 if (e4b.bd_buddy_page == NULL) {
1445 /*
1446 * If both the bitmap and buddy are in
1447 * the same page we don't need to force
1448 * init the buddy
1449 */
1450 ret = 0;
1451 goto err;
1452 }
1453 /* init buddy cache */
1454 page = e4b.bd_buddy_page;
1455 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1456 if (ret)
1457 goto err;
1458 if (!PageUptodate(page)) {
1459 ret = -EIO;
1460 goto err;
1461 }
1462 err:
1463 ext4_mb_put_buddy_page_lock(&e4b);
1464 return ret;
1465 }
1466
1467 /*
1468 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1469 * block group lock of all groups for this page; do not hold the BG lock when
1470 * calling this routine!
1471 */
1472 static noinline_for_stack int
ext4_mb_load_buddy_gfp(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1473 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1474 struct ext4_buddy *e4b, gfp_t gfp)
1475 {
1476 int blocks_per_page;
1477 int block;
1478 int pnum;
1479 int poff;
1480 struct page *page;
1481 int ret;
1482 struct ext4_group_info *grp;
1483 struct ext4_sb_info *sbi = EXT4_SB(sb);
1484 struct inode *inode = sbi->s_buddy_cache;
1485
1486 might_sleep();
1487 mb_debug(sb, "load group %u\n", group);
1488
1489 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1490 grp = ext4_get_group_info(sb, group);
1491
1492 e4b->bd_blkbits = sb->s_blocksize_bits;
1493 e4b->bd_info = grp;
1494 e4b->bd_sb = sb;
1495 e4b->bd_group = group;
1496 e4b->bd_buddy_page = NULL;
1497 e4b->bd_bitmap_page = NULL;
1498
1499 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1500 /*
1501 * we need full data about the group
1502 * to make a good selection
1503 */
1504 ret = ext4_mb_init_group(sb, group, gfp);
1505 if (ret)
1506 return ret;
1507 }
1508
1509 /*
1510 * the buddy cache inode stores the block bitmap
1511 * and buddy information in consecutive blocks.
1512 * So for each group we need two blocks.
1513 */
1514 block = group * 2;
1515 pnum = block / blocks_per_page;
1516 poff = block % blocks_per_page;
1517
1518 /* we could use find_or_create_page(), but it locks page
1519 * what we'd like to avoid in fast path ... */
1520 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1521 if (page == NULL || !PageUptodate(page)) {
1522 if (page)
1523 /*
1524 * drop the page reference and try
1525 * to get the page with lock. If we
1526 * are not uptodate that implies
1527 * somebody just created the page but
1528 * is yet to initialize the same. So
1529 * wait for it to initialize.
1530 */
1531 put_page(page);
1532 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1533 if (page) {
1534 BUG_ON(page->mapping != inode->i_mapping);
1535 if (!PageUptodate(page)) {
1536 ret = ext4_mb_init_cache(page, NULL, gfp);
1537 if (ret) {
1538 unlock_page(page);
1539 goto err;
1540 }
1541 mb_cmp_bitmaps(e4b, page_address(page) +
1542 (poff * sb->s_blocksize));
1543 }
1544 unlock_page(page);
1545 }
1546 }
1547 if (page == NULL) {
1548 ret = -ENOMEM;
1549 goto err;
1550 }
1551 if (!PageUptodate(page)) {
1552 ret = -EIO;
1553 goto err;
1554 }
1555
1556 /* Pages marked accessed already */
1557 e4b->bd_bitmap_page = page;
1558 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1559
1560 block++;
1561 pnum = block / blocks_per_page;
1562 poff = block % blocks_per_page;
1563
1564 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1565 if (page == NULL || !PageUptodate(page)) {
1566 if (page)
1567 put_page(page);
1568 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1569 if (page) {
1570 BUG_ON(page->mapping != inode->i_mapping);
1571 if (!PageUptodate(page)) {
1572 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1573 gfp);
1574 if (ret) {
1575 unlock_page(page);
1576 goto err;
1577 }
1578 }
1579 unlock_page(page);
1580 }
1581 }
1582 if (page == NULL) {
1583 ret = -ENOMEM;
1584 goto err;
1585 }
1586 if (!PageUptodate(page)) {
1587 ret = -EIO;
1588 goto err;
1589 }
1590
1591 /* Pages marked accessed already */
1592 e4b->bd_buddy_page = page;
1593 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1594
1595 return 0;
1596
1597 err:
1598 if (page)
1599 put_page(page);
1600 if (e4b->bd_bitmap_page)
1601 put_page(e4b->bd_bitmap_page);
1602 if (e4b->bd_buddy_page)
1603 put_page(e4b->bd_buddy_page);
1604 e4b->bd_buddy = NULL;
1605 e4b->bd_bitmap = NULL;
1606 return ret;
1607 }
1608
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1609 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1610 struct ext4_buddy *e4b)
1611 {
1612 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1613 }
1614
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1615 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1616 {
1617 if (e4b->bd_bitmap_page)
1618 put_page(e4b->bd_bitmap_page);
1619 if (e4b->bd_buddy_page)
1620 put_page(e4b->bd_buddy_page);
1621 }
1622
1623
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1624 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1625 {
1626 int order = 1, max;
1627 void *bb;
1628
1629 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1630 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1631
1632 while (order <= e4b->bd_blkbits + 1) {
1633 bb = mb_find_buddy(e4b, order, &max);
1634 if (!mb_test_bit(block >> order, bb)) {
1635 /* this block is part of buddy of order 'order' */
1636 return order;
1637 }
1638 order++;
1639 }
1640 return 0;
1641 }
1642
mb_clear_bits(void * bm,int cur,int len)1643 static void mb_clear_bits(void *bm, int cur, int len)
1644 {
1645 __u32 *addr;
1646
1647 len = cur + len;
1648 while (cur < len) {
1649 if ((cur & 31) == 0 && (len - cur) >= 32) {
1650 /* fast path: clear whole word at once */
1651 addr = bm + (cur >> 3);
1652 *addr = 0;
1653 cur += 32;
1654 continue;
1655 }
1656 mb_clear_bit(cur, bm);
1657 cur++;
1658 }
1659 }
1660
1661 /* clear bits in given range
1662 * will return first found zero bit if any, -1 otherwise
1663 */
mb_test_and_clear_bits(void * bm,int cur,int len)1664 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1665 {
1666 __u32 *addr;
1667 int zero_bit = -1;
1668
1669 len = cur + len;
1670 while (cur < len) {
1671 if ((cur & 31) == 0 && (len - cur) >= 32) {
1672 /* fast path: clear whole word at once */
1673 addr = bm + (cur >> 3);
1674 if (*addr != (__u32)(-1) && zero_bit == -1)
1675 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1676 *addr = 0;
1677 cur += 32;
1678 continue;
1679 }
1680 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1681 zero_bit = cur;
1682 cur++;
1683 }
1684
1685 return zero_bit;
1686 }
1687
ext4_set_bits(void * bm,int cur,int len)1688 void ext4_set_bits(void *bm, int cur, int len)
1689 {
1690 __u32 *addr;
1691
1692 len = cur + len;
1693 while (cur < len) {
1694 if ((cur & 31) == 0 && (len - cur) >= 32) {
1695 /* fast path: set whole word at once */
1696 addr = bm + (cur >> 3);
1697 *addr = 0xffffffff;
1698 cur += 32;
1699 continue;
1700 }
1701 mb_set_bit(cur, bm);
1702 cur++;
1703 }
1704 }
1705
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1706 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1707 {
1708 if (mb_test_bit(*bit + side, bitmap)) {
1709 mb_clear_bit(*bit, bitmap);
1710 (*bit) -= side;
1711 return 1;
1712 }
1713 else {
1714 (*bit) += side;
1715 mb_set_bit(*bit, bitmap);
1716 return -1;
1717 }
1718 }
1719
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1720 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1721 {
1722 int max;
1723 int order = 1;
1724 void *buddy = mb_find_buddy(e4b, order, &max);
1725
1726 while (buddy) {
1727 void *buddy2;
1728
1729 /* Bits in range [first; last] are known to be set since
1730 * corresponding blocks were allocated. Bits in range
1731 * (first; last) will stay set because they form buddies on
1732 * upper layer. We just deal with borders if they don't
1733 * align with upper layer and then go up.
1734 * Releasing entire group is all about clearing
1735 * single bit of highest order buddy.
1736 */
1737
1738 /* Example:
1739 * ---------------------------------
1740 * | 1 | 1 | 1 | 1 |
1741 * ---------------------------------
1742 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1743 * ---------------------------------
1744 * 0 1 2 3 4 5 6 7
1745 * \_____________________/
1746 *
1747 * Neither [1] nor [6] is aligned to above layer.
1748 * Left neighbour [0] is free, so mark it busy,
1749 * decrease bb_counters and extend range to
1750 * [0; 6]
1751 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1752 * mark [6] free, increase bb_counters and shrink range to
1753 * [0; 5].
1754 * Then shift range to [0; 2], go up and do the same.
1755 */
1756
1757
1758 if (first & 1)
1759 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1760 if (!(last & 1))
1761 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1762 if (first > last)
1763 break;
1764 order++;
1765
1766 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1767 mb_clear_bits(buddy, first, last - first + 1);
1768 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1769 break;
1770 }
1771 first >>= 1;
1772 last >>= 1;
1773 buddy = buddy2;
1774 }
1775 }
1776
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1777 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1778 int first, int count)
1779 {
1780 int left_is_free = 0;
1781 int right_is_free = 0;
1782 int block;
1783 int last = first + count - 1;
1784 struct super_block *sb = e4b->bd_sb;
1785
1786 if (WARN_ON(count == 0))
1787 return;
1788 BUG_ON(last >= (sb->s_blocksize << 3));
1789 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1790 /* Don't bother if the block group is corrupt. */
1791 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1792 return;
1793
1794 mb_check_buddy(e4b);
1795 mb_free_blocks_double(inode, e4b, first, count);
1796
1797 this_cpu_inc(discard_pa_seq);
1798 e4b->bd_info->bb_free += count;
1799 if (first < e4b->bd_info->bb_first_free)
1800 e4b->bd_info->bb_first_free = first;
1801
1802 /* access memory sequentially: check left neighbour,
1803 * clear range and then check right neighbour
1804 */
1805 if (first != 0)
1806 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1807 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1808 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1809 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1810
1811 if (unlikely(block != -1)) {
1812 struct ext4_sb_info *sbi = EXT4_SB(sb);
1813 ext4_fsblk_t blocknr;
1814
1815 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1816 blocknr += EXT4_C2B(sbi, block);
1817 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1818 ext4_grp_locked_error(sb, e4b->bd_group,
1819 inode ? inode->i_ino : 0,
1820 blocknr,
1821 "freeing already freed block (bit %u); block bitmap corrupt.",
1822 block);
1823 ext4_mark_group_bitmap_corrupted(
1824 sb, e4b->bd_group,
1825 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1826 }
1827 goto done;
1828 }
1829
1830 /* let's maintain fragments counter */
1831 if (left_is_free && right_is_free)
1832 e4b->bd_info->bb_fragments--;
1833 else if (!left_is_free && !right_is_free)
1834 e4b->bd_info->bb_fragments++;
1835
1836 /* buddy[0] == bd_bitmap is a special case, so handle
1837 * it right away and let mb_buddy_mark_free stay free of
1838 * zero order checks.
1839 * Check if neighbours are to be coaleasced,
1840 * adjust bitmap bb_counters and borders appropriately.
1841 */
1842 if (first & 1) {
1843 first += !left_is_free;
1844 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1845 }
1846 if (!(last & 1)) {
1847 last -= !right_is_free;
1848 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1849 }
1850
1851 if (first <= last)
1852 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1853
1854 done:
1855 mb_set_largest_free_order(sb, e4b->bd_info);
1856 mb_update_avg_fragment_size(sb, e4b->bd_info);
1857 mb_check_buddy(e4b);
1858 }
1859
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1860 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1861 int needed, struct ext4_free_extent *ex)
1862 {
1863 int next = block;
1864 int max, order;
1865 void *buddy;
1866
1867 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1868 BUG_ON(ex == NULL);
1869
1870 buddy = mb_find_buddy(e4b, 0, &max);
1871 BUG_ON(buddy == NULL);
1872 BUG_ON(block >= max);
1873 if (mb_test_bit(block, buddy)) {
1874 ex->fe_len = 0;
1875 ex->fe_start = 0;
1876 ex->fe_group = 0;
1877 return 0;
1878 }
1879
1880 /* find actual order */
1881 order = mb_find_order_for_block(e4b, block);
1882 block = block >> order;
1883
1884 ex->fe_len = 1 << order;
1885 ex->fe_start = block << order;
1886 ex->fe_group = e4b->bd_group;
1887
1888 /* calc difference from given start */
1889 next = next - ex->fe_start;
1890 ex->fe_len -= next;
1891 ex->fe_start += next;
1892
1893 while (needed > ex->fe_len &&
1894 mb_find_buddy(e4b, order, &max)) {
1895
1896 if (block + 1 >= max)
1897 break;
1898
1899 next = (block + 1) * (1 << order);
1900 if (mb_test_bit(next, e4b->bd_bitmap))
1901 break;
1902
1903 order = mb_find_order_for_block(e4b, next);
1904
1905 block = next >> order;
1906 ex->fe_len += 1 << order;
1907 }
1908
1909 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1910 /* Should never happen! (but apparently sometimes does?!?) */
1911 WARN_ON(1);
1912 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1913 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1914 block, order, needed, ex->fe_group, ex->fe_start,
1915 ex->fe_len, ex->fe_logical);
1916 ex->fe_len = 0;
1917 ex->fe_start = 0;
1918 ex->fe_group = 0;
1919 }
1920 return ex->fe_len;
1921 }
1922
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1923 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1924 {
1925 int ord;
1926 int mlen = 0;
1927 int max = 0;
1928 int cur;
1929 int start = ex->fe_start;
1930 int len = ex->fe_len;
1931 unsigned ret = 0;
1932 int len0 = len;
1933 void *buddy;
1934
1935 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1936 BUG_ON(e4b->bd_group != ex->fe_group);
1937 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1938 mb_check_buddy(e4b);
1939 mb_mark_used_double(e4b, start, len);
1940
1941 this_cpu_inc(discard_pa_seq);
1942 e4b->bd_info->bb_free -= len;
1943 if (e4b->bd_info->bb_first_free == start)
1944 e4b->bd_info->bb_first_free += len;
1945
1946 /* let's maintain fragments counter */
1947 if (start != 0)
1948 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1949 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1950 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1951 if (mlen && max)
1952 e4b->bd_info->bb_fragments++;
1953 else if (!mlen && !max)
1954 e4b->bd_info->bb_fragments--;
1955
1956 /* let's maintain buddy itself */
1957 while (len) {
1958 ord = mb_find_order_for_block(e4b, start);
1959
1960 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1961 /* the whole chunk may be allocated at once! */
1962 mlen = 1 << ord;
1963 buddy = mb_find_buddy(e4b, ord, &max);
1964 BUG_ON((start >> ord) >= max);
1965 mb_set_bit(start >> ord, buddy);
1966 e4b->bd_info->bb_counters[ord]--;
1967 start += mlen;
1968 len -= mlen;
1969 BUG_ON(len < 0);
1970 continue;
1971 }
1972
1973 /* store for history */
1974 if (ret == 0)
1975 ret = len | (ord << 16);
1976
1977 /* we have to split large buddy */
1978 BUG_ON(ord <= 0);
1979 buddy = mb_find_buddy(e4b, ord, &max);
1980 mb_set_bit(start >> ord, buddy);
1981 e4b->bd_info->bb_counters[ord]--;
1982
1983 ord--;
1984 cur = (start >> ord) & ~1U;
1985 buddy = mb_find_buddy(e4b, ord, &max);
1986 mb_clear_bit(cur, buddy);
1987 mb_clear_bit(cur + 1, buddy);
1988 e4b->bd_info->bb_counters[ord]++;
1989 e4b->bd_info->bb_counters[ord]++;
1990 }
1991 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1992
1993 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
1994 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1995 mb_check_buddy(e4b);
1996
1997 return ret;
1998 }
1999
2000 /*
2001 * Must be called under group lock!
2002 */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2003 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2004 struct ext4_buddy *e4b)
2005 {
2006 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2007 int ret;
2008
2009 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2010 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2011
2012 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2013 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2014 ret = mb_mark_used(e4b, &ac->ac_b_ex);
2015
2016 /* preallocation can change ac_b_ex, thus we store actually
2017 * allocated blocks for history */
2018 ac->ac_f_ex = ac->ac_b_ex;
2019
2020 ac->ac_status = AC_STATUS_FOUND;
2021 ac->ac_tail = ret & 0xffff;
2022 ac->ac_buddy = ret >> 16;
2023
2024 /*
2025 * take the page reference. We want the page to be pinned
2026 * so that we don't get a ext4_mb_init_cache_call for this
2027 * group until we update the bitmap. That would mean we
2028 * double allocate blocks. The reference is dropped
2029 * in ext4_mb_release_context
2030 */
2031 ac->ac_bitmap_page = e4b->bd_bitmap_page;
2032 get_page(ac->ac_bitmap_page);
2033 ac->ac_buddy_page = e4b->bd_buddy_page;
2034 get_page(ac->ac_buddy_page);
2035 /* store last allocated for subsequent stream allocation */
2036 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2037 spin_lock(&sbi->s_md_lock);
2038 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2039 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2040 spin_unlock(&sbi->s_md_lock);
2041 }
2042 /*
2043 * As we've just preallocated more space than
2044 * user requested originally, we store allocated
2045 * space in a special descriptor.
2046 */
2047 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2048 ext4_mb_new_preallocation(ac);
2049
2050 }
2051
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)2052 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2053 struct ext4_buddy *e4b,
2054 int finish_group)
2055 {
2056 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2057 struct ext4_free_extent *bex = &ac->ac_b_ex;
2058 struct ext4_free_extent *gex = &ac->ac_g_ex;
2059 struct ext4_free_extent ex;
2060 int max;
2061
2062 if (ac->ac_status == AC_STATUS_FOUND)
2063 return;
2064 /*
2065 * We don't want to scan for a whole year
2066 */
2067 if (ac->ac_found > sbi->s_mb_max_to_scan &&
2068 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2069 ac->ac_status = AC_STATUS_BREAK;
2070 return;
2071 }
2072
2073 /*
2074 * Haven't found good chunk so far, let's continue
2075 */
2076 if (bex->fe_len < gex->fe_len)
2077 return;
2078
2079 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2080 && bex->fe_group == e4b->bd_group) {
2081 /* recheck chunk's availability - we don't know
2082 * when it was found (within this lock-unlock
2083 * period or not) */
2084 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
2085 if (max >= gex->fe_len) {
2086 ext4_mb_use_best_found(ac, e4b);
2087 return;
2088 }
2089 }
2090 }
2091
2092 /*
2093 * The routine checks whether found extent is good enough. If it is,
2094 * then the extent gets marked used and flag is set to the context
2095 * to stop scanning. Otherwise, the extent is compared with the
2096 * previous found extent and if new one is better, then it's stored
2097 * in the context. Later, the best found extent will be used, if
2098 * mballoc can't find good enough extent.
2099 *
2100 * FIXME: real allocation policy is to be designed yet!
