1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/list.h>
9 #include <linux/spinlock.h>
10 #include <linux/rbtree.h>
11 #include <linux/rwsem.h>
12 #include <linux/completion.h>
13 #include <linux/cpumask.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <linux/workqueue.h>
17 #include <linux/seqlock.h>
18 
19 #include <asm/mmu.h>
20 
21 #ifndef AT_VECTOR_SIZE_ARCH
22 #define AT_VECTOR_SIZE_ARCH 0
23 #endif
24 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
25 
26 #define INIT_PASID	0
27 
28 struct address_space;
29 struct mem_cgroup;
30 
31 /*
32  * Each physical page in the system has a struct page associated with
33  * it to keep track of whatever it is we are using the page for at the
34  * moment. Note that we have no way to track which tasks are using
35  * a page, though if it is a pagecache page, rmap structures can tell us
36  * who is mapping it.
37  *
38  * If you allocate the page using alloc_pages(), you can use some of the
39  * space in struct page for your own purposes.  The five words in the main
40  * union are available, except for bit 0 of the first word which must be
41  * kept clear.  Many users use this word to store a pointer to an object
42  * which is guaranteed to be aligned.  If you use the same storage as
43  * page->mapping, you must restore it to NULL before freeing the page.
44  *
45  * If your page will not be mapped to userspace, you can also use the four
46  * bytes in the mapcount union, but you must call page_mapcount_reset()
47  * before freeing it.
48  *
49  * If you want to use the refcount field, it must be used in such a way
50  * that other CPUs temporarily incrementing and then decrementing the
51  * refcount does not cause problems.  On receiving the page from
52  * alloc_pages(), the refcount will be positive.
53  *
54  * If you allocate pages of order > 0, you can use some of the fields
55  * in each subpage, but you may need to restore some of their values
56  * afterwards.
57  *
58  * SLUB uses cmpxchg_double() to atomically update its freelist and
59  * counters.  That requires that freelist & counters be adjacent and
60  * double-word aligned.  We align all struct pages to double-word
61  * boundaries, and ensure that 'freelist' is aligned within the
62  * struct.
63  */
64 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
65 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
66 #else
67 #define _struct_page_alignment
68 #endif
69 
70 struct page {
71 	unsigned long flags;		/* Atomic flags, some possibly
72 					 * updated asynchronously */
73 	/*
74 	 * Five words (20/40 bytes) are available in this union.
75 	 * WARNING: bit 0 of the first word is used for PageTail(). That
76 	 * means the other users of this union MUST NOT use the bit to
77 	 * avoid collision and false-positive PageTail().
78 	 */
79 	union {
80 		struct {	/* Page cache and anonymous pages */
81 			/**
82 			 * @lru: Pageout list, eg. active_list protected by
83 			 * lruvec->lru_lock.  Sometimes used as a generic list
84 			 * by the page owner.
85 			 */
86 			struct list_head lru;
87 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
88 			struct address_space *mapping;
89 			pgoff_t index;		/* Our offset within mapping. */
90 			/**
91 			 * @private: Mapping-private opaque data.
92 			 * Usually used for buffer_heads if PagePrivate.
93 			 * Used for swp_entry_t if PageSwapCache.
94 			 * Indicates order in the buddy system if PageBuddy.
95 			 */
96 			unsigned long private;
97 		};
98 		struct {	/* page_pool used by netstack */
99 			/**
100 			 * @dma_addr: might require a 64-bit value on
101 			 * 32-bit architectures.