2101 */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)2102 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2103 struct ext4_free_extent *ex,
2104 struct ext4_buddy *e4b)
2105 {
2106 struct ext4_free_extent *bex = &ac->ac_b_ex;
2107 struct ext4_free_extent *gex = &ac->ac_g_ex;
2108
2109 BUG_ON(ex->fe_len <= 0);
2110 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2111 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2112 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2113
2114 ac->ac_found++;
2115
2116 /*
2117 * The special case - take what you catch first
2118 */
2119 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2120 *bex = *ex;
2121 ext4_mb_use_best_found(ac, e4b);
2122 return;
2123 }
2124
2125 /*
2126 * Let's check whether the chuck is good enough
2127 */
2128 if (ex->fe_len == gex->fe_len) {
2129 *bex = *ex;
2130 ext4_mb_use_best_found(ac, e4b);
2131 return;
2132 }
2133
2134 /*
2135 * If this is first found extent, just store it in the context
2136 */
2137 if (bex->fe_len == 0) {
2138 *bex = *ex;
2139 return;
2140 }
2141
2142 /*
2143 * If new found extent is better, store it in the context
2144 */
2145 if (bex->fe_len < gex->fe_len) {
2146 /* if the request isn't satisfied, any found extent
2147 * larger than previous best one is better */
2148 if (ex->fe_len > bex->fe_len)
2149 *bex = *ex;
2150 } else if (ex->fe_len > gex->fe_len) {
2151 /* if the request is satisfied, then we try to find
2152 * an extent that still satisfy the request, but is
2153 * smaller than previous one */
2154 if (ex->fe_len < bex->fe_len)
2155 *bex = *ex;
2156 }
2157
2158 ext4_mb_check_limits(ac, e4b, 0);
2159 }
2160
2161 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2162 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2163 struct ext4_buddy *e4b)
2164 {
2165 struct ext4_free_extent ex = ac->ac_b_ex;
2166 ext4_group_t group = ex.fe_group;
2167 int max;
2168 int err;
2169
2170 BUG_ON(ex.fe_len <= 0);
2171 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2172 if (err)
2173 return err;
2174
2175 ext4_lock_group(ac->ac_sb, group);
2176 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2177
2178 if (max > 0) {
2179 ac->ac_b_ex = ex;
2180 ext4_mb_use_best_found(ac, e4b);
2181 }
2182
2183 ext4_unlock_group(ac->ac_sb, group);
2184 ext4_mb_unload_buddy(e4b);
2185
2186 return 0;
2187 }
2188
2189 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2190 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2191 struct ext4_buddy *e4b)
2192 {
2193 ext4_group_t group = ac->ac_g_ex.fe_group;
2194 int max;
2195 int err;
2196 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2197 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2198 struct ext4_free_extent ex;
2199
2200 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
2201 return 0;
2202 if (grp->bb_free == 0)
2203 return 0;
2204
2205 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2206 if (err)
2207 return err;
2208
2209 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2210 ext4_mb_unload_buddy(e4b);
2211 return 0;
2212 }
2213
2214 ext4_lock_group(ac->ac_sb, group);
2215 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2216 ac->ac_g_ex.fe_len, &ex);
2217 ex.fe_logical = 0xDEADFA11; /* debug value */
2218
2219 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
2220 ext4_fsblk_t start;
2221
2222 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
2223 ex.fe_start;
2224 /* use do_div to get remainder (would be 64-bit modulo) */
2225 if (do_div(start, sbi->s_stripe) == 0) {
2226 ac->ac_found++;
2227 ac->ac_b_ex = ex;
2228 ext4_mb_use_best_found(ac, e4b);
2229 }
2230 } else if (max >= ac->ac_g_ex.fe_len) {
2231 BUG_ON(ex.fe_len <= 0);
2232 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2233 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2234 ac->ac_found++;
2235 ac->ac_b_ex = ex;
2236 ext4_mb_use_best_found(ac, e4b);
2237 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2238 /* Sometimes, caller may want to merge even small
2239 * number of blocks to an existing extent */
2240 BUG_ON(ex.fe_len <= 0);
2241 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2242 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2243 ac->ac_found++;
2244 ac->ac_b_ex = ex;
2245 ext4_mb_use_best_found(ac, e4b);
2246 }
2247 ext4_unlock_group(ac->ac_sb, group);
2248 ext4_mb_unload_buddy(e4b);
2249
2250 return 0;
2251 }
2252
2253 /*
2254 * The routine scans buddy structures (not bitmap!) from given order
2255 * to max order and tries to find big enough chunk to satisfy the req
2256 */
2257 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2258 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2259 struct ext4_buddy *e4b)
2260 {
2261 struct super_block *sb = ac->ac_sb;
2262 struct ext4_group_info *grp = e4b->bd_info;
2263 void *buddy;
2264 int i;
2265 int k;
2266 int max;
2267
2268 BUG_ON(ac->ac_2order <= 0);
2269 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2270 if (grp->bb_counters[i] == 0)
2271 continue;
2272
2273 buddy = mb_find_buddy(e4b, i, &max);
2274 BUG_ON(buddy == NULL);
2275
2276 k = mb_find_next_zero_bit(buddy, max, 0);
2277 if (k >= max) {
2278 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2279 "%d free clusters of order %d. But found 0",
2280 grp->bb_counters[i], i);
2281 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2282 e4b->bd_group,
2283 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2284 break;
2285 }
2286 ac->ac_found++;
2287
2288 ac->ac_b_ex.fe_len = 1 << i;
2289 ac->ac_b_ex.fe_start = k << i;
2290 ac->ac_b_ex.fe_group = e4b->bd_group;
2291
2292 ext4_mb_use_best_found(ac, e4b);
2293
2294 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2295
2296 if (EXT4_SB(sb)->s_mb_stats)
2297 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2298
2299 break;
2300 }
2301 }
2302
2303 /*
2304 * The routine scans the group and measures all found extents.
2305 * In order to optimize scanning, caller must pass number of
2306 * free blocks in the group, so the routine can know upper limit.
2307 */
2308 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2309 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2310 struct ext4_buddy *e4b)
2311 {
2312 struct super_block *sb = ac->ac_sb;
2313 void *bitmap = e4b->bd_bitmap;
2314 struct ext4_free_extent ex;
2315 int i;
2316 int free;
2317
2318 free = e4b->bd_info->bb_free;
2319 if (WARN_ON(free <= 0))
2320 return;
2321
2322 i = e4b->bd_info->bb_first_free;
2323
2324 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2325 i = mb_find_next_zero_bit(bitmap,
2326 EXT4_CLUSTERS_PER_GROUP(sb), i);
2327 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2328 /*
2329 * IF we have corrupt bitmap, we won't find any
2330 * free blocks even though group info says we
2331 * have free blocks
2332 */
2333 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2334 "%d free clusters as per "
2335 "group info. But bitmap says 0",
2336 free);
2337 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2338 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2339 break;
2340 }
2341
2342 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2343 if (WARN_ON(ex.fe_len <= 0))
2344 break;
2345 if (free < ex.fe_len) {
2346 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2347 "%d free clusters as per "
2348 "group info. But got %d blocks",
2349 free, ex.fe_len);
2350 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2351 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2352 /*
2353 * The number of free blocks differs. This mostly
2354 * indicate that the bitmap is corrupt. So exit
2355 * without claiming the space.
2356 */
2357 break;
2358 }
2359 ex.fe_logical = 0xDEADC0DE; /* debug value */
2360 ext4_mb_measure_extent(ac, &ex, e4b);
2361
2362 i += ex.fe_len;
2363 free -= ex.fe_len;
2364 }
2365
2366 ext4_mb_check_limits(ac, e4b, 1);
2367 }
2368
2369 /*
2370 * This is a special case for storages like raid5
2371 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2372 */
2373 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2374 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2375 struct ext4_buddy *e4b)
2376 {
2377 struct super_block *sb = ac->ac_sb;
2378 struct ext4_sb_info *sbi = EXT4_SB(sb);
2379 void *bitmap = e4b->bd_bitmap;
2380 struct ext4_free_extent ex;
2381 ext4_fsblk_t first_group_block;
2382 ext4_fsblk_t a;
2383 ext4_grpblk_t i;
2384 int max;
2385
2386 BUG_ON(sbi->s_stripe == 0);
2387
2388 /* find first stripe-aligned block in group */
2389 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2390
2391 a = first_group_block + sbi->s_stripe - 1;
2392 do_div(a, sbi->s_stripe);
2393 i = (a * sbi->s_stripe) - first_group_block;
2394
2395 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2396 if (!mb_test_bit(i, bitmap)) {
2397 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2398 if (max >= sbi->s_stripe) {
2399 ac->ac_found++;
2400 ex.fe_logical = 0xDEADF00D; /* debug value */
2401 ac->ac_b_ex = ex;
2402 ext4_mb_use_best_found(ac, e4b);
2403 break;
2404 }
2405 }
2406 i += sbi->s_stripe;
2407 }
2408 }
2409
2410 /*
2411 * This is also called BEFORE we load the buddy bitmap.
2412 * Returns either 1 or 0 indicating that the group is either suitable
2413 * for the allocation or not.
2414 */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2415 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2416 ext4_group_t group, int cr)
2417 {
2418 ext4_grpblk_t free, fragments;
2419 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2420 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2421
2422 BUG_ON(cr < 0 || cr >= 4);
2423
2424 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2425 return false;
2426
2427 free = grp->bb_free;
2428 if (free == 0)
2429 return false;
2430
2431 fragments = grp->bb_fragments;
2432 if (fragments == 0)
2433 return false;
2434
2435 switch (cr) {
2436 case 0:
2437 BUG_ON(ac->ac_2order == 0);
2438
2439 /* Avoid using the first bg of a flexgroup for data files */
2440 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2441 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2442 ((group % flex_size) == 0))
2443 return false;
2444
2445 if (free < ac->ac_g_ex.fe_len)
2446 return false;
2447
2448 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2449 return true;
2450
2451 if (grp->bb_largest_free_order < ac->ac_2order)
2452 return false;
2453
2454 return true;
2455 case 1:
2456 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2457 return true;
2458 break;
2459 case 2:
2460 if (free >= ac->ac_g_ex.fe_len)
2461 return true;
2462 break;
2463 case 3:
2464 return true;
2465 default:
2466 BUG();
2467 }
2468
2469 return false;
2470 }
2471
2472 /*
2473 * This could return negative error code if something goes wrong
2474 * during ext4_mb_init_group(). This should not be called with
2475 * ext4_lock_group() held.
2476 */
ext4_mb_good_group_nolock(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2477 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2478 ext4_group_t group, int cr)
2479 {
2480 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2481 struct super_block *sb = ac->ac_sb;
2482 struct ext4_sb_info *sbi = EXT4_SB(sb);
2483 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2484 ext4_grpblk_t free;
2485 int ret = 0;
2486
2487 if (sbi->s_mb_stats)
2488 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2489 if (should_lock)
2490 ext4_lock_group(sb, group);
2491 free = grp->bb_free;
2492 if (free == 0)
2493 goto out;
2494 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2495 goto out;
2496 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2497 goto out;
2498 if (should_lock)
2499 ext4_unlock_group(sb, group);
2500
2501 /* We only do this if the grp has never been initialized */
2502 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2503 struct ext4_group_desc *gdp =
2504 ext4_get_group_desc(sb, group, NULL);
2505 int ret;
2506
2507 /* cr=0/1 is a very optimistic search to find large
2508 * good chunks almost for free. If buddy data is not
2509 * ready, then this optimization makes no sense. But
2510 * we never skip the first block group in a flex_bg,
2511 * since this gets used for metadata block allocation,
2512 * and we want to make sure we locate metadata blocks
2513 * in the first block group in the flex_bg if possible.
2514 */
2515 if (cr < 2 &&
2516 (!sbi->s_log_groups_per_flex ||
2517 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2518 !(ext4_has_group_desc_csum(sb) &&
2519 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2520 return 0;
2521 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2522 if (ret)
2523 return ret;
2524 }
2525
2526 if (should_lock)
2527 ext4_lock_group(sb, group);
2528 ret = ext4_mb_good_group(ac, group, cr);
2529 out:
2530 if (should_lock)
2531 ext4_unlock_group(sb, group);
2532 return ret;
2533 }
2534
2535 /*
2536 * Start prefetching @nr block bitmaps starting at @group.
2537 * Return the next group which needs to be prefetched.
2538 */
ext4_mb_prefetch(struct super_block * sb,ext4_group_t group,unsigned int nr,int * cnt)2539 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2540 unsigned int nr, int *cnt)
2541 {
2542 ext4_group_t ngroups = ext4_get_groups_count(sb);
2543 struct buffer_head *bh;
2544 struct blk_plug plug;
2545
2546 blk_start_plug(&plug);
2547 while (nr-- > 0) {
2548 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2549 NULL);
2550 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2551
2552 /*
2553 * Prefetch block groups with free blocks; but don't
2554 * bother if it is marked uninitialized on disk, since
2555 * it won't require I/O to read. Also only try to
2556 * prefetch once, so we avoid getblk() call, which can
2557 * be expensive.
2558 */
2559 if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2560 EXT4_MB_GRP_NEED_INIT(grp) &&
2561 ext4_free_group_clusters(sb, gdp) > 0 &&
2562 !(ext4_has_group_desc_csum(sb) &&
2563 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2564 bh = ext4_read_block_bitmap_nowait(sb, group, true);
2565 if (bh && !IS_ERR(bh)) {
2566 if (!buffer_uptodate(bh) && cnt)
2567 (*cnt)++;
2568 brelse(bh);
2569 }
2570 }
2571 if (++group >= ngroups)
2572 group = 0;
2573 }
2574 blk_finish_plug(&plug);
2575 return group;
2576 }
2577
2578 /*
2579 * Prefetching reads the block bitmap into the buffer cache; but we
2580 * need to make sure that the buddy bitmap in the page cache has been
2581 * initialized. Note that ext4_mb_init_group() will block if the I/O
2582 * is not yet completed, or indeed if it was not initiated by
2583 * ext4_mb_prefetch did not start the I/O.
2584 *
2585 * TODO: We should actually kick off the buddy bitmap setup in a work
2586 * queue when the buffer I/O is completed, so that we don't block
2587 * waiting for the block allocation bitmap read to finish when
2588 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2589 */
ext4_mb_prefetch_fini(struct super_block * sb,ext4_group_t group,unsigned int nr)2590 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2591 unsigned int nr)
2592 {
2593 while (nr-- > 0) {
2594 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2595 NULL);
2596 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2597
2598 if (!group)
2599 group = ext4_get_groups_count(sb);
2600 group--;
2601 grp = ext4_get_group_info(sb, group);
2602
2603 if (EXT4_MB_GRP_NEED_INIT(grp) &&
2604 ext4_free_group_clusters(sb, gdp) > 0 &&
2605 !(ext4_has_group_desc_csum(sb) &&
2606 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2607 if (ext4_mb_init_group(sb, group, GFP_NOFS))
2608 break;
2609 }
2610 }
2611 }
2612
2613 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2614 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2615 {
2616 ext4_group_t prefetch_grp = 0, ngroups, group, i;
2617 int cr = -1;
2618 int err = 0, first_err = 0;
2619 unsigned int nr = 0, prefetch_ios = 0;
2620 struct ext4_sb_info *sbi;
2621 struct super_block *sb;
2622 struct ext4_buddy e4b;
2623 int lost;
2624
2625 sb = ac->ac_sb;
2626 sbi = EXT4_SB(sb);
2627 ngroups = ext4_get_groups_count(sb);
2628 /* non-extent files are limited to low blocks/groups */
2629 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2630 ngroups = sbi->s_blockfile_groups;
2631
2632 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2633
2634 /* first, try the goal */
2635 err = ext4_mb_find_by_goal(ac, &e4b);
2636 if (err || ac->ac_status == AC_STATUS_FOUND)
2637 goto out;
2638
2639 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2640 goto out;
2641
2642 /*
2643 * ac->ac_2order is set only if the fe_len is a power of 2
2644 * if ac->ac_2order is set we also set criteria to 0 so that we
2645 * try exact allocation using buddy.
2646 */
2647 i = fls(ac->ac_g_ex.fe_len);
2648 ac->ac_2order = 0;
2649 /*
2650 * We search using buddy data only if the order of the request
2651 * is greater than equal to the sbi_s_mb_order2_reqs
2652 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2653 * We also support searching for power-of-two requests only for
2654 * requests upto maximum buddy size we have constructed.
2655 */
2656 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2657 /*
2658 * This should tell if fe_len is exactly power of 2
2659 */
2660 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2661 ac->ac_2order = array_index_nospec(i - 1,
2662 MB_NUM_ORDERS(sb));
2663 }
2664
2665 /* if stream allocation is enabled, use global goal */
2666 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2667 /* TBD: may be hot point */
2668 spin_lock(&sbi->s_md_lock);
2669 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2670 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2671 spin_unlock(&sbi->s_md_lock);
2672 }
2673
2674 /* Let's just scan groups to find more-less suitable blocks */
2675 cr = ac->ac_2order ? 0 : 1;
2676 /*
2677 * cr == 0 try to get exact allocation,
2678 * cr == 3 try to get anything
2679 */
2680 repeat:
2681 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2682 ac->ac_criteria = cr;
2683 /*
2684 * searching for the right group start
2685 * from the goal value specified
2686 */
2687 group = ac->ac_g_ex.fe_group;
2688 ac->ac_last_optimal_group = group;
2689 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2690 prefetch_grp = group;
2691
2692 for (i = 0; i < ngroups; group = next_linear_group(ac, group, ngroups),
2693 i++) {
2694 int ret = 0, new_cr;
2695
2696 cond_resched();
2697
2698 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups);
2699 if (new_cr != cr) {
2700 cr = new_cr;
2701 goto repeat;
2702 }
2703
2704 /*
2705 * Batch reads of the block allocation bitmaps
2706 * to get multiple READs in flight; limit
2707 * prefetching at cr=0/1, otherwise mballoc can
2708 * spend a lot of time loading imperfect groups
2709 */
2710 if ((prefetch_grp == group) &&
2711 (cr > 1 ||
2712 prefetch_ios < sbi->s_mb_prefetch_limit)) {
2713 unsigned int curr_ios = prefetch_ios;
2714
2715 nr = sbi->s_mb_prefetch;
2716 if (ext4_has_feature_flex_bg(sb)) {
2717 nr = 1 << sbi->s_log_groups_per_flex;
2718 nr -= group & (nr - 1);
2719 nr = min(nr, sbi->s_mb_prefetch);
2720 }
2721 prefetch_grp = ext4_mb_prefetch(sb, group,
2722 nr, &prefetch_ios);
2723 if (prefetch_ios == curr_ios)
2724 nr = 0;
2725 }
2726
2727 /* This now checks without needing the buddy page */
2728 ret = ext4_mb_good_group_nolock(ac, group, cr);
2729 if (ret <= 0) {
2730 if (!first_err)
2731 first_err = ret;
2732 continue;
2733 }
2734
2735 err = ext4_mb_load_buddy(sb, group, &e4b);
2736 if (err)
2737 goto out;
2738
2739 ext4_lock_group(sb, group);
2740
2741 /*
2742 * We need to check again after locking the
2743 * block group
2744 */
2745 ret = ext4_mb_good_group(ac, group, cr);
2746 if (ret == 0) {
2747 ext4_unlock_group(sb, group);
2748 ext4_mb_unload_buddy(&e4b);
2749 continue;
2750 }
2751
2752 ac->ac_groups_scanned++;
2753 if (cr == 0)
2754 ext4_mb_simple_scan_group(ac, &e4b);
2755 else if (cr == 1 && sbi->s_stripe &&
2756 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2757 ext4_mb_scan_aligned(ac, &e4b);
2758 else
2759 ext4_mb_complex_scan_group(ac, &e4b);
2760
2761 ext4_unlock_group(sb, group);
2762 ext4_mb_unload_buddy(&e4b);
2763
2764 if (ac->ac_status != AC_STATUS_CONTINUE)
2765 break;
2766 }
2767 /* Processed all groups and haven't found blocks */
2768 if (sbi->s_mb_stats && i == ngroups)
2769 atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2770 }
2771
2772 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2773 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2774 /*
2775 * We've been searching too long. Let's try to allocate
2776 * the best chunk we've found so far
2777 */
2778 ext4_mb_try_best_found(ac, &e4b);
2779 if (ac->ac_status != AC_STATUS_FOUND) {
2780 /*
2781 * Someone more lucky has already allocated it.
2782 * The only thing we can do is just take first
2783 * found block(s)
2784 */
2785 lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2786 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2787 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2788 ac->ac_b_ex.fe_len, lost);
2789
2790 ac->ac_b_ex.fe_group = 0;
2791 ac->ac_b_ex.fe_start = 0;
2792 ac->ac_b_ex.fe_len = 0;
2793 ac->ac_status = AC_STATUS_CONTINUE;
2794 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2795 cr = 3;
2796 goto repeat;
2797 }
2798 }
2799
2800 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2801 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2802 out:
2803 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2804 err = first_err;
2805
2806 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2807 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2808 ac->ac_flags, cr, err);
2809
2810 if (nr)
2811 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2812
2813 return err;
2814 }
2815
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2816 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2817 {
2818 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2819 ext4_group_t group;
2820
2821 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2822 return NULL;
2823 group = *pos + 1;
2824 return (void *) ((unsigned long) group);
2825 }
2826
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2827 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2828 {
2829 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2830 ext4_group_t group;
2831
2832 ++*pos;
2833 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2834 return NULL;
2835 group = *pos + 1;
2836 return (void *) ((unsigned long) group);
2837 }
2838
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2839 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2840 {
2841 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2842 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2843 int i;
2844 int err, buddy_loaded = 0;
2845 struct ext4_buddy e4b;
2846 struct ext4_group_info *grinfo;
2847 unsigned char blocksize_bits = min_t(unsigned char,
2848 sb->s_blocksize_bits,
2849 EXT4_MAX_BLOCK_LOG_SIZE);
2850 struct sg {
2851 struct ext4_group_info info;
2852 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2853 } sg;
2854
2855 group--;
2856 if (group == 0)
2857 seq_puts(seq, "#group: free frags first ["
2858 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2859 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2860
2861 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2862 sizeof(struct ext4_group_info);
2863
2864 grinfo = ext4_get_group_info(sb, group);
2865 /* Load the group info in memory only if not already loaded. */
2866 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2867 err = ext4_mb_load_buddy(sb, group, &e4b);
2868 if (err) {
2869 seq_printf(seq, "#%-5u: I/O error\n", group);
2870 return 0;
2871 }
2872 buddy_loaded = 1;
2873 }
2874
2875 memcpy(&sg, ext4_get_group_info(sb, group), i);
2876
2877 if (buddy_loaded)
2878 ext4_mb_unload_buddy(&e4b);
2879
2880 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2881 sg.info.bb_fragments, sg.info.bb_first_free);
2882 for (i = 0; i <= 13; i++)
2883 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2884 sg.info.bb_counters[i] : 0);
2885 seq_puts(seq, " ]\n");
2886
2887 return 0;
2888 }
2889
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2890 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2891 {
2892 }
2893
2894 const struct seq_operations ext4_mb_seq_groups_ops = {
2895 .start = ext4_mb_seq_groups_start,
2896 .next = ext4_mb_seq_groups_next,
2897 .stop = ext4_mb_seq_groups_stop,
2898 .show = ext4_mb_seq_groups_show,
2899 };
2900
ext4_seq_mb_stats_show(struct seq_file * seq,void * offset)2901 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
2902 {
2903 struct super_block *sb = (struct super_block *)seq->private;
2904 struct ext4_sb_info *sbi = EXT4_SB(sb);
2905
2906 seq_puts(seq, "mballoc:\n");
2907 if (!sbi->s_mb_stats) {
2908 seq_puts(seq, "\tmb stats collection turned off.\n");
2909 seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
2910 return 0;
2911 }
2912 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
2913 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
2914
2915 seq_printf(seq, "\tgroups_scanned: %u\n", atomic_read(&sbi->s_bal_groups_scanned));
2916
2917 seq_puts(seq, "\tcr0_stats:\n");
2918 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0]));
2919 seq_printf(seq, "\t\tgroups_considered: %llu\n",
2920 atomic64_read(&sbi->s_bal_cX_groups_considered[0]));
2921 seq_printf(seq, "\t\tuseless_loops: %llu\n",
2922 atomic64_read(&sbi->s_bal_cX_failed[0]));
2923 seq_printf(seq, "\t\tbad_suggestions: %u\n",
2924 atomic_read(&sbi->s_bal_cr0_bad_suggestions));
2925
2926 seq_puts(seq, "\tcr1_stats:\n");
2927 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1]));
2928 seq_printf(seq, "\t\tgroups_considered: %llu\n",
2929 atomic64_read(&sbi->s_bal_cX_groups_considered[1]));
2930 seq_printf(seq, "\t\tuseless_loops: %llu\n",
2931 atomic64_read(&sbi->s_bal_cX_failed[1]));
2932 seq_printf(seq, "\t\tbad_suggestions: %u\n",
2933 atomic_read(&sbi->s_bal_cr1_bad_suggestions));
2934
2935 seq_puts(seq, "\tcr2_stats:\n");
2936 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2]));
2937 seq_printf(seq, "\t\tgroups_considered: %llu\n",
2938 atomic64_read(&sbi->s_bal_cX_groups_considered[2]));
2939 seq_printf(seq, "\t\tuseless_loops: %llu\n",
2940 atomic64_read(&sbi->s_bal_cX_failed[2]));
2941
2942 seq_puts(seq, "\tcr3_stats:\n");
2943 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3]));
2944 seq_printf(seq, "\t\tgroups_considered: %llu\n",
2945 atomic64_read(&sbi->s_bal_cX_groups_considered[3]));
2946 seq_printf(seq, "\t\tuseless_loops: %llu\n",
2947 atomic64_read(&sbi->s_bal_cX_failed[3]));
2948 seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned));
2949 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
2950 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
2951 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
2952 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
2953
2954 seq_printf(seq, "\tbuddies_generated: %u/%u\n",
2955 atomic_read(&sbi->s_mb_buddies_generated),
2956 ext4_get_groups_count(sb));
2957 seq_printf(seq, "\tbuddies_time_used: %llu\n",
2958 atomic64_read(&sbi->s_mb_generation_time));
2959 seq_printf(seq, "\tpreallocated: %u\n",
2960 atomic_read(&sbi->s_mb_preallocated));
2961 seq_printf(seq, "\tdiscarded: %u\n",
2962 atomic_read(&sbi->s_mb_discarded));
2963 return 0;
2964 }
2965
ext4_mb_seq_structs_summary_start(struct seq_file * seq,loff_t * pos)2966 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
2967 {
2968 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2969 unsigned long position;
2970
2971 read_lock(&EXT4_SB(sb)->s_mb_rb_lock);
2972
2973 if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
2974 return NULL;
2975 position = *pos + 1;
2976 return (void *) ((unsigned long) position);
2977 }
2978
ext4_mb_seq_structs_summary_next(struct seq_file * seq,void * v,loff_t * pos)2979 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
2980 {
2981 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2982 unsigned long position;
2983
2984 ++*pos;
2985 if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
2986 return NULL;
2987 position = *pos + 1;
2988 return (void *) ((unsigned long) position);
2989 }
2990
ext4_mb_seq_structs_summary_show(struct seq_file * seq,void * v)2991 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
2992 {
2993 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2994 struct ext4_sb_info *sbi = EXT4_SB(sb);
2995 unsigned long position = ((unsigned long) v);
2996 struct ext4_group_info *grp;
2997 struct rb_node *n;
2998 unsigned int count, min, max;
2999
3000 position--;
3001 if (position >= MB_NUM_ORDERS(sb)) {
3002 seq_puts(seq, "fragment_size_tree:\n");
3003 n = rb_first(&sbi->s_mb_avg_fragment_size_root);
3004 if (!n) {
3005 seq_puts(seq, "\ttree_min: 0\n\ttree_max: 0\n\ttree_nodes: 0\n");
3006 return 0;
3007 }
3008 grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
3009 min = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
3010 count = 1;
3011 while (rb_next(n)) {
3012 count++;
3013 n = rb_next(n);
3014 }
3015 grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
3016 max = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
3017
3018 seq_printf(seq, "\ttree_min: %u\n\ttree_max: %u\n\ttree_nodes: %u\n",
3019 min, max, count);
3020 return 0;
3021 }
3022
3023 if (position == 0) {
3024 seq_printf(seq, "optimize_scan: %d\n",
3025 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3026 seq_puts(seq, "max_free_order_lists:\n");
3027 }
3028 count = 0;
3029 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3030 bb_largest_free_order_node)
3031 count++;
3032 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3033 (unsigned int)position, count);
3034
3035 return 0;
3036 }
3037
ext4_mb_seq_structs_summary_stop(struct seq_file * seq,void * v)3038 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3039 {
3040 struct super_block *sb = PDE_DATA(file_inode(seq->file));
3041
3042 read_unlock(&EXT4_SB(sb)->s_mb_rb_lock);
3043 }
3044
3045 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3046 .start = ext4_mb_seq_structs_summary_start,
3047 .next = ext4_mb_seq_structs_summary_next,
3048 .stop = ext4_mb_seq_structs_summary_stop,
3049 .show = ext4_mb_seq_structs_summary_show,
3050 };
3051
get_groupinfo_cache(int blocksize_bits)3052 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3053 {
3054 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3055 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3056
3057 BUG_ON(!cachep);
3058 return cachep;
3059 }
3060
3061 /*
3062 * Allocate the top-level s_group_info array for the specified number
3063 * of groups
3064 */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)3065 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3066 {
3067 struct ext4_sb_info *sbi = EXT4_SB(sb);
3068 unsigned size;
3069 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3070
3071 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3072 EXT4_DESC_PER_BLOCK_BITS(sb);
3073 if (size <= sbi->s_group_info_size)
3074 return 0;
3075
3076 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3077 new_groupinfo = kvzalloc(size, GFP_KERNEL);
3078 if (!new_groupinfo) {
3079 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3080 return -ENOMEM;
3081 }
3082 rcu_read_lock();
3083 old_groupinfo = rcu_dereference(sbi->s_group_info);
3084 if (old_groupinfo)
3085 memcpy(new_groupinfo, old_groupinfo,
3086 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3087 rcu_read_unlock();
3088 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3089 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3090 if (old_groupinfo)
3091 ext4_kvfree_array_rcu(old_groupinfo);
3092 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3093 sbi->s_group_info_size);
3094 return 0;
3095 }
3096
3097 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)3098 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3099 struct ext4_group_desc *desc)
3100 {
3101 int i;
3102 int metalen = 0;
3103 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3104 struct ext4_sb_info *sbi = EXT4_SB(sb);
3105 struct ext4_group_info **meta_group_info;
3106 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3107
3108 /*
3109 * First check if this group is the first of a reserved block.
3110 * If it's true, we have to allocate a new table of pointers
3111 * to ext4_group_info structures
3112 */
3113 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3114 metalen = sizeof(*meta_group_info) <<
3115 EXT4_DESC_PER_BLOCK_BITS(sb);
3116 meta_group_info = kmalloc(metalen, GFP_NOFS);
3117 if (meta_group_info == NULL) {
3118 ext4_msg(sb, KERN_ERR, "can't allocate mem "
3119 "for a buddy group");
3120 goto exit_meta_group_info;
3121 }
3122 rcu_read_lock();
3123 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3124 rcu_read_unlock();
3125 }
3126
3127 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3128 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3129
3130 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3131 if (meta_group_info[i] == NULL) {
3132 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3133 goto exit_group_info;
3134 }
3135 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3136 &(meta_group_info[i]->bb_state));
3137
3138 /*
3139 * initialize bb_free to be able to skip
3140 * empty groups without initialization
3141 */
3142 if (ext4_has_group_desc_csum(sb) &&
3143 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3144 meta_group_info[i]->bb_free =
3145 ext4_free_clusters_after_init(sb, group, desc);
3146 } else {
3147 meta_group_info[i]->bb_free =
3148 ext4_free_group_clusters(sb, desc);
3149 }
3150
3151 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3152 init_rwsem(&meta_group_info[i]->alloc_sem);
3153 meta_group_info[i]->bb_free_root = RB_ROOT;
3154 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3155 RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb);
3156 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
3157 meta_group_info[i]->bb_group = group;
3158
3159 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3160 return 0;
3161
3162 exit_group_info:
3163 /* If a meta_group_info table has been allocated, release it now */
3164 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3165 struct ext4_group_info ***group_info;
3166
3167 rcu_read_lock();
3168 group_info = rcu_dereference(sbi->s_group_info);
3169 kfree(group_info[idx]);
3170 group_info[idx] = NULL;
3171 rcu_read_unlock();
3172 }
3173 exit_meta_group_info:
3174 return -ENOMEM;
3175 } /* ext4_mb_add_groupinfo */
3176
ext4_mb_init_backend(struct super_block * sb)3177 static int ext4_mb_init_backend(struct super_block *sb)
3178 {
3179 ext4_group_t ngroups = ext4_get_groups_count(sb);
3180 ext4_group_t i;
3181 struct ext4_sb_info *sbi = EXT4_SB(sb);
3182 int err;
3183 struct ext4_group_desc *desc;
3184 struct ext4_group_info ***group_info;
3185 struct kmem_cache *cachep;
3186
3187 err = ext4_mb_alloc_groupinfo(sb, ngroups);
3188 if (err)
3189 return err;
3190
3191 sbi->s_buddy_cache = new_inode(sb);
3192 if (sbi->s_buddy_cache == NULL) {
3193 ext4_msg(sb, KERN_ERR, "can't get new inode");
3194 goto err_freesgi;
3195 }
3196 /* To avoid potentially colliding with an valid on-disk inode number,
3197 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
3198 * not in the inode hash, so it should never be found by iget(), but
3199 * this will avoid confusion if it ever shows up during debugging. */
3200 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3201 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3202 for (i = 0; i < ngroups; i++) {
3203 cond_resched();
3204 desc = ext4_get_group_desc(sb, i, NULL);
3205 if (desc == NULL) {
3206 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3207 goto err_freebuddy;
3208 }
3209 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3210 goto err_freebuddy;
3211 }
3212
3213 if (ext4_has_feature_flex_bg(sb)) {
3214 /* a single flex group is supposed to be read by a single IO.
3215 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3216 * unsigned integer, so the maximum shift is 32.
3217 */
3218 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3219 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3220 goto err_freesgi;
3221 }
3222 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3223 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3224 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3225 } else {
3226 sbi->s_mb_prefetch = 32;
3227 }
3228 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3229 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3230 /* now many real IOs to prefetch within a single allocation at cr=0
3231 * given cr=0 is an CPU-related optimization we shouldn't try to
3232 * load too many groups, at some point we should start to use what
3233 * we've got in memory.
3234 * with an average random access time 5ms, it'd take a second to get
3235 * 200 groups (* N with flex_bg), so let's make this limit 4
3236 */
3237 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3238 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3239 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3240
3241 return 0;
3242
3243 err_freebuddy:
3244 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3245 while (i-- > 0)
3246 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
3247 i = sbi->s_group_info_size;
3248 rcu_read_lock();
3249 group_info = rcu_dereference(sbi->s_group_info);
3250 while (i-- > 0)
3251 kfree(group_info[i]);
3252 rcu_read_unlock();
3253 iput(sbi->s_buddy_cache);
3254 err_freesgi:
3255 rcu_read_lock();
3256 kvfree(rcu_dereference(sbi->s_group_info));
3257 rcu_read_unlock();
3258 return -ENOMEM;
3259 }
3260
ext4_groupinfo_destroy_slabs(void)3261 static void ext4_groupinfo_destroy_slabs(void)
3262 {
3263 int i;
3264
3265 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3266 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3267 ext4_groupinfo_caches[i] = NULL;
3268 }
3269 }
3270
ext4_groupinfo_create_slab(size_t size)3271 static int ext4_groupinfo_create_slab(size_t size)
3272 {
3273 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3274 int slab_size;
3275 int blocksize_bits = order_base_2(size);
3276 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3277 struct kmem_cache *cachep;
3278
3279 if (cache_index >= NR_GRPINFO_CACHES)
3280 return -EINVAL;
3281
3282 if (unlikely(cache_index < 0))
3283 cache_index = 0;
3284
3285 mutex_lock(&ext4_grpinfo_slab_create_mutex);
3286 if (ext4_groupinfo_caches[cache_index]) {
3287 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3288 return 0; /* Already created */
3289 }
3290
3291 slab_size = offsetof(struct ext4_group_info,
3292 bb_counters[blocksize_bits + 2]);
3293
3294 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3295 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3296 NULL);
3297
3298 ext4_groupinfo_caches[cache_index] = cachep;
3299
3300 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3301 if (!cachep) {
3302 printk(KERN_EMERG
3303 "EXT4-fs: no memory for groupinfo slab cache\n");
3304 return -ENOMEM;
3305 }
3306
3307 return 0;
3308 }
3309
ext4_mb_init(struct super_block * sb)3310 int ext4_mb_init(struct super_block *sb)
3311 {
3312 struct ext4_sb_info *sbi = EXT4_SB(sb);
3313 unsigned i, j;
3314 unsigned offset, offset_incr;
3315 unsigned max;
3316 int ret;
3317
3318 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3319
3320 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3321 if (sbi->s_mb_offsets == NULL) {
3322 ret = -ENOMEM;
3323 goto out;
3324 }
3325
3326 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3327 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3328 if (sbi->s_mb_maxs == NULL) {
3329 ret = -ENOMEM;
3330 goto out;
3331 }
3332
3333 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3334 if (ret < 0)
3335 goto out;
3336
3337 /* order 0 is regular bitmap */
3338 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3339 sbi->s_mb_offsets[0] = 0;
3340
3341 i = 1;
3342 offset = 0;
3343 offset_incr = 1 << (sb->s_blocksize_bits - 1);
3344 max = sb->s_blocksize << 2;
3345 do {
3346 sbi->s_mb_offsets[i] = offset;
3347 sbi->s_mb_maxs[i] = max;
3348 offset += offset_incr;
3349 offset_incr = offset_incr >> 1;
3350 max = max >> 1;
3351 i++;
3352 } while (i < MB_NUM_ORDERS(sb));
3353
3354 sbi->s_mb_avg_fragment_size_root = RB_ROOT;
3355 sbi->s_mb_largest_free_orders =
3356 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3357 GFP_KERNEL);
3358 if (!sbi->s_mb_largest_free_orders) {
3359 ret = -ENOMEM;
3360 goto out;
3361 }
3362 sbi->s_mb_largest_free_orders_locks =
3363 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3364 GFP_KERNEL);
3365 if (!sbi->s_mb_largest_free_orders_locks) {
3366 ret = -ENOMEM;
3367 goto out;
3368 }
3369 for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3370 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3371 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3372 }
3373 rwlock_init(&sbi->s_mb_rb_lock);
3374
3375 spin_lock_init(&sbi->s_md_lock);
3376 sbi->s_mb_free_pending = 0;
3377 INIT_LIST_HEAD(&sbi->s_freed_data_list);
3378
3379 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3380 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3381 sbi->s_mb_stats = MB_DEFAULT_STATS;
3382 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3383 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3384 sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC;
3385 /*
3386 * The default group preallocation is 512, which for 4k block
3387 * sizes translates to 2 megabytes. However for bigalloc file
3388 * systems, this is probably too big (i.e, if the cluster size
3389 * is 1 megabyte, then group preallocation size becomes half a
3390 * gigabyte!). As a default, we will keep a two megabyte
3391 * group pralloc size for cluster sizes up to 64k, and after
3392 * that, we will force a minimum group preallocation size of
3393 * 32 clusters. This translates to 8 megs when the cluster
3394 * size is 256k, and 32 megs when the cluster size is 1 meg,
3395 * which seems reasonable as a default.
3396 */
3397 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3398 sbi->s_cluster_bits, 32);
3399 /*
3400 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3401 * to the lowest multiple of s_stripe which is bigger than
3402 * the s_mb_group_prealloc as determined above. We want
3403 * the preallocation size to be an exact multiple of the
3404 * RAID stripe size so that preallocations don't fragment
3405 * the stripes.