102 			 */
103 			unsigned long dma_addr[2];
104 		};
105 		struct {	/* slab, slob and slub */
106 			union {
107 				struct list_head slab_list;
108 				struct {	/* Partial pages */
109 					struct page *next;
110 #ifdef CONFIG_64BIT
111 					int pages;	/* Nr of pages left */
112 					int pobjects;	/* Approximate count */
113 #else
114 					short int pages;
115 					short int pobjects;
116 #endif
117 				};
118 			};
119 			struct kmem_cache *slab_cache; /* not slob */
120 			/* Double-word boundary */
121 			void *freelist;		/* first free object */
122 			union {
123 				void *s_mem;	/* slab: first object */
124 				unsigned long counters;		/* SLUB */
125 				struct {			/* SLUB */
126 					unsigned inuse:16;
127 					unsigned objects:15;
128 					unsigned frozen:1;
129 				};
130 			};
131 		};
132 		struct {	/* Tail pages of compound page */
133 			unsigned long compound_head;	/* Bit zero is set */
134 
135 			/* First tail page only */
136 			unsigned char compound_dtor;
137 			unsigned char compound_order;
138 			atomic_t compound_mapcount;
139 			unsigned int compound_nr; /* 1 << compound_order */
140 		};
141 		struct {	/* Second tail page of compound page */
142 			unsigned long _compound_pad_1;	/* compound_head */
143 			atomic_t hpage_pinned_refcount;
144 			/* For both global and memcg */
145 			struct list_head deferred_list;
146 		};
147 		struct {	/* Page table pages */
148 			unsigned long _pt_pad_1;	/* compound_head */
149 			pgtable_t pmd_huge_pte; /* protected by page->ptl */
150 			unsigned long _pt_pad_2;	/* mapping */
151 			union {
152 				struct mm_struct *pt_mm; /* x86 pgds only */
153 				atomic_t pt_frag_refcount; /* powerpc */
154 			};
155 #if ALLOC_SPLIT_PTLOCKS
156 			spinlock_t *ptl;
157 #else
158 			spinlock_t ptl;
159 #endif
160 		};
161 		struct {	/* ZONE_DEVICE pages */
162 			/** @pgmap: Points to the hosting device page map. */
163 			struct dev_pagemap *pgmap;
164 			void *zone_device_data;
165 			/*
166 			 * ZONE_DEVICE private pages are counted as being
167 			 * mapped so the next 3 words hold the mapping, index,
168 			 * and private fields from the source anonymous or
169 			 * page cache page while the page is migrated to device
170 			 * private memory.
171 			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
172 			 * use the mapping, index, and private fields when
173 			 * pmem backed DAX files are mapped.
174 			 */
175 		};
176 
177 		/** @rcu_head: You can use this to free a page by RCU. */
178 		struct rcu_head rcu_head;
179 	};
180 
181 	union {		/* This union is 4 bytes in size. */
182 		/*
183 		 * If the page can be mapped to userspace, encodes the number
184 		 * of times this page is referenced by a page table.
185 		 */
186 		atomic_t _mapcount;
187 
188 		/*
189 		 * If the page is neither PageSlab nor mappable to userspace,
190 		 * the value stored here may help determine what this page
191 		 * is used for.  See page-flags.h for a list of page types
192 		 * which are currently stored here.
193 		 */
194 		unsigned int page_type;
195 
196 		unsigned int active;		/* SLAB */
197 		int units;			/* SLOB */
198 	};
199 
200 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
201 	atomic_t _refcount;
202 
203 #ifdef CONFIG_MEMCG
204 	unsigned long memcg_data;
205 #endif
206 
207 	/*
208 	 * On machines where all RAM is mapped into kernel address space,
209 	 * we can simply calculate the virtual address. On machines with
210 	 * highmem some memory is mapped into kernel virtual memory
211 	 * dynamically, so we need a place to store that address.
212 	 * Note that this field could be 16 bits on x86 ... ;)
213 	 *
214 	 * Architectures with slow multiplication can define
215 	 * WANT_PAGE_VIRTUAL in asm/page.h
216 	 */
217 #if defined(WANT_PAGE_VIRTUAL)
218 	void *virtual;			/* Kernel virtual address (NULL if
219 					   not kmapped, ie. highmem) */
220 #endif /* WANT_PAGE_VIRTUAL */
221 
222 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
223 	int _last_cpupid;
224 #endif
225 } _struct_page_alignment;
226 
compound_mapcount_ptr(struct page * page)227 static inline atomic_t *compound_mapcount_ptr(struct page *page)
228 {
229 	return &page[1].compound_mapcount;
230 }
231 
compound_pincount_ptr(struct page * page)232 static inline atomic_t *compound_pincount_ptr(struct page *page)
233 {
234 	return &page[2].hpage_pinned_refcount;
235 }
236 
237 /*
238  * Used for sizing the vmemmap region on some architectures
239  */
240 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
241 
242 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
243 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
244 
245 #define page_private(page)		((page)->private)
246 
set_page_private(struct page * page,unsigned long private)247 static inline void set_page_private(struct page *page, unsigned long private)
248 {
249 	page->private = private;
250 }
251 
252 struct page_frag_cache {
253 	void * va;
254 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
255 	__u16 offset;
256 	__u16 size;
257 #else
258 	__u32 offset;
259 #endif
260 	/* we maintain a pagecount bias, so that we dont dirty cache line
261 	 * containing page->_refcount every time we allocate a fragment.