3406 */
3407 if (sbi->s_stripe > 1) {
3408 sbi->s_mb_group_prealloc = roundup(
3409 sbi->s_mb_group_prealloc, sbi->s_stripe);
3410 }
3411
3412 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3413 if (sbi->s_locality_groups == NULL) {
3414 ret = -ENOMEM;
3415 goto out;
3416 }
3417 for_each_possible_cpu(i) {
3418 struct ext4_locality_group *lg;
3419 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3420 mutex_init(&lg->lg_mutex);
3421 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3422 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3423 spin_lock_init(&lg->lg_prealloc_lock);
3424 }
3425
3426 if (blk_queue_nonrot(bdev_get_queue(sb->s_bdev)))
3427 sbi->s_mb_max_linear_groups = 0;
3428 else
3429 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3430 /* init file for buddy data */
3431 ret = ext4_mb_init_backend(sb);
3432 if (ret != 0)
3433 goto out_free_locality_groups;
3434
3435 return 0;
3436
3437 out_free_locality_groups:
3438 free_percpu(sbi->s_locality_groups);
3439 sbi->s_locality_groups = NULL;
3440 out:
3441 kfree(sbi->s_mb_largest_free_orders);
3442 kfree(sbi->s_mb_largest_free_orders_locks);
3443 kfree(sbi->s_mb_offsets);
3444 sbi->s_mb_offsets = NULL;
3445 kfree(sbi->s_mb_maxs);
3446 sbi->s_mb_maxs = NULL;
3447 return ret;
3448 }
3449
3450 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)3451 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3452 {
3453 struct ext4_prealloc_space *pa;
3454 struct list_head *cur, *tmp;
3455 int count = 0;
3456
3457 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3458 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3459 list_del(&pa->pa_group_list);
3460 count++;
3461 kmem_cache_free(ext4_pspace_cachep, pa);
3462 }
3463 return count;
3464 }
3465
ext4_mb_release(struct super_block * sb)3466 int ext4_mb_release(struct super_block *sb)
3467 {
3468 ext4_group_t ngroups = ext4_get_groups_count(sb);
3469 ext4_group_t i;
3470 int num_meta_group_infos;
3471 struct ext4_group_info *grinfo, ***group_info;
3472 struct ext4_sb_info *sbi = EXT4_SB(sb);
3473 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3474 int count;
3475
3476 if (sbi->s_group_info) {
3477 for (i = 0; i < ngroups; i++) {
3478 cond_resched();
3479 grinfo = ext4_get_group_info(sb, i);
3480 mb_group_bb_bitmap_free(grinfo);
3481 ext4_lock_group(sb, i);
3482 count = ext4_mb_cleanup_pa(grinfo);
3483 if (count)
3484 mb_debug(sb, "mballoc: %d PAs left\n",
3485 count);
3486 ext4_unlock_group(sb, i);
3487 kmem_cache_free(cachep, grinfo);
3488 }
3489 num_meta_group_infos = (ngroups +
3490 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3491 EXT4_DESC_PER_BLOCK_BITS(sb);
3492 rcu_read_lock();
3493 group_info = rcu_dereference(sbi->s_group_info);
3494 for (i = 0; i < num_meta_group_infos; i++)
3495 kfree(group_info[i]);
3496 kvfree(group_info);
3497 rcu_read_unlock();
3498 }
3499 kfree(sbi->s_mb_largest_free_orders);
3500 kfree(sbi->s_mb_largest_free_orders_locks);
3501 kfree(sbi->s_mb_offsets);
3502 kfree(sbi->s_mb_maxs);
3503 iput(sbi->s_buddy_cache);
3504 if (sbi->s_mb_stats) {
3505 ext4_msg(sb, KERN_INFO,
3506 "mballoc: %u blocks %u reqs (%u success)",
3507 atomic_read(&sbi->s_bal_allocated),
3508 atomic_read(&sbi->s_bal_reqs),
3509 atomic_read(&sbi->s_bal_success));
3510 ext4_msg(sb, KERN_INFO,
3511 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3512 "%u 2^N hits, %u breaks, %u lost",
3513 atomic_read(&sbi->s_bal_ex_scanned),
3514 atomic_read(&sbi->s_bal_groups_scanned),
3515 atomic_read(&sbi->s_bal_goals),
3516 atomic_read(&sbi->s_bal_2orders),
3517 atomic_read(&sbi->s_bal_breaks),
3518 atomic_read(&sbi->s_mb_lost_chunks));
3519 ext4_msg(sb, KERN_INFO,
3520 "mballoc: %u generated and it took %llu",
3521 atomic_read(&sbi->s_mb_buddies_generated),
3522 atomic64_read(&sbi->s_mb_generation_time));
3523 ext4_msg(sb, KERN_INFO,
3524 "mballoc: %u preallocated, %u discarded",
3525 atomic_read(&sbi->s_mb_preallocated),
3526 atomic_read(&sbi->s_mb_discarded));
3527 }
3528
3529 free_percpu(sbi->s_locality_groups);
3530
3531 return 0;
3532 }
3533
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count,struct bio ** biop)3534 static inline int ext4_issue_discard(struct super_block *sb,
3535 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3536 struct bio **biop)
3537 {
3538 ext4_fsblk_t discard_block;
3539
3540 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3541 ext4_group_first_block_no(sb, block_group));
3542 count = EXT4_C2B(EXT4_SB(sb), count);
3543 trace_ext4_discard_blocks(sb,
3544 (unsigned long long) discard_block, count);
3545 if (biop) {
3546 return __blkdev_issue_discard(sb->s_bdev,
3547 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
3548 (sector_t)count << (sb->s_blocksize_bits - 9),
3549 GFP_NOFS, 0, biop);
3550 } else
3551 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3552 }
3553
ext4_free_data_in_buddy(struct super_block * sb,struct ext4_free_data * entry)3554 static void ext4_free_data_in_buddy(struct super_block *sb,
3555 struct ext4_free_data *entry)
3556 {
3557 struct ext4_buddy e4b;
3558 struct ext4_group_info *db;
3559 int err, count = 0, count2 = 0;
3560
3561 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3562 entry->efd_count, entry->efd_group, entry);
3563
3564 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3565 /* we expect to find existing buddy because it's pinned */
3566 BUG_ON(err != 0);
3567
3568 spin_lock(&EXT4_SB(sb)->s_md_lock);
3569 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3570 spin_unlock(&EXT4_SB(sb)->s_md_lock);
3571
3572 db = e4b.bd_info;
3573 /* there are blocks to put in buddy to make them really free */
3574 count += entry->efd_count;
3575 count2++;
3576 ext4_lock_group(sb, entry->efd_group);
3577 /* Take it out of per group rb tree */
3578 rb_erase(&entry->efd_node, &(db->bb_free_root));
3579 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3580
3581 /*
3582 * Clear the trimmed flag for the group so that the next
3583 * ext4_trim_fs can trim it.
3584 * If the volume is mounted with -o discard, online discard
3585 * is supported and the free blocks will be trimmed online.
3586 */
3587 if (!test_opt(sb, DISCARD))
3588 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3589
3590 if (!db->bb_free_root.rb_node) {
3591 /* No more items in the per group rb tree
3592 * balance refcounts from ext4_mb_free_metadata()
3593 */
3594 put_page(e4b.bd_buddy_page);
3595 put_page(e4b.bd_bitmap_page);
3596 }
3597 ext4_unlock_group(sb, entry->efd_group);
3598 kmem_cache_free(ext4_free_data_cachep, entry);
3599 ext4_mb_unload_buddy(&e4b);
3600
3601 mb_debug(sb, "freed %d blocks in %d structures\n", count,
3602 count2);
3603 }
3604
3605 /*
3606 * This function is called by the jbd2 layer once the commit has finished,
3607 * so we know we can free the blocks that were released with that commit.
3608 */
ext4_process_freed_data(struct super_block * sb,tid_t commit_tid)3609 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3610 {
3611 struct ext4_sb_info *sbi = EXT4_SB(sb);
3612 struct ext4_free_data *entry, *tmp;
3613 struct bio *discard_bio = NULL;
3614 struct list_head freed_data_list;
3615 struct list_head *cut_pos = NULL;
3616 int err;
3617
3618 INIT_LIST_HEAD(&freed_data_list);
3619
3620 spin_lock(&sbi->s_md_lock);
3621 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3622 if (entry->efd_tid != commit_tid)
3623 break;
3624 cut_pos = &entry->efd_list;
3625 }
3626 if (cut_pos)
3627 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3628 cut_pos);
3629 spin_unlock(&sbi->s_md_lock);
3630
3631 if (test_opt(sb, DISCARD)) {
3632 list_for_each_entry(entry, &freed_data_list, efd_list) {
3633 err = ext4_issue_discard(sb, entry->efd_group,
3634 entry->efd_start_cluster,
3635 entry->efd_count,
3636 &discard_bio);
3637 if (err && err != -EOPNOTSUPP) {
3638 ext4_msg(sb, KERN_WARNING, "discard request in"
3639 " group:%d block:%d count:%d failed"
3640 " with %d", entry->efd_group,
3641 entry->efd_start_cluster,
3642 entry->efd_count, err);
3643 } else if (err == -EOPNOTSUPP)
3644 break;
3645 }
3646
3647 if (discard_bio) {
3648 submit_bio_wait(discard_bio);
3649 bio_put(discard_bio);
3650 }
3651 }
3652
3653 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3654 ext4_free_data_in_buddy(sb, entry);
3655 }
3656
ext4_init_mballoc(void)3657 int __init ext4_init_mballoc(void)
3658 {
3659 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3660 SLAB_RECLAIM_ACCOUNT);
3661 if (ext4_pspace_cachep == NULL)
3662 goto out;
3663
3664 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3665 SLAB_RECLAIM_ACCOUNT);
3666 if (ext4_ac_cachep == NULL)
3667 goto out_pa_free;
3668
3669 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3670 SLAB_RECLAIM_ACCOUNT);
3671 if (ext4_free_data_cachep == NULL)
3672 goto out_ac_free;
3673
3674 return 0;
3675
3676 out_ac_free:
3677 kmem_cache_destroy(ext4_ac_cachep);
3678 out_pa_free:
3679 kmem_cache_destroy(ext4_pspace_cachep);
3680 out:
3681 return -ENOMEM;
3682 }
3683
ext4_exit_mballoc(void)3684 void ext4_exit_mballoc(void)
3685 {
3686 /*
3687 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3688 * before destroying the slab cache.
3689 */
3690 rcu_barrier();
3691 kmem_cache_destroy(ext4_pspace_cachep);
3692 kmem_cache_destroy(ext4_ac_cachep);
3693 kmem_cache_destroy(ext4_free_data_cachep);
3694 ext4_groupinfo_destroy_slabs();
3695 }
3696
3697
3698 /*
3699 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3700 * Returns 0 if success or error code
3701 */
3702 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)3703 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3704 handle_t *handle, unsigned int reserv_clstrs)
3705 {
3706 struct buffer_head *bitmap_bh = NULL;
3707 struct ext4_group_desc *gdp;
3708 struct buffer_head *gdp_bh;
3709 struct ext4_sb_info *sbi;
3710 struct super_block *sb;
3711 ext4_fsblk_t block;
3712 int err, len;
3713
3714 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3715 BUG_ON(ac->ac_b_ex.fe_len <= 0);
3716
3717 sb = ac->ac_sb;
3718 sbi = EXT4_SB(sb);
3719
3720 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3721 if (IS_ERR(bitmap_bh)) {
3722 err = PTR_ERR(bitmap_bh);
3723 bitmap_bh = NULL;
3724 goto out_err;
3725 }
3726
3727 BUFFER_TRACE(bitmap_bh, "getting write access");
3728 err = ext4_journal_get_write_access(handle, bitmap_bh);
3729 if (err)
3730 goto out_err;
3731
3732 err = -EIO;
3733 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3734 if (!gdp)
3735 goto out_err;
3736
3737 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3738 ext4_free_group_clusters(sb, gdp));
3739
3740 BUFFER_TRACE(gdp_bh, "get_write_access");
3741 err = ext4_journal_get_write_access(handle, gdp_bh);
3742 if (err)
3743 goto out_err;
3744
3745 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3746
3747 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3748 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3749 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3750 "fs metadata", block, block+len);
3751 /* File system mounted not to panic on error
3752 * Fix the bitmap and return EFSCORRUPTED
3753 * We leak some of the blocks here.
3754 */
3755 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3756 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3757 ac->ac_b_ex.fe_len);
3758 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3759 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3760 if (!err)
3761 err = -EFSCORRUPTED;
3762 goto out_err;
3763 }
3764
3765 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3766 #ifdef AGGRESSIVE_CHECK
3767 {
3768 int i;
3769 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3770 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3771 bitmap_bh->b_data));
3772 }
3773 }
3774 #endif
3775 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3776 ac->ac_b_ex.fe_len);
3777 if (ext4_has_group_desc_csum(sb) &&
3778 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3779 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3780 ext4_free_group_clusters_set(sb, gdp,
3781 ext4_free_clusters_after_init(sb,
3782 ac->ac_b_ex.fe_group, gdp));
3783 }
3784 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3785 ext4_free_group_clusters_set(sb, gdp, len);
3786 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3787 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3788
3789 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3790 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3791 /*
3792 * Now reduce the dirty block count also. Should not go negative
3793 */
3794 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3795 /* release all the reserved blocks if non delalloc */
3796 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3797 reserv_clstrs);
3798
3799 if (sbi->s_log_groups_per_flex) {
3800 ext4_group_t flex_group = ext4_flex_group(sbi,
3801 ac->ac_b_ex.fe_group);
3802 atomic64_sub(ac->ac_b_ex.fe_len,
3803 &sbi_array_rcu_deref(sbi, s_flex_groups,
3804 flex_group)->free_clusters);
3805 }
3806
3807 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3808 if (err)
3809 goto out_err;
3810 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3811
3812 out_err:
3813 brelse(bitmap_bh);
3814 return err;
3815 }
3816
3817 /*
3818 * Idempotent helper for Ext4 fast commit replay path to set the state of
3819 * blocks in bitmaps and update counters.
3820 */
ext4_mb_mark_bb(struct super_block * sb,ext4_fsblk_t block,int len,int state)3821 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
3822 int len, int state)
3823 {
3824 struct buffer_head *bitmap_bh = NULL;
3825 struct ext4_group_desc *gdp;
3826 struct buffer_head *gdp_bh;
3827 struct ext4_sb_info *sbi = EXT4_SB(sb);
3828 ext4_group_t group;
3829 ext4_grpblk_t blkoff;
3830 int i, clen, err;
3831 int already;
3832
3833 clen = EXT4_B2C(sbi, len);
3834
3835 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
3836 bitmap_bh = ext4_read_block_bitmap(sb, group);
3837 if (IS_ERR(bitmap_bh)) {
3838 err = PTR_ERR(bitmap_bh);
3839 bitmap_bh = NULL;
3840 goto out_err;
3841 }
3842
3843 err = -EIO;
3844 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3845 if (!gdp)
3846 goto out_err;
3847
3848 ext4_lock_group(sb, group);
3849 already = 0;
3850 for (i = 0; i < clen; i++)
3851 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == !state)
3852 already++;
3853
3854 if (state)
3855 ext4_set_bits(bitmap_bh->b_data, blkoff, clen);
3856 else
3857 mb_test_and_clear_bits(bitmap_bh->b_data, blkoff, clen);
3858 if (ext4_has_group_desc_csum(sb) &&
3859 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3860 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3861 ext4_free_group_clusters_set(sb, gdp,
3862 ext4_free_clusters_after_init(sb,
3863 group, gdp));
3864 }
3865 if (state)
3866 clen = ext4_free_group_clusters(sb, gdp) - clen + already;
3867 else
3868 clen = ext4_free_group_clusters(sb, gdp) + clen - already;
3869
3870 ext4_free_group_clusters_set(sb, gdp, clen);
3871 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
3872 ext4_group_desc_csum_set(sb, group, gdp);
3873
3874 ext4_unlock_group(sb, group);
3875
3876 if (sbi->s_log_groups_per_flex) {
3877 ext4_group_t flex_group = ext4_flex_group(sbi, group);
3878
3879 atomic64_sub(len,
3880 &sbi_array_rcu_deref(sbi, s_flex_groups,
3881 flex_group)->free_clusters);
3882 }
3883
3884 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
3885 if (err)
3886 goto out_err;
3887 sync_dirty_buffer(bitmap_bh);
3888 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
3889 sync_dirty_buffer(gdp_bh);
3890
3891 out_err:
3892 brelse(bitmap_bh);
3893 }
3894
3895 /*
3896 * here we normalize request for locality group
3897 * Group request are normalized to s_mb_group_prealloc, which goes to
3898 * s_strip if we set the same via mount option.
3899 * s_mb_group_prealloc can be configured via
3900 * /sys/fs/ext4/<partition>/mb_group_prealloc
3901 *
3902 * XXX: should we try to preallocate more than the group has now?
3903 */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)3904 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3905 {
3906 struct super_block *sb = ac->ac_sb;
3907 struct ext4_locality_group *lg = ac->ac_lg;
3908
3909 BUG_ON(lg == NULL);
3910 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3911 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
3912 }
3913
3914 /*
3915 * Normalization means making request better in terms of
3916 * size and alignment
3917 */
3918 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3919 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3920 struct ext4_allocation_request *ar)
3921 {
3922 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3923 int bsbits, max;
3924 ext4_lblk_t end;
3925 loff_t size, start_off;
3926 loff_t orig_size __maybe_unused;
3927 ext4_lblk_t start;
3928 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3929 struct ext4_prealloc_space *pa;
3930
3931 /* do normalize only data requests, metadata requests
3932 do not need preallocation */
3933 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3934 return;
3935
3936 /* sometime caller may want exact blocks */
3937 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3938 return;
3939
3940 /* caller may indicate that preallocation isn't
3941 * required (it's a tail, for example) */
3942 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3943 return;
3944
3945 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3946 ext4_mb_normalize_group_request(ac);
3947 return ;
3948 }
3949
3950 bsbits = ac->ac_sb->s_blocksize_bits;
3951
3952 /* first, let's learn actual file size
3953 * given current request is allocated */
3954 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3955 size = size << bsbits;
3956 if (size < i_size_read(ac->ac_inode))
3957 size = i_size_read(ac->ac_inode);
3958 orig_size = size;
3959
3960 /* max size of free chunks */
3961 max = 2 << bsbits;
3962
3963 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3964 (req <= (size) || max <= (chunk_size))
3965
3966 /* first, try to predict filesize */
3967 /* XXX: should this table be tunable? */
3968 start_off = 0;
3969 if (size <= 16 * 1024) {
3970 size = 16 * 1024;
3971 } else if (size <= 32 * 1024) {
3972 size = 32 * 1024;
3973 } else if (size <= 64 * 1024) {
3974 size = 64 * 1024;
3975 } else if (size <= 128 * 1024) {
3976 size = 128 * 1024;
3977 } else if (size <= 256 * 1024) {
3978 size = 256 * 1024;
3979 } else if (size <= 512 * 1024) {
3980 size = 512 * 1024;
3981 } else if (size <= 1024 * 1024) {
3982 size = 1024 * 1024;
3983 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3984 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3985 (21 - bsbits)) << 21;
3986 size = 2 * 1024 * 1024;
3987 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3988 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3989 (22 - bsbits)) << 22;
3990 size = 4 * 1024 * 1024;
3991 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3992 (8<<20)>>bsbits, max, 8 * 1024)) {
3993 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3994 (23 - bsbits)) << 23;
3995 size = 8 * 1024 * 1024;
3996 } else {
3997 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3998 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3999 ac->ac_o_ex.fe_len) << bsbits;
4000 }
4001 size = size >> bsbits;
4002 start = start_off >> bsbits;
4003
4004 /* don't cover already allocated blocks in selected range */
4005 if (ar->pleft && start <= ar->lleft) {
4006 size -= ar->lleft + 1 - start;
4007 start = ar->lleft + 1;
4008 }
4009 if (ar->pright && start + size - 1 >= ar->lright)
4010 size -= start + size - ar->lright;
4011
4012 /*
4013 * Trim allocation request for filesystems with artificially small
4014 * groups.