262 	 */
263 	unsigned int		pagecnt_bias;
264 	bool pfmemalloc;
265 };
266 
267 typedef unsigned long vm_flags_t;
268 
269 /*
270  * A region containing a mapping of a non-memory backed file under NOMMU
271  * conditions.  These are held in a global tree and are pinned by the VMAs that
272  * map parts of them.
273  */
274 struct vm_region {
275 	struct rb_node	vm_rb;		/* link in global region tree */
276 	vm_flags_t	vm_flags;	/* VMA vm_flags */
277 	unsigned long	vm_start;	/* start address of region */
278 	unsigned long	vm_end;		/* region initialised to here */
279 	unsigned long	vm_top;		/* region allocated to here */
280 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
281 	struct file	*vm_file;	/* the backing file or NULL */
282 
283 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
284 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
285 						* this region */
286 };
287 
288 #ifdef CONFIG_USERFAULTFD
289 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
290 struct vm_userfaultfd_ctx {
291 	struct userfaultfd_ctx *ctx;
292 };
293 #else /* CONFIG_USERFAULTFD */
294 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
295 struct vm_userfaultfd_ctx {};
296 #endif /* CONFIG_USERFAULTFD */
297 
298 /*
299  * This struct describes a virtual memory area. There is one of these
300  * per VM-area/task. A VM area is any part of the process virtual memory
301  * space that has a special rule for the page-fault handlers (ie a shared
302  * library, the executable area etc).
303  */
304 struct vm_area_struct {
305 	/* The first cache line has the info for VMA tree walking. */
306 
307 	unsigned long vm_start;		/* Our start address within vm_mm. */
308 	unsigned long vm_end;		/* The first byte after our end address
309 					   within vm_mm. */
310 
311 	/* linked list of VM areas per task, sorted by address */
312 	struct vm_area_struct *vm_next, *vm_prev;
313 
314 	struct rb_node vm_rb;
315 
316 	/*
317 	 * Largest free memory gap in bytes to the left of this VMA.
318 	 * Either between this VMA and vma->vm_prev, or between one of the
319 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
320 	 * get_unmapped_area find a free area of the right size.
321 	 */
322 	unsigned long rb_subtree_gap;
323 
324 	/* Second cache line starts here. */
325 
326 	struct mm_struct *vm_mm;	/* The address space we belong to. */
327 
328 	/*
329 	 * Access permissions of this VMA.
330 	 * See vmf_insert_mixed_prot() for discussion.
331 	 */
332 	pgprot_t vm_page_prot;
333 	unsigned long vm_flags;		/* Flags, see mm.h. */
334 
335 	/*
336 	 * For areas with an address space and backing store,
337 	 * linkage into the address_space->i_mmap interval tree.
338 	 */
339 	struct {
340 		struct rb_node rb;
341 		unsigned long rb_subtree_last;
342 	} shared;
343 
344 	/*
345 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
346 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
347 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
348 	 * or brk vma (with NULL file) can only be in an anon_vma list.
349 	 */
350 	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
351 					  * page_table_lock */
352 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
353 
354 	/* Function pointers to deal with this struct. */
355 	const struct vm_operations_struct *vm_ops;
356 
357 	/* Information about our backing store: */
358 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
359 					   units */
360 	struct file * vm_file;		/* File we map to (can be NULL). */
361 	void * vm_private_data;		/* was vm_pte (shared mem) */
362 
363 #ifdef CONFIG_SWAP
364 	atomic_long_t swap_readahead_info;
365 #endif
366 #ifndef CONFIG_MMU
367 	struct vm_region *vm_region;	/* NOMMU mapping region */
368 #endif
369 #ifdef CONFIG_NUMA
370 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
371 #endif
372 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
373 } __randomize_layout;
374 
375 struct core_thread {
376 	struct task_struct *task;
377 	struct core_thread *next;
378 };
379 
380 struct core_state {
381 	atomic_t nr_threads;
382 	struct core_thread dumper;
383 	struct completion startup;
384 };
385 
386 struct kioctx_table;
387 struct mm_struct {
388 	struct {
389 		struct vm_area_struct *mmap;		/* list of VMAs */
390 		struct rb_root mm_rb;
391 		u64 vmacache_seqnum;                   /* per-thread vmacache */
392 #ifdef CONFIG_MMU
393 		unsigned long (*get_unmapped_area) (struct file *filp,
394 				unsigned long addr, unsigned long len,
395 				unsigned long pgoff, unsigned long flags);
396 #endif
397 		unsigned long mmap_base;	/* base of mmap area */
398 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
399 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
400 		/* Base adresses for compatible mmap() */
401 		unsigned long mmap_compat_base;
402 		unsigned long mmap_compat_legacy_base;
403 #endif
404 		unsigned long task_size;	/* size of task vm space */
405 		unsigned long highest_vm_end;	/* highest vma end address */
406 		pgd_t * pgd;
407 
408 #ifdef CONFIG_MEMBARRIER
409 		/**
410 		 * @membarrier_state: Flags controlling membarrier behavior.
411 		 *
412 		 * This field is close to @pgd to hopefully fit in the same
413 		 * cache-line, which needs to be touched by switch_mm().
414 		 */
415 		atomic_t membarrier_state;
416 #endif
417 
418 		/**
419 		 * @mm_users: The number of users including userspace.
420 		 *
421 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
422 		 * drops to 0 (i.e. when the task exits and there are no other
423 		 * temporary reference holders), we also release a reference on
424 		 * @mm_count (which may then free the &struct mm_struct if
425 		 * @mm_count also drops to 0).
426 		 */
427 		atomic_t mm_users;
428 
429 		/**
430 		 * @mm_count: The number of references to &struct mm_struct
431 		 * (@mm_users count as 1).
432 		 *
433 		 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
434 		 * &struct mm_struct is freed.
435 		 */
436 		atomic_t mm_count;
437 
438 		/**
439 		 * @has_pinned: Whether this mm has pinned any pages.  This can
440 		 * be either replaced in the future by @pinned_vm when it
441 		 * becomes stable, or grow into a counter on its own. We're
442 		 * aggresive on this bit now - even if the pinned pages were
443 		 * unpinned later on, we'll still keep this bit set for the
444 		 * lifecycle of this mm just for simplicity.
445 		 */
446 		atomic_t has_pinned;
447 
448 		/**
449 		 * @write_protect_seq: Locked when any thread is write
450 		 * protecting pages mapped by this mm to enforce a later COW,
451 		 * for instance during page table copying for fork().
452 		 */
453 		seqcount_t write_protect_seq;
454 
455 #ifdef CONFIG_MMU
456 		atomic_long_t pgtables_bytes;	/* PTE page table pages */
457 #endif
458 		int map_count;			/* number of VMAs */
459 
460 		spinlock_t page_table_lock; /* Protects page tables and some
461 					     * counters
462 					     */
463 		struct rw_semaphore mmap_lock;
464 
465 		struct list_head mmlist; /* List of maybe swapped mm's.	These
466 					  * are globally strung together off
467 					  * init_mm.mmlist, and are protected
468 					  * by mmlist_lock
469 					  */
470 
471 
472 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
473 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
474 
475 		unsigned long total_vm;	   /* Total pages mapped */
476 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
477 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
478 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
479 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
480 		unsigned long stack_vm;	   /* VM_STACK */
481 		unsigned long def_flags;
482 
483 		spinlock_t arg_lock; /* protect the below fields */
484 		unsigned long start_code, end_code, start_data, end_data;
485 		unsigned long start_brk, brk, start_stack;
486 		unsigned long arg_start, arg_end, env_start, env_end;
487 
488 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
489 
490 		/*
491 		 * Special counters, in some configurations protected by the
492 		 * page_table_lock, in other configurations by being atomic.
493 		 */
494 		struct mm_rss_stat rss_stat;
495 
496 		struct linux_binfmt *binfmt;
497 
498 		/* Architecture-specific MM context */
499 		mm_context_t context;
500 
501 		unsigned long flags; /* Must use atomic bitops to access */
502 
503 		struct core_state *core_state; /* coredumping support */
504 
505 #ifdef CONFIG_AIO
506 		spinlock_t			ioctx_lock;
507 		struct kioctx_table __rcu	*ioctx_table;
508 #endif
509 #ifdef CONFIG_MEMCG
510 		/*
511 		 * "owner" points to a task that is regarded as the canonical
512 		 * user/owner of this mm. All of the following must be true in
513 		 * order for it to be changed:
514 		 *
515 		 * current == mm->owner
516 		 * current->mm != mm
517 		 * new_owner->mm == mm
518 		 * new_owner->alloc_lock is held
519 		 */
520 		struct task_struct __rcu *owner;
521 #endif
522 		struct user_namespace *user_ns;
523 
524 		/* store ref to file /proc/<pid>/exe symlink points to */
525 		struct file __rcu *exe_file;
526 #ifdef CONFIG_MMU_NOTIFIER
527 		struct mmu_notifier_subscriptions *notifier_subscriptions;
528 #endif
529 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
530 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
531 #endif
532 #ifdef CONFIG_NUMA_BALANCING
533 		/*
534 		 * numa_next_scan is the next time that the PTEs will be marked
535 		 * pte_numa. NUMA hinting faults will gather statistics and
536 		 * migrate pages to new nodes if necessary.