4015 */
4016 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4017 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4018
4019 end = start + size;
4020
4021 /* check we don't cross already preallocated blocks */
4022 rcu_read_lock();
4023 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4024 ext4_lblk_t pa_end;
4025
4026 if (pa->pa_deleted)
4027 continue;
4028 spin_lock(&pa->pa_lock);
4029 if (pa->pa_deleted) {
4030 spin_unlock(&pa->pa_lock);
4031 continue;
4032 }
4033
4034 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
4035 pa->pa_len);
4036
4037 /* PA must not overlap original request */
4038 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
4039 ac->ac_o_ex.fe_logical < pa->pa_lstart));
4040
4041 /* skip PAs this normalized request doesn't overlap with */
4042 if (pa->pa_lstart >= end || pa_end <= start) {
4043 spin_unlock(&pa->pa_lock);
4044 continue;
4045 }
4046 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
4047
4048 /* adjust start or end to be adjacent to this pa */
4049 if (pa_end <= ac->ac_o_ex.fe_logical) {
4050 BUG_ON(pa_end < start);
4051 start = pa_end;
4052 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4053 BUG_ON(pa->pa_lstart > end);
4054 end = pa->pa_lstart;
4055 }
4056 spin_unlock(&pa->pa_lock);
4057 }
4058 rcu_read_unlock();
4059 size = end - start;
4060
4061 /* XXX: extra loop to check we really don't overlap preallocations */
4062 rcu_read_lock();
4063 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4064 ext4_lblk_t pa_end;
4065
4066 spin_lock(&pa->pa_lock);
4067 if (pa->pa_deleted == 0) {
4068 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
4069 pa->pa_len);
4070 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
4071 }
4072 spin_unlock(&pa->pa_lock);
4073 }
4074 rcu_read_unlock();
4075
4076 if (start + size <= ac->ac_o_ex.fe_logical &&
4077 start > ac->ac_o_ex.fe_logical) {
4078 ext4_msg(ac->ac_sb, KERN_ERR,
4079 "start %lu, size %lu, fe_logical %lu",
4080 (unsigned long) start, (unsigned long) size,
4081 (unsigned long) ac->ac_o_ex.fe_logical);
4082 BUG();
4083 }
4084 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4085
4086 /* now prepare goal request */
4087
4088 /* XXX: is it better to align blocks WRT to logical
4089 * placement or satisfy big request as is */
4090 ac->ac_g_ex.fe_logical = start;
4091 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4092
4093 /* define goal start in order to merge */
4094 if (ar->pright && (ar->lright == (start + size))) {
4095 /* merge to the right */
4096 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4097 &ac->ac_f_ex.fe_group,
4098 &ac->ac_f_ex.fe_start);
4099 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4100 }
4101 if (ar->pleft && (ar->lleft + 1 == start)) {
4102 /* merge to the left */
4103 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4104 &ac->ac_f_ex.fe_group,
4105 &ac->ac_f_ex.fe_start);
4106 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4107 }
4108
4109 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4110 orig_size, start);
4111 }
4112
ext4_mb_collect_stats(struct ext4_allocation_context * ac)4113 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4114 {
4115 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4116
4117 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4118 atomic_inc(&sbi->s_bal_reqs);
4119 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4120 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4121 atomic_inc(&sbi->s_bal_success);
4122 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4123 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4124 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4125 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4126 atomic_inc(&sbi->s_bal_goals);
4127 if (ac->ac_found > sbi->s_mb_max_to_scan)
4128 atomic_inc(&sbi->s_bal_breaks);
4129 }
4130
4131 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4132 trace_ext4_mballoc_alloc(ac);
4133 else
4134 trace_ext4_mballoc_prealloc(ac);
4135 }
4136
4137 /*
4138 * Called on failure; free up any blocks from the inode PA for this
4139 * context. We don't need this for MB_GROUP_PA because we only change
4140 * pa_free in ext4_mb_release_context(), but on failure, we've already
4141 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4142 */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)4143 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4144 {
4145 struct ext4_prealloc_space *pa = ac->ac_pa;
4146 struct ext4_buddy e4b;
4147 int err;
4148
4149 if (pa == NULL) {
4150 if (ac->ac_f_ex.fe_len == 0)
4151 return;
4152 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4153 if (err) {
4154 /*
4155 * This should never happen since we pin the
4156 * pages in the ext4_allocation_context so
4157 * ext4_mb_load_buddy() should never fail.
4158 */
4159 WARN(1, "mb_load_buddy failed (%d)", err);
4160 return;
4161 }
4162 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4163 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4164 ac->ac_f_ex.fe_len);
4165 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4166 ext4_mb_unload_buddy(&e4b);
4167 return;
4168 }
4169 if (pa->pa_type == MB_INODE_PA)
4170 pa->pa_free += ac->ac_b_ex.fe_len;
4171 }
4172
4173 /*
4174 * use blocks preallocated to inode
4175 */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)4176 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4177 struct ext4_prealloc_space *pa)
4178 {
4179 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4180 ext4_fsblk_t start;
4181 ext4_fsblk_t end;
4182 int len;
4183
4184 /* found preallocated blocks, use them */
4185 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4186 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4187 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4188 len = EXT4_NUM_B2C(sbi, end - start);
4189 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4190 &ac->ac_b_ex.fe_start);
4191 ac->ac_b_ex.fe_len = len;
4192 ac->ac_status = AC_STATUS_FOUND;
4193 ac->ac_pa = pa;
4194
4195 BUG_ON(start < pa->pa_pstart);
4196 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4197 BUG_ON(pa->pa_free < len);
4198 pa->pa_free -= len;
4199
4200 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4201 }
4202
4203 /*
4204 * use blocks preallocated to locality group
4205 */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)4206 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4207 struct ext4_prealloc_space *pa)
4208 {
4209 unsigned int len = ac->ac_o_ex.fe_len;
4210
4211 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4212 &ac->ac_b_ex.fe_group,
4213 &ac->ac_b_ex.fe_start);
4214 ac->ac_b_ex.fe_len = len;
4215 ac->ac_status = AC_STATUS_FOUND;
4216 ac->ac_pa = pa;
4217
4218 /* we don't correct pa_pstart or pa_plen here to avoid
4219 * possible race when the group is being loaded concurrently
4220 * instead we correct pa later, after blocks are marked
4221 * in on-disk bitmap -- see ext4_mb_release_context()
4222 * Other CPUs are prevented from allocating from this pa by lg_mutex
4223 */
4224 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4225 pa->pa_lstart-len, len, pa);
4226 }
4227
4228 /*
4229 * Return the prealloc space that have minimal distance
4230 * from the goal block. @cpa is the prealloc
4231 * space that is having currently known minimal distance
4232 * from the goal block.
4233 */
4234 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)4235 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4236 struct ext4_prealloc_space *pa,
4237 struct ext4_prealloc_space *cpa)
4238 {
4239 ext4_fsblk_t cur_distance, new_distance;
4240
4241 if (cpa == NULL) {
4242 atomic_inc(&pa->pa_count);
4243 return pa;
4244 }
4245 cur_distance = abs(goal_block - cpa->pa_pstart);
4246 new_distance = abs(goal_block - pa->pa_pstart);
4247
4248 if (cur_distance <= new_distance)
4249 return cpa;
4250
4251 /* drop the previous reference */
4252 atomic_dec(&cpa->pa_count);
4253 atomic_inc(&pa->pa_count);
4254 return pa;
4255 }
4256
4257 /*
4258 * search goal blocks in preallocated space
4259 */
4260 static noinline_for_stack bool
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)4261 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4262 {
4263 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4264 int order, i;
4265 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4266 struct ext4_locality_group *lg;
4267 struct ext4_prealloc_space *pa, *cpa = NULL;
4268 ext4_fsblk_t goal_block;
4269
4270 /* only data can be preallocated */
4271 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4272 return false;
4273
4274 /* first, try per-file preallocation */
4275 rcu_read_lock();
4276 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4277
4278 /* all fields in this condition don't change,
4279 * so we can skip locking for them */
4280 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
4281 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
4282 EXT4_C2B(sbi, pa->pa_len)))
4283 continue;
4284
4285 /* non-extent files can't have physical blocks past 2^32 */
4286 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4287 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
4288 EXT4_MAX_BLOCK_FILE_PHYS))
4289 continue;
4290
4291 /* found preallocated blocks, use them */
4292 spin_lock(&pa->pa_lock);
4293 if (pa->pa_deleted == 0 && pa->pa_free) {
4294 atomic_inc(&pa->pa_count);
4295 ext4_mb_use_inode_pa(ac, pa);
4296 spin_unlock(&pa->pa_lock);
4297 ac->ac_criteria = 10;
4298 rcu_read_unlock();
4299 return true;
4300 }
4301 spin_unlock(&pa->pa_lock);
4302 }
4303 rcu_read_unlock();
4304
4305 /* can we use group allocation? */
4306 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4307 return false;
4308
4309 /* inode may have no locality group for some reason */
4310 lg = ac->ac_lg;
4311 if (lg == NULL)
4312 return false;
4313 order = fls(ac->ac_o_ex.fe_len) - 1;
4314 if (order > PREALLOC_TB_SIZE - 1)
4315 /* The max size of hash table is PREALLOC_TB_SIZE */
4316 order = PREALLOC_TB_SIZE - 1;
4317
4318 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4319 /*
4320 * search for the prealloc space that is having
4321 * minimal distance from the goal block.
4322 */
4323 for (i = order; i < PREALLOC_TB_SIZE; i++) {
4324 rcu_read_lock();
4325 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
4326 pa_inode_list) {
4327 spin_lock(&pa->pa_lock);
4328 if (pa->pa_deleted == 0 &&
4329 pa->pa_free >= ac->ac_o_ex.fe_len) {
4330
4331 cpa = ext4_mb_check_group_pa(goal_block,
4332 pa, cpa);
4333 }
4334 spin_unlock(&pa->pa_lock);
4335 }
4336 rcu_read_unlock();
4337 }
4338 if (cpa) {
4339 ext4_mb_use_group_pa(ac, cpa);
4340 ac->ac_criteria = 20;
4341 return true;
4342 }
4343 return false;
4344 }
4345
4346 /*
4347 * the function goes through all block freed in the group
4348 * but not yet committed and marks them used in in-core bitmap.
4349 * buddy must be generated from this bitmap
4350 * Need to be called with the ext4 group lock held
4351 */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)4352 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
4353 ext4_group_t group)
4354 {
4355 struct rb_node *n;
4356 struct ext4_group_info *grp;
4357 struct ext4_free_data *entry;
4358
4359 grp = ext4_get_group_info(sb, group);
4360 n = rb_first(&(grp->bb_free_root));
4361
4362 while (n) {
4363 entry = rb_entry(n, struct ext4_free_data, efd_node);
4364 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
4365 n = rb_next(n);
4366 }
4367 return;
4368 }
4369
4370 /*
4371 * the function goes through all preallocation in this group and marks them
4372 * used in in-core bitmap. buddy must be generated from this bitmap
4373 * Need to be called with ext4 group lock held
4374 */
4375 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)4376 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4377 ext4_group_t group)
4378 {
4379 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4380 struct ext4_prealloc_space *pa;
4381 struct list_head *cur;
4382 ext4_group_t groupnr;
4383 ext4_grpblk_t start;
4384 int preallocated = 0;
4385 int len;
4386
4387 /* all form of preallocation discards first load group,
4388 * so the only competing code is preallocation use.
4389 * we don't need any locking here
4390 * notice we do NOT ignore preallocations with pa_deleted
4391 * otherwise we could leave used blocks available for
4392 * allocation in buddy when concurrent ext4_mb_put_pa()
4393 * is dropping preallocation
4394 */
4395 list_for_each(cur, &grp->bb_prealloc_list) {
4396 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4397 spin_lock(&pa->pa_lock);
4398 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4399 &groupnr, &start);
4400 len = pa->pa_len;
4401 spin_unlock(&pa->pa_lock);
4402 if (unlikely(len == 0))
4403 continue;
4404 BUG_ON(groupnr != group);
4405 ext4_set_bits(bitmap, start, len);
4406 preallocated += len;
4407 }
4408 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
4409 }
4410
ext4_mb_mark_pa_deleted(struct super_block * sb,struct ext4_prealloc_space * pa)4411 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
4412 struct ext4_prealloc_space *pa)
4413 {
4414 struct ext4_inode_info *ei;
4415
4416 if (pa->pa_deleted) {
4417 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
4418 pa->pa_type, pa->pa_pstart, pa->pa_lstart,
4419 pa->pa_len);
4420 return;
4421 }
4422
4423 pa->pa_deleted = 1;
4424
4425 if (pa->pa_type == MB_INODE_PA) {
4426 ei = EXT4_I(pa->pa_inode);
4427 atomic_dec(&ei->i_prealloc_active);
4428 }
4429 }
4430
ext4_mb_pa_callback(struct rcu_head * head)4431 static void ext4_mb_pa_callback(struct rcu_head *head)
4432 {
4433 struct ext4_prealloc_space *pa;
4434 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
4435
4436 BUG_ON(atomic_read(&pa->pa_count));
4437 BUG_ON(pa->pa_deleted == 0);
4438 kmem_cache_free(ext4_pspace_cachep, pa);
4439 }
4440
4441 /*
4442 * drops a reference to preallocated space descriptor
4443 * if this was the last reference and the space is consumed
4444 */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)4445 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
4446 struct super_block *sb, struct ext4_prealloc_space *pa)
4447 {
4448 ext4_group_t grp;
4449 ext4_fsblk_t grp_blk;
4450
4451 /* in this short window concurrent discard can set pa_deleted */
4452 spin_lock(&pa->pa_lock);
4453 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
4454 spin_unlock(&pa->pa_lock);
4455 return;
4456 }
4457
4458 if (pa->pa_deleted == 1) {
4459 spin_unlock(&pa->pa_lock);
4460 return;
4461 }
4462
4463 ext4_mb_mark_pa_deleted(sb, pa);
4464 spin_unlock(&pa->pa_lock);
4465
4466 grp_blk = pa->pa_pstart;
4467 /*
4468 * If doing group-based preallocation, pa_pstart may be in the
4469 * next group when pa is used up
4470 */
4471 if (pa->pa_type == MB_GROUP_PA)
4472 grp_blk--;
4473
4474 grp = ext4_get_group_number(sb, grp_blk);
4475
4476 /*
4477 * possible race:
4478 *
4479 * P1 (buddy init) P2 (regular allocation)
4480 * find block B in PA
4481 * copy on-disk bitmap to buddy
4482 * mark B in on-disk bitmap
4483 * drop PA from group
4484 * mark all PAs in buddy
4485 *
4486 * thus, P1 initializes buddy with B available. to prevent this
4487 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
4488 * against that pair
4489 */
4490 ext4_lock_group(sb, grp);
4491 list_del(&pa->pa_group_list);
4492 ext4_unlock_group(sb, grp);
4493
4494 spin_lock(pa->pa_obj_lock);
4495 list_del_rcu(&pa->pa_inode_list);
4496 spin_unlock(pa->pa_obj_lock);
4497
4498 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4499 }
4500
4501 /*
4502 * creates new preallocated space for given inode
4503 */
4504 static noinline_for_stack void
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)4505 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
4506 {
4507 struct super_block *sb = ac->ac_sb;
4508 struct ext4_sb_info *sbi = EXT4_SB(sb);
4509 struct ext4_prealloc_space *pa;
4510 struct ext4_group_info *grp;
4511 struct ext4_inode_info *ei;
4512
4513 /* preallocate only when found space is larger then requested */
4514 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4515 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4516 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4517 BUG_ON(ac->ac_pa == NULL);
4518
4519 pa = ac->ac_pa;
4520
4521 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
4522 int winl;
4523 int wins;
4524 int win;
4525 int offs;
4526
4527 /* we can't allocate as much as normalizer wants.
4528 * so, found space must get proper lstart
4529 * to cover original request */
4530 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
4531 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
4532
4533 /* we're limited by original request in that
4534 * logical block must be covered any way
4535 * winl is window we can move our chunk within */
4536 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
4537
4538 /* also, we should cover whole original request */
4539 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
4540
4541 /* the smallest one defines real window */
4542 win = min(winl, wins);
4543
4544 offs = ac->ac_o_ex.fe_logical %
4545 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4546 if (offs && offs < win)
4547 win = offs;
4548
4549 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
4550 EXT4_NUM_B2C(sbi, win);
4551 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
4552 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
4553 }
4554
4555 /* preallocation can change ac_b_ex, thus we store actually
4556 * allocated blocks for history */
4557 ac->ac_f_ex = ac->ac_b_ex;
4558
4559 pa->pa_lstart = ac->ac_b_ex.fe_logical;
4560 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4561 pa->pa_len = ac->ac_b_ex.fe_len;
4562 pa->pa_free = pa->pa_len;
4563 spin_lock_init(&pa->pa_lock);
4564 INIT_LIST_HEAD(&pa->pa_inode_list);
4565 INIT_LIST_HEAD(&pa->pa_group_list);
4566 pa->pa_deleted = 0;
4567 pa->pa_type = MB_INODE_PA;
4568
4569 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4570 pa->pa_len, pa->pa_lstart);
4571 trace_ext4_mb_new_inode_pa(ac, pa);
4572
4573 ext4_mb_use_inode_pa(ac, pa);
4574 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
4575
4576 ei = EXT4_I(ac->ac_inode);
4577 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4578
4579 pa->pa_obj_lock = &ei->i_prealloc_lock;
4580 pa->pa_inode = ac->ac_inode;
4581
4582 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4583
4584 spin_lock(pa->pa_obj_lock);
4585 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
4586 spin_unlock(pa->pa_obj_lock);
4587 atomic_inc(&ei->i_prealloc_active);
4588 }
4589
4590 /*
4591 * creates new preallocated space for locality group inodes belongs to
4592 */
4593 static noinline_for_stack void
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)4594 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4595 {
4596 struct super_block *sb = ac->ac_sb;
4597 struct ext4_locality_group *lg;
4598 struct ext4_prealloc_space *pa;
4599 struct ext4_group_info *grp;
4600
4601 /* preallocate only when found space is larger then requested */
4602 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4603 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4604 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4605 BUG_ON(ac->ac_pa == NULL);
4606
4607 pa = ac->ac_pa;
4608
4609 /* preallocation can change ac_b_ex, thus we store actually
4610 * allocated blocks for history */
4611 ac->ac_f_ex = ac->ac_b_ex;
4612
4613 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4614 pa->pa_lstart = pa->pa_pstart;
4615 pa->pa_len = ac->ac_b_ex.fe_len;
4616 pa->pa_free = pa->pa_len;
4617 spin_lock_init(&pa->pa_lock);
4618 INIT_LIST_HEAD(&pa->pa_inode_list);
4619 INIT_LIST_HEAD(&pa->pa_group_list);
4620 pa->pa_deleted = 0;
4621 pa->pa_type = MB_GROUP_PA;
4622
4623 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4624 pa->pa_len, pa->pa_lstart);
4625 trace_ext4_mb_new_group_pa(ac, pa);
4626
4627 ext4_mb_use_group_pa(ac, pa);
4628 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4629
4630 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4631 lg = ac->ac_lg;
4632 BUG_ON(lg == NULL);
4633
4634 pa->pa_obj_lock = &lg->lg_prealloc_lock;
4635 pa->pa_inode = NULL;
4636
4637 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4638
4639 /*
4640 * We will later add the new pa to the right bucket
4641 * after updating the pa_free in ext4_mb_release_context
4642 */
4643 }
4644
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)4645 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4646 {
4647 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4648 ext4_mb_new_group_pa(ac);
4649 else
4650 ext4_mb_new_inode_pa(ac);
4651 }
4652
4653 /*
4654 * finds all unused blocks in on-disk bitmap, frees them in
4655 * in-core bitmap and buddy.
4656 * @pa must be unlinked from inode and group lists, so that
4657 * nobody else can find/use it.
4658 * the caller MUST hold group/inode locks.
4659 * TODO: optimize the case when there are no in-core structures yet
4660 */
4661 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)4662 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4663 struct ext4_prealloc_space *pa)
4664 {
4665 struct super_block *sb = e4b->bd_sb;
4666 struct ext4_sb_info *sbi = EXT4_SB(sb);
4667 unsigned int end;
4668 unsigned int next;
4669 ext4_group_t group;
4670 ext4_grpblk_t bit;
4671 unsigned long long grp_blk_start;
4672 int free = 0;
4673
4674 BUG_ON(pa->pa_deleted == 0);
4675 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4676 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
4677 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4678 end = bit + pa->pa_len;
4679
4680 while (bit < end) {
4681 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
4682 if (bit >= end)
4683 break;
4684 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
4685 mb_debug(sb, "free preallocated %u/%u in group %u\n",
4686 (unsigned) ext4_group_first_block_no(sb, group) + bit,
4687 (unsigned) next - bit, (unsigned) group);
4688 free += next - bit;
4689
4690 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
4691 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
4692 EXT4_C2B(sbi, bit)),
4693 next - bit);
4694 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
4695 bit = next + 1;
4696 }
4697 if (free != pa->pa_free) {
4698 ext4_msg(e4b->bd_sb, KERN_CRIT,
4699 "pa %p: logic %lu, phys. %lu, len %d",
4700 pa, (unsigned long) pa->pa_lstart,
4701 (unsigned long) pa->pa_pstart,
4702 pa->pa_len);
4703 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
4704 free, pa->pa_free);
4705 /*
4706 * pa is already deleted so we use the value obtained
4707 * from the bitmap and continue.
4708 */
4709 }
4710 atomic_add(free, &sbi->s_mb_discarded);
4711
4712 return 0;
4713 }
4714
4715 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)4716 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
4717 struct ext4_prealloc_space *pa)
4718 {
4719 struct super_block *sb = e4b->bd_sb;
4720 ext4_group_t group;
4721 ext4_grpblk_t bit;
4722
4723 trace_ext4_mb_release_group_pa(sb, pa);
4724 BUG_ON(pa->pa_deleted == 0);
4725 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4726 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4727 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
4728 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
4729 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
4730
4731 return 0;
4732 }
4733
4734 /*
4735 * releases all preallocations in given group
4736 *
4737 * first, we need to decide discard policy:
4738 * - when do we discard
4739 * 1) ENOSPC
4740 * - how many do we discard
4741 * 1) how many requested
4742 */
4743 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int needed)4744 ext4_mb_discard_group_preallocations(struct super_block *sb,
4745 ext4_group_t group, int needed)
4746 {
4747 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4748 struct buffer_head *bitmap_bh = NULL;
4749 struct ext4_prealloc_space *pa, *tmp;
4750 struct list_head list;
4751 struct ext4_buddy e4b;
4752 int err;
4753 int busy = 0;
4754 int free, free_total = 0;
4755
4756 mb_debug(sb, "discard preallocation for group %u\n", group);
4757 if (list_empty(&grp->bb_prealloc_list))
4758 goto out_dbg;
4759
4760 bitmap_bh = ext4_read_block_bitmap(sb, group);
4761 if (IS_ERR(bitmap_bh)) {
4762 err = PTR_ERR(bitmap_bh);
4763 ext4_error_err(sb, -err,
4764 "Error %d reading block bitmap for %u",
4765 err, group);
4766 goto out_dbg;
4767 }
4768
4769 err = ext4_mb_load_buddy(sb, group, &e4b);
4770 if (err) {
4771 ext4_warning(sb, "Error %d loading buddy information for %u",
4772 err, group);
4773 put_bh(bitmap_bh);
4774 goto out_dbg;
4775 }
4776
4777 if (needed == 0)
4778 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
4779
4780 INIT_LIST_HEAD(&list);
4781 repeat:
4782 free = 0;
4783 ext4_lock_group(sb, group);
4784 list_for_each_entry_safe(pa, tmp,
4785 &grp->bb_prealloc_list, pa_group_list) {
4786 spin_lock(&pa->pa_lock);
4787 if (atomic_read(&pa->pa_count)) {
4788 spin_unlock(&pa->pa_lock);
4789 busy = 1;
4790 continue;
4791 }
4792 if (pa->pa_deleted) {
4793 spin_unlock(&pa->pa_lock);
4794 continue;
4795 }
4796
4797 /* seems this one can be freed ... */
4798 ext4_mb_mark_pa_deleted(sb, pa);
4799
4800 if (!free)
4801 this_cpu_inc(discard_pa_seq);
4802
4803 /* we can trust pa_free ... */
4804 free += pa->pa_free;
4805
4806 spin_unlock(&pa->pa_lock);
4807
4808 list_del(&pa->pa_group_list);
4809 list_add(&pa->u.pa_tmp_list, &list);
4810 }
4811
4812 /* now free all selected PAs */
4813 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4814
4815 /* remove from object (inode or locality group) */
4816 spin_lock(pa->pa_obj_lock);
4817 list_del_rcu(&pa->pa_inode_list);
4818 spin_unlock(pa->pa_obj_lock);
4819
4820 if (pa->pa_type == MB_GROUP_PA)
4821 ext4_mb_release_group_pa(&e4b, pa);
4822 else
4823 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4824
4825 list_del(&pa->u.pa_tmp_list);
4826 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4827 }
4828
4829 free_total += free;
4830
4831 /* if we still need more blocks and some PAs were used, try again */
4832 if (free_total < needed && busy) {
4833 ext4_unlock_group(sb, group);
4834 cond_resched();
4835 busy = 0;
4836 goto repeat;
4837 }
4838 ext4_unlock_group(sb, group);
4839 ext4_mb_unload_buddy(&e4b);
4840 put_bh(bitmap_bh);
4841 out_dbg:
4842 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4843 free_total, group, grp->bb_free);
4844 return free_total;
4845 }
4846
4847 /*
4848 * releases all non-used preallocated blocks for given inode
4849 *
4850 * It's important to discard preallocations under i_data_sem
4851 * We don't want another block to be served from the prealloc
4852 * space when we are discarding the inode prealloc space.
4853 *
4854 * FIXME!! Make sure it is valid at all the call sites
4855 */
ext4_discard_preallocations(struct inode * inode,unsigned int needed)4856 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
4857 {
4858 struct ext4_inode_info *ei = EXT4_I(inode);
4859 struct super_block *sb = inode->i_sb;
4860 struct buffer_head *bitmap_bh = NULL;
4861 struct ext4_prealloc_space *pa, *tmp;
4862 ext4_group_t group = 0;
4863 struct list_head list;
4864 struct ext4_buddy e4b;
4865 int err;
4866
4867 if (!S_ISREG(inode->i_mode)) {
4868 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4869 return;
4870 }
4871
4872 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
4873 return;
4874
4875 mb_debug(sb, "discard preallocation for inode %lu\n",
4876 inode->i_ino);
4877 trace_ext4_discard_preallocations(inode,
4878 atomic_read(&ei->i_prealloc_active), needed);
4879
4880 INIT_LIST_HEAD(&list);
4881
4882 if (needed == 0)
4883 needed = UINT_MAX;
4884
4885 repeat:
4886 /* first, collect all pa's in the inode */
4887 spin_lock(&ei->i_prealloc_lock);
4888 while (!list_empty(&ei->i_prealloc_list) && needed) {
4889 pa = list_entry(ei->i_prealloc_list.prev,
4890 struct ext4_prealloc_space, pa_inode_list);
4891 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4892 spin_lock(&pa->pa_lock);
4893 if (atomic_read(&pa->pa_count)) {
4894 /* this shouldn't happen often - nobody should
4895 * use preallocation while we're discarding it */
4896 spin_unlock(&pa->pa_lock);
4897 spin_unlock(&ei->i_prealloc_lock);
4898 ext4_msg(sb, KERN_ERR,
4899 "uh-oh! used pa while discarding");
4900 WARN_ON(1);
4901 schedule_timeout_uninterruptible(HZ);
4902 goto repeat;
4903
4904 }
4905 if (pa->pa_deleted == 0) {
4906 ext4_mb_mark_pa_deleted(sb, pa);
4907 spin_unlock(&pa->pa_lock);
4908 list_del_rcu(&pa->pa_inode_list);
4909 list_add(&pa->u.pa_tmp_list, &list);
4910 needed--;
4911 continue;
4912 }
4913
4914 /* someone is deleting pa right now */
4915 spin_unlock(&pa->pa_lock);
4916 spin_unlock(&ei->i_prealloc_lock);
4917
4918 /* we have to wait here because pa_deleted
4919 * doesn't mean pa is already unlinked from
4920 * the list. as we might be called from
4921 * ->clear_inode() the inode will get freed
4922 * and concurrent thread which is unlinking
4923 * pa from inode's list may access already
4924 * freed memory, bad-bad-bad */
4925
4926 /* XXX: if this happens too often, we can
4927 * add a flag to force wait only in case
4928 * of ->clear_inode(), but not in case of
4929 * regular truncate */
4930 schedule_timeout_uninterruptible(HZ);
4931 goto repeat;
4932 }
4933 spin_unlock(&ei->i_prealloc_lock);
4934
4935 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4936 BUG_ON(pa->pa_type != MB_INODE_PA);
4937 group = ext4_get_group_number(sb, pa->pa_pstart);
4938
4939 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4940 GFP_NOFS|__GFP_NOFAIL);
4941 if (err) {
4942 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4943 err, group);
4944 continue;
4945 }
4946
4947 bitmap_bh = ext4_read_block_bitmap(sb, group);
4948 if (IS_ERR(bitmap_bh)) {
4949 err = PTR_ERR(bitmap_bh);
4950 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
4951 err, group);
4952 ext4_mb_unload_buddy(&e4b);
4953 continue;
4954 }
4955
4956 ext4_lock_group(sb, group);
4957 list_del(&pa->pa_group_list);
4958 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4959 ext4_unlock_group(sb, group);
4960
4961 ext4_mb_unload_buddy(&e4b);
4962 put_bh(bitmap_bh);
4963
4964 list_del(&pa->u.pa_tmp_list);
4965 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4966 }
4967 }
4968
ext4_mb_pa_alloc(struct ext4_allocation_context * ac)4969 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
4970 {
4971 struct ext4_prealloc_space *pa;
4972
4973 BUG_ON(ext4_pspace_cachep == NULL);
4974 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
4975 if (!pa)
4976 return -ENOMEM;
4977 atomic_set(&pa->pa_count, 1);
4978 ac->ac_pa = pa;
4979 return 0;
4980 }
4981
ext4_mb_pa_free(struct ext4_allocation_context * ac)4982 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
4983 {
4984 struct ext4_prealloc_space *pa = ac->ac_pa;
4985
4986 BUG_ON(!pa);
4987 ac->ac_pa = NULL;
4988 WARN_ON(!atomic_dec_and_test(&pa->pa_count));
4989 kmem_cache_free(ext4_pspace_cachep, pa);
4990 }
4991
4992 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_pa(struct super_block * sb)4993 static inline void ext4_mb_show_pa(struct super_block *sb)
4994 {
4995 ext4_group_t i, ngroups;
4996
4997 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
4998 return;
4999
5000 ngroups = ext4_get_groups_count(sb);
5001 mb_debug(sb, "groups: ");
5002 for (i = 0; i < ngroups; i++) {
5003 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5004 struct ext4_prealloc_space *pa;
5005 ext4_grpblk_t start;
5006 struct list_head *cur;
5007 ext4_lock_group(sb, i);
5008 list_for_each(cur, &grp->bb_prealloc_list) {
5009 pa = list_entry(cur, struct ext4_prealloc_space,
5010 pa_group_list);
5011 spin_lock(&pa->pa_lock);
5012 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5013 NULL, &start);
5014 spin_unlock(&pa->pa_lock);
5015 mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5016 pa->pa_len);
5017 }
5018 ext4_unlock_group(sb, i);
5019 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5020 grp->bb_fragments);
5021 }
5022 }
5023
ext4_mb_show_ac(struct ext4_allocation_context * ac)5024 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5025 {
5026 struct super_block *sb = ac->ac_sb;
5027
5028 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5029 return;
5030
5031 mb_debug(sb, "Can't allocate:"
5032 " Allocation context details:");
5033 mb_debug(sb, "status %u flags 0x%x",
5034 ac->ac_status, ac->ac_flags);
5035 mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5036 "goal %lu/%lu/%lu@%lu, "
5037 "best %lu/%lu/%lu@%lu cr %d",
5038 (unsigned long)ac->ac_o_ex.fe_group,
5039 (unsigned long)ac->ac_o_ex.fe_start,
5040 (unsigned long)ac->ac_o_ex.fe_len,
5041 (unsigned long)ac->ac_o_ex.fe_logical,
5042 (unsigned long)ac->ac_g_ex.fe_group,
5043 (unsigned long)ac->ac_g_ex.fe_start,
5044 (unsigned long)ac->ac_g_ex.fe_len,
5045 (unsigned long)ac->ac_g_ex.fe_logical,
5046 (unsigned long)ac->ac_b_ex.fe_group,
5047 (unsigned long)ac->ac_b_ex.fe_start,
5048 (unsigned long)ac->ac_b_ex.fe_len,
5049 (unsigned long)ac->ac_b_ex.fe_logical,
5050 (int)ac->ac_criteria);
5051 mb_debug(sb, "%u found", ac->ac_found);
5052 ext4_mb_show_pa(sb);
5053 }
5054 #else
ext4_mb_show_pa(struct super_block * sb)5055 static inline void ext4_mb_show_pa(struct super_block *sb)
5056 {
5057 return;
5058 }
ext4_mb_show_ac(struct ext4_allocation_context * ac)5059 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5060 {
5061 ext4_mb_show_pa(ac->ac_sb);
5062 return;
5063 }
5064 #endif
5065
5066 /*
5067 * We use locality group preallocation for small size file. The size of the
5068 * file is determined by the current size or the resulting size after
5069 * allocation which ever is larger
5070 *
5071 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5072 */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)5073 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5074 {
5075 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5076 int bsbits = ac->ac_sb->s_blocksize_bits;
5077 loff_t size, isize;
5078
5079 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5080 return;
5081
5082 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5083 return;
5084
5085 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
5086 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5087 >> bsbits;
5088
5089 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5090 !inode_is_open_for_write(ac->ac_inode)) {
5091 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5092 return;
5093 }
5094
5095 if (sbi->s_mb_group_prealloc <= 0) {
5096 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5097 return;
5098 }
5099
5100 /* don't use group allocation for large files */
5101 size = max(size, isize);
5102 if (size > sbi->s_mb_stream_request) {
5103 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5104 return;
5105 }
5106
5107 BUG_ON(ac->ac_lg != NULL);
5108 /*
5109 * locality group prealloc space are per cpu. The reason for having
5110 * per cpu locality group is to reduce the contention between block
5111 * request from multiple CPUs.
5112 */
5113 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5114
5115 /* we're going to use group allocation */
5116 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5117
5118 /* serialize all allocations in the group */
5119 mutex_lock(&ac->ac_lg->lg_mutex);
5120 }
5121
5122 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)5123 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5124 struct ext4_allocation_request *ar)
5125 {
5126 struct super_block *sb = ar->inode->i_sb;
5127 struct ext4_sb_info *sbi = EXT4_SB(sb);
5128 struct ext4_super_block *es = sbi->s_es;
5129 ext4_group_t group;
5130 unsigned int len;
5131 ext4_fsblk_t goal;
5132 ext4_grpblk_t block;
5133
5134 /* we can't allocate > group size */
5135 len = ar->len;
5136
5137 /* just a dirty hack to filter too big requests */
5138 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5139 len = EXT4_CLUSTERS_PER_GROUP(sb);
5140
5141 /* start searching from the goal */
5142 goal = ar->goal;
5143 if (goal < le32_to_cpu(es->s_first_data_block) ||
5144 goal >= ext4_blocks_count(es))
5145 goal = le32_to_cpu(es->s_first_data_block);
5146 ext4_get_group_no_and_offset(sb, goal, &group, &block);
5147
5148 /* set up allocation goals */
5149 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5150 ac->ac_status = AC_STATUS_CONTINUE;
5151 ac->ac_sb = sb;
5152 ac->ac_inode = ar->inode;
5153 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5154 ac->ac_o_ex.fe_group = group;
5155 ac->ac_o_ex.fe_start = block;
5156 ac->ac_o_ex.fe_len = len;
5157 ac->ac_g_ex = ac->ac_o_ex;
5158 ac->ac_flags = ar->flags;
5159
5160 /* we have to define context: we'll work with a file or
5161 * locality group. this is a policy, actually */
5162 ext4_mb_group_or_file(ac);
5163
5164 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5165 "left: %u/%u, right %u/%u to %swritable\n",
5166 (unsigned) ar->len, (unsigned) ar->logical,
5167 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5168 (unsigned) ar->lleft, (unsigned) ar->pleft,
5169 (unsigned) ar->lright, (unsigned) ar->pright,
5170 inode_is_open_for_write(ar->inode) ? "" : "non-");
5171 return 0;
5172
5173 }
5174
5175 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)5176 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5177 struct ext4_locality_group *lg,
5178 int order, int total_entries)
5179 {
5180 ext4_group_t group = 0;
5181 struct ext4_buddy e4b;
5182 struct list_head discard_list;
5183 struct ext4_prealloc_space *pa, *tmp;
5184
5185 mb_debug(sb, "discard locality group preallocation\n");
5186
5187 INIT_LIST_HEAD(&discard_list);
5188
5189 spin_lock(&lg->lg_prealloc_lock);
5190 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5191 pa_inode_list,
5192 lockdep_is_held(&lg->lg_prealloc_lock)) {
5193 spin_lock(&pa->pa_lock);
5194 if (atomic_read(&pa->pa_count)) {
5195 /*
5196 * This is the pa that we just used
5197 * for block allocation. So don't
5198 * free that
5199 */
5200 spin_unlock(&pa->pa_lock);
5201 continue;
5202 }
5203 if (pa->pa_deleted) {
5204 spin_unlock(&pa->pa_lock);
5205 continue;
5206 }
5207 /* only lg prealloc space */
5208 BUG_ON(pa->pa_type != MB_GROUP_PA);
5209
5210 /* seems this one can be freed ... */
5211 ext4_mb_mark_pa_deleted(sb, pa);
5212 spin_unlock(&pa->pa_lock);
5213
5214 list_del_rcu(&pa->pa_inode_list);
5215 list_add(&pa->u.pa_tmp_list, &discard_list);
5216
5217 total_entries--;
5218 if (total_entries <= 5) {
5219 /*
5220 * we want to keep only 5 entries
5221 * allowing it to grow to 8. This
5222 * mak sure we don't call discard
5223 * soon for this list.
5224 */
5225 break;
5226 }
5227 }
5228 spin_unlock(&lg->lg_prealloc_lock);
5229
5230 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5231 int err;
5232
5233 group = ext4_get_group_number(sb, pa->pa_pstart);
5234 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5235 GFP_NOFS|__GFP_NOFAIL);
5236 if (err) {
5237 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5238 err, group);
5239 continue;
5240 }
5241 ext4_lock_group(sb, group);
5242 list_del(&pa->pa_group_list);
5243 ext4_mb_release_group_pa(&e4b, pa);
5244 ext4_unlock_group(sb, group);
5245
5246 ext4_mb_unload_buddy(&e4b);
5247 list_del(&pa->u.pa_tmp_list);
5248 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5249 }
5250 }
5251
5252 /*
5253 * We have incremented pa_count. So it cannot be freed at this
5254 * point. Also we hold lg_mutex. So no parallel allocation is
5255 * possible from this lg. That means pa_free cannot be updated.