537 		 */
538 		unsigned long numa_next_scan;
539 
540 		/* Restart point for scanning and setting pte_numa */
541 		unsigned long numa_scan_offset;
542 
543 		/* numa_scan_seq prevents two threads setting pte_numa */
544 		int numa_scan_seq;
545 #endif
546 		/*
547 		 * An operation with batched TLB flushing is going on. Anything
548 		 * that can move process memory needs to flush the TLB when
549 		 * moving a PROT_NONE or PROT_NUMA mapped page.
550 		 */
551 		atomic_t tlb_flush_pending;
552 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
553 		/* See flush_tlb_batched_pending() */
554 		bool tlb_flush_batched;
555 #endif
556 		struct uprobes_state uprobes_state;
557 #ifdef CONFIG_HUGETLB_PAGE
558 		atomic_long_t hugetlb_usage;
559 #endif
560 		struct work_struct async_put_work;
561 
562 #ifdef CONFIG_IOMMU_SUPPORT
563 		u32 pasid;
564 #endif
565 	} __randomize_layout;
566 
567 	/*
568 	 * The mm_cpumask needs to be at the end of mm_struct, because it
569 	 * is dynamically sized based on nr_cpu_ids.
570 	 */
571 	unsigned long cpu_bitmap[];
572 };
573 
574 extern struct mm_struct init_mm;
575 
576 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)577 static inline void mm_init_cpumask(struct mm_struct *mm)
578 {
579 	unsigned long cpu_bitmap = (unsigned long)mm;
580 
581 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
582 	cpumask_clear((struct cpumask *)cpu_bitmap);
583 }
584 
585 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)586 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
587 {
588 	return (struct cpumask *)&mm->cpu_bitmap;
589 }
590 
591 struct mmu_gather;
592 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
593 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
594 extern void tlb_finish_mmu(struct mmu_gather *tlb);
595 
init_tlb_flush_pending(struct mm_struct * mm)596 static inline void init_tlb_flush_pending(struct mm_struct *mm)
597 {
598 	atomic_set(&mm->tlb_flush_pending, 0);
599 }
600 
inc_tlb_flush_pending(struct mm_struct * mm)601 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
602 {
603 	atomic_inc(&mm->tlb_flush_pending);
604 	/*
605 	 * The only time this value is relevant is when there are indeed pages
606 	 * to flush. And we'll only flush pages after changing them, which
607 	 * requires the PTL.
608 	 *
609 	 * So the ordering here is:
610 	 *
611 	 *	atomic_inc(&mm->tlb_flush_pending);
612 	 *	spin_lock(&ptl);
613 	 *	...
614 	 *	set_pte_at();
615 	 *	spin_unlock(&ptl);
616 	 *
617 	 *				spin_lock(&ptl)
618 	 *				mm_tlb_flush_pending();
619 	 *				....
620 	 *				spin_unlock(&ptl);
621 	 *
622 	 *	flush_tlb_range();
623 	 *	atomic_dec(&mm->tlb_flush_pending);
624 	 *
625 	 * Where the increment if constrained by the PTL unlock, it thus
626 	 * ensures that the increment is visible if the PTE modification is
627 	 * visible. After all, if there is no PTE modification, nobody cares
628 	 * about TLB flushes either.
629 	 *
630 	 * This very much relies on users (mm_tlb_flush_pending() and
631 	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
632 	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
633 	 * locks (PPC) the unlock of one doesn't order against the lock of
634 	 * another PTL.
635 	 *
636 	 * The decrement is ordered by the flush_tlb_range(), such that
637 	 * mm_tlb_flush_pending() will not return false unless all flushes have
638 	 * completed.
639 	 */
640 }
641 
dec_tlb_flush_pending(struct mm_struct * mm)642 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
643 {
644 	/*
645 	 * See inc_tlb_flush_pending().
646 	 *
647 	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
648 	 * not order against TLB invalidate completion, which is what we need.
649 	 *
650 	 * Therefore we must rely on tlb_flush_*() to guarantee order.