5256 *
5257 * A parallel ext4_mb_discard_group_preallocations is possible.
5258 * which can cause the lg_prealloc_list to be updated.
5259 */
5260
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)5261 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5262 {
5263 int order, added = 0, lg_prealloc_count = 1;
5264 struct super_block *sb = ac->ac_sb;
5265 struct ext4_locality_group *lg = ac->ac_lg;
5266 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5267
5268 order = fls(pa->pa_free) - 1;
5269 if (order > PREALLOC_TB_SIZE - 1)
5270 /* The max size of hash table is PREALLOC_TB_SIZE */
5271 order = PREALLOC_TB_SIZE - 1;
5272 /* Add the prealloc space to lg */
5273 spin_lock(&lg->lg_prealloc_lock);
5274 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5275 pa_inode_list,
5276 lockdep_is_held(&lg->lg_prealloc_lock)) {
5277 spin_lock(&tmp_pa->pa_lock);
5278 if (tmp_pa->pa_deleted) {
5279 spin_unlock(&tmp_pa->pa_lock);
5280 continue;
5281 }
5282 if (!added && pa->pa_free < tmp_pa->pa_free) {
5283 /* Add to the tail of the previous entry */
5284 list_add_tail_rcu(&pa->pa_inode_list,
5285 &tmp_pa->pa_inode_list);
5286 added = 1;
5287 /*
5288 * we want to count the total
5289 * number of entries in the list
5290 */
5291 }
5292 spin_unlock(&tmp_pa->pa_lock);
5293 lg_prealloc_count++;
5294 }
5295 if (!added)
5296 list_add_tail_rcu(&pa->pa_inode_list,
5297 &lg->lg_prealloc_list[order]);
5298 spin_unlock(&lg->lg_prealloc_lock);
5299
5300 /* Now trim the list to be not more than 8 elements */
5301 if (lg_prealloc_count > 8) {
5302 ext4_mb_discard_lg_preallocations(sb, lg,
5303 order, lg_prealloc_count);
5304 return;
5305 }
5306 return ;
5307 }
5308
5309 /*
5310 * if per-inode prealloc list is too long, trim some PA
5311 */
ext4_mb_trim_inode_pa(struct inode * inode)5312 static void ext4_mb_trim_inode_pa(struct inode *inode)
5313 {
5314 struct ext4_inode_info *ei = EXT4_I(inode);
5315 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5316 int count, delta;
5317
5318 count = atomic_read(&ei->i_prealloc_active);
5319 delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1;
5320 if (count > sbi->s_mb_max_inode_prealloc + delta) {
5321 count -= sbi->s_mb_max_inode_prealloc;
5322 ext4_discard_preallocations(inode, count);
5323 }
5324 }
5325
5326 /*
5327 * release all resource we used in allocation
5328 */
ext4_mb_release_context(struct ext4_allocation_context * ac)5329 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5330 {
5331 struct inode *inode = ac->ac_inode;
5332 struct ext4_inode_info *ei = EXT4_I(inode);
5333 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5334 struct ext4_prealloc_space *pa = ac->ac_pa;
5335 if (pa) {
5336 if (pa->pa_type == MB_GROUP_PA) {
5337 /* see comment in ext4_mb_use_group_pa() */
5338 spin_lock(&pa->pa_lock);
5339 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5340 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5341 pa->pa_free -= ac->ac_b_ex.fe_len;
5342 pa->pa_len -= ac->ac_b_ex.fe_len;
5343 spin_unlock(&pa->pa_lock);
5344
5345 /*
5346 * We want to add the pa to the right bucket.
5347 * Remove it from the list and while adding
5348 * make sure the list to which we are adding
5349 * doesn't grow big.
5350 */
5351 if (likely(pa->pa_free)) {
5352 spin_lock(pa->pa_obj_lock);
5353 list_del_rcu(&pa->pa_inode_list);
5354 spin_unlock(pa->pa_obj_lock);
5355 ext4_mb_add_n_trim(ac);
5356 }
5357 }
5358
5359 if (pa->pa_type == MB_INODE_PA) {
5360 /*
5361 * treat per-inode prealloc list as a lru list, then try
5362 * to trim the least recently used PA.
5363 */
5364 spin_lock(pa->pa_obj_lock);
5365 list_move(&pa->pa_inode_list, &ei->i_prealloc_list);
5366 spin_unlock(pa->pa_obj_lock);
5367 }
5368
5369 ext4_mb_put_pa(ac, ac->ac_sb, pa);
5370 }
5371 if (ac->ac_bitmap_page)
5372 put_page(ac->ac_bitmap_page);
5373 if (ac->ac_buddy_page)
5374 put_page(ac->ac_buddy_page);
5375 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5376 mutex_unlock(&ac->ac_lg->lg_mutex);
5377 ext4_mb_collect_stats(ac);
5378 ext4_mb_trim_inode_pa(inode);
5379 return 0;
5380 }
5381
ext4_mb_discard_preallocations(struct super_block * sb,int needed)5382 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5383 {
5384 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
5385 int ret;
5386 int freed = 0;
5387
5388 trace_ext4_mb_discard_preallocations(sb, needed);
5389 for (i = 0; i < ngroups && needed > 0; i++) {
5390 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
5391 freed += ret;
5392 needed -= ret;
5393 }
5394
5395 return freed;
5396 }
5397
ext4_mb_discard_preallocations_should_retry(struct super_block * sb,struct ext4_allocation_context * ac,u64 * seq)5398 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
5399 struct ext4_allocation_context *ac, u64 *seq)
5400 {
5401 int freed;
5402 u64 seq_retry = 0;
5403 bool ret = false;
5404
5405 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
5406 if (freed) {
5407 ret = true;
5408 goto out_dbg;
5409 }
5410 seq_retry = ext4_get_discard_pa_seq_sum();
5411 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
5412 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
5413 *seq = seq_retry;
5414 ret = true;
5415 }
5416
5417 out_dbg:
5418 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
5419 return ret;
5420 }
5421
5422 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5423 struct ext4_allocation_request *ar, int *errp);
5424
5425 /*
5426 * Main entry point into mballoc to allocate blocks
5427 * it tries to use preallocation first, then falls back
5428 * to usual allocation
5429 */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)5430 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
5431 struct ext4_allocation_request *ar, int *errp)
5432 {
5433 struct ext4_allocation_context *ac = NULL;
5434 struct ext4_sb_info *sbi;
5435 struct super_block *sb;
5436 ext4_fsblk_t block = 0;
5437 unsigned int inquota = 0;
5438 unsigned int reserv_clstrs = 0;
5439 u64 seq;
5440
5441 might_sleep();
5442 sb = ar->inode->i_sb;
5443 sbi = EXT4_SB(sb);
5444
5445 trace_ext4_request_blocks(ar);
5446 if (sbi->s_mount_state & EXT4_FC_REPLAY)
5447 return ext4_mb_new_blocks_simple(handle, ar, errp);
5448
5449 /* Allow to use superuser reservation for quota file */
5450 if (ext4_is_quota_file(ar->inode))
5451 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
5452
5453 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
5454 /* Without delayed allocation we need to verify
5455 * there is enough free blocks to do block allocation
5456 * and verify allocation doesn't exceed the quota limits.
5457 */
5458 while (ar->len &&
5459 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
5460
5461 /* let others to free the space */
5462 cond_resched();
5463 ar->len = ar->len >> 1;
5464 }
5465 if (!ar->len) {
5466 ext4_mb_show_pa(sb);
5467 *errp = -ENOSPC;
5468 return 0;
5469 }
5470 reserv_clstrs = ar->len;
5471 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
5472 dquot_alloc_block_nofail(ar->inode,
5473 EXT4_C2B(sbi, ar->len));
5474 } else {
5475 while (ar->len &&
5476 dquot_alloc_block(ar->inode,
5477 EXT4_C2B(sbi, ar->len))) {
5478
5479 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
5480 ar->len--;
5481 }
5482 }
5483 inquota = ar->len;
5484 if (ar->len == 0) {
5485 *errp = -EDQUOT;
5486 goto out;
5487 }
5488 }
5489
5490 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
5491 if (!ac) {
5492 ar->len = 0;
5493 *errp = -ENOMEM;
5494 goto out;
5495 }
5496
5497 *errp = ext4_mb_initialize_context(ac, ar);
5498 if (*errp) {
5499 ar->len = 0;
5500 goto out;
5501 }
5502
5503 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
5504 seq = this_cpu_read(discard_pa_seq);
5505 if (!ext4_mb_use_preallocated(ac)) {
5506 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
5507 ext4_mb_normalize_request(ac, ar);
5508
5509 *errp = ext4_mb_pa_alloc(ac);
5510 if (*errp)
5511 goto errout;
5512 repeat:
5513 /* allocate space in core */
5514 *errp = ext4_mb_regular_allocator(ac);
5515 /*
5516 * pa allocated above is added to grp->bb_prealloc_list only
5517 * when we were able to allocate some block i.e. when
5518 * ac->ac_status == AC_STATUS_FOUND.
5519 * And error from above mean ac->ac_status != AC_STATUS_FOUND
5520 * So we have to free this pa here itself.
5521 */
5522 if (*errp) {
5523 ext4_mb_pa_free(ac);
5524 ext4_discard_allocated_blocks(ac);
5525 goto errout;
5526 }
5527 if (ac->ac_status == AC_STATUS_FOUND &&
5528 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
5529 ext4_mb_pa_free(ac);
5530 }
5531 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
5532 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
5533 if (*errp) {
5534 ext4_discard_allocated_blocks(ac);
5535 goto errout;
5536 } else {
5537 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5538 ar->len = ac->ac_b_ex.fe_len;
5539 }
5540 } else {
5541 if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
5542 goto repeat;
5543 /*
5544 * If block allocation fails then the pa allocated above
5545 * needs to be freed here itself.
5546 */
5547 ext4_mb_pa_free(ac);
5548 *errp = -ENOSPC;
5549 }
5550
5551 errout:
5552 if (*errp) {
5553 ac->ac_b_ex.fe_len = 0;
5554 ar->len = 0;
5555 ext4_mb_show_ac(ac);
5556 }
5557 ext4_mb_release_context(ac);
5558 out:
5559 if (ac)
5560 kmem_cache_free(ext4_ac_cachep, ac);
5561 if (inquota && ar->len < inquota)
5562 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
5563 if (!ar->len) {
5564 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
5565 /* release all the reserved blocks if non delalloc */
5566 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
5567 reserv_clstrs);
5568 }
5569
5570 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
5571
5572 return block;
5573 }
5574
5575 /*
5576 * We can merge two free data extents only if the physical blocks
5577 * are contiguous, AND the extents were freed by the same transaction,
5578 * AND the blocks are associated with the same group.
5579 */
ext4_try_merge_freed_extent(struct ext4_sb_info * sbi,struct ext4_free_data * entry,struct ext4_free_data * new_entry,struct rb_root * entry_rb_root)5580 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
5581 struct ext4_free_data *entry,
5582 struct ext4_free_data *new_entry,
5583 struct rb_root *entry_rb_root)
5584 {
5585 if ((entry->efd_tid != new_entry->efd_tid) ||
5586 (entry->efd_group != new_entry->efd_group))
5587 return;
5588 if (entry->efd_start_cluster + entry->efd_count ==
5589 new_entry->efd_start_cluster) {
5590 new_entry->efd_start_cluster = entry->efd_start_cluster;
5591 new_entry->efd_count += entry->efd_count;
5592 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
5593 entry->efd_start_cluster) {
5594 new_entry->efd_count += entry->efd_count;
5595 } else
5596 return;
5597 spin_lock(&sbi->s_md_lock);
5598 list_del(&entry->efd_list);
5599 spin_unlock(&sbi->s_md_lock);
5600 rb_erase(&entry->efd_node, entry_rb_root);
5601 kmem_cache_free(ext4_free_data_cachep, entry);
5602 }
5603
5604 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)5605 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5606 struct ext4_free_data *new_entry)
5607 {
5608 ext4_group_t group = e4b->bd_group;
5609 ext4_grpblk_t cluster;
5610 ext4_grpblk_t clusters = new_entry->efd_count;
5611 struct ext4_free_data *entry;
5612 struct ext4_group_info *db = e4b->bd_info;
5613 struct super_block *sb = e4b->bd_sb;
5614 struct ext4_sb_info *sbi = EXT4_SB(sb);
5615 struct rb_node **n = &db->bb_free_root.rb_node, *node;
5616 struct rb_node *parent = NULL, *new_node;
5617
5618 BUG_ON(!ext4_handle_valid(handle));
5619 BUG_ON(e4b->bd_bitmap_page == NULL);
5620 BUG_ON(e4b->bd_buddy_page == NULL);
5621
5622 new_node = &new_entry->efd_node;
5623 cluster = new_entry->efd_start_cluster;
5624
5625 if (!*n) {
5626 /* first free block exent. We need to
5627 protect buddy cache from being freed,
5628 * otherwise we'll refresh it from
5629 * on-disk bitmap and lose not-yet-available
5630 * blocks */
5631 get_page(e4b->bd_buddy_page);
5632 get_page(e4b->bd_bitmap_page);
5633 }
5634 while (*n) {
5635 parent = *n;
5636 entry = rb_entry(parent, struct ext4_free_data, efd_node);
5637 if (cluster < entry->efd_start_cluster)
5638 n = &(*n)->rb_left;
5639 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5640 n = &(*n)->rb_right;
5641 else {
5642 ext4_grp_locked_error(sb, group, 0,
5643 ext4_group_first_block_no(sb, group) +
5644 EXT4_C2B(sbi, cluster),
5645 "Block already on to-be-freed list");
5646 kmem_cache_free(ext4_free_data_cachep, new_entry);
5647 return 0;
5648 }
5649 }
5650
5651 rb_link_node(new_node, parent, n);
5652 rb_insert_color(new_node, &db->bb_free_root);
5653
5654 /* Now try to see the extent can be merged to left and right */
5655 node = rb_prev(new_node);
5656 if (node) {
5657 entry = rb_entry(node, struct ext4_free_data, efd_node);
5658 ext4_try_merge_freed_extent(sbi, entry, new_entry,
5659 &(db->bb_free_root));
5660 }
5661
5662 node = rb_next(new_node);
5663 if (node) {
5664 entry = rb_entry(node, struct ext4_free_data, efd_node);
5665 ext4_try_merge_freed_extent(sbi, entry, new_entry,
5666 &(db->bb_free_root));
5667 }
5668
5669 spin_lock(&sbi->s_md_lock);
5670 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5671 sbi->s_mb_free_pending += clusters;
5672 spin_unlock(&sbi->s_md_lock);
5673 return 0;
5674 }
5675
5676 /*
5677 * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5678 * linearly starting at the goal block and also excludes the blocks which
5679 * are going to be in use after fast commit replay.
5680 */
ext4_mb_new_blocks_simple(handle_t * handle,struct ext4_allocation_request * ar,int * errp)5681 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5682 struct ext4_allocation_request *ar, int *errp)
5683 {
5684 struct buffer_head *bitmap_bh;
5685 struct super_block *sb = ar->inode->i_sb;
5686 ext4_group_t group;
5687 ext4_grpblk_t blkoff;
5688 int i = sb->s_blocksize;
5689 ext4_fsblk_t goal, block;
5690 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5691
5692 goal = ar->goal;
5693 if (goal < le32_to_cpu(es->s_first_data_block) ||
5694 goal >= ext4_blocks_count(es))
5695 goal = le32_to_cpu(es->s_first_data_block);
5696
5697 ar->len = 0;
5698 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
5699 for (; group < ext4_get_groups_count(sb); group++) {
5700 bitmap_bh = ext4_read_block_bitmap(sb, group);
5701 if (IS_ERR(bitmap_bh)) {
5702 *errp = PTR_ERR(bitmap_bh);
5703 pr_warn("Failed to read block bitmap\n");
5704 return 0;
5705 }
5706
5707 ext4_get_group_no_and_offset(sb,
5708 max(ext4_group_first_block_no(sb, group), goal),
5709 NULL, &blkoff);
5710 i = mb_find_next_zero_bit(bitmap_bh->b_data, sb->s_blocksize,
5711 blkoff);
5712 brelse(bitmap_bh);
5713 if (i >= sb->s_blocksize)
5714 continue;
5715 if (ext4_fc_replay_check_excluded(sb,
5716 ext4_group_first_block_no(sb, group) + i))
5717 continue;
5718 break;
5719 }
5720
5721 if (group >= ext4_get_groups_count(sb) && i >= sb->s_blocksize)
5722 return 0;
5723
5724 block = ext4_group_first_block_no(sb, group) + i;
5725 ext4_mb_mark_bb(sb, block, 1, 1);
5726 ar->len = 1;
5727
5728 return block;
5729 }
5730
ext4_free_blocks_simple(struct inode * inode,ext4_fsblk_t block,unsigned long count)5731 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
5732 unsigned long count)
5733 {
5734 struct buffer_head *bitmap_bh;
5735 struct super_block *sb = inode->i_sb;
5736 struct ext4_group_desc *gdp;
5737 struct buffer_head *gdp_bh;
5738 ext4_group_t group;
5739 ext4_grpblk_t blkoff;
5740 int already_freed = 0, err, i;
5741
5742 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
5743 bitmap_bh = ext4_read_block_bitmap(sb, group);
5744 if (IS_ERR(bitmap_bh)) {
5745 err = PTR_ERR(bitmap_bh);
5746 pr_warn("Failed to read block bitmap\n");
5747 return;
5748 }
5749 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
5750 if (!gdp)
5751 return;
5752
5753 for (i = 0; i < count; i++) {
5754 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
5755 already_freed++;
5756 }
5757 mb_clear_bits(bitmap_bh->b_data, blkoff, count);
5758 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
5759 if (err)
5760 return;
5761 ext4_free_group_clusters_set(
5762 sb, gdp, ext4_free_group_clusters(sb, gdp) +
5763 count - already_freed);
5764 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
5765 ext4_group_desc_csum_set(sb, group, gdp);
5766 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
5767 sync_dirty_buffer(bitmap_bh);
5768 sync_dirty_buffer(gdp_bh);
5769 brelse(bitmap_bh);
5770 }
5771
5772 /**
5773 * ext4_free_blocks() -- Free given blocks and update quota
5774 * @handle: handle for this transaction
5775 * @inode: inode
5776 * @bh: optional buffer of the block to be freed
5777 * @block: starting physical block to be freed
5778 * @count: number of blocks to be freed
5779 * @flags: flags used by ext4_free_blocks
5780 */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)5781 void ext4_free_blocks(handle_t *handle, struct inode *inode,
5782 struct buffer_head *bh, ext4_fsblk_t block,
5783 unsigned long count, int flags)
5784 {
5785 struct buffer_head *bitmap_bh = NULL;
5786 struct super_block *sb = inode->i_sb;
5787 struct ext4_group_desc *gdp;
5788 unsigned int overflow;
5789 ext4_grpblk_t bit;
5790 struct buffer_head *gd_bh;
5791 ext4_group_t block_group;
5792 struct ext4_sb_info *sbi;
5793 struct ext4_buddy e4b;
5794 unsigned int count_clusters;
5795 int err = 0;
5796 int ret;
5797
5798 sbi = EXT4_SB(sb);
5799
5800 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
5801 ext4_free_blocks_simple(inode, block, count);
5802 return;
5803 }
5804
5805 might_sleep();
5806 if (bh) {
5807 if (block)
5808 BUG_ON(block != bh->b_blocknr);
5809 else
5810 block = bh->b_blocknr;
5811 }
5812
5813 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5814 !ext4_inode_block_valid(inode, block, count)) {
5815 ext4_error(sb, "Freeing blocks not in datazone - "
5816 "block = %llu, count = %lu", block, count);
5817 goto error_return;
5818 }
5819
5820 ext4_debug("freeing block %llu\n", block);
5821 trace_ext4_free_blocks(inode, block, count, flags);
5822
5823 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5824 BUG_ON(count > 1);
5825
5826 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
5827 inode, bh, block);
5828 }
5829
5830 /*
5831 * If the extent to be freed does not begin on a cluster
5832 * boundary, we need to deal with partial clusters at the
5833 * beginning and end of the extent. Normally we will free
5834 * blocks at the beginning or the end unless we are explicitly
5835 * requested to avoid doing so.
5836 */
5837 overflow = EXT4_PBLK_COFF(sbi, block);
5838 if (overflow) {
5839 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
5840 overflow = sbi->s_cluster_ratio - overflow;
5841 block += overflow;
5842 if (count > overflow)
5843 count -= overflow;
5844 else
5845 return;
5846 } else {
5847 block -= overflow;
5848 count += overflow;
5849 }
5850 }
5851 overflow = EXT4_LBLK_COFF(sbi, count);
5852 if (overflow) {
5853 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
5854 if (count > overflow)
5855 count -= overflow;
5856 else
5857 return;
5858 } else
5859 count += sbi->s_cluster_ratio - overflow;
5860 }
5861
5862 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5863 int i;
5864 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
5865
5866 for (i = 0; i < count; i++) {
5867 cond_resched();
5868 if (is_metadata)
5869 bh = sb_find_get_block(inode->i_sb, block + i);
5870 ext4_forget(handle, is_metadata, inode, bh, block + i);
5871 }
5872 }
5873
5874 do_more:
5875 overflow = 0;
5876 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5877
5878 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
5879 ext4_get_group_info(sb, block_group))))
5880 return;
5881
5882 /*
5883 * Check to see if we are freeing blocks across a group
5884 * boundary.
5885 */
5886 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5887 overflow = EXT4_C2B(sbi, bit) + count -
5888 EXT4_BLOCKS_PER_GROUP(sb);
5889 count -= overflow;
5890 }
5891 count_clusters = EXT4_NUM_B2C(sbi, count);
5892 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5893 if (IS_ERR(bitmap_bh)) {
5894 err = PTR_ERR(bitmap_bh);
5895 bitmap_bh = NULL;
5896 goto error_return;
5897 }
5898 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
5899 if (!gdp) {
5900 err = -EIO;
5901 goto error_return;
5902 }
5903
5904 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
5905 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
5906 in_range(block, ext4_inode_table(sb, gdp),
5907 sbi->s_itb_per_group) ||
5908 in_range(block + count - 1, ext4_inode_table(sb, gdp),
5909 sbi->s_itb_per_group)) {
5910
5911 ext4_error(sb, "Freeing blocks in system zone - "
5912 "Block = %llu, count = %lu", block, count);
5913 /* err = 0. ext4_std_error should be a no op */
5914 goto error_return;
5915 }
5916
5917 BUFFER_TRACE(bitmap_bh, "getting write access");
5918 err = ext4_journal_get_write_access(handle, bitmap_bh);
5919 if (err)
5920 goto error_return;
5921
5922 /*
5923 * We are about to modify some metadata. Call the journal APIs
5924 * to unshare ->b_data if a currently-committing transaction is
5925 * using it
5926 */
5927 BUFFER_TRACE(gd_bh, "get_write_access");
5928 err = ext4_journal_get_write_access(handle, gd_bh);
5929 if (err)
5930 goto error_return;
5931 #ifdef AGGRESSIVE_CHECK
5932 {
5933 int i;
5934 for (i = 0; i < count_clusters; i++)
5935 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
5936 }
5937 #endif
5938 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
5939
5940 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
5941 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
5942 GFP_NOFS|__GFP_NOFAIL);
5943 if (err)
5944 goto error_return;
5945
5946 /*
5947 * We need to make sure we don't reuse the freed block until after the
5948 * transaction is committed. We make an exception if the inode is to be
5949 * written in writeback mode since writeback mode has weak data
5950 * consistency guarantees.
5951 */
5952 if (ext4_handle_valid(handle) &&
5953 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
5954 !ext4_should_writeback_data(inode))) {
5955 struct ext4_free_data *new_entry;
5956 /*
5957 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
5958 * to fail.
5959 */
5960 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
5961 GFP_NOFS|__GFP_NOFAIL);
5962 new_entry->efd_start_cluster = bit;
5963 new_entry->efd_group = block_group;
5964 new_entry->efd_count = count_clusters;
5965 new_entry->efd_tid = handle->h_transaction->t_tid;
5966
5967 ext4_lock_group(sb, block_group);
5968 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5969 ext4_mb_free_metadata(handle, &e4b, new_entry);
5970 } else {
5971 /* need to update group_info->bb_free and bitmap
5972 * with group lock held. generate_buddy look at
5973 * them with group lock_held
5974 */
5975 if (test_opt(sb, DISCARD)) {
5976 err = ext4_issue_discard(sb, block_group, bit, count,
5977 NULL);
5978 if (err && err != -EOPNOTSUPP)
5979 ext4_msg(sb, KERN_WARNING, "discard request in"
5980 " group:%d block:%d count:%lu failed"
5981 " with %d", block_group, bit, count,
5982 err);
5983 } else
5984 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
5985
5986 ext4_lock_group(sb, block_group);
5987 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5988 mb_free_blocks(inode, &e4b, bit, count_clusters);
5989 }
5990
5991 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
5992 ext4_free_group_clusters_set(sb, gdp, ret);
5993 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
5994 ext4_group_desc_csum_set(sb, block_group, gdp);
5995 ext4_unlock_group(sb, block_group);
5996
5997 if (sbi->s_log_groups_per_flex) {
5998 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5999 atomic64_add(count_clusters,
6000 &sbi_array_rcu_deref(sbi, s_flex_groups,
6001 flex_group)->free_clusters);
6002 }
6003
6004 /*
6005 * on a bigalloc file system, defer the s_freeclusters_counter
6006 * update to the caller (ext4_remove_space and friends) so they
6007 * can determine if a cluster freed here should be rereserved
6008 */
6009 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6010 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6011 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6012 percpu_counter_add(&sbi->s_freeclusters_counter,
6013 count_clusters);
6014 }
6015
6016 ext4_mb_unload_buddy(&e4b);
6017
6018 /* We dirtied the bitmap block */
6019 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6020 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6021
6022 /* And the group descriptor block */
6023 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6024 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6025 if (!err)
6026 err = ret;
6027
6028 if (overflow && !err) {
6029 block += count;
6030 count = overflow;
6031 put_bh(bitmap_bh);
6032 goto do_more;
6033 }
6034 error_return:
6035 brelse(bitmap_bh);
6036 ext4_std_error(sb, err);
6037 return;
6038 }
6039
6040 /**
6041 * ext4_group_add_blocks() -- Add given blocks to an existing group
6042 * @handle: handle to this transaction
6043 * @sb: super block
6044 * @block: start physical block to add to the block group
6045 * @count: number of blocks to free
6046 *
6047 * This marks the blocks as free in the bitmap and buddy.
6048 */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)6049 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6050 ext4_fsblk_t block, unsigned long count)
6051 {
6052 struct buffer_head *bitmap_bh = NULL;
6053 struct buffer_head *gd_bh;
6054 ext4_group_t block_group;
6055 ext4_grpblk_t bit;
6056 unsigned int i;
6057 struct ext4_group_desc *desc;
6058 struct ext4_sb_info *sbi = EXT4_SB(sb);
6059 struct ext4_buddy e4b;
6060 int err = 0, ret, free_clusters_count;
6061 ext4_grpblk_t clusters_freed;
6062 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6063 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6064 unsigned long cluster_count = last_cluster - first_cluster + 1;
6065
6066 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6067
6068 if (count == 0)
6069 return 0;
6070
6071 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6072 /*
6073 * Check to see if we are freeing blocks across a group
6074 * boundary.
6075 */
6076 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6077 ext4_warning(sb, "too many blocks added to group %u",
6078 block_group);
6079 err = -EINVAL;
6080 goto error_return;
6081 }
6082
6083 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6084 if (IS_ERR(bitmap_bh)) {
6085 err = PTR_ERR(bitmap_bh);
6086 bitmap_bh = NULL;
6087 goto error_return;
6088 }
6089
6090 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6091 if (!desc) {
6092 err = -EIO;
6093 goto error_return;
6094 }
6095
6096 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
6097 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
6098 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
6099 in_range(block + count - 1, ext4_inode_table(sb, desc),
6100 sbi->s_itb_per_group)) {
6101 ext4_error(sb, "Adding blocks in system zones - "
6102 "Block = %llu, count = %lu",
6103 block, count);
6104 err = -EINVAL;
6105 goto error_return;
6106 }
6107
6108 BUFFER_TRACE(bitmap_bh, "getting write access");
6109 err = ext4_journal_get_write_access(handle, bitmap_bh);
6110 if (err)
6111 goto error_return;
6112
6113 /*
6114 * We are about to modify some metadata. Call the journal APIs
6115 * to unshare ->b_data if a currently-committing transaction is
6116 * using it
6117 */
6118 BUFFER_TRACE(gd_bh, "get_write_access");
6119 err = ext4_journal_get_write_access(handle, gd_bh);
6120 if (err)
6121 goto error_return;
6122
6123 for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6124 BUFFER_TRACE(bitmap_bh, "clear bit");
6125 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6126 ext4_error(sb, "bit already cleared for block %llu",
6127 (ext4_fsblk_t)(block + i));
6128 BUFFER_TRACE(bitmap_bh, "bit already cleared");
6129 } else {
6130 clusters_freed++;
6131 }
6132 }
6133
6134 err = ext4_mb_load_buddy(sb, block_group, &e4b);
6135 if (err)
6136 goto error_return;
6137
6138 /*
6139 * need to update group_info->bb_free and bitmap
6140 * with group lock held. generate_buddy look at
6141 * them with group lock_held
6142 */
6143 ext4_lock_group(sb, block_group);
6144 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6145 mb_free_blocks(NULL, &e4b, bit, cluster_count);
6146 free_clusters_count = clusters_freed +
6147 ext4_free_group_clusters(sb, desc);
6148 ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6149 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
6150 ext4_group_desc_csum_set(sb, block_group, desc);
6151 ext4_unlock_group(sb, block_group);
6152 percpu_counter_add(&sbi->s_freeclusters_counter,
6153 clusters_freed);
6154
6155 if (sbi->s_log_groups_per_flex) {
6156 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6157 atomic64_add(clusters_freed,
6158 &sbi_array_rcu_deref(sbi, s_flex_groups,
6159 flex_group)->free_clusters);
6160 }
6161
6162 ext4_mb_unload_buddy(&e4b);
6163
6164 /* We dirtied the bitmap block */
6165 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6166 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6167
6168 /* And the group descriptor block */
6169 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6170 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6171 if (!err)
6172 err = ret;
6173
6174 error_return:
6175 brelse(bitmap_bh);
6176 ext4_std_error(sb, err);
6177 return err;
6178 }
6179
6180 /**
6181 * ext4_trim_extent -- function to TRIM one single free extent in the group
6182 * @sb: super block for the file system
6183 * @start: starting block of the free extent in the alloc. group
6184 * @count: number of blocks to TRIM
6185 * @group: alloc. group we are working with
6186 * @e4b: ext4 buddy for the group
6187 *
6188 * Trim "count" blocks starting at "start" in the "group". To assure that no
6189 * one will allocate those blocks, mark it as used in buddy bitmap. This must
6190 * be called with under the group lock.
6191 */
ext4_trim_extent(struct super_block * sb,int start,int count,ext4_group_t group,struct ext4_buddy * e4b)6192 static int ext4_trim_extent(struct super_block *sb, int start, int count,
6193 ext4_group_t group, struct ext4_buddy *e4b)
6194 __releases(bitlock)
6195 __acquires(bitlock)
6196 {
6197 struct ext4_free_extent ex;
6198 int ret = 0;
6199
6200 trace_ext4_trim_extent(sb, group, start, count);
6201
6202 assert_spin_locked(ext4_group_lock_ptr(sb, group));
6203
6204 ex.fe_start = start;
6205 ex.fe_group = group;
6206 ex.fe_len = count;
6207
6208 /*
6209 * Mark blocks used, so no one can reuse them while
6210 * being trimmed.
6211 */
6212 mb_mark_used(e4b, &ex);
6213 ext4_unlock_group(sb, group);
6214 ret = ext4_issue_discard(sb, group, start, count, NULL);
6215 ext4_lock_group(sb, group);
6216 mb_free_blocks(NULL, e4b, start, ex.fe_len);
6217 return ret;
6218 }
6219
6220 /**
6221 * ext4_trim_all_free -- function to trim all free space in alloc. group
6222 * @sb: super block for file system
6223 * @group: group to be trimmed
6224 * @start: first group block to examine
6225 * @max: last group block to examine
6226 * @minblocks: minimum extent block count
6227 *
6228 * ext4_trim_all_free walks through group's buddy bitmap searching for free
6229 * extents. When the free block is found, ext4_trim_extent is called to TRIM
6230 * the extent.
6231 *
6232 *
6233 * ext4_trim_all_free walks through group's block bitmap searching for free
6234 * extents. When the free extent is found, mark it as used in group buddy
6235 * bitmap. Then issue a TRIM command on this extent and free the extent in
6236 * the group buddy bitmap. This is done until whole group is scanned.
6237 */
6238 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)6239 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6240 ext4_grpblk_t start, ext4_grpblk_t max,
6241 ext4_grpblk_t minblocks)
6242 {
6243 void *bitmap;
6244 ext4_grpblk_t next, count = 0, free_count = 0;
6245 struct ext4_buddy e4b;
6246 int ret = 0;
6247
6248 trace_ext4_trim_all_free(sb, group, start, max);
6249
6250 ret = ext4_mb_load_buddy(sb, group, &e4b);
6251 if (ret) {
6252 ext4_warning(sb, "Error %d loading buddy information for %u",
6253 ret, group);
6254 return ret;
6255 }
6256 bitmap = e4b.bd_bitmap;
6257
6258 ext4_lock_group(sb, group);
6259 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
6260 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
6261 goto out;
6262
6263 start = (e4b.bd_info->bb_first_free > start) ?
6264 e4b.bd_info->bb_first_free : start;
6265
6266 while (start <= max) {
6267 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6268 if (start > max)
6269 break;
6270 next = mb_find_next_bit(bitmap, max + 1, start);
6271
6272 if ((next - start) >= minblocks) {
6273 ret = ext4_trim_extent(sb, start,
6274 next - start, group, &e4b);
6275 if (ret && ret != -EOPNOTSUPP)
6276 break;
6277 ret = 0;
6278 count += next - start;
6279 }
6280 free_count += next - start;
6281 start = next + 1;
6282
6283 if (fatal_signal_pending(current)) {
6284 count = -ERESTARTSYS;
6285 break;
6286 }
6287
6288 if (need_resched()) {
6289 ext4_unlock_group(sb, group);
6290 cond_resched();
6291 ext4_lock_group(sb, group);
6292 }
6293
6294 if ((e4b.bd_info->bb_free - free_count) < minblocks)
6295 break;
6296 }
6297
6298 if (!ret) {
6299 ret = count;
6300 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
6301 }
6302 out:
6303 ext4_unlock_group(sb, group);
6304 ext4_mb_unload_buddy(&e4b);
6305
6306 ext4_debug("trimmed %d blocks in the group %d\n",
6307 count, group);
6308
6309 return ret;
6310 }
6311
6312 /**
6313 * ext4_trim_fs() -- trim ioctl handle function
6314 * @sb: superblock for filesystem
6315 * @range: fstrim_range structure
6316 *
6317 * start: First Byte to trim
6318 * len: number of Bytes to trim from start
6319 * minlen: minimum extent length in Bytes
6320 * ext4_trim_fs goes through all allocation groups containing Bytes from
6321 * start to start+len. For each such a group ext4_trim_all_free function
6322 * is invoked to trim all free space.
6323 */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range)6324 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6325 {
6326 struct ext4_group_info *grp;
6327 ext4_group_t group, first_group, last_group;
6328 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6329 uint64_t start, end, minlen, trimmed = 0;
6330 ext4_fsblk_t first_data_blk =
6331 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6332 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6333 int ret = 0;
6334
6335 start = range->start >> sb->s_blocksize_bits;
6336 end = start + (range->len >> sb->s_blocksize_bits) - 1;
6337 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6338 range->minlen >> sb->s_blocksize_bits);
6339
6340 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6341 start >= max_blks ||
6342 range->len < sb->s_blocksize)
6343 return -EINVAL;
6344 if (end >= max_blks)
6345 end = max_blks - 1;
6346 if (end <= first_data_blk)
6347 goto out;
6348 if (start < first_data_blk)
6349 start = first_data_blk;
6350
6351 /* Determine first and last group to examine based on start and end */
6352 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6353 &first_group, &first_cluster);
6354 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6355 &last_group, &last_cluster);
6356
6357 /* end now represents the last cluster to discard in this group */
6358 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6359
6360 for (group = first_group; group <= last_group; group++) {
6361 grp = ext4_get_group_info(sb, group);
6362 /* We only do this if the grp has never been initialized */
6363 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6364 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6365 if (ret)
6366 break;
6367 }
6368
6369 /*
6370 * For all the groups except the last one, last cluster will
6371 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6372 * change it for the last group, note that last_cluster is
6373 * already computed earlier by ext4_get_group_no_and_offset()
6374 */
6375 if (group == last_group)
6376 end = last_cluster;
6377
6378 if (grp->bb_free >= minlen) {
6379 cnt = ext4_trim_all_free(sb, group, first_cluster,
6380 end, minlen);
6381 if (cnt < 0) {
6382 ret = cnt;
6383 break;
6384 }
6385 trimmed += cnt;
6386 }
6387
6388 /*
6389 * For every group except the first one, we are sure
6390 * that the first cluster to discard will be cluster #0.
6391 */
6392 first_cluster = 0;
6393 }
6394
6395 if (!ret)
6396 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
6397
6398 out:
6399 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6400 return ret;
6401 }
6402
6403 /* Iterate all the free extents in the group. */
6404 int
ext4_mballoc_query_range(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t end,ext4_mballoc_query_range_fn formatter,void * priv)6405 ext4_mballoc_query_range(
6406 struct super_block *sb,
6407 ext4_group_t group,
6408 ext4_grpblk_t start,
6409 ext4_grpblk_t end,
6410 ext4_mballoc_query_range_fn formatter,
6411 void *priv)
6412 {
6413 void *bitmap;
6414 ext4_grpblk_t next;
6415 struct ext4_buddy e4b;
6416 int error;
6417
6418 error = ext4_mb_load_buddy(sb, group, &e4b);
6419 if (error)
6420 return error;
6421 bitmap = e4b.bd_bitmap;
6422
6423 ext4_lock_group(sb, group);
6424
6425 start = (e4b.bd_info->bb_first_free > start) ?
6426 e4b.bd_info->bb_first_free : start;
6427 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
6428 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6429
6430 while (start <= end) {
6431 start = mb_find_next_zero_bit(bitmap, end + 1, start);
6432 if (start > end)
6433 break;
6434 next = mb_find_next_bit(bitmap, end + 1, start);
6435
6436 ext4_unlock_group(sb, group);
6437 error = formatter(sb, group, start, next - start, priv);
6438 if (error)
6439 goto out_unload;
6440 ext4_lock_group(sb, group);
6441
6442 start = next + 1;
6443 }
6444
6445 ext4_unlock_group(sb, group);
6446 out_unload:
6447 ext4_mb_unload_buddy(&e4b);
6448
6449 return error;
6450 }
6451