651 	 */
652 	atomic_dec(&mm->tlb_flush_pending);
653 }
654 
mm_tlb_flush_pending(struct mm_struct * mm)655 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
656 {
657 	/*
658 	 * Must be called after having acquired the PTL; orders against that
659 	 * PTLs release and therefore ensures that if we observe the modified
660 	 * PTE we must also observe the increment from inc_tlb_flush_pending().
661 	 *
662 	 * That is, it only guarantees to return true if there is a flush
663 	 * pending for _this_ PTL.
664 	 */
665 	return atomic_read(&mm->tlb_flush_pending);
666 }
667 
mm_tlb_flush_nested(struct mm_struct * mm)668 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
669 {
670 	/*
671 	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
672 	 * for which there is a TLB flush pending in order to guarantee
673 	 * we've seen both that PTE modification and the increment.
674 	 *
675 	 * (no requirement on actually still holding the PTL, that is irrelevant)
676 	 */
677 	return atomic_read(&mm->tlb_flush_pending) > 1;
678 }
679 
680 struct vm_fault;
681 
682 /**
683  * typedef vm_fault_t - Return type for page fault handlers.
684  *
685  * Page fault handlers return a bitmask of %VM_FAULT values.
686  */
687 typedef __bitwise unsigned int vm_fault_t;
688 
689 /**
690  * enum vm_fault_reason - Page fault handlers return a bitmask of
691  * these values to tell the core VM what happened when handling the
692  * fault. Used to decide whether a process gets delivered SIGBUS or
693  * just gets major/minor fault counters bumped up.
694  *
695  * @VM_FAULT_OOM:		Out Of Memory
696  * @VM_FAULT_SIGBUS:		Bad access
697  * @VM_FAULT_MAJOR:		Page read from storage
698  * @VM_FAULT_WRITE:		Special case for get_user_pages
699  * @VM_FAULT_HWPOISON:		Hit poisoned small page
700  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
701  *				in upper bits
702  * @VM_FAULT_SIGSEGV:		segmentation fault
703  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
704  * @VM_FAULT_LOCKED:		->fault locked the returned page
705  * @VM_FAULT_RETRY:		->fault blocked, must retry
706  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
707  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
708  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
709  *				fsync() to complete (for synchronous page faults
710  *				in DAX)
711  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
712  *
713  */
714 enum vm_fault_reason {
715 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
716 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
717 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
718 	VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
719 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
720 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
721 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
722 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
723 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
724 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
725 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
726 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
727 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
728 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
729 };
730 
731 /* Encode hstate index for a hwpoisoned large page */
732 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
733 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
734 
735 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
736 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
737 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
738 
739 #define VM_FAULT_RESULT_TRACE \
740 	{ VM_FAULT_OOM,                 "OOM" },	\
741 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
742 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
743 	{ VM_FAULT_WRITE,               "WRITE" },	\
744 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
745 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
746 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
747 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
748 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
749 	{ VM_FAULT_RETRY,               "RETRY" },	\
750 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
751 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
752 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
753 
754 struct vm_special_mapping {
755 	const char *name;	/* The name, e.g. "[vdso]". */
756 
757 	/*
758 	 * If .fault is not provided, this points to a
759 	 * NULL-terminated array of pages that back the special mapping.
760 	 *
761 	 * This must not be NULL unless .fault is provided.
762 	 */
763 	struct page **pages;
764 
765 	/*
766 	 * If non-NULL, then this is called to resolve page faults
767 	 * on the special mapping.  If used, .pages is not checked.
768 	 */
769 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
770 				struct vm_area_struct *vma,
771 				struct vm_fault *vmf);
772 
773 	int (*mremap)(const struct vm_special_mapping *sm,
774 		     struct vm_area_struct *new_vma);
775 };
776 
777 enum tlb_flush_reason {
778 	TLB_FLUSH_ON_TASK_SWITCH,
779 	TLB_REMOTE_SHOOTDOWN,
780 	TLB_LOCAL_SHOOTDOWN,
781 	TLB_LOCAL_MM_SHOOTDOWN,
782 	TLB_REMOTE_SEND_IPI,
783 	NR_TLB_FLUSH_REASONS,
784 };
785 
786  /*
787   * A swap entry has to fit into a "unsigned long", as the entry is hidden
788   * in the "index" field of the swapper address space.
789   */
790 typedef struct {
791 	unsigned long val;
792 } swp_entry_t;
793 
794 #endif /* _LINUX_MM_TYPES_H */
